1
|
De Rubis G, Chakraborty A, Paudel KR, Wang C, Kannaujiya V, Wich PR, Hansbro PM, Samuel CS, Oliver B, Dua K. Exploring the anti-inflammatory and anti-fibrotic activity of NFκB decoy oligodeoxynucleotide-loaded spermine-functionalized acetalated nanoparticles. Chem Biol Interact 2024; 396:111059. [PMID: 38761875 DOI: 10.1016/j.cbi.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Chronic inflammation, oxidative stress, and airway remodelling represent the principal pathophysiological features of chronic respiratory disorders. Inflammation stimuli like lipopolysaccharide (LPS) activate macrophages and dendritic cells, with concomitant M1 polarization and release of pro-inflammatory cytokines. Chronic inflammation and oxidative stress lead to airway remodelling causing irreversible functional and structural alterations of the lungs. Airway remodelling is multifactorial, however, the hormone transforming growth factor-β (TGF-β) is one of the main contributors to fibrotic changes. The signalling pathways mediating inflammation and remodelling rely both on the transcription factor nuclear factor-κB (NFκB), underlying the potential of NFκB inhibition as a therapeutic strategy for chronic respiratory disorders. In this study, we encapsulated an NFκB-inhibiting decoy oligodeoxynucleotide (ODN) in spermine-functionalized acetalated dextran (SpAcDex) nanoparticles and tested the in vitro anti-inflammatory and anti-remodelling activity of this formulation. We show that NF-κB ODN nanoparticles counteract inflammation by reversing LPS-induced expression of the activation marker CD40 in myeloid cells and counteracts remodelling features by reversing the TGF-β-induced expression of collagen I and α-smooth muscle actin in human dermal fibroblast. In summary, our study highlights the great potential of inhibiting NFκB via decoy ODN as a therapeutic strategy tackling multiple pathophysiological features underlying chronic respiratory conditions.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Chao Wang
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Vinod Kannaujiya
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter Richard Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, 2007, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Brian Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
2
|
Seyfinejad B, Nemutlu E, Taghizadieh A, Khoubnasabjafari M, Ozkan SA, Jouyban A. Biomarkers in exhaled breath condensate as fingerprints of asthma, chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap: a critical review. Biomark Med 2023; 17:811-837. [PMID: 38179966 DOI: 10.2217/bmm-2023-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap are the third leading cause of mortality around the world. They share some common features, which can lead to misdiagnosis. To properly manage these conditions, reliable markers for early and accurate diagnosis are needed. Over the past 20 years, many molecules have been investigated in the exhaled breath condensate to better understand inflammation pathways and mechanisms related to these disorders. Recently, more advanced techniques, such as sensitive metabolomic and proteomic profiling, have been used to obtain a more comprehensive understanding. This article reviews the use of targeted and untargeted metabolomic methodology to study asthma, COPD and asthma-COPD overlap.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkiye
| | - Ali Taghizadieh
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology & Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkiye
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO Box 99138 Nicosia, North Cyprus, Mersin 10, Turkiye
| |
Collapse
|
3
|
Janssen SMJ, van Helvoort HAC, Tjalma TA, Antons JC, Djamin RS, Simons SO, Spruit MA, van 't Hul AJ. Impact of Treatable Traits on Asthma Control and Quality of Life. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1823-1833.e4. [PMID: 36893847 DOI: 10.1016/j.jaip.2023.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/08/2022] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Many adult patients with asthma have uncontrolled disease and impaired quality of life, despite current asthma-specific drug therapies. OBJECTIVE This study aimed to investigate the prevalence of 9 traits in patients with asthma, their associations with disease control and quality of life, and referral rates to nonmedical health care professionals. METHODS Retrospectively, data from patients with asthma were collected in 2 Dutch hospitals (Amphia Breda and RadboudUMC Nijmegen). Adult patients without exacerbation <3 months who were referred for a first-ever elective, outpatient, hospital-based diagnostic pathway were deemed eligible. Nine traits were assessed: dyspnea, fatigue, depression, overweight, exercise intolerance, physical inactivity, smoking, hyperventilation, and frequent exacerbations. To assess the likelihood of having poor disease control or decreased quality of life, the odds ratio (OR) was calculated per trait. Referral rates were assessed by checking patients' files. RESULTS A total of 444 adults with asthma were studied (57% women, age: 48 ± 16 years, forced expiratory volume in 1 second: 88% ± 17% predicted). Most patients (53%) were found to have uncontrolled asthma (Asthma Control Questionnaire ≥1.5 points) and decreased quality of life (Asthma Quality of Life Questionnaire <6 points). Generally, patients had 3.0 ± 1.8 traits. Severe fatigue was most prevalent (60%) and significantly increased the likelihood of having uncontrolled asthma (OR: 3.0, 95% confidence interval [CI]: 1.9-4.7) and decreased quality of life (OR: 4.6, 95% CI: 2.7-7.9). Referrals to nonmedical health care professionals were low; most referrals were to a respiratory-specialized nurse (33%). CONCLUSION Adult patients with asthma with a first-ever referral to a pulmonologist frequently exhibit traits justifying the deployment of nonpharmacological interventions, especially in those with uncontrolled asthma. However, referrals to appropriate interventions appeared infrequent.
Collapse
Affiliation(s)
- Steffi M J Janssen
- Basalt Rehabilitation Centre, Department of Pulmonary Rehabilitation, Leiden, the Netherlands; Department of Pulmonary Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+) NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands.
| | - Hanneke A C van Helvoort
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tjitske A Tjalma
- Department of Pulmonary Diseases, Amphia Hospital, Breda, the Netherlands
| | - Jeanine C Antons
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Remco S Djamin
- Department of Pulmonary Diseases, Amphia Hospital, Breda, the Netherlands
| | - Sami O Simons
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+) NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands
| | - Martijn A Spruit
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+) NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands; Department of Research and Development, CIRO, Horn, the Netherlands
| | - Alex J van 't Hul
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
4
|
An M, Oh M, Park KT, Seon KH, Jo JE, Lee SK, Kim JK, Shin KS, Koh JH, Lim YH. Anti-asthma and antitussive effects of a fermented extract of a mixture of Ramulus mori, Anthriscus sylvestris, and Salvia plebeian. Food Sci Biotechnol 2021; 30:1257-1268. [PMID: 34393544 PMCID: PMC8352748 DOI: 10.1007/s10068-021-00955-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Respiratory immunity is getting more important recently due to outbreak of respiratory diseases and increasing the concentration of fine dust. The aim of this study was to investigate respiratory protection effect of a fermented extract of medicinal plants (FEMP) containing Ramulus mori, Salvia plebeia, and Anthriscus sylvestris. The expression levels of IL-8 and IL-17 in LPS/poly-L-arginine (PLA) and FEMP-cotreated A549 cells were lower than those in LPS/PLA only-treated cells. The levels of IgE, IL-17, and IL-4 in the bronchoalveolar lavage fluid (BALF) and serum of FEMP-treated mice with ovalbumin/LPS-induced asthma were lower than the control levels. The lung inflammation score and the number of inflammatory cells in the BALF decreased by FEMP treatment. In the citric acid-induced coughing guinea pig, the FEMP treatment decreased the number of coughs. Therefore, FEMP shows anti-asthmatic and antitussive activities without hepatotoxicity and can be used as a compound aiming to improve respiratory health. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00955-3.
Collapse
Affiliation(s)
- Mirae An
- Department of Public Health Science, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Miae Oh
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Keun-Tae Park
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Ki Hwan Seon
- R & D Center, Biocean CO. LTD, Seoul, 08591 Republic of Korea
| | - Jeong Eun Jo
- R & D Center, Biocean CO. LTD, Seoul, 08591 Republic of Korea
| | - Seong Kweon Lee
- R & D Center, Biocean CO. LTD, Seoul, 08591 Republic of Korea
| | - Jeong-Keun Kim
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, Shihung-si, Gyeonggi-do 15073 Republic of Korea
| | - Kwang Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227 Republic of Korea
| | - Jong-Ho Koh
- Department of Bio-Food Analysis and Processing, Bio-Campus Korea Polytechnic College, Nonsan, 32943 Republic of Korea
| | - Young-Hee Lim
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841 Republic of Korea.,School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, 02841 Republic of Korea.,Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308 Republic of Korea
| |
Collapse
|
5
|
Lung Cancer Risk Among Patients with Asthma-Chronic Obstructive Pulmonary Disease Overlap. Ann Am Thorac Soc 2021; 18:1894-1900. [PMID: 34019783 DOI: 10.1513/annalsats.202010-1280oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is a well-established independent risk factor for lung cancer, while the literature on the association between asthma and lung cancer is mixed. Whether Asthma COPD Overlap (ACO) is associated with lung cancer has not been studied. OBJECTIVES We aimed to compare lung cancer risk among patients with ACO vs. COPD and other conditions associated with airway obstruction. METHODS We studied 13,939 smokers from the National Lung Cancer Screening Trial who had baseline spirometry, and utilized spirometric indices and history of childhood asthma to categorize participants into 5 specific airway disease subgroups. We used Poisson regression to compare unadjusted and adjusted lung cancer risk. RESULTS The incidence rate of lung cancer per 1,000 person-years was: ACO, 13.2 (95% confidence interval [CI]: 8.1-21.5); COPD, 11.7 (95% CI: 10.5-13.1); asthmatic smokers, 1.8 (95% CI: 0.6-5.4); Global Initiative for Chronic Obstructive Lung Disease-Unclassified, 7.7 (95% CI: 6.4-9.2); and normal-spirometry smokers, 4.1 (95% CI: 3.5-4.8). ACO patients had increased adjusted risk of lung cancer compared to patients with asthma (incidence rate ratio [IRR]: 4.5, 95% CI: 1.3-15.8) and normal spirometry smokers (IRR: 2.3, 95% CI: 1.3-4.2) in models adjusting for other risk factors. Adjusted lung cancer incidence in patients with ACO and COPD were not found to be different (IRR: 1.2, 95% CI 0.7 - 2.1). CONCLUSIONS Risk of lung cancer among patients with ACO is similar to those with COPD and higher than other groups of smokers. These results provide further evidence that COPD, with or without a history of childhood asthma, is an independent risk factor for lung cancer.
Collapse
|
6
|
Gharibi V, Ebrahimi MH, Soleimani E, Khanjani N, Fakherpour A, Hosseinabadi MB. The role of oxidative stress in pulmonary function in bakers exposed to flour dust. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2020; 28:555-561. [PMID: 32815471 DOI: 10.1080/10803548.2020.1812919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objective. This study aimed to determine the effect of exposure to flour dust on pulmonary function and the role of oxidative stress. Methods. This case-control study was conducted on 163 bakery workers (exposed group) and 177 administrative workers (unexposed group). Pulmonary function and flour dust exposure were measured by spirometry and NIOSH 0500 and 0600 methods. Oxidative stress indices including malondialdehyde (MDA), nitric oxide (NO) and total antioxidant capacity (TAC) were measured in serum samples. Results. The mean respirable and total dust exposure of bakery workers were 2.5 ± 1.72 and 6.53 ± 3.26 mg/m3. The forced vital capacity (FVC) and forced expiratory volume in the first 1 s (FEV1) were significantly lower in the exposed group than in the unexposed group. The levels of MDA and NO were higher in smokers than in non-smokers in the exposed group. The most important variables that predicted FVC and FEV1 were MDA, NO and TAC. With increased exposure to respirable dust, the levels of MDA (β = 3.39, p < 0.001) and NO (β = 16.48, p < 0.001) increased and total antioxidant levels decreased (β = -0.37, p < 0.001). Conclusions. Exposure to flour dust may impair pulmonary function by increasing oxidative stress and weakening antioxidant defense.
Collapse
Affiliation(s)
- Vahid Gharibi
- School of Public Health, Shahroud University of Medical Sciences, Iran.,School of Health, Shiraz University of Medical Sciences, Iran
| | - Mohammad Hossein Ebrahimi
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Iran
| | | | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Iran
| | | | | |
Collapse
|
7
|
Wu Z, Shi P, Lim HK, Ma Y, Setyawati MI, Bitounis D, Demokritou P, Ng KW, Tay CY. Inflammation Increases Susceptibility of Human Small Airway Epithelial Cells to Pneumonic Nanotoxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000963. [PMID: 32338442 PMCID: PMC8074924 DOI: 10.1002/smll.202000963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 05/04/2023]
Abstract
Exposure to inhaled anthropogenic nanomaterials (NM) with dimension <100 nm has been implicated in numerous adverse respiratory outcomes. Although studies have identified key NM physiochemical determinants of pneumonic nanotoxicity, the complex interactive and cumulative effects of NM exposure, especially in individuals with preexisting inflammatory respiratory diseases, remain unclear. Herein, the susceptibility of primary human small airway epithelial cells (SAEC) exposed to a panel of reference NM, namely, CuO, ZnO, mild steel welding fume (MSWF), and nanofractions of copier center particles (Nano-CCP), is examined in normal and tumor necrosis factor alpha (TNF-α)-induced inflamed SAEC. Compared to normal SAEC, inflamed cells display an increased susceptibility to NM-induced cytotoxicity by 15-70% due to a higher basal level of intracellular reactive oxygen species (ROS). Among the NM screened, ZnO, CuO, and Nano-CCP are observed to trigger an overcompensatory response in normal SAEC, resulting in an increased tolerance against subsequent oxidative insults. However, the inflamed SAEC fails to adapt to the NM exposure due to an impaired nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated cytoprotective response. The findings reveal that susceptibility to pulmonary nanotoxicity is highly dependent on the interplay between NM properties and inflammation of the alveolar milieu.
Collapse
Affiliation(s)
- Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pujiang Shi
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hong Kit Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yiyuan Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dimitrios Bitounis
- Department of Environmental Health, School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Philip Demokritou
- Department of Environmental Health, School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department of Environmental Health, School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- Skin Research Institute of Singapore, 8A Biomedical Grove, Singapore, 138648, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
8
|
Kim YH, Choi YJ, Kang MK, Lee EJ, Kim DY, Oh H, Kang YH. Oleuropein Curtails Pulmonary Inflammation and Tissue Destruction in Models of Experimental Asthma and Emphysema. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7643-7654. [PMID: 29945446 DOI: 10.1021/acs.jafc.8b01808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Airway inflammation has been implicated in evoking progressive pulmonary disorders including chronic obstructive pulmonary disease (COPD) and asthma as a result of exposure to inhaled irritants, characterized by airway fibrosis, mucus hypersecretion, and loss of alveolar integrity. The current study examined whether oleuropein, a phenylethanoid found in olive leaves, inhibited pulmonary inflammation in experimental models of interleukin (IL)-4-exposed bronchial BEAS-2B epithelial cells and ovalbumin (OVA)- or cigarette smoke (CS)-exposed BALB/c mice. Nontoxic oleuropein at 1-20 μM diminished eotaxin-1-mediated induction of α-smooth muscle actin and mucin 5AC in epithelial cells stimulated by IL-4 at the transcriptional levels. Oral supplementation of 10-20 mg/kg oleuropein reduced the airway influx of eosinophils and lymphocytes as well as IL-4 secretion in lung promoted by OVA inhalation or CS. In addition, oleuropein suppressed infiltration of macrophages and neutrophils through blocking OVA inhalation- and CS-promoted induction of ICAM-1, F4/80, CD68, and CD11b in airways. OVA-exposed pulmonary fibrosis was detected, while alveolar emphysema was evident in CS-exposed mouse lungs. In alveolar epithelial A549 cells exposed to CS extracts, oleuropein attenuated apoptotic cell loss. Collectively, oleuropein inhibited pulmonary inflammation leading to asthmatic fibrosis and alveolar emphysema driven by influx of inflammatory cells in airways exposed OVA or CS. Therefore, oleuropein may be a promising anti-inflammatory agent for treating asthma and COPD.
Collapse
Affiliation(s)
- Yun-Ho Kim
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| | - Yean-Jung Choi
- Department of Bio-Food Science & Technology , Far East University , Eumseong , Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| | - Dong Yeon Kim
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| | - Hyeongjoo Oh
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| | - Young-Hee Kang
- Department of Food and Nutrition , Hallym University , Chuncheon 200-702 , Korea
| |
Collapse
|
9
|
Thammason H, Khetkam P, Pabuprapap W, Suksamrarn A, Kunthalert D. Ethyl rosmarinate inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E 2 production in alveolar macrophages. Eur J Pharmacol 2018; 824:17-23. [PMID: 29391157 DOI: 10.1016/j.ejphar.2018.01.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/21/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
In this study, a series of rosmarinic acid and analogs were investigated for their anti-inflammatory potential against LPS-induced alveolar macrophages (MH-S). Our results showed that, among the test compounds, ethyl rosmarinate (3) exhibited the most potent inhibitory effect on NO production in LPS-induced MH-S cells, with low cytotoxicity. Compound 3 exhibited remarkable inhibition of the production of PGE2 in LPS-induced MH-S cells. The inhibitory potency of compound 3 against LPS-induced NO and PGE2 release was approximately two-fold higher than that of dexamethasone. Compound 3 significantly decreased the mRNA and protein expression of iNOS and COX-2 and suppressed p65 expression in the nucleus in LPS-induced MH-S cells. These results suggested that compound 3 inhibited NO and PGE2 production, at least in part, through the down-regulation of NF-κB activation. Analysis of structure-activity relationship revealed that the free carboxylic group did not contribute to inhibitory activity and that the alkyl group of the corresponding alkyl ester analogs produced a strong inhibitory effect. We concluded that compound 3, a structurally modified rosmarinic acid, possessed potent inhibitory activity against lung inflammation, which strongly supported the development of this compound as a novel therapeutic agent for the treatment of macrophage-mediated lung inflammatory diseases, such as COPD.
Collapse
Affiliation(s)
- Hathairat Thammason
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pichit Khetkam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand.
| | - Duangkamol Kunthalert
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
10
|
Lee G, Jung KH, Ji ES, Bae H. Pyranopyran-1,8-dione, an Active Compound from Vitices Fructus, Attenuates Cigarette-Smoke Induced Lung Inflammation in Mice. Int J Mol Sci 2017; 18:ijms18071602. [PMID: 28737721 PMCID: PMC5536088 DOI: 10.3390/ijms18071602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/10/2023] Open
Abstract
Previously, we isolated and identified pyranopyran-1,8-dione (PPY) from Viticis Fructus, as a bioactive compound possessing anti-inflammatory properties. The present study was aimed to evaluate the preventive benefit of PPY on cigarette-smoke (CS)-induced lung inflammation. C57BL/6 mice were exposed to CS for 2 weeks while PPY was administrated by oral injection 2 h before CS exposure. To validate the anti-inflammatory effects of PPY, the numbers of immune cells in the bronchoalveolar lavage fluid were counted. Proinflammatory cytokines (Tumor necrosis factor-α: TNF-α, IL-6) and keratinocyte chemokine (KC/CXCL1) were also measured. Histopathologic analysis and cellular profiles showed that inflammatory cell infiltrations were significantly decreased in peribronchial and perivascular area by PPY treatment. The alveolar destruction by CS was markedly ameliorated by PPY treatment. In addition, the TNF-α, IL-6, and KC levels were declined in the PPY groups. These observations suggest that PPY has a preventive potential for lung inflammatory diseases.
Collapse
Affiliation(s)
- Gihyun Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 kyungheedae-ro, dongdaemoon-gu, Seoul 02447, Republic of Korea.
| | - Kyung-Hwa Jung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 kyungheedae-ro, dongdaemoon-gu, Seoul 02447, Republic of Korea.
| | - Eun Seok Ji
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 kyungheedae-ro, dongdaemoon-gu, Seoul 02447, Republic of Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 kyungheedae-ro, dongdaemoon-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
11
|
Halpin DM, Kaplan AG, Russell RK. Why choose tiotropium for my patient? A comprehensive review of actions and outcomes versus other bronchodilators. Respir Med 2017; 128:28-41. [PMID: 28610667 DOI: 10.1016/j.rmed.2017.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) and asthma are leading causes of morbidity and mortality. This narrative review provides an appraisal of the pharmacological and clinical characteristics of tiotropium in COPD and asthma, and examines how these compare with other long-acting bronchodilators. The evidence base is placed into context by relating it to factors affecting clinicians' choice of therapy. MAIN FINDINGS Desirable attributes of a long-acting muscarinic antagonist (LAMA) maintenance therapy include effective pharmacological bronchodilation, improved lung function, exacerbation efficacy, and positive effects on symptom control, exercise capacity and quality of life across a broad patient population. Tolerability and convenience of use are also important for patient well-being and treatment adherence. Tiotropium shows higher affinity for muscarinic receptors than ipratropium, and prolonged binding to the M3 receptor compared with other LAMAs. In COPD, tiotropium has demonstrated improved lung function and exacerbation prevention compared with placebo or long-acting β2-agonists, similar exacerbation efficacy to other LAMAs, and enhanced symptom control and health status versus placebo. UniTinA-asthma® showed the benefits of add-on tiotropium in patients with uncontrolled mild to moderate and severe asthma. Tiotropium is well tolerated, with an incidence of adverse events similar to placebo, except for known infrequent side effects of anticholinergics. Tiotropium HandiHaler® and Respimat® augment inhaler choice in COPD. PRINCIPAL CONCLUSIONS With over 10 years' prescribing history and 50 million patient-years of use, tiotropium has the benefit of a more extensive clinical evidence base than other long-acting bronchodilators, with demonstrated efficacy and safety in COPD and symptomatic asthma.
Collapse
Affiliation(s)
- David M Halpin
- Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, United Kingdom.
| | - Alan G Kaplan
- Department of Family and Community Medicine, University of Toronto, 500 University Avenue, Toronto, Ontario, ON M5G 1V7, Canada.
| | - Richard K Russell
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DS, United Kingdom.
| |
Collapse
|
12
|
Kim YH, Choi YJ, Kang MK, Park SH, Antika LD, Lee EJ, Kim DY, Kang YH. Astragalin Inhibits Allergic Inflammation and Airway Thickening in Ovalbumin-Challenged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:836-845. [PMID: 28064485 DOI: 10.1021/acs.jafc.6b05160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lung inflammation and oxidative stress are the major contributors to the development of obstructive pulmonary diseases. Macrophages are involved in pulmonary inflammation and alveolar damage in emphysema. Astragalin is an anti-inflammatory flavonoid present in persimmon leaves and green tea seeds. This study elucidated that astragalin inhibited inflammatory cell infiltration induced by 20 μM H2O2 and blocked airway thickening and alveolar emphysema induced by 20 μg of ovalbumin (OVA) in mice. OVA induced mouse pulmonary MCP-1, and H2O2 enhanced the expression of MCP-1/ICAM-1/αv integrin in bronchial airway epithelial BEAS-2B cells. Such induction was inhibited by supplying 10-20 mg/kg of astragalin to OVA-challenged mice and 1-20 μM astragalin to oxidant-stimulated cells. Oral administration of 20 mg/kg of astragalin reduced the induction of F4/80/CD68/CD11b in airways of mice challenged with OVA. Additionally, emphysema tissue damage was observed in OVA-exposed alveoli. Mast cell recruitment in the airway subepithelium was blocked by supplementing astragalin to OVA-challenged mice. Orally treating 20 mg/kg of astragalin reduced α-SMA induction in inflammation-occurring airways and appeared to reverse airway thickening and constriction induced by an OVA episode. These results revealed that astragalin may improve airway thickening and alveolar destruction with blockade of allergic inflammation in airways. Therefore, astragalin may be a therapeutic agent antagonizing asthma and obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Yun-Ho Kim
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Sin-Hye Park
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Lucia Dwi Antika
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University , Chuncheon 24252, Korea
| |
Collapse
|
13
|
Vossoughi M, Schikowski T, Vierkötter A, Sugiri D, Hoffmann B, Teichert T, Herder C, Schulte T, Luckhaus C, Raulf-Heimsoth M, Casjens S, Brüning T, Krämer U. Air pollution and subclinical airway inflammation in the SALIA cohort study. IMMUNITY & AGEING 2014; 11:5. [PMID: 24645673 PMCID: PMC4000047 DOI: 10.1186/1742-4933-11-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/14/2014] [Indexed: 11/23/2022]
Abstract
Background The association between long-term exposure to air pollution and local inflammation in the lung has rarely been investigated in the general population of elderly subjects before. We investigated this association in a population-based cohort of elderly women from Germany. Methods In a follow-up examination of the SALIA cohort study in 2008/2009, 402 women aged 68 to 79 years from the Ruhr Area and Borken (Germany) were clinically examined. Inflammatory markers were determined in exhaled breath condensate (EBC) and in induced sputum (IS). We used traffic indicators and measured air pollutants at single monitoring stations in the study area to assess individual traffic exposure and long-term air pollution background exposure. Additionally long-term residential exposure to air pollution was estimated using land-use regression (LUR) models. We applied multiple logistic and linear regression analyses adjusted for age, indoor mould, smoking, passive smoking and socio-economic status and additionally conducted sensitivity analyses. Results Inflammatory markers showed a high variability between the individuals and were higher with higher exposure to air pollution. NO derivatives, leukotriene (LT) B4 and tumour necrosis factor-α (TNF-α) showed the strongest associations. An increase of 9.42 μg/m3 (interquartile range) in LUR modelled NO2 was associated with measureable LTB4 level (level with values above the detection limit) in EBC (odds ratio: 1.38, 95% CI: 1.02 -1.86) as well as with LTB4 in IS (%-change: 19%, 95% CI: 7% - 32%). The results remained consistent after exclusion of subpopulations with risk factors for inflammation (smoking, respiratory diseases, mould infestation) and after extension of models with additional adjustment for season of examination, mass of IS and urban/rural living as sensitivity analyses. Conclusions In this analysis of the SALIA study we found that long-term exposure to air pollutants from traffic and industrial sources was associated with an increase of several inflammatory markers in EBC and in IS. We conclude that long-term exposure to air pollution might lead to changes in the inflammatory marker profile in the lower airways in an elderly female population.
Collapse
Affiliation(s)
- Mohammad Vossoughi
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf 40225, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Esther CR, Alexis NE, Picher M. Regulation of airway nucleotides in chronic lung diseases. Subcell Biochem 2014; 55:75-93. [PMID: 21560045 DOI: 10.1007/978-94-007-1217-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological relevance of the purinergic signaling network for airway defenses is emerging through cumulating reports of abnormal ATP and adenosine (ADO) levels in the airway secretions of patients with asthma, chronic pulmonary obstructive diseases, cystic fibrosis and idiopathic pulmonary fibrosis. The consequences for airway defenses range from abnormal clearance responses to the destruction of lung tissue by excessive inflammation. This chapter reviews the challenges of assessing airway purines in human subjects, and identifies the general trend in aberrant airway composition. Most diseases are associated with an accumulation of ATP and/or ADO in bronchoalveolar lavage, sputum or exhaled breadth condensate. Intriguing is the case of cystic fibrosis patients, which do not accumulate airway ADO, but its precursor, AMP. This observation launched the investigation of ectonucleotidases as target proteins for the correction of airway purine levels in chronic respiratory diseases. This chapter exposes the extensive rearrangement of the enzymatic network taking place in diseased airways, and identifies signaling pathways likely involved in the aberrant regulation of the airway purines.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, 27599, USA,
| | | | | |
Collapse
|
15
|
Pniewska E, Pawliczak R. The involvement of phospholipases A2 in asthma and chronic obstructive pulmonary disease. Mediators Inflamm 2013; 2013:793505. [PMID: 24089590 PMCID: PMC3780701 DOI: 10.1155/2013/793505] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/02/2013] [Accepted: 02/27/2013] [Indexed: 12/21/2022] Open
Abstract
The increased morbidity, mortality, and ineffective treatment associated with the pathogenesis of chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD) have generated much research interest. The key role is played by phospholipases from the A2 superfamily: enzymes which are involved in inflammation through participation in pro- and anti-inflammatory mediators production and have an impact on many immunocompetent cells. The 30 members of the A2 superfamily are divided into 7 groups. Their role in asthma and COPD has been studied in vitro and in vivo (animal models, cell cultures, and patients). This paper contains complete and updated information about the involvement of particular enzymes in the etiology and course of asthma and COPD.
Collapse
Affiliation(s)
- Ewa Pniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego Street, Building 2, Room 122, 90-752 Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego Street, Building 2, Room 122, 90-752 Lodz, Poland
| |
Collapse
|
16
|
Hsu ACY, See HV, Hansbro PM, Wark PAB. Innate immunity to influenza in chronic airways diseases. Respirology 2013; 17:1166-75. [PMID: 22616906 DOI: 10.1111/j.1440-1843.2012.02200.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Influenza presents a unique human infectious disease that has a substantial impact on the public health, in general, and especially for those with chronic airways diseases. People with asthma and chronic obstructive pulmonary disease (COPD) are particularly vulnerable to influenza infection and experience more severe symptoms with the worsening of their pre-existing conditions. Recent advances in reverse genetics and innate immunity has revealed several influenza virulence factors and host factors involved in influenza pathogenesis and the immune responses to infection. Early innate immunity plays a critical role of limiting viral infection and spread; however, the underlying mechanisms that lead to enhanced susceptibility to influenza infection and severe symptoms in those with asthma and COPD to infection remain un-investigated. This review will explore the importance of early innate antiviral responses to influenza infection and how these responses are altered by influenza virus and in those with chronic airways diseases.
Collapse
Affiliation(s)
- Alan C-Y Hsu
- Centre for Asthma and Respiratory Disease, The University of Newcastle, Newcastle, Australia
| | | | | | | |
Collapse
|
17
|
Sinden NJ, Stockley RA. Chronic obstructive pulmonary disease: an update of treatment related to frequently associated comorbidities. Ther Adv Chronic Dis 2012; 1:43-57. [PMID: 23251728 DOI: 10.1177/2040622310370631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with a pulmonary inflammatory response to inhaled substances, and individuals with COPD often have raised levels of several circulating inflammatory markers indicating the presence of systemic inflammation. Recently, there has been increasing interest in comorbidities associated with COPD such as skeletal muscle dysfunction, cardiovascular disease, osteoporosis, diabetes and lung cancer. These conditions are associated with a similar inflammation-based patho-physiology to COPD, and may represent a lung inflammatory 'overspill' to distant organs. Cardiovascular disease is a significant cause of mortality in COPD, and the concepts of an inflammatory link raise the possibility that treatment for one organ may show benefits to comorbidities in other organs. When considering treatment of COPD and its comorbidities, one approach is to target the pulmonary inflammation and hence reduce any 'overspill' effect of inflammatory mediators systemically as suggested by response to inhaled corticosteroids. Alternatively, treatment targeted towards comorbid organs may alter features of pulmonary disease as statins, angiotensin-converting enzyme (ACE) inhibitors and peroxisome proliferator-activated receptor (PPAR) agonists may have beneficial effects on COPD by reducing exacerbations and mortality. Newer anti-inflammatory treatments, such as phosphodiesterase 4 (PDE4), nuclear factor(NF)-kB, and p38 mitogen-activated protein kinase (MAPK) inhibitors, are given systemically and may confer benefits to both COPD and its comorbidities. With common inflammatory pathways it might be expected that successful anti-inflammatory therapy in one organ may also influence others. In this review we explore the concepts of systemic inflammation in COPD and current evidence for treatment of its related comorbidities.
Collapse
Affiliation(s)
- Nicola J Sinden
- Nicola J. Sinden, MBChB(Honours), MRCP (UK) University Hospital Birmingham NHS Foundation Trust - Respiratory Medicine, Birmingham, UK
| | | |
Collapse
|
18
|
Mantell S, Jones R, Trevethick M. Design and application of locally delivered agonists of the adenosine A(2A) receptor. Expert Rev Clin Pharmacol 2012; 3:55-72. [PMID: 22111533 DOI: 10.1586/ecp.09.57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The broad spectrum anti-inflammatory actions of adenosine A(2A) receptor agonists are well described. The wide distribution of this receptor, however, suggests that the therapeutic potential of these agents is likely to reside in topical treatments to avoid systemic side effects associated with oral administration. Adenosine A(2A) receptor agonists have been assessed as topical agents: GW328267X (GSK; allergic rhinitis and asthma), UK-432097 (Pfizer; chronic obstructive pulmonary disease [COPD]) and Sonedenoson (MRE0094, King Pharmaceuticals; wound healing). All trials failed to achieve effects against the desired clinical end points. This broad-based review will discuss general principles of chemical design of topically applied agents and potential therapeutic topical applications of current adenosine A(2A) receptor agonists. Potential factors contributing to the lack of efficacy in the above clinical trials will be discussed together with design principles, which may influence efficacy in disease states. Our analysis suggests that adenosine A(2A) receptor agonists have a wide therapeutic potential as topical agents in a wide variety of diseases, such as neutrophil-dependent lung diseases (acute lung injury, exacerbations in asthma and COPD), allergic rhinitis, glaucoma and wound repair. Factors that will influence topical activity include formulation, tissue retention, compound potency, receptor kinetics and pharmacokinetics.
Collapse
Affiliation(s)
- Simon Mantell
- PC 675, Pfizer Global R&D, Sandwich, Kent, CT13 9NJ, UK.
| | | | | |
Collapse
|
19
|
Robaszkiewicz A, Pogorzelska M, Bartosz G, Soszyński M. Chloric acid(I) affects antioxidant defense of lung epitelial cells. Toxicol In Vitro 2011; 25:1328-34. [DOI: 10.1016/j.tiv.2011.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/28/2011] [Accepted: 04/27/2011] [Indexed: 11/29/2022]
|
20
|
Cordts F, Pitson S, Tabeling C, Gibbins I, Moffat DF, Jersmann H, Hodge S, Haberberger RV. Expression profile of the sphingosine kinase signalling system in the lung of patients with chronic obstructive pulmonary disease. Life Sci 2011; 89:806-11. [PMID: 21945191 DOI: 10.1016/j.lfs.2011.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/26/2011] [Accepted: 08/28/2011] [Indexed: 01/24/2023]
Abstract
AIMS Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. Despite its importance, treatment methods are limited and restricted to symptomatic care, highlighting the urgent need for new treatment options. Tissue damage in COPD is thought to result from an inability of the normal repair processes with accumulation of apoptotic material and impaired clearance of this material by macrophages in the airways. Lung inflammation involves the bioactive sphingolipid sphingosine 1-phosphate (S1P). MAIN METHODS We investigated lung tissue samples from 55 patients (25 with COPD) undergoing lobectomies for management of cancer. We analysed the sphingosine-kinase (SphK) mRNA expression profile, SphK enzyme activity as well as the localisation and expression of individual proteins related to the SphK-signalling system. KEY FINDINGS We show in this study for the first time a comprehensive expression profile of all synthesising enzymes, receptors and degrading enzymes of the SphK-signalling system in the human lung. Multivariate ANOVA showed that the relative mRNA expression of S1P receptor (S1PR) subtype 5 was reduced in COPD. There were strong positive correlations between the mRNA expression of S1PR5 and S1PR1 and S1PR3, and between S1PR3 and S1PR2. A significant negative correlation was found between S1PR1 and SphK protein activity. SIGNIFICANCE The correlations between expression levels of receptors and enzymes involved in the sphingosine kinase signalling system in the lung suggest common regulatory mechanisms. Our findings of reduced S1PR5 in COPD and the correlation with other S1P receptors in COPD identify S1PR5 as a possible novel target for pharmacotherapy.
Collapse
Affiliation(s)
- Fabian Cordts
- Centre for Neuroscience, Flinders Medical Science & Technology, Flinders University, Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hrabák A, Derzbach L, Csuka I, Bajor T, Körner A. Role of nitric oxide (NO) metabolism and inflammatory mediators in childhood obesity. Inflamm Res 2011; 60:1061-70. [DOI: 10.1007/s00011-011-0367-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/28/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022] Open
|
22
|
Brown BN, Price IM, Toapanta FR, DeAlmeida DR, Wiley CA, Ross TM, Oury TD, Vodovotz Y. An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Math Biosci 2011; 231:186-96. [PMID: 21385589 PMCID: PMC3088650 DOI: 10.1016/j.mbs.2011.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/26/2011] [Accepted: 03/01/2011] [Indexed: 12/11/2022]
Abstract
Inflammation and airway remodeling occur in a variety of airway diseases. Modeling aspects of the inflammatory and fibrotic processes following repeated exposure to particulate matter may provide insights into a spectrum of airway diseases, as well as prevention/treatment strategies. An agent-based model (ABM) was created to examine the response of an abstracted population of inflammatory cells (nominally macrophages, but possibly including other inflammatory cells such as lymphocytes) and cells involved in remodeling (nominally fibroblasts) to particulate exposure. The model focused on a limited number of relevant interactions, specifically those among macrophages, fibroblasts, a pro-inflammatory cytokine (TNF-α), an anti-inflammatory cytokine (TGF-β1), collagen deposition, and tissue damage. The model yielded three distinct states that were equated with (1) self-resolving inflammation and a return to baseline, (2) a pro-inflammatory process of localized tissue damage and fibrosis, and (3) elevated pro- and anti-inflammatory cytokines, persistent tissue damage, and fibrosis outcomes. Experimental results consistent with these predicted states were observed in histology sections of lung tissue from mice exposed to particulate matter. Systematic in silico studies suggested that the development of each state depended primarily upon the degree and duration of exposure. Thus, a relatively simple ABM resulted in several, biologically feasible, emergent states, suggesting that the model captures certain salient features of inflammation following exposure of the lung to particulate matter. This ABM may hold future utility in the setting of airway disease resulting from inflammation and fibrosis following particulate exposure.
Collapse
Affiliation(s)
- Bryan N. Brown
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ian M. Price
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Franklin R. Toapanta
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dilhari R. DeAlmeida
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Clayton A. Wiley
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ted M. Ross
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yoram Vodovotz
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
23
|
Ulven T, Kostenis E. Novel CRTH2 antagonists: a review of patents from 2006 to 2009. Expert Opin Ther Pat 2010; 20:1505-30. [PMID: 20946089 DOI: 10.1517/13543776.2010.525506] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The receptor CRTH2 (also known as DP₂) is an important mediator of the inflammatory effects of prostaglandin D₂ and has attracted much attention as a therapeutic target for the treatment of conditions such as asthma, COPD, allergic rhinitis and atopic dermatitis. AREAS COVERED IN THIS REVIEW The validation of CRTH2 as a therapeutic target and the early antagonists are summarized, CRTH2 antagonists published in the patent literature from 2006 to 2009 are comprehensively covered and a general update on the recent progress in the development of CRTH2 antagonists for the treatment of inflammatory diseases is provided. WHAT THE READER WILL GAIN Insight into the validation of CRTH2 as a therapeutic target, a comprehensive overview of the development of new CRTH2 ligands between 2006 and 2009, and a general overview of the state of the art. TAKE HOME MESSAGE Many diverse potent CRTH2 antagonists are now available, and several are in or on the way into the clinic. It is still early to draw final conclusions, but preliminary results give reason for optimism, and the prospect that we will see new CRTH2 antagonists reaching the market for the treatment of asthma, rhinitis, atopic dermatitis and/or COPD seems good.
Collapse
Affiliation(s)
- Trond Ulven
- University of Southern Denmark, Department of Physics and Chemistry, Denmark.
| | | |
Collapse
|
24
|
Vogtel M, Michels A. Role of intermittent hypoxia in the treatment of bronchial asthma and chronic obstructive pulmonary disease. Curr Opin Allergy Clin Immunol 2010; 10:206-13. [PMID: 20386436 DOI: 10.1097/aci.0b013e32833903a6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe the impact that exposure to intermittent hypoxic training (IHT) could have on bronchial asthma and chronic obstructive pulmonary disease (COPD). This is of particular interest, as an increasing number of patients suffer from severe symptoms of bronchial asthma and COPD and desire more effective and efficient treatment options with fewer side effects. RECENT FINDINGS Exposure to IHT has been shown to raise baroreflex sensitivity to normal levels and to selectively increase hypercapnic ventilatory response, total exercise time, total haemoglobin mass, and lung diffusion capacity for carbon monoxide in COPD patients. However, evidence proving that IHT leads to health benefit effects in bronchial asthma patients has not been produced by recent literature. SUMMARY Recent research outlines the value of IHT as a therapeutic strategy for the treatment of COPD patients, leading to more efficient ventilation. Additionally, IHT might represent an attractive method to complement the known beneficial effects of exercise training and to rebalance early autonomic dysfunction in COPD patients. Future research examining the potential risks and benefits of IHT could pave the way for the development of new therapeutic approaches for patients suffering from bronchial asthma and COPD.
Collapse
Affiliation(s)
- Myriam Vogtel
- Institute of Medical Statistics, Informatics and Epidemiology, University Hospital Cologne, Cologne, Germany.
| | | |
Collapse
|
25
|
Beyerle A, Irmler M, Beckers J, Kissel T, Stoeger T. Toxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applications. Mol Pharm 2010; 7:727-37. [PMID: 20429563 DOI: 10.1021/mp900278x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyethylene imine (PEI) based polycations, successfully used for gene therapy or RNA interference in vitro as well as in vivo, have been shown to cause well-known adverse side effects, especially high cytotoxicity. Therefore, various modifications have been developed to improve safety and efficiency of these nonviral vector systems, but profound knowledge about the underlying mechanisms responsible for the high cytotoxicity of PEI is still missing. In this in vitro study, we focused on stress and toxicity pathways triggered by PEI-based vector systems to be used for pulmonary application and two well-known lung toxic particles: fine crystalline silica (CS) and nanosized ZnO (NZO). The cytotoxicity profiles of all stressors were investigated in alveolar epithelial-like type II cells (LA4) to define concentrations with matching toxicity levels (cell viability >60% and LDH release <10%) for subsequent qRT-PCR-based gene array analysis. Within the first 6 h pathway analysis revealed for CS an extrinsic apoptotic signaling (TNF pathway) in contrast to the intrinsic apoptotic pathway (mitochondrial signaling) which was induced by PEI 25 kDa after 24 h treatment. The following causative chain of events seems conceivable: reactive oxygen species derived from particle surface toxicity triggers TNF signaling in the case of CS, whereby endosomal swelling and rupture upon endocytotic PEI 25 kDa uptake causes intracellular stress and mitochondrial alterations, finally leading to apoptotic cell death at higher doses. PEG modification most notably reduced the cytotoxicity of PEI 25 kDa but increased proinflammatory signaling on mRNA and even protein level. Hence in view of the lung as a sensitive target organ this inflammatory stimulation might cause unwanted side effects related to respiratory and cardiovascular disorders. Thus further optimization of the PEI-based vector systems is still needed for pulmonary application.
Collapse
Affiliation(s)
- Andrea Beyerle
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum Munchen, and Institute of Experimental Genetics, Helmholtz Zentrum Munchen, Germany
| | | | | | | | | |
Collapse
|
26
|
Antonelli-Incalzi R, Corsonello A, Pedone C, Battaglia S, Bellia V. Asthma in the elderly. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/ahe.10.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Asthma is frequent among older people. Nevertheless, under-recognition, misdiagnosis and under-treatment are still relevant issues. We aim to provide an overview of epidemiology of asthma in the elderly, and a thorough description of its pathology and clinical presentation, with special emphasis on the distinction of late versus early-onset asthma. We also discuss selected treatment topics of special interest for older patients, such as compliance with therapy and ability with the inhalers, which are basic to the success of the prescribed therapy. Finally, we suggest that multidimensional geriatric assessment of older asthmatics could help in tailoring the therapy to the individual needs and capacity.
Collapse
Affiliation(s)
- Raffaele Antonelli-Incalzi
- Cattedra di Geriatria, Università Campus BioMedico, Rome, Italy
- Fondazione San Raffaele, Cittadella della Carità, Taranto, Italy
| | - Andrea Corsonello
- Istituto Nazionale di Ricovero e Cura per Anziani (INRCA), C. da Muoio Piccolo, I-87100 Cosenza, Italy
| | - Claudio Pedone
- Cattedra di Geriatria, Università Campus BioMedico, Rome, Italy
- Fondazione Alberto Sordi, Rome, Italy
| | - Salvatore Battaglia
- Dipartimento di Medicina, Pneumologia, Università di Palermo, Palermo, Italy
| | - Vincenzo Bellia
- Dipartimento di Medicina, Pneumologia, Università di Palermo, Palermo, Italy
| |
Collapse
|