1
|
Blackburn C, Sullivan MV, Wild MI, O' Connor AJ, Turner NW. Utilisation of molecularly imprinting technology for the detection of glucocorticoids for a point of care surface plasmon resonance (SPR) device. Anal Chim Acta 2024; 1285:342004. [PMID: 38057055 DOI: 10.1016/j.aca.2023.342004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
Herein, we describe the synthesis and characterisation of four synthetic recognition materials (nanoMIPs) selective for the glucocorticoid steroids - prednisolone, prednisone, dexamethasone, and cortisone. Using a solid-phase synthesis approach, these materials were then applied in the development of a surface plasmon resonance (SPR) sensor for the detection of these four targets in doped urine, to mimic the routine testing of agricultural waste for possible environmental exposure. The synthesised particles displayed a range of sizes between 104 and 160 nm. Affinity studies were performed, and these synthetic materials were shown to display nanomolar affinities (15.9-62.8 nM) towards their desired targets. Furthermore, we conducted cross-reactivity studies to assess the materials selectivity towards their desired target and the materials showed excellent selectivity when compared to the non-desired target, with selectivity factors calculated. Furthermore, through the use of 3D visualisation it can be seen that small changes between structures (such as a hydroxyl to ketone transformation) there is excellent selectivity between the compounds in the ranges of 100 fold plus. Using Surine™ doped samples the materials offered comparable nanomolar affinities (10.7-75.7 nM) towards their targets when compared to the standardised buffer preparation. Detection levels in urine for all compounds was in the nanomolar range. The developed sensor offers potential for these devices to be used in the prevention of these pharmaceutical compounds to enter the surrounding environment through agricultural waste through monitoring at source. Likewise, they can be used to monitor use in clinical samples.
Collapse
Affiliation(s)
- Chester Blackburn
- Department of Chemistry, University of Sheffield, Dainton Building, 13 Brook Hill, Sheffield, S3 7HF, UK
| | - Mark V Sullivan
- Department of Chemistry, University of Sheffield, Dainton Building, 13 Brook Hill, Sheffield, S3 7HF, UK
| | - Molly I Wild
- Department of Chemistry, University of Sheffield, Dainton Building, 13 Brook Hill, Sheffield, S3 7HF, UK
| | - Abbie J O' Connor
- Department of Chemistry, University of Sheffield, Dainton Building, 13 Brook Hill, Sheffield, S3 7HF, UK
| | - Nicholas W Turner
- Department of Chemistry, University of Sheffield, Dainton Building, 13 Brook Hill, Sheffield, S3 7HF, UK.
| |
Collapse
|
2
|
Huang F, Zhang Y, Bai XQ, Wang CX, Li YN. Clostridium leptum induces the generation of interleukin-10 + regulatory B cells to alleviate airway inflammation in asthma. Mol Immunol 2022; 145:124-138. [PMID: 35349868 DOI: 10.1016/j.molimm.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Asthma is one of the most common chronic inflammatory diseases of the respiratory tract. Previous studies have shown that the reduction of regulatory B cells (Bregs) can increase inflammation of the body and promote the formation of chronic airway inflammation in asthma, but the detailed mechanisms have not been fully elucidated. The intestinal flora Clostridium leptum (CL) has been reported to modulate immune regulatory cells in the body, but the specific mechanisms are not clear. This study aimed to investigate the effects of CL on the differentiation of interleukin (IL)- 10+ Bregs and the regulation of the asthmatic inflammation-associated immune network. METHODS The abundances of CL and the frequencies of blood Bregs from asthmatic patients and healthy controls were compared. The house dust mite (HDM)-induced asthma model was established in mice. The effects of CL exposure and B cell infusion on Breg differentiation, T cell cytokine production, and inflammatory cell infiltration in mouse lungs were examined. Bregs were cocultured with regulatory T cells (Tregs) and CD4+ non-Tregs to evaluate their roles on Foxp3 expression and T cell differentiation, respectively. RESULTS Compared with healthy controls, asthmatic patients had significantly reduced frequencies of blood Bregs and abundances of fecal CL, and these two parameters were positively correlated. In the asthma model, the frequencies of Bregs in lungs were significantly reduced; while the infusion of Bregs isolated from CL- supplemented mice significantly reduced airway inflammation and hyperresponsiveness. In addition, Bregs inhibited the differentiation of cocultured non-Tregs into multiple effector cells and enhanced Foxp3 expression in cocultured Tregs. CONCLUSION Bregs contribute to the alleviation of airway inflammation, which provides insight on implementing CL-based microbial induction of Bregs in asthma therapy.
Collapse
Affiliation(s)
- Fei Huang
- Department of Orthopedics, China Japan Union Hospital of Jilin University, Changchun, Jilin 130033, PR China
| | - Ying Zhang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Xin-Quan Bai
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Chun-Xiao Wang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China
| | - Ya-Nan Li
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, PR China; Department of Molecular Biology, Basic Medical College of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
3
|
Sharma A. Inferring molecular mechanisms of dexamethasone therapy in severe COVID-19 from existing transcriptomic data. Gene 2021; 788:145665. [PMID: 33887367 PMCID: PMC8054526 DOI: 10.1016/j.gene.2021.145665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/27/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
Dexamethasone, a synthetic glucocorticoid, has previously shown mortality benefit in severe coronavirus disease 2019 (COVID-19) in a randomized controlled trial. As the illness is considered to reflect a hyperinflammatory state, this therapeutic effectiveness is presumably ascribed to broad anti-inflammatory activities of glucocorticoids. Here, an unbiased analysis of available transcriptomic data on lung and blood immune cells from severe COVID-19 patients and matching cellular models of dexamethasone treatment is presented that supports this presumption. Comparison of differentially expressed genes in severe COVID-19 with that in dexamethasone treated cells reveals a small set of genes that are regulated in opposite direction between the disease and the drug, and are enriched for genes and processes related to glucocorticoid pathway and receptor binding. This expression signature differentiates as a whole various cytokines from a set of anti-cytokine/anti-inflammatory agents, with the former resembling COVID-19 and the latter dexamethasone in gene regulation. The signature apparently relates to TNF- α, IL-1α, IL-1β, IFN-α, IFN-β, and IFN-γ signaling, but not IL-6 signaling, suggesting that therapeutic effect of dexamethasone in COVID-19 does not involve IL-6 pathway. However, as all these observations are purely based on bioinformatic analysis, experimental evidence will be required to validate the inferences drawn. In conclusion, the present analysis seems to provide a proof of concept for therapeutic mechanisms of dexamethasone in COVID-19.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India.
| |
Collapse
|
4
|
Acevedo A, DuBois D, Almon RR, Jusko WJ, Androulakis IP. Modeling Pathway Dynamics of the Skeletal Muscle Response to Intravenous Methylprednisolone (MPL) Administration in Rats: Dosing and Tissue Effects. Front Bioeng Biotechnol 2020; 8:759. [PMID: 32760706 PMCID: PMC7371857 DOI: 10.3389/fbioe.2020.00759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
A model-based approach for the assessment of pathway dynamics is explored to characterize metabolic and signaling pathway activity changes characteristic of the dosing-dependent differences in response to methylprednisolone in muscle. To consistently compare dosing-induced changes we extend the principles of pharmacokinetics and pharmacodynamics and introduce a novel representation of pathway-level dynamic models of activity regulation. We hypothesize the emergence of dosing-dependent regulatory interactions is critical to understanding the mechanistic implications of MPL dosing in muscle. Our results indicate that key pathways, including amino acid and lipid metabolism, signal transduction, endocrine regulation, regulation of cellular functions including growth, death, motility, transport, protein degradation, and catabolism are dependent on dosing, exhibiting diverse dynamics depending on whether the drug is administered acutely of continuously. Therefore, the dynamics of drug presentation offer the possibility for the emergence of dosing-dependent models of regulation. Finally, we compared acute and chronic MPL response in muscle with liver. The comparison revealed systematic response differences between the two tissues, notably that muscle appears more prone to adapt to MPL.
Collapse
Affiliation(s)
- Alison Acevedo
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Debra DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States.,Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States.,Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
5
|
Burke SJ, Batdorf HM, Huang TY, Jackson JW, Jones KA, Martin TM, Rohli KE, Karlstad MD, Sparer TE, Burk DH, Campagna SR, Noland RC, Soto PL, Collier JJ. One week of continuous corticosterone exposure impairs hepatic metabolic flexibility, promotes islet β-cell proliferation, and reduces physical activity in male C57BL/6 J mice. J Steroid Biochem Mol Biol 2019; 195:105468. [PMID: 31536768 PMCID: PMC6939671 DOI: 10.1016/j.jsbmb.2019.105468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
Clinical glucocorticoid use, and diseases that produce elevated circulating glucocorticoids, promote drastic changes in body composition and reduction in whole body insulin sensitivity. Because steroid-induced diabetes is the most common form of drug-induced hyperglycemia, we investigated mechanisms underlying the recognized phenotypes associated with glucocorticoid excess. Male C57BL/6 J mice were exposed to either 100ug/mL corticosterone (cort) or vehicle in their drinking water. Body composition measurements revealed an increase in fat mass with drastically reduced lean mass during the first week (i.e., seven days) of cort exposure. Relative to the vehicle control group, mice receiving cort had a significant reduction in insulin sensitivity (measured by insulin tolerance test) five days after drug intervention. The increase in insulin resistance significantly correlated with an increase in the number of Ki-67 positive β-cells. Moreover, the ability to switch between fuel sources in liver tissue homogenate substrate oxidation assays revealed reduced metabolic flexibility. Furthermore, metabolomics analyses revealed a decrease in liver glycolytic metabolites, suggesting reduced glucose utilization, a finding consistent with onset of systemic insulin resistance. Physical activity was reduced, while respiratory quotient was increased, in mice receiving corticosterone. The majority of metabolic changes were reversed upon cessation of the drug regimen. Collectively, we conclude that changes in body composition and tissue level substrate metabolism are key components influencing the reductions in whole body insulin sensitivity observed during glucocorticoid administration.
Collapse
Affiliation(s)
- Susan J Burke
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Heidi M Batdorf
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Tai-Yu Huang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Joseph W Jackson
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Katarina A Jones
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Thomas M Martin
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Kristen E Rohli
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Michael D Karlstad
- Department of Surgery, University of Tennessee Health Science Center, Knoxville, TN 37920, United States
| | - Tim E Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - David H Burk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Robert C Noland
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Paul L Soto
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States; Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States
| | - J Jason Collier
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| |
Collapse
|
6
|
Li S, Miao Z, Tian Y, Wang H, Wang S, He T, Yang Y, Wang P, Ma M, Yang T, Chen T, Liu Z, Gao J, Chen C, Qian A. Limethason reduces airway inflammation in a murine model of ovalbumin-induced chronic asthma without causing side effects. Exp Ther Med 2018; 15:2269-2276. [PMID: 29456634 PMCID: PMC5795477 DOI: 10.3892/etm.2018.5691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/05/2017] [Indexed: 01/26/2023] Open
Abstract
Airway inflammation is the major pathological feature of asthma. Thus, the current therapeutic strategy for asthma is to control inflammation. Limethason, an anti-inflammation drug, is widely used in rheumatoid arthritis treatment. The aim of the present study was to detect the anti-inflammatory effect and side effects of limethason on airways that were sensitized with ovalbumin in a murine model of chronic asthma. In the present study, BALB/c mice were sensitized with ovalbumin. Airway hyperresponsiveness was estimated, and hematoxylin and eosin staining, Periodic acid-Schiff staining and bronchoalveolar lavage were used to detect the effect on chronic asthma. Limethason effectively reduced airway hyperresponsiveness, and inhibited inflammatory cell infiltration and mucus secretion. Bronchoalveolar lavage fluid analysis revealed that limethason suppressed levels of airway eosinophils. In the period of treatment, limethason exhibited no influence on morphology of the femoral head, bone mineral content or bone mineral density, which were detected by histological studies and dual-energy X-ray absorptiometry. The index of liver, spleen, kidney, gastrocnemius and brown adipose tissue also demonstrated that limethason had no adverse effects on organs and tissues. The present study revealed that limethason could effectively reduce inflammation in an asthma mouse model without side effects. Therefore, limethason may have therapeutic potential for treating chronic asthma clinically.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Zhiping Miao
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Ye Tian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Haoyu Wang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Shuai Wang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Tianyuan He
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Yue Yang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Peng Wang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Mengyao Ma
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Tuanmin Yang
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Tao Chen
- Xi'an Libang Pharmaceutical Co., Ltd., Xi'an, Shaanxi 710075, P.R. China
| | - Zhiyong Liu
- CNGC Institute of Industrial Health, Xi'an, Shaanxi 710065, P.R. China
| | - Junhong Gao
- CNGC Institute of Industrial Health, Xi'an, Shaanxi 710065, P.R. China
| | - Chu Chen
- Clinical Laboratory of Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Airong Qian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| |
Collapse
|
7
|
Zhang H, He Y, Zhang G, Li X, Yan S, Hou N, Xiao Q, Huang Y, Luo M, Zhang G, Yi Q, Chen M, Luo J. HDAC2 is required by the physiological concentration of glucocorticoid to inhibit inflammation in cardiac fibroblasts. Can J Physiol Pharmacol 2017; 95:1030-1038. [PMID: 28511026 DOI: 10.1139/cjpp-2016-0449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We previously suggested that endogenous glucocorticoids (GCs) may inhibit myocardial inflammation induced by lipopolysaccharide (LPS) in vivo. However, the possible cellular and molecular mechanisms were poorly understood. In this study, we investigated the role of physiological concentration of GCs in inflammation induced by LPS in cardiac fibroblasts and explored the possible mechanisms. The results showed that hydrocortisone at the dose of 127 ng/mL (equivalent to endogenous basal level of GCs) inhibited LPS (100 ng/mL)-induced productions of TNF-α and IL-1β in cardiac fibroblasts. Xanthine oxidase/xanthine (XO/X) system impaired the anti-inflammatory action of GCs through downregulating HDAC2 activity and expression. Knockdown of HDAC2 restrained the anti-inflammatory effects of physiological level of hydrocortisone, and blunted the ability of XO/X system to downregulate the inhibitory action of physiological level of hydrocortisone on cytokines. These results suggested that HDAC2 was required by the physiological concentration of GC to inhibit inflammatory response. The dysfunction of HDAC2 induced by oxidative stress might be account for GC resistance and chronic inflammatory disorders during the cardiac diseases.
Collapse
Affiliation(s)
- Haining Zhang
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Yanhua He
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Guiping Zhang
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Xiaobin Li
- b Department of Histology and Embryology, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Suikai Yan
- c Department of Morphology, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Ning Hou
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Qing Xiao
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Yue Huang
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Miaoshan Luo
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Genshui Zhang
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Quan Yi
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Minsheng Chen
- d Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, Guangzhou Medical University, Guangzhou, 510260, P.R. China
| | - Jiandong Luo
- a Department of Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China.,d Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, Guangzhou Medical University, Guangzhou, 510260, P.R. China
| |
Collapse
|
8
|
Trzil JE, Masseau I, Webb TL, Chang CH, Dodam JR, Liu H, Quimby JM, Dow SW, Reinero CR. Intravenous adipose-derived mesenchymal stem cell therapy for the treatment of feline asthma: a pilot study. J Feline Med Surg 2016; 18:981-990. [PMID: 26384398 PMCID: PMC11112236 DOI: 10.1177/1098612x15604351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the feasibility and efficacy of serially administered adipose-derived mesenchymal stem cells (MSCs) in an experimental feline asthma model. METHODS Allergic asthma was acutely induced with Bermuda grass allergen in six purpose-bred cats. Five intravenous infusions of allogeneic MSCs (n = 4; MSC-treated) or saline (n = 2; placebo-treated) were administered over the first 130 days after asthma induction. Infusions contained 2 × 106, 4 × 106, 4.7 × 106, 1 × 107 and 1 × 107 cryopreserved MSCs/cat. For thoracic imaging additional cats were enrolled as control groups: four untreated, experimentally asthmatic cats (combined with placebo-treated cats), and six healthy, non-asthmatic cats. Outcome measures included airway eosinophilia, pulmonary mechanics, thoracic computed tomography and several immunologic assays. RESULTS Cats were assessed for 9 months after treatment. At early points, airway eosinophil percentage was not affected by MSC administration (post-treatment average of days 12, 26, 47, 108 and 133 in MSC-treated cats was 41 ± 15% and in placebo-treated cats it was 34 ± 16%). By month 9, eosinophil percentages in all MSC-treated cats decreased to normal reference intervals (MSC-treated 6%; placebo-treated 20%; normal <17%). Diminished airway hyper-responsiveness was noted in all MSC-treated compared with placebo-treated cats at day 133 (dose of methacholine to double baseline airway resistance: MSC-treated median 22.9 mg/ml [range 6.4-64.0]; individual placebo-treated cats 1.1 and 5.0 mg/ml). Lung attenuation (mean ± SEM MSC-treated -865 ± 12 Hounsfield units [HU]; untreated asthmatics -820 ± 11 HU; P = 0.004) and bronchial wall thickening scores (median [interquartile range] MSC-treated 0 [0-1.5]; untreated asthmatic 11.6 [7.3-27.3]; P = 0.010) were significantly reduced in MSC-treated vs untreated asthmatic cats, consistent with decreased airway remodeling at month 9. No clear immunologic mechanisms by which MSCs act were determined. CONCLUSIONS AND RELEVANCE MSCs may have a delayed effect in reducing airway inflammation, airway hyper-responsiveness and remodeling in experimentally induced asthmatic cats. Results warrant additional investigation of MSC therapy for asthma in cats.
Collapse
Affiliation(s)
- Julie E Trzil
- IndyVet Emergency and Specialty Hospital, Indianapolis, Indiana, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Isabelle Masseau
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tracy L Webb
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Chee-Hoon Chang
- College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - John R Dodam
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Hong Liu
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jessica M Quimby
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven W Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Carol R Reinero
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: an overview. Eur Clin Respir J 2015. [PMID: 26672959 DOI: 10.3402/ecrj.v2.27984.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The terms 'exercise-induced asthma' (EIA) and 'exercise-induced bronchoconstriction' (EIB) are often used interchangeably to describe symptoms of asthma such as cough, wheeze, or dyspnoea provoked by vigorous physical activity. In this review, we refer to EIB as the bronchoconstrictive response and to EIA when bronchoconstriction is associated with asthma symptoms. EIB is a common occurrence for most of the asthmatic patients, but it also affects more than 10% of otherwise healthy individuals as shown by epidemiological studies. EIA and EIB have a high prevalence also in elite athletes, especially within endurance type of sports, and an athlete's asthma phenotype has been described. However, the occurrence in elite athletes shows that EIA/EIB, if correctly managed, may not impair physical activity and top sports performance. The pathogenic mechanisms of EIA/EIB classically involve both osmolar and vascular changes in the airways in addition to cooling of the airways with parasympathetic stimulation. Airways inflammation plays a fundamental role in EIA/EIB. Diagnosis and pharmacological management must be carefully performed, with particular consideration of current anti-doping regulations, when caring for athletes. Based on the demonstration that the inhaled asthma drugs do not improve performance in healthy athletes, the doping regulations are presently much less strict than previously. Some sports are at a higher asthma risk than others, probably due to a high environmental exposure while performing the sport, with swimming and chlorine exposure during swimming as one example. It is considered very important for the asthmatic child and adolescent to master EIA/EIB to be able to participate in physical activity on an equal level with their peers, and a precise early diagnosis with optimal treatment follow-up is vital in this aspect. In addition, surprising recent preliminary evidences offer new perspectives for moderate exercise as a potential therapeutic tool for asthmatics.
Collapse
Affiliation(s)
- Stefano R Del Giacco
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy;
| | - Davide Firinu
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | | |
Collapse
|
10
|
Del Giacco SR, Firinu D, Bjermer L, Carlsen KH. Exercise and asthma: an overview. Eur Clin Respir J 2015; 2:27984. [PMID: 26672959 PMCID: PMC4653278 DOI: 10.3402/ecrj.v2.27984] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/04/2015] [Indexed: 01/03/2023] Open
Abstract
The terms 'exercise-induced asthma' (EIA) and 'exercise-induced bronchoconstriction' (EIB) are often used interchangeably to describe symptoms of asthma such as cough, wheeze, or dyspnoea provoked by vigorous physical activity. In this review, we refer to EIB as the bronchoconstrictive response and to EIA when bronchoconstriction is associated with asthma symptoms. EIB is a common occurrence for most of the asthmatic patients, but it also affects more than 10% of otherwise healthy individuals as shown by epidemiological studies. EIA and EIB have a high prevalence also in elite athletes, especially within endurance type of sports, and an athlete's asthma phenotype has been described. However, the occurrence in elite athletes shows that EIA/EIB, if correctly managed, may not impair physical activity and top sports performance. The pathogenic mechanisms of EIA/EIB classically involve both osmolar and vascular changes in the airways in addition to cooling of the airways with parasympathetic stimulation. Airways inflammation plays a fundamental role in EIA/EIB. Diagnosis and pharmacological management must be carefully performed, with particular consideration of current anti-doping regulations, when caring for athletes. Based on the demonstration that the inhaled asthma drugs do not improve performance in healthy athletes, the doping regulations are presently much less strict than previously. Some sports are at a higher asthma risk than others, probably due to a high environmental exposure while performing the sport, with swimming and chlorine exposure during swimming as one example. It is considered very important for the asthmatic child and adolescent to master EIA/EIB to be able to participate in physical activity on an equal level with their peers, and a precise early diagnosis with optimal treatment follow-up is vital in this aspect. In addition, surprising recent preliminary evidences offer new perspectives for moderate exercise as a potential therapeutic tool for asthmatics.
Collapse
Affiliation(s)
- Stefano R Del Giacco
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy;
| | - Davide Firinu
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | | |
Collapse
|
11
|
Freishtat RJ, Nino G, Tsegaye Y, Alcala SE, Benton AS, Watson AM, Reeves EKM, Haider SK, Damsker JM. Pharmacologically-induced mitotic synchrony in airway epithelial cells as a mechanism of action of anti-inflammatory drugs. Respir Res 2015; 16:132. [PMID: 26511361 PMCID: PMC4625853 DOI: 10.1186/s12931-015-0293-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitotic synchrony is the synchronous progression of a population of cells through the cell cycle and is characteristic of non-diseased airway epithelial cells. However, we previously showed that asthmatic airway epithelial cells are characterized by mitotic asynchrony and are pro-inflammatory as a result. Glucocorticoids can induce mitotic synchrony that in turn suppresses the pro-inflammatory state of diseased cells, suggesting a novel anti-inflammatory mechanism of action. Herein, we benchmarked traditional glucocorticoids against the ability of a new clinical-stage dissociative steroidal drug, VBP15, for mitotic resynchronization and associated anti-inflammatory activity in asthmatic airway epithelial cells. METHODS Primary airway epithelial cells differentiated at air-liquid interface were exposed to VBP15, dexamethasone or vehicle following in vitro mechanical injury. Basolateral cytokine secretions (TGF-β1, IL-6, IL-10, IL-13, and IL-1β) were analyzed at different time points using cytometric bead assays and mitosis was examined by flow cytometry. RESULTS VBP15 improved mitotic synchrony of proliferating asthmatic cells in air-liquid interface cultures compared to vehicle-exposed cultures. VBP15 also significantly reduced the basolateral secretion of pro-inflammatory (i.e. IL-1β) and pro-fibrogenic cytokines (i.e. TGF-β1) in air-liquid interface-differentiated asthmatic epithelial cultures following mechanical injury. CONCLUSION VBP15 improves mitotic asynchrony and injury-induced pro-inflammatory and fibrogenic responses in asthmatic airway epithelial cultures with efficacy comparable to traditional glucocorticoids. As it is predicted to show superior side effect profiles compared to traditional glucocorticoids, VBP15 holds potential for treatment of asthma and other respiratory conditions.
Collapse
Affiliation(s)
- R J Freishtat
- Division of Emergency Medicine, Children's National Health System, Washington, DC, USA. .,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - G Nino
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, USA.
| | - Y Tsegaye
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - S E Alcala
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - A S Benton
- Children's National Health System, Washington, DC, USA.
| | - A M Watson
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - E K M Reeves
- ReveraGen Biopharma, Inc., Silver Spring, MD, USA.
| | - S K Haider
- Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, USA.
| | - J M Damsker
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,ReveraGen Biopharma, Inc., Silver Spring, MD, USA.
| |
Collapse
|
12
|
Abstract
Asthma remains a major health problem with significant morbidity, mortality and economic costs. In asthma, airway remodelling, which refers to all the microscopic structural changes seen in the airway tissue, has been recognised for many decades and remains one of the defining characteristics of the disease; however, it is still poorly understood. The detrimental pathophysiological consequences of some features of remodelling, like increased airway smooth muscle mass and subepithelial fibrosis, are well documented. However, whether targeting these by therapy would be beneficial is unknown. Although the prevailing thinking is that remodelling is an abnormal response to persistent airway inflammation, recent evidence, especially from studies of remodelling in asthmatic children, suggests that the two processes occur in parallel. The effects of asthma therapy on airway remodelling have not been studied extensively due to the challenges of obtaining airway tissue in the context of clinical trials. Corticosteroids remain the cornerstone of asthma therapy, and their effects on remodelling have been better studied than other drugs. Bronchial thermoplasty is the only asthma therapy to primarily target remodelling, although how it results in the apparent clinical benefits seen is not exactly clear. In this article we discuss the mechanisms of airway remodelling in asthma and review the effects of conventional and novel asthma therapies on the process.
Collapse
Affiliation(s)
- Rachid Berair
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP, UK
| | | |
Collapse
|
13
|
Alcala SE, Benton AS, Watson AM, Kureshi S, Reeves EMK, Damsker J, Wang Z, Nagaraju K, Anderson J, Williams AM, Lee AJY, Hayes K, Rose MC, Hoffman EP, Freishtat RJ. Mitotic asynchrony induces transforming growth factor-β1 secretion from airway epithelium. Am J Respir Cell Mol Biol 2014; 51:363-9. [PMID: 24669775 DOI: 10.1165/rcmb.2013-0396oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We recently proposed that mitotic asynchrony in repairing tissue may underlie chronic inflammation and fibrosis, where immune cell infiltration is secondary to proinflammatory cross-talk among asynchronously repairing adjacent tissues. Building on our previous finding that mitotic asynchrony is associated with proinflammatory/fibrotic cytokine secretion (e.g., transforming growth factor [TGF]-β1), here we provide evidence supporting cause-and-effect. Under normal conditions, primary airway epithelial basal cell populations undergo mitosis synchronously and do not secrete proinflammatory or profibrotic cytokines. However, when pairs of nonasthmatic cultures were mitotically synchronized at 12 hours off-set and then combined, the mixed cell populations secreted elevated levels of TGF-β1. This shows that mitotic asynchrony is not only associated with but is also causative of TGF-β1 secretion. The secreted cytokines and other mediators from asthmatic cells were not the cause of asynchronous regeneration; synchronously mitotic nonasthmatic epithelia exposed to conditioned media from asthmatic cells did not show changes in mitotic synchrony. We also tested if resynchronization of regenerating asthmatic airway epithelia reduces TGF-β1 secretion and found that pulse-dosed dexamethasone, simvastatin, and aphidicolin were all effective. We therefore propose a new model for chronic inflammatory and fibrotic conditions where an underlying factor is mitotic asynchrony.
Collapse
|
14
|
Damsker JM, Dillingham BC, Rose MC, Balsley MA, Heier CR, Watson AM, Stemmy EJ, Jurjus RA, Huynh T, Tatem K, Uaesoontrachoon K, Berry DM, Benton AS, Freishtat RJ, Hoffman EP, McCall JM, Gordish-Dressman H, Constant SL, Reeves EKM, Nagaraju K. VBP15, a glucocorticoid analogue, is effective at reducing allergic lung inflammation in mice. PLoS One 2013; 8:e63871. [PMID: 23667681 PMCID: PMC3646769 DOI: 10.1371/journal.pone.0063871] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/11/2013] [Indexed: 01/22/2023] Open
Abstract
Asthma is a chronic inflammatory condition of the lower respiratory tract associated with airway hyperreactivity and mucus obstruction in which a majority of cases are due to an allergic response to environmental allergens. Glucocorticoids such as prednisone have been standard treatment for many inflammatory diseases for the past 60 years. However, despite their effectiveness, long-term treatment is often limited by adverse side effects believed to be caused by glucocorticoid receptor-mediated gene transcription. This has led to the pursuit of compounds that retain the anti-inflammatory properties yet lack the adverse side effects associated with traditional glucocorticoids. We have developed a novel series of steroidal analogues (VBP compounds) that have been previously shown to maintain anti-inflammatory properties such as NFκB-inhibition without inducing glucocorticoid receptor-mediated gene transcription. This study was undertaken to determine the effectiveness of the lead compound, VBP15, in a mouse model of allergic lung inflammation. We show that VBP15 is as effective as the traditional glucocorticoid, prednisolone, at reducing three major hallmarks of lung inflammation—NFκB activity, leukocyte degranulation, and pro-inflammatory cytokine release from human bronchial epithelial cells obtained from patients with asthma. Moreover, we found that VBP15 is capable of reducing inflammation of the lung in vivo to an extent similar to that of prednisone. We found that prednisolone–but not VBP15 shortens the tibia in mice upon a 5 week treatment regimen suggesting effective dissociation of side effects from efficacy. These findings suggest that VBP15 may represent a potent and safer alternative to traditional glucocorticoids in the treatment of asthma and other inflammatory diseases.
Collapse
Affiliation(s)
- Jesse M Damsker
- ReveraGen BioPharma, Rockville, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Costa RS, Carneiro TCB, Cerqueira-Lima AT, Queiroz NV, Alcântara-Neves NM, Pontes-de-Carvalho LC, Velozo EDS, Oliveira EJ, Figueiredo CA. Ocimum gratissimum Linn. and rosmarinic acid, attenuate eosinophilic airway inflammation in an experimental model of respiratory allergy to Blomia tropicalis. Int Immunopharmacol 2012; 13:126-34. [PMID: 22465960 DOI: 10.1016/j.intimp.2012.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 12/18/2022]
Abstract
Allergic asthma has emerged as an important public health problem of urban populations in developed countries. Very often herbal medicine is used to treat this widespread disease, due to the lack of efficacy and the important side effects related to the classical drugs in use. Along this line, Ocimum gratissimum (Og) is a plant widely used in Brazilian folk medicine to treat inflammatory disorders, such as asthma. In the present study we evaluated the immunomodulatory effects of Og and rosmarinic acid (RA, a polyphenolic compound) in a murine model of respiratory allergy induced by the Blomia tropicalis (Bt) mite. The respiratory allergy was induced in A/J mice by administration of Bt extract and the treatment was done using 25, 50 or 100mg/kg of an Og methanolic extract or using 2, 20 or 200mg/kg of RA. We then evaluated the changes induced by these drugs on immunological parameters related to the allergic process, which are up-regulated in this allergic model. The treatment of animals with 100mg/Kg Og and 200mg/Kg RA led to a significant reduction in the numbers of leukocytes/eosinophils in bronchoalveolar lavage (BAL); eosinophil peroxidase activity in BAL; presence of mucus in respiratory tract, histopathological changes in the lung, and IL-4 in BAL. These results suggest that the methanolic extract of Og and the polyphenol RA have therapeutic potential in this murine model of respiratory allergy to a clinically relevant human sensitizer allergen.
Collapse
Affiliation(s)
- Ryan Santos Costa
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sali A, Guerron AD, Gordish-Dressman H, Spurney CF, Iantorno M, Hoffman EP, Nagaraju K. Glucocorticoid-treated mice are an inappropriate positive control for long-term preclinical studies in the mdx mouse. PLoS One 2012; 7:e34204. [PMID: 22509280 PMCID: PMC3317932 DOI: 10.1371/journal.pone.0034204] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/23/2012] [Indexed: 01/24/2023] Open
Abstract
Background Dmdmdx (mdx) mice are used as a genetic and biochemical model of dystrophin deficiency. The long-term consequences of glucocorticoid (GC) treatment on dystrophin-deficient skeletal and heart muscle are not yet known. Here we used systematic phenotyping to assess the long-term consequences of GC treatment in mdx mice. Our investigation addressed not only the effects of GC on the disease phenotype but also the question of whether GCs can be used as a positive control for preclinical drug evaluations. Methods and Findings We performed nine pre-clinical efficacy trials (treated N = 129, untreated N = 106) of different durations in 9-to-50-week-old dystrophic mdx mice over a 3-year time period using standardized methods. In all these trials, we used either 1 mg/kg body weight of prednisone or 5 mg/kg body weight of prednisolone as positive controls to compare the efficacy of various test drugs. Data from untreated controls and GC-treated mice in the various trials have been pooled and analyzed to assess the effects of GCs on dystrophin-deficient skeletal and cardiac muscles of mdx mice. Our results indicate that continuous GC treatment results in early (e.g., at 50 days) improvements in normalized parameters such as grip strength, motor coordination and maximal in vitro force contractions on isolated EDL muscle, but these initial benefits are followed by a progressive loss of muscle strength after 100 days. We also found a significant increase in heart fibrosis that is reflected in a significant deterioration in cardiac systolic function after 100 days of treatment. Conclusion Continuous administration of prednisone to mdx mice initially improves skeletal muscle strength, but further therapy result in deterioration of muscle strength and cardiac function associated with enhanced cardiac fibrosis. These results suggest that GCs may not serve as an appropriate positive control for long-term mdx mouse preclinical trials.
Collapse
Affiliation(s)
- Arpana Sali
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington DC, United States of America
| | - Alfredo D. Guerron
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington DC, United States of America
| | - Heather Gordish-Dressman
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington DC, United States of America
| | - Christopher F. Spurney
- Division of Cardiology, Children’s National Medical Center, Washington DC, United States of America
| | - Micaela Iantorno
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington DC, United States of America
| | - Eric P. Hoffman
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington DC, United States of America
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington DC, United States of America
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington DC, United States of America
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington DC, United States of America
- * E-mail:
| |
Collapse
|
17
|
Freishtat RJ, Watson AM, Benton AS, Iqbal SF, Pillai DK, Rose MC, Hoffman EP. Asthmatic airway epithelium is intrinsically inflammatory and mitotically dyssynchronous. Am J Respir Cell Mol Biol 2011; 44:863-9. [PMID: 20705942 PMCID: PMC3135846 DOI: 10.1165/rcmb.2010-0029oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 07/12/2010] [Indexed: 12/30/2022] Open
Abstract
Asthma is an inflammatory condition for which anti-inflammatory glucocorticoids are the standard of care. However, similar efficacy has not been shown for agents targeting inflammatory cells and pathways. This suggests a noninflammatory cell contributor (e.g., epithelium) to asthmatic inflammation. Herein, we sought to define the intrinsic and glucocorticoid-affected properties of asthmatic airway epithelium compared with normal epithelium. Human primary differentiated normal and asthmatic airway epithelia were cultured in glucocorticoid-free medium beginning at -48 hours. They were pulsed with dexamethasone (20 nM) or vehicle for 2 hours at -26, -2, +22, and +46 hours. Cultures were mechanically scrape-wounded at 0 hours and exposed continuously to bromodeoxyuridine (BrdU). Cytokine secretions were analyzed using cytometric bead assays. Wound regeneration/mitosis was analyzed by microscopy and flow cytometry. Quiescent normal (n = 3) and asthmatic (n = 6) epithelia showed similar minimal inflammatory cytokine secretion and mitotic indices. After wounding, asthmatic epithelia secreted more basolateral TGF-β1, IL-10, IL-13, and IL-1β (P < 0.05) and regenerated less efficiently than normal epithelia (+48 h wound area reduction = [mean ± SEM] 50.2 ± 7.5% versus 78.6 ± 7.7%; P = 0.02). Asthmatic epithelia showed 40% fewer BrdU(+) cells at +48 hours (0.32 ± 0.05% versus 0.56 ± 0.07% of total cells; P = 0.03), and those cells were more dyssynchronously distributed along the cell cycle (52 ± 10, 25 ± 4, 23 ± 7% for G1/G0, S, and G2/M, respectively) than normal epithelia (71 ± 1, 12 ± 2, and 17 ± 2% for G1/G0, S, and G2/M, respectively). Dexamethasone pulses improved asthmatic epithelial inflammation and regeneration/mitosis. In summary, we show that inflammatory/fibrogenic cytokine secretions are correlated with dyssynchronous mitosis upon injury. Intermittent glucocorticoids simultaneously decreased epithelial cytokine secretions and resynchronized mitosis. These data, generated in an airway model lacking inflammatory cells, support the concept that epithelium contributes to asthmatic inflammation.
Collapse
Affiliation(s)
- Robert J Freishtat
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Ni Z, Tang J, Cai Z, Yang W, Zhang L, Chen Q, Zhang L, Wang X. A new pathway of glucocorticoid action for asthma treatment through the regulation of PTEN expression. Respir Res 2011; 12:47. [PMID: 21489309 PMCID: PMC3096598 DOI: 10.1186/1465-9921-12-47] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 04/14/2011] [Indexed: 12/23/2022] Open
Abstract
Background "Phosphatase and tensin homolog deleted on chromosome 10" (PTEN) is mostly considered to be a cancer-related gene, and has been suggested to be a new pathway of pathogenesis of asthma. The purpose of this study was to investigate the effects of the glucocorticoid, dexamethasone, on PTEN regulation. Methods OVA-challenged mice were used as an asthma model to investigate the effect of dexamethasone on PTEN regulation. Immunohistochemistry was used to detect expression levels of PTEN protein in lung tissues. The human A549 cell line was used to explore the possible mechanism of action of dexamethasone on human PTEN regulation in vitro. A luciferase reporter construct under the control of PTEN promoter was used to confirm transcriptional regulation in response to dexamethasone. Results PTEN protein was found to be expressed at low levels in lung tissues in asthmatic mice; but the expression was restored after treatment with dexamethasone. In A549 cells, human PTEN was up-regulated by dexamethasone treatment. The promoter-reporter construct confirmed that dexamethasone could regulate human PTEN transcription. Treatment with the histone deacetylase inhibitor, TSA, could increase PTEN expression in A549 cells, while inhibition of histone acetylase (HAT) by anacardic acid attenuated dexamethasone-induced PTEN expression. Conclusions Based on the data a new mechanism is proposed where glucocorticoids treat asthma partly through up-regulation of PTEN expression. The in vitro studies also suggest that the PTEN pathway may be involved in human asthma.
Collapse
Affiliation(s)
- ZhenHua Ni
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, PR China
| | | | | | | | | | | | | | | |
Collapse
|