1
|
Khan MSS, Islam F, Chen H, Chang M, Wang D, Liu F, Fu ZQ, Chen J. Transcriptional Coactivators: Driving Force of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:823937. [PMID: 35154230 PMCID: PMC8831314 DOI: 10.3389/fpls.2022.823937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a plant defense signal that mediates local and systemic immune responses against pathogen invasion. However, the underlying mechanism of SA-mediated defense is very complex due to the involvement of various positive and negative regulators to fine-tune its signaling in diverse pathosystems. Upon pathogen infections, elevated level of SA promotes massive transcriptional reprogramming in which Non-expresser of PR genes 1 (NPR1) acts as a central hub and transcriptional coactivator in defense responses. Recent findings show that Enhanced Disease Susceptibility 1 (EDS1) also functions as a transcriptional coactivator and stimulates the expression of PR1 in the presence of NPR1 and SA. Furthermore, EDS1 stabilizes NPR1 protein level, while NPR1 sustains EDS1 expression during pathogenic infection. The interaction of NPR1 and EDS1 coactivators initiates transcriptional reprogramming by recruiting cyclin-dependent kinase 8 in the Mediator complex to control immune responses. In this review, we highlight the recent breakthroughs that considerably advance our understanding on how transcriptional coactivators interact with their functional partners to trigger distinct pathways to facilitate immune responses, and how SA accumulation induces dynamic changes in NPR1 structure for transcriptional reprogramming. In addition, the functions of different Mediator subunits in SA-mediated plant immunity are also discussed in light of recent discoveries. Taken together, the available evidence suggests that transcriptional coactivators are essential and potent regulators of plant defense pathways and play crucial roles in coordinating plant immune responses during plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Ming Chang
- The Key Laboratory of Bio-interactions and Plant Health, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Fengquan Liu,
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Zheng Qing Fu,
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
- Jian Chen,
| |
Collapse
|
2
|
A Ubiquitously Expressed UDP-Glucosyltransferase, UGT74J1, Controls Basal Salicylic Acid Levels in Rice. PLANTS 2021; 10:plants10091875. [PMID: 34579409 PMCID: PMC8469147 DOI: 10.3390/plants10091875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
Salicylic acid (SA) is a phytohormone that regulates a variety of physiological and developmental processes, including disease resistance. SA is a key signaling component in the immune response of many plant species. However, the mechanism underlying SA-mediated immunity is obscure in rice (Oryza sativa). Prior analysis revealed a correlation between basal SA level and blast resistance in a range of rice varieties. This suggested that resistance might be improved by increasing basal SA level. Here, we identified a novel UDP-glucosyltransferase gene, UGT74J1, which is expressed ubiquitously throughout plant development. Mutants of UGT74J1 generated by genome editing accumulated high levels of SA under non-stressed conditions, indicating that UGT74J1 is a key enzyme for SA homeostasis in rice. Microarray analysis revealed that the ugt74j1 mutants constitutively overexpressed a set of pathogenesis-related (PR) genes. An inoculation assay demonstrated that these mutants had increased resistance against rice blast, but they also exhibited stunted growth phenotypes. To our knowledge, this is the first report of a rice mutant displaying SA overaccumulation.
Collapse
|
3
|
Gu KD, Zhang QY, Yu JQ, Wang JH, Zhang FJ, Wang CK, Zhao YW, Sun CH, You CX, Hu DG, Hao YJ. R2R3-MYB Transcription Factor MdMYB73 Confers Increased Resistance to the Fungal Pathogen Botryosphaeria dothidea in Apples via the Salicylic Acid Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:447-458. [PMID: 33347291 DOI: 10.1021/acs.jafc.0c06740] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MYB transcription factors (TFs) participate in many biological processes. However, the molecular mechanisms by which MYB TFs affect plant resistance to apple ring rot remain poorly understood. Here, the R2R3-MYB gene MdMYB73 was cloned from "Royal Gala" apples and functionally characterized as a positive regulator of the defense response to Botryosphaeria dothidea. qRT-PCR and GUS staining demonstrated that MdMYB73 was strongly induced in apple fruits and transgenic calli after inoculation with B. dothidea. MdMYB73 overexpression improved resistance to B. dothidea in apple calli and fruits, while MdMYB73 suppression weakened. Increased resistance to B. dothidea was also observed in MdMYB73-expressing Arabidopsis thaliana. Interestingly, salicylic acid (SA) contents and the expression levels of genes related with SA synthesis and signaling were greater in MdMYB73-overexpressing plant materials compared to wild-type controls after inoculation, suggesting that MdMYB73 might enhance resistance to B. dothidea via the SA pathway. Finally, we discovered that MdMYB73 interacts with MdWRKY31, a positive regulator of B. dothidea. Together, MdWRKY31 and MdMYB73 enhanced B. dothidea resistance in apples. Our results clarify the mechanisms by which MdMYB73 improves resistance to B. dothidea and suggest that resistance may be affected by regulating the SA pathway.
Collapse
Affiliation(s)
- Kai-Di Gu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Quan-Yan Zhang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jian-Qiang Yu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jia-Hui Wang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Fu-Jun Zhang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu-Wen Zhao
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
4
|
Wang X, Zhao Z, Guo N, Wang H, Zhao J, Xing H. Comparative Proteomics Analysis Reveals That Lignin Biosynthesis Contributes to Brassinosteroid-Mediated Response to Phytophthora sojae in Soybeans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5496-5506. [PMID: 32302119 DOI: 10.1021/acs.jafc.0c00848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brassinosteroids (BRs) are a group of steroid plant hormones regulating normal growth, development, and stress response in plants. However, the mechanisms by which BRs interfere with the resistance of soybean to Phytophthora sojae (P. sojae) remain largely unknown. The present study analyzed the role of BRs in soybean response against P. sojae by comparative proteomic approaches. A total of 52,381 peptides were obtained by trypsin digestion of 9,680 proteins, among which 6,640 proteins were quantified, and 402 proteins were identified as differentially expressed proteins (DEPs). Further analysis revealed that DEPs were significantly involved in the lignin biosynthesis pathway. The expression of the majority of key enzymes involved in lignin biosynthesis was upregulated by BR-pretreatment and P. sojae infection, and lignin accumulation was faster in BR-pretreated soybeans than in untreated controls. Additionally, accumulation of lignin was consistent with these enzyme expressions levels and resistance phenotype. These findings advance the understanding of the role of BRs in the interaction between soybeans and P. sojae.
Collapse
Affiliation(s)
- Xinfang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zisu Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitang Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Shi YL, Sheng YY, Cai ZY, Yang R, Li QS, Li XM, Li D, Guo XY, Lu JL, Ye JH, Wang KR, Zhang LJ, Liang YR, Zheng XQ. Involvement of Salicylic Acid in Anthracnose Infection in Tea Plants Revealed by Transcriptome Profiling. Int J Mol Sci 2019; 20:ijms20102439. [PMID: 31108845 PMCID: PMC6566613 DOI: 10.3390/ijms20102439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/29/2022] Open
Abstract
Anthracnose is a major leaf disease in tea plant induced by Colletotrichum, which has led to substantial losses in yield and quality of tea. The molecular mechanism with regards to responses or resistance to anthracnose in tea remains unclear. A de novo transcriptome assembly dataset was generated from healthy and anthracnose-infected leaves on tea cultivars “Longjing-43” (LJ43) and “Zhenong-139” (ZN139), with 381.52 million pair-end reads, encompassing 47.78 billion bases. The unigenes were annotated versus Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), National Center for Biotechnology Information (NCBI) non-redundant protein sequences (Nr), evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) and Swiss-prot. The number of differential expression genes (DEGs) detected between healthy and infected leaves was 1621 in LJ43 and 3089 in ZN139. The GO and KEGG enrichment analysis revealed that the DEGs were highly enriched in catalytic activity, oxidation-reduction, cell-wall reinforcement, plant hormone signal transduction and plant-pathogen interaction. Further studies by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography (HPLC) showed that expression of genes involved in endogenous salicylic acid biosynthesis and also accumulation of foliar salicylic acid are involved in the response of tea plant to anthracnose infection. This study firstly provided novel insight in salicylic acid acting as a key compound in the responses of tea plant to anthracnose disease. The transcriptome dataset in this study will facilitate to profile gene expression and metabolic networks associated with tea plant immunity against anthracnose.
Collapse
Affiliation(s)
- Yun-Long Shi
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yue-Yue Sheng
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Rui Yang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xu-Min Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Da Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xiao-Yuan Guo
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Kai-Rong Wang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Long-Jie Zhang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
6
|
Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M. Intra and Extracellular Journey of the Phytohormone Salicylic Acid. FRONTIERS IN PLANT SCIENCE 2019; 10:423. [PMID: 31057566 DOI: 10.3389/fpls.2019.00423.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 05/23/2023]
Abstract
Salicylic acid (SA) is a plant hormone that has been described to play an essential role in the activation and regulation of multiple responses to biotic and to abiotic stresses. In particular, during plant-microbe interactions, as part of the defense mechanisms, SA is initially accumulated at the local infected tissue and then spread all over the plant to induce systemic acquired resistance at non-infected distal parts of the plant. SA can be produced by either the phenylalanine or isochorismate biosynthetic pathways. The first, takes place in the cytosol, while the second occurs in the chloroplasts. Once synthesized, free SA levels are regulated by a number of chemical modifications that produce inactive forms, including glycosylation, methylation and hydroxylation to dihydroxybenzoic acids. Glycosylated SA is stored in the vacuole, until required to activate SA-triggered responses. All this information suggests that SA levels are under a strict control, including its intra and extracellular movement that should be coordinated by the action of transporters. However, our knowledge on this matter is still very limited. In this review, we describe the most significant efforts made to date to identify the molecular mechanisms involved in SA transport throughout the plant. Additionally, we propose new alternatives that might help to understand the journey of this important phytohormone in the future.
Collapse
Affiliation(s)
- Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Norma Yaniri Aviles-Baltazar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Antony Buchala
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
7
|
Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M. Intra and Extracellular Journey of the Phytohormone Salicylic Acid. FRONTIERS IN PLANT SCIENCE 2019; 10:423. [PMID: 31057566 PMCID: PMC6477076 DOI: 10.3389/fpls.2019.00423] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/20/2019] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) is a plant hormone that has been described to play an essential role in the activation and regulation of multiple responses to biotic and to abiotic stresses. In particular, during plant-microbe interactions, as part of the defense mechanisms, SA is initially accumulated at the local infected tissue and then spread all over the plant to induce systemic acquired resistance at non-infected distal parts of the plant. SA can be produced by either the phenylalanine or isochorismate biosynthetic pathways. The first, takes place in the cytosol, while the second occurs in the chloroplasts. Once synthesized, free SA levels are regulated by a number of chemical modifications that produce inactive forms, including glycosylation, methylation and hydroxylation to dihydroxybenzoic acids. Glycosylated SA is stored in the vacuole, until required to activate SA-triggered responses. All this information suggests that SA levels are under a strict control, including its intra and extracellular movement that should be coordinated by the action of transporters. However, our knowledge on this matter is still very limited. In this review, we describe the most significant efforts made to date to identify the molecular mechanisms involved in SA transport throughout the plant. Additionally, we propose new alternatives that might help to understand the journey of this important phytohormone in the future.
Collapse
Affiliation(s)
- Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Norma Yaniri Aviles-Baltazar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Antony Buchala
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Backer R, Naidoo S, van den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:102. [PMID: 30815005 PMCID: PMC6381062 DOI: 10.3389/fpls.2019.00102] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 05/04/2023]
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related NPR1-like proteins are a functionally similar, yet surprisingly diverse family of transcription co-factors. Initially, NPR1 in Arabidopsis was identified as a positive regulator of systemic acquired resistance (SAR), paralogs NPR3 and NPR4 were later shown to be negative SAR regulators. The mechanisms involved have been the subject of extensive research and debate over the years, during which time a lot has been uncovered. The known roles of this protein family have extended to include influences over a broad range of systems including circadian rhythm, endoplasmic reticulum (ER) resident proteins and the development of lateral organs. Recently, important advances have been made in understanding the regulatory relationship between members of the NPR1-like protein family, providing new insight regarding their interactions, both with each other and other defense-related proteins. Most importantly the influence of salicylic acid (SA) on these interactions has become clearer with NPR1, NPR3, and NPR4 being considered bone fide SA receptors. Additionally, post-translational modification of NPR1 has garnered attention during the past years, adding to the growing regulatory complexity of this protein. Furthermore, growing interest in NPR1 overexpressing crops has provided new insights regarding the role of NPR1 in both biotic and abiotic stresses in several plant species. Given the wealth of information, this review aims to highlight and consolidate the most relevant and influential research in the field to date. In so doing, we attempt to provide insight into the mechanisms and interactions which underly the roles of the NPR1-like proteins in plant disease responses.
Collapse
Affiliation(s)
- Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Noëlani van den Berg,
| |
Collapse
|
9
|
Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition. Cells 2018; 7:cells7120252. [PMID: 30544557 PMCID: PMC6315839 DOI: 10.3390/cells7120252] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/03/2023] Open
Abstract
Plants constantly suffer from simultaneous infection by multiple pathogens, which can be divided into biotrophic, hemibiotrophic, and necrotrophic pathogens, according to their lifestyles. Many studies have contributed to improving our knowledge of how plants can defend against pathogens, involving different layers of defense mechanisms. In this sense, the review discusses: (1) the functions of PAMP (pathogen-associated molecular pattern)-triggered immunity (PTI) and effector-triggered immunity (ETI), (2) evidence highlighting the functions of salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET)-mediated signaling pathways downstream of PTI and ETI, and (3) other defense aspects, including many novel small molecules that are involved in defense and phenomena, including systemic acquired resistance (SAR) and priming. In particular, we mainly focus on SA and (JA)/ET-mediated signaling pathways. Interactions among them, including synergistic effects and antagonistic effects, are intensively explored. This might be critical to understanding dynamic disease regulation.
Collapse
|
10
|
Ádám AL, Nagy ZÁ, Kátay G, Mergenthaler E, Viczián O. Signals of Systemic Immunity in Plants: Progress and Open Questions. Int J Mol Sci 2018; 19:E1146. [PMID: 29642641 PMCID: PMC5979450 DOI: 10.3390/ijms19041146] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.
Collapse
Affiliation(s)
- Attila L Ádám
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Zoltán Á Nagy
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic.
| | - György Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Emese Mergenthaler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Orsolya Viczián
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| |
Collapse
|
11
|
Claverie J, Balacey S, Lemaître-Guillier C, Brulé D, Chiltz A, Granet L, Noirot E, Daire X, Darblade B, Héloir MC, Poinssot B. The Cell Wall-Derived Xyloglucan Is a New DAMP Triggering Plant Immunity in Vitis vinifera and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1725. [PMID: 30546374 PMCID: PMC6280107 DOI: 10.3389/fpls.2018.01725] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 05/20/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules that can activate the plant innate immunity. DAMPs can derive from the plant cell wall, which is composed of a complex mixture of cellulose, hemicellulose, and pectin polysaccharides. Fragments of pectin, called oligogalacturonides (OG), can be released after wounding or by pathogen-encoded cell wall degrading enzymes (CWDEs) such as polygalacturonases (PGs). OG are known to induce innate immune responses, including the activation of mitogen-activated protein kinases (MAPKs), production of H2O2, defense gene activation, and callose deposition. Thus, we hypothesized that xyloglucans (Xh), derived from the plant cell wall hemicellulose, could also act as an endogenous elicitor and trigger a signaling cascade similar to OG. Our results indicate that purified Xh elicit MAPK activation and immune gene expression in grapevine (Vitis vinifera) and Arabidopsis (Arabidopsis thaliana) to trigger induced resistance against necrotrophic (Botrytis cinerea) or biotrophic (Hyaloperonospora arabidopsidis) pathogens. Xh also induce resveratrol production in grapevine cell suspension and callose deposition in Arabidopsis which depends on the callose synthase PMR4. In addition, we characterized some signaling components of Xh-induced immunity using Arabidopsis mutants. Our data suggest that Xh-induced resistance against B. cinerea is dependent on the phytoalexin, salicylate, jasmonate, and ethylene pathways.
Collapse
Affiliation(s)
- Justine Claverie
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Suzanne Balacey
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | | | - Daphnée Brulé
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Annick Chiltz
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Lucie Granet
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Elodie Noirot
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Xavier Daire
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | | | - Marie-Claire Héloir
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
| | - Benoit Poinssot
- Agroécologie, Agrosup Dijon, INRA, Université Bourgogne Franche-Comté, CNRS ERL, Dijon, France
- *Correspondence: Benoit Poinssot,
| |
Collapse
|
12
|
Lu PP, Yu TF, Zheng WJ, Chen M, Zhou YB, Chen J, Ma YZ, Xi YJ, Xu ZS. The Wheat Bax Inhibitor-1 Protein Interacts with an Aquaporin TaPIP1 and Enhances Disease Resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:20. [PMID: 29403525 PMCID: PMC5786567 DOI: 10.3389/fpls.2018.00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/05/2018] [Indexed: 05/20/2023]
Abstract
Bax inhibitor-1 (BI-1) is an endoplasmic reticulum (ER)-resident cell death suppressor evolutionarily conserved in eukaryotes. The ability of BI-1 to inhibit the biotic and abiotic stresses have been well-studied in Arabidopsis, while the functions of wheat BI-1 are largely unknown. In this study, the wheat BI-1 gene TaBI-1.1 was isolated by an RNA-seq analysis of Fusarium graminearum (Fg)-treated wheat. TaBI-1.1 expression was induced by a salicylic acid (SA) treatment and down-regulated by an abscisic acid (ABA) treatment. Based on β-glucuronidase (GUS) staining, TaBI-1.1 was expressed in mature leaves and roots but not in the hypocotyl or young leaves. Constitutive expression of TaBI-1.1 in Arabidopsis enhanced its resistance to Pseudomonas syringae pv. Tomato (Pst) DC3000 infection and induced SA-related gene expression. Additionally, TaBI-1.1 transgenic Arabidopsis exhibited an alleviation of damage caused by high concentrations of SA and decreased the sensitivity to ABA. Consistent with the phenotype, the RNA-seq analysis of 35S::TaBI-1.1 and Col-0 plants showed that TaBI-1.1 was involved in biotic stresses. These results suggested that TaBI-1.1 positively regulates SA signals and plays important roles in the response to biotic stresses. In addition, TaBI-1.1 interacted with the aquaporin TaPIP1, and both them were localized to ER membrane. Furthermore, we demonstrated that TaPIP1 was up-regulated by SA treatment and TaPIP1 transgenic Arabidopsis enhanced the resistance to Pst DC3000 infection. Thus, the interaction between TaBI-1.1 and TaPIP1 on the ER membrane probably occurs in response to SA signals and defense response.
Collapse
Affiliation(s)
- Pan-Pan Lu
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Ming Chen
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ya-Jun Xi
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- *Correspondence: Zhao-Shi Xu, Ya-Jun Xi,
| | - Zhao-Shi Xu
- Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Zhao-Shi Xu, Ya-Jun Xi,
| |
Collapse
|
13
|
Radojičić A, Li X, Zhang Y. Salicylic Acid: A Double-Edged Sword for Programed Cell Death in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1133. [PMID: 30131819 PMCID: PMC6090181 DOI: 10.3389/fpls.2018.01133] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/13/2018] [Indexed: 05/04/2023]
Abstract
In plants, salicylic acid (SA) plays important roles in regulating immunity and programed cell death. Early studies revealed that increased SA accumulation is associated with the onset of hypersensitive reaction during resistance gene-mediated defense responses. SA was also found to accumulate to high levels in lesion-mimic mutants and in some cases the accumulation of SA is required for the spontaneous cell death phenotype. Meanwhile, high levels of SA have been shown to negatively regulate plant cell death during effector-triggered immunity, suggesting that SA has dual functions in cell death control. The molecular mechanisms of how SA regulates cell death in plants are discussed.
Collapse
Affiliation(s)
- Ana Radojičić
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | - Yuelin Zhang
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Yuelin Zhang,
| |
Collapse
|
14
|
Pye MF, Dye SM, Resende RS, MacDonald JD, Bostock RM. Abscisic Acid as a Dominant Signal in Tomato During Salt Stress Predisposition to Phytophthora Root and Crown Rot. FRONTIERS IN PLANT SCIENCE 2018; 9:525. [PMID: 29740465 PMCID: PMC5924805 DOI: 10.3389/fpls.2018.00525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
Salt stress predisposes plants to Phytophthora root and crown rot in an abscisic acid (ABA)-dependent manner. We used the tomato-Phytophthora capsici interaction to examine zoospore chemoattraction and assessed expression of pathogenesis-related (PR) genes regulated by salicylic acid (SA) and jasmonic acid (JA) following a salt-stress episode. Although salt treatment enhances chemoattraction of tomato roots to zoospores, exudates from salt-stressed roots of ABA-deficient mutants, which do not display the predisposition phenotype, have a similar chemoattraction as exudates from salt-stressed, wild-type roots. This suggests that ABA action during predisposing stress enhances disease through effects on plant responses occurring after initial contact and during ingress by the pathogen. The expression of NCED1 (ABA synthesis) and TAS14 (ABA response) in roots generally corresponded to previously reported changes in root ABA levels during salt stress onset and recovery in a pattern that was not altered by infection by P. capsici. The PR genes, P4 and PI-2, hallmarks in tomato for SA and JA action, respectively, were induced in non-stressed roots during infection and strongly suppressed in infected roots exposed to salt-stress prior to inoculation. However, there was a similar proportional increase in pathogen colonization observed in salt-stressed plants relative to non-stressed plants in both wild-type and a SA-deficient nahG line. Unlike the other tomato cultivars used in this study that showed a strong predisposition phenotype, the processing tomato cv. 'Castlemart' and its JA mutants were not predisposed by salt. Salt stress predisposition to crown and root rot caused by P. capsici appears to be strongly conditioned by ABA-driven mechanisms in tomato, with the stress compromising SA-and JA-mediated defense-related gene expression during P. capsici infection.
Collapse
|
15
|
Peng Y, Sun T, Zhang Y. Perception of Salicylic Acid in Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2017; 8:2145. [PMID: 29326742 PMCID: PMC5741644 DOI: 10.3389/fpls.2017.02145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/04/2017] [Indexed: 05/26/2023]
Abstract
Salicylic acid (SA) is a key signaling molecule in plant immunity. Two types of SA receptors, NPR1 and NPR3/NPR4, were reported to be involved in the perception of SA in Arabidopsis. SA is also synthesized in the non-vascular moss Physcomitrella patens following pathogen infection. Sequence analysis revealed that there is only one NPR1/NPR3/NPR4-like protein in P. patens. This agrees with the phylogenetic study that showed the divergence of NPR1 and NPR3/NPR4 from the same ancestor during the evolution of higher plants. Intriguingly, expression of the P. patens NPR1/NPR3/NPR4-like gene in Arabidopsis does not complement the constitutive defense phenotype of the npr3 npr4 double mutant, but can partially rescue the mutant phenotypes of npr1-1, suggesting that it functions as an NPR1-like positive regulator of SA-mediated immunity and P. patens does not have an SA receptor functioning similarly as NPR3/NPR4. Future characterization of the P. patens NPR1-like protein and analysis of its functions through knockout and biochemical approaches will help us better understand how SA is perceived and what its functions are in P. patens.
Collapse
|
16
|
Lamm CE, Kraner ME, Hofmann J, Börnke F, Mock HP, Sonnewald U. Hop/Sti1 - A Two-Faced Cochaperone Involved in Pattern Recognition Receptor Maturation and Viral Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:1754. [PMID: 29075278 PMCID: PMC5641557 DOI: 10.3389/fpls.2017.01754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 05/03/2023]
Abstract
Perception of pathogens by host pattern recognition receptors (PRRs) or R proteins is a prerequisite to promote successful immune responses. The Hsp70/Hsp90 organizing protein Hop/Sti1, a multifunctional cochaperone, has been implicated in the maturation of a receptor-like kinase (RLK) necessary for chitin sensing. However, it remains unknown whether Hop/Sti1 is generally participating in PRR genesis. Using RNA-interference (RNAi), we silenced Hop/Sti1 expression in Nicotiana tabacum to gain further insight into the role of the cochaperone in plant defense responses. As expected, transgenic plants do not respond to chitin treatment anymore. In contrast to this, trafficking and functionality of the flagellin PRR FLS2 were unaltered, suggesting a selective involvement of Hop/Sti1 during PRR maturation. Furthermore, Hop/Sti1 was identified as a cellular determinant of Potato virus Y (PVY) symptom development in tobacco, since PVY was able to accumulate to near wild-type level without provoking the usual veinal necrosis phenotype. In addition, typical antiviral host defense responses were suppressed in the transgenic plants. These data suggest that perception of PVY is dependent on Hop/Sti1-mediated receptor maturation, while viral symptoms represent a failing attempt to restrict PVY spread. In addition, Hop/Sti1 colocalized with virus-induced membrane aggregates in wild-type plants. The retention of Hop/Sti1 in potential viral replication complexes suggests a role during viral translation/replication, explaining why RNAi-lines do not exhibit increased susceptibility to PVY. This study provides evidence for a dual role of Hop/Sti1 in PRR maturation and pathogen perception as well as in promoting viral proliferation.
Collapse
Affiliation(s)
- Christian E. Lamm
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Max. E. Kraner
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg Hofmann
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Frederik Börnke
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
17
|
Al Shweiki MR, Mönchgesang S, Majovsky P, Thieme D, Trutschel D, Hoehenwarter W. Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance. J Proteome Res 2017; 16:1410-1424. [PMID: 28217993 DOI: 10.1021/acs.jproteome.6b00645] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We evaluated the state of label-free discovery proteomics focusing especially on technological contributions and contributions of naturally occurring differences in protein abundance to the intersample variability in protein abundance estimates in this highly peptide-centric technology. First, the performance of popular quantitative proteomics software, Proteome Discoverer, Scaffold, MaxQuant, and Progenesis QIP, was benchmarked using their default parameters and some modified settings. Beyond this, the intersample variability in protein abundance estimates was decomposed into variability introduced by the entire technology itself and variable protein amounts inherent to individual plants of the Arabidopsis thaliana Col-0 accession. The technical component was considerably higher than the biological intersample variability, suggesting an effect on the degree and validity of reported biological changes in protein abundance. Surprisingly, the biological variability, protein abundance estimates, and protein fold changes were recorded differently by the software used to quantify the proteins, warranting caution in the comparison of discovery proteomics results. As expected, ∼99% of the proteome was invariant in the isogenic plants in the absence of environmental factors; however, few proteins showed substantial quantitative variability. This naturally occurring variation between individual organisms can have an impact on the causality of reported protein fold changes.
Collapse
Affiliation(s)
- Mhd Rami Al Shweiki
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Susann Mönchgesang
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Petra Majovsky
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Domenika Thieme
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| | - Diana Trutschel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen , Stockumer Straße. 12, 58453 Witten, Germany.,Martin-Luther-University Halle-Wittenberg , Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Research Group Proteome Analytics, Leibniz Institute of Plant Biochemistry , Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
18
|
Gao Y, Wu Y, Du J, Zhan Y, Sun D, Zhao J, Zhang S, Li J, He K. Both Light-Induced SA Accumulation and ETI Mediators Contribute to the Cell Death Regulated by BAK1 and BKK1. FRONTIERS IN PLANT SCIENCE 2017; 8:622. [PMID: 28487714 PMCID: PMC5403931 DOI: 10.3389/fpls.2017.00622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/06/2017] [Indexed: 05/10/2023]
Abstract
Receptor-like kinases BAK1 and BKK1 modulate multiple cellular processes including brassinosteroid signaling and PRR-mediated PTI in Arabidopsis. Our previous reports also demonstrated that bak1 bkk1 double mutants exhibit a spontaneous cell death phenotype under normal growth condition. With an unknown mechanism, the cell death in bak1 bkk1 is significantly suppressed when grown in dark but can be quickly induced by light. Furthermore, little is known about intrinsic components involved in BAK1 and BKK1-regulated cell death pathway. In this study, we analyzed how light functions as an initiator of cell death and identified ETI components to act as mediators of cell death signaling in bak1 bkk1. Cell death suppressed in bak1 bkk1 by growing in dark condition recurred upon exogenously treated SA. SA biosynthesis-related genes SID2 and EDS5, which encode chloroplast-localized proteins, were highly expressed in bak1-4 bkk1-1. When crossed to bak1-3 bkk1-1, sid2 or eds5 was capable of efficiently suppressing the cell death. It suggested that overly produced SA is crucial for inducing cell death in bak1 bkk1 grown in light. Notably, bak1-3 or bkk1-1 single mutant was shown to be more susceptible but bak1-3 bkk1-1 double mutant exhibited enhanced resistance to bacterial pathogen, suggesting immune signaling other than PTI is activated in bak1 bkk1. Moreover, genetic analyses showed that mutation in EDS1 or PAD4, key ETI mediator, significantly suppressed the cell death in bak1-3 bkk1-1. In this study, we revealed that light-triggered SA accumulation plays major role in inducing the cell death in bak1 bkk1, mediated by ETI components.
Collapse
|
19
|
Ruhe J, Agler MT, Placzek A, Kramer K, Finkemeier I, Kemen EM. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors. FRONTIERS IN PLANT SCIENCE 2016; 7:820. [PMID: 27379119 PMCID: PMC4913113 DOI: 10.3389/fpls.2016.00820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/25/2016] [Indexed: 05/23/2023]
Abstract
Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche dominance. Adaptation to host immune responses while maintaining a partially active host immunity seems advantageous against competitors. We suggest a model for future research that considers not only host-microbe but in addition microbe-microbe and microbe-host environment factors.
Collapse
Affiliation(s)
- Jonas Ruhe
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Matthew T. Agler
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | | | - Katharina Kramer
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Iris Finkemeier
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Institute of Plant Biology and Biotechnology, University of MuensterMünster, Germany
| | - Eric M. Kemen
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
20
|
Klessig DF, Tian M, Choi HW. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals. Front Immunol 2016; 7:206. [PMID: 27303403 PMCID: PMC4880560 DOI: 10.3389/fimmu.2016.00206] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/12/2016] [Indexed: 01/04/2023] Open
Abstract
Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms.
Collapse
Affiliation(s)
| | - Miaoying Tian
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa , Honolulu, HI , USA
| | - Hyong Woo Choi
- Boyce Thompson Institute, Cornell University , Ithaca, NY , USA
| |
Collapse
|
21
|
Pečenková T, Sabol P, Kulich I, Ortmannová J, Žárský V. Constitutive Negative Regulation of R Proteins in Arabidopsis also via Autophagy Related Pathway? FRONTIERS IN PLANT SCIENCE 2016; 7:260. [PMID: 26973696 PMCID: PMC4777726 DOI: 10.3389/fpls.2016.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/18/2016] [Indexed: 05/29/2023]
Abstract
Even though resistance (R) genes are among the most studied components of the plant immunity, there remain still a lot of aspects to be explained about the regulation of their function. Many gain-of-function mutants of R genes and loss-of-function of their regulators often demonstrate up-regulated defense responses in combination with dwarf stature and/or spontaneous leaf lesions formation. For most of these mutants, phenotypes are a consequence of an ectopic activation of R genes. Based on the compilation and comparison of published results in this field, we have concluded that the constitutively activated defense phenotypes recurrently arise by disruption of tight, constitutive and multilevel negative control of some of R proteins that might involve also their targeting to the autophagy pathway. This mode of R protein regulation is supported also by protein-protein interactions listed in available databases, as well as in silico search for autophagy machinery interacting motifs. The suggested model could resolve some explanatory discrepancies found in the studies of the immunity responses of autophagy mutants.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Peter Sabol
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Jitka Ortmannová
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
22
|
Benouaret R, Goupil P. Grape Marc Extract-Induced Defense Reactions and Protection against Phytophthora parasitica Are Impaired in NahG Tobacco Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6653-9. [PMID: 26105078 DOI: 10.1021/acs.jafc.5b01740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Grape marc extract (GME) acts as an elicitor of plant defense responses. This study analyzed GME-induced plant defense reactions in NahG transgenic tobacco. Leaf infiltration of NahG leaves revealed HR-like reactions with reduced lesions and weak deployment of autofluorescent compounds in the surrounding infiltrated tissues. The β-1,3-glucanase PR2-, endochitinase PR3-, and osmotin PR5-target transcript levels were strongly lowered in NahG leaves, and the mutant failed to accumulate the antimicrobial PR1 transcripts. GME-induced protection against Phytophthora parasitica var. nicotianae (Ppn) was evaluated on tobacco leaves. The antimicrobial properties of GME against Ppn were evidenced using a range of in vitro tests. GME-sprayed wild-type leaves showed reduced infection areas, whereas GME failed to induce a protective effect against Ppn in NahG leaves. The results suggest that GME-induced plant defense reactions in tobacco plants was mediated by salicylic acid (SA) and that GME-induced protection against Ppn could be the combined result of antimicrobial and defense actions.
Collapse
Affiliation(s)
- Razik Benouaret
- †Clermont Université, Université Blaise Pascal, UMR 547 PIAF, B.P. 10448, Clermont-Ferrand, France
- ‡INRA, UMR 547 PIAF, Clermont-Ferrand, France
| | - Pascale Goupil
- †Clermont Université, Université Blaise Pascal, UMR 547 PIAF, B.P. 10448, Clermont-Ferrand, France
- ‡INRA, UMR 547 PIAF, Clermont-Ferrand, France
| |
Collapse
|
23
|
Maldonado-González MM, Bakker PAHM, Prieto P, Mercado-Blanco J. Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7. Front Microbiol 2015; 6:266. [PMID: 25904904 PMCID: PMC4387922 DOI: 10.3389/fmicb.2015.00266] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/17/2015] [Indexed: 11/13/2022] Open
Abstract
The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7.
Collapse
Affiliation(s)
- M. Mercedes Maldonado-González
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| | - Peter A. H. M. Bakker
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| | - Pilar Prieto
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, CórdobaSpain
| |
Collapse
|
24
|
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2012; 3:108. [PMID: 22661981 PMCID: PMC3362084 DOI: 10.3389/fpls.2012.00108] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/07/2012] [Indexed: 05/04/2023]
Abstract
In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.
Collapse
Affiliation(s)
- Janick Mathys
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | | | - Bart Lievens
- Scientia Terrae Research InstituteSint-Katelijne-Waver, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology (CIMB), Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven AssociationSint-Katelijne-Waver, Belgium
| | - Mieke Vanhaecke
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| |
Collapse
|
25
|
Behringer C, Bartsch K, Schaller A. Safeners recruit multiple signalling pathways for the orchestrated induction of the cellular xenobiotic detoxification machinery in Arabidopsis. PLANT, CELL & ENVIRONMENT 2011; 34:1970-85. [PMID: 21726238 DOI: 10.1111/j.1365-3040.2011.02392.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Safeners enhance herbicide tolerance in crop plants but not in target weeds, thus improving herbicide selectivity. The safeners isoxadifen-ethyl and mefenpyr-diethyl protect cereal crops from sulfonyl urea herbicides in postemergence application. The two safeners were shown here to induce the cellular xenobiotic detoxification machinery in Arabidopsis thaliana when applied to leaves in a way mimicking field application. Gene expression profiling revealed the induction of 446 genes potentially involved in the detoxification process. Transgenic Arabidopsis plants expressing a reporter gene under control of a safener-responsive maize promoter were used as a model system to study the safener signalling pathway. Reporter gene analysis in the tga2/3/5/6, sid2-2 and npr1 mutants as compared with the wild-type background showed that safener inducibility required TGA transcription factors and salicylic acid (SA) in a NON-EXPRESSOR of PR-1 (NPR1)-independent pathway converging on two as-1 promoter elements. For the majority of the safener-responsive Arabidopsis genes, a similar dependence on TGA transcription factors and/or SA was shown by gene expression profiling in wild-type plants as compared with the tga2/3/5/6 and sid2-2 mutants. Thirty-eight percent of the genes, however, were induced by safeners in a TGA/SA-independent manner. These genes are likely to be controlled by WRKY transcription factors and cognate W-boxes in their promoters.
Collapse
Affiliation(s)
- Carina Behringer
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70599 Stuttgart, Germany
| | | | | |
Collapse
|
26
|
|
27
|
Yaeno T, Saito B, Katsuki T, Iba K. Ozone-induced expression of the Arabidopsis FAD7 gene requires salicylic acid, but not NPR1 and SID2. PLANT & CELL PHYSIOLOGY 2006; 47:355-62. [PMID: 16415067 DOI: 10.1093/pcp/pci253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Arabidopsis FAD7 gene encodes a plastid omega-3 fatty acid desaturase that catalyzes the desaturation of dienoic fatty acids to trienoic fatty acids in chloroplast membrane lipids. The expression of FAD7 was rapidly and locally induced by ozone exposure, which causes oxidative responses equivalent to pathogen-induced hypersensitive responses and subsequently activates various defense-related genes. This induction was reduced in salicylic acid (SA)-deficient NahG plants expressing SA hydroxylase, but was unaffected in etr1 and jar1 mutants, which are insensitive to ethylene and jasmonic acid (JA), respectively. The SA dependence of the FAD7 induction was confirmed by the exogenous application of SA. SA-induced expression of FAD7 in the npr1 mutant which is defective in an SA signaling pathway occurred to the same extent as in the wild type. Furthermore, in the sid2 mutant which lacks an enzyme required for SA biosynthesis, the expression of FAD7 was induced by ozone exposure. These results suggest that the ozone-induced expression of FAD7 gene requires SA, but not ethylene, JA, NPR1 and SID2.
Collapse
Affiliation(s)
- Takashi Yaeno
- Department of Biology, Faculty of Sciences, Kyushu University, Hakozaki, Fukuoka, Japan
| | | | | | | |
Collapse
|
28
|
Lieberherr D, Wagner U, Dubuis PH, Métraux JP, Mauch F. The rapid induction of glutathione S-transferases AtGSTF2 and AtGSTF6 by avirulent Pseudomonas syringae is the result of combined salicylic acid and ethylene signaling. PLANT & CELL PHYSIOLOGY 2003; 44:750-7. [PMID: 12881503 DOI: 10.1093/pcp/pcg093] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The expression of two members of the glutathione S-transferase (GST) multigene family was studied in Arabidopsis plants inoculated with an avirulent strain of Pseudomonas syringae pv. tomato (Pst). Accumulation of AtGSTF2 and AtGSTF6 transcripts started 4 and 2 h after inoculation, respectively, and clearly preceded the induction of the pathogenesis-related PR-1 gene. The aim of this work was to find the reason for the faster induction of the two GSTs compared with classical salicylic acid (SA)-regulated PR-proteins. Expression studies in Pst-inoculated SA-signaling mutants NahG and npr1 revealed that induction of both GSTs was SA-dependent and partially NPR1-independent. The induction of AtGSTF2 by Pst was also strongly repressed in the ethylene insensitive etr1 mutant. Both GSTs were induced by low amounts of SA (0.1 mM) and ethylene (0.1 ppm) while PR-1 gene expression was unaffected by ethylene. Interestingly, ethylene was about 50-fold less effective in NahG compared with wild-type plants thus suggesting a potentiation effect of SA on ethylene-induced accumulation of AtGST transcripts. Increased AtGST expression in plants inoculated with Pst correlated with increased production of SA and ethylene. However, the initial phase of AtGSTF6 induction was independent of SA- and ethylene-signaling. The jasmonate (JA)-insensitive mutant jar1 showed normal induction kinetics for both GSTs. Our data support the hypothesis that full expression of the pathogen-induced AtGSTF2 and, to a lesser extent AtGSTF6, is the result of combined SA- and ethylene-signaling and that early AtGSTF6 expression depends on additional unknown signaling mechanisms.
Collapse
Affiliation(s)
- Damien Lieberherr
- Département de Biologie, Université de Fribourg, CH-1700 Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|