1
|
Włodarski A, Szymczak-Pajor I, Kasznicki J, Antanaviciute EM, Szymańska B, Śliwińska A. Dysregulated miR-21/SOD3, but Not miR-30b/CAT, Profile in Elderly Patients with Carbohydrate Metabolism Disorders: A Link to Oxidative Stress and Metabolic Dysfunction. Int J Mol Sci 2025; 26:4127. [PMID: 40362367 PMCID: PMC12071572 DOI: 10.3390/ijms26094127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Carbohydrate metabolism disorders (CMDs), including prediabetes and type 2 diabetes mellitus (T2DM), are increasingly prevalent in the aging population. Oxidative stress (OxS) plays a pivotal role in CMD pathogenesis, with extracellular superoxide dismutase (SOD3) and catalase (CAT) serving as critical antioxidant defenses. Additionally, microRNAs (miR-21 and miR-30b) regulate the oxidative and inflammatory pathways, yet their roles in elderly CMD patients remain unclear. This study evaluated miR-21 and miR-30b expression alongside SOD3 and CAT plasma levels in individuals aged ≥ 65 years (n = 126) categorized into control (n = 38), prediabetes (n = 37), and T2DM (n = 51) groups. Quantitative PCR assessed miRNA expression, while ELISA measured the enzyme levels. SOD3 levels were significantly reduced in CMDs, particularly in T2DM, whereas miR-21 was upregulated. A negative correlation between SOD3 and miR-21 was strongest in T2DM, suggesting a regulatory interplay. Neither CAT levels nor miR-30b expression differed among groups. Logistic regression indicated SOD3 as a protective biomarker, with each 1 ng/mL increase reducing the CMD risk by ~5-6%. The ROC analysis supported SOD3's diagnostic potential, while miR-21 showed a modest association. These findings highlight SOD3 downregulation and miR-21 upregulation as potential contributors to CMD progression in elderly patients, warranting further research into their mechanistic roles and therapeutic potential.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Egle Morta Antanaviciute
- Centre for Cellular Microenvironments, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bożena Szymańska
- CoreLab, Central Scientific Laboratory of the Medical University of Lodz, Mazowiecka 6/8 St., 92-215 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland; (A.W.); (I.S.-P.)
| |
Collapse
|
2
|
Mühle A, Schnichels S, Hurst J. Introducing a Porcine Inflammatory Ex Vivo Retina Model for Diabetic Retinopathy. Int J Mol Sci 2025; 26:3919. [PMID: 40332752 PMCID: PMC12027530 DOI: 10.3390/ijms26083919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
This study aimed to develop an ex vivo retinal model to examine inflammatory processes in diabetic retinopathy (DR) without animal testing. Porcine eyes were collected from a local abattoir, dissected, and cultivated for four days in five experimental groups: control group (Co), 25 mM and 50 mM mannitol groups (Man25, Man50) as osmotic controls, and 25 mM and 50 mM glucose groups (Glc25, Glc50) as diabetic groups. A TUNEL assay was used to determine relative cell death. Immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to detect inflammatory markers. An increase in the cell death rate in Man50 (30%), Glc25 (36%) and Glc50 (37%) compared to Co (12%) (p < 0.01, p < 0.001, p < 0.001, respectively) and between Glc25 and Man25 (21%) (p < 0.01) was found. Immunofluorescence staining and qRT-PCR analysis revealed a TNF-α increase in Glc25 compared to Man25 and Co. iNOS was increased in Glc25 vs. Man25 but not in Co vs. Glc25. iNOS gene expression was upregulated with Glc25 treatment compared to Co and Man25 groups. Expression levels of IL-6 and CD31 were significantly higher in Glc25 than in Co and Man25. Glucose treatment increased cell death and inflammation, prompting us to present a DR model for better understanding DR and testing new therapies.
Collapse
Affiliation(s)
| | - Sven Schnichels
- Section for Translational Research in Ophthalmology, Centre for Ophthalmology, University Eye Hospital Tübingen, Elfriede-Aulhorn-Str. 7, 72076 Tübingen, Germany; (A.M.); (J.H.)
| | | |
Collapse
|
3
|
Ebrahimi M, Ahmadieh H, Rezaei Kanavi M, Safi S, Alipour-Parsa S, Advani S, Sorenson CM, Sheibani N. Shared signaling pathways and comprehensive therapeutic approaches among diabetes complications. Front Med (Lausanne) 2025; 11:1497750. [PMID: 39845838 PMCID: PMC11750824 DOI: 10.3389/fmed.2024.1497750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
The growing global prevalence of diabetes mellitus (DM), along with its associated complications, continues to rise. When clinically detected most DM complications are irreversible. It is therefore crucial to detect and address these complications early and systematically in order to improve patient care and outcomes. The current clinical practice often prioritizes DM complications by addressing one complication while overlooking others that could occur. It is proposed that the commonly targeted cell types including vascular cells, immune cells, glial cells, and fibroblasts that mediate DM complications, might share early responses to diabetes. In addition, the impact of one complication could be influenced by other complications. Recognizing and focusing on the shared early responses among DM complications, and the impacted cellular constituents, will allow to simultaneously address all DM-related complications and limit adverse treatment impacts. This review explores the current understanding of shared pathological signaling mechanisms among DM complications and recognizes new concepts that will benefit from further investigation in both basic and clinical settings. The ultimate goal is to develop more comprehensive treatment strategies, which effectively impact DM complications in multiple organs and improve patient care and outcomes.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sare Safi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Alipour-Parsa
- Cardiovascular Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroor Advani
- Neurology Department, Shohada Tajrish Hospital, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Christine M. Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
4
|
Coughlin BA, Christian B, Trombley B, Mohr S. Interleukin-1 receptor-dependent and -independent caspase-1 activity in retinal cells mediated by receptor interacting protein 2. Front Cell Dev Biol 2024; 12:1467799. [PMID: 39483336 PMCID: PMC11525982 DOI: 10.3389/fcell.2024.1467799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Inflammation and cell death play an important role in the pathogenesis of diabetic retinopathy. Previously we observed sustained activation of pro-inflammatory caspase-1 in retinas of diabetic animals and patients. In this study, we aimed to look at mechanisms underlying chronic caspase-1 activation in vitro and in vivo. Methods Non-diabetic and diabetic wild type and IL-1 receptor (IL-1R1) knockout mice were used for in vivo experiments. Diabetes was induced using STZ (streptozotocin). Human Müller cells were used for in vitro studies. Cells were treated with either 5 mM or 25 mM glucose or interleukin-1beta (IL-1β) in the presence or absence of IL-1 receptor antagonist (IL-1ra) or siRNA against RIP2 (receptor interacting protein-2) for up to 96 h. Outcome measurements to assess Müller cell functions included measurements of caspase-1 activity using a fluorescence peptide substrate, production of IL-1β by Elisa, and cell death using trypan blue exclusion assays. Results Our in vivo results demonstrate that caspase-1 activation progresses from an IL-1R1 independent mechanism at 10 weeks of diabetes to an IL-1R1 dependent mechanism at 20 weeks indicating that feedback through IL-1R1 is crucial for sustained caspase-1 activity in retinas of mice. A similar hyperglycemia-mediated caspase-1/IL-1β/IL-1R1 feedback signaling was detected in vitro in human Müller cells which was prevented by treatment with IL-1ra. Our data also indicate that hyperglycemia induces caspase-1 activation initially but IL-1β sustains caspase-1 activation via caspase-1/IL-1β/IL-1R1 feedback and we identified RIP2 as mediator for both hyperglycemia- and IL-1β-induced caspase-1 activation. Activation of caspase-1/IL-1β/IL-1R1 feedback signaling caused Müller cell death which was prevented by RIP2 knockdown. Discussion We conclude that any intervention in caspase-1/IL-1β/IL-1R1 feedback signaling presents novel therapeutic options for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
| | | | | | - Susanne Mohr
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Ontawong A, Aida CJ, Vivithanaporn P, Amornlerdpison D, Vaddhanaphuti CS. Cladophora glomerata Kützing extract exhibits antioxidant, anti-inflammation, and anti-nitrosative stress against impairment of renal organic anion transport in an in vivo study. Nutr Res Pract 2024; 18:633-646. [PMID: 39398884 PMCID: PMC11464274 DOI: 10.4162/nrp.2024.18.5.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cladophora glomerata extract (CGE), rich in polyphenols, was reported to exhibit antidiabetic and renoprotective effects by modulating the functions of protein kinases-mediated organic anion transporter 1 (Oat1) and 3 (Oat3) in rats with type 2 diabetes mellitus (T2DM). Nevertheless, the antioxidant effects of CGE on such renoprotection have not been investigated. This study examined the mechanisms involved in the antioxidant effects of CGE on renal organic anion transport function in an in vivo study. MATERIALS/METHODS Diabetes was induced in the rats through a high-fat diet combined with a single dose of 40 mg/kg body weight (BW) streptozotocin. Subsequently, normal-diet rats were supplemented with a vehicle or 1,000 mg/kg BW of CGE, while T2DM rats were supplemented with a vehicle, CGE, or 200 mg/kg BW of vitamin C for 12 weeks. The study evaluated the general characteristics of T2DM and renal oxidative stress markers. The renal organic transport function was assessed by measuring the para-aminohippurate (PAH) uptake using renal cortical slices and renal inflammatory cytokine expression in the normal diet (ND) and ND + CGE treated groups. RESULTS CGE supplementation significantly reduced hyperglycemia, hypertriglyceridemia, insulin resistance, and renal lipid peroxidation in T2DM rats. This was accompanied by the normalization of high expressions of renal glutathione peroxidase and nuclear factor kappa B by CGE and vitamin C. The renal anti-inflammation of CGE was evidenced by the reduction of tumor necrosis factor-1α and interleukin-1β. CGE directly blunted sodium nitroprusside-induced renal oxidative/nitrosative stresses and mediated the PAH uptake in the normally treated CGE in rats was particularly noteworthy. These data also correlated with reduced nitric oxide production, highlighting the potential of CGE as a therapeutic agent for managing T2DM-related renal complications. CONCLUSION These findings suggest that CGE has antidiabetic effects and directly prevents diabetic nephropathy through oxidative/nitrosative stress pathways.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chaliya J. Aida
- Office of Educational Affairs, Faculty of Abhaibhubejhr Thai Traditional Medicine, Burapha University, Chon Buri 20131, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Doungporn Amornlerdpison
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneurs and Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand
| | - Chutima S. Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Dorweiler TF, Singh A, Ganju A, Lydic TA, Glazer LC, Kolesnick RN, Busik JV. Diabetic retinopathy is a ceramidopathy reversible by anti-ceramide immunotherapy. Cell Metab 2024; 36:1521-1533.e5. [PMID: 38718792 PMCID: PMC11222062 DOI: 10.1016/j.cmet.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.
Collapse
Affiliation(s)
- Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02113, USA
| | - Arjun Singh
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Aditya Ganju
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Louis C Glazer
- Vitreo-Retinal Associates, Grand Rapids, MI 49546, USA; Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | - Richard N Kolesnick
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA.
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
7
|
Chen Y, Tong J, Liu C, He C, Xiang J, Yao G, Zhang H, Xie Z. MSC-derived small extracellular vesicles mitigate diabetic retinopathy by stabilizing Nrf2 through miR-143-3p-mediated inhibition of neddylation. Free Radic Biol Med 2024; 219:76-87. [PMID: 38604315 DOI: 10.1016/j.freeradbiomed.2024.04.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Diabetic retinopathy (DR) is a highly hazardous and widespread complication of diabetes mellitus (DM). The accumulated reactive oxygen species (ROS) play a central role in DR development. The aim of this research was to examine the impact and mechanisms of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEV) on regulating ROS and retinal damage in DR. Intravitreal injection of sEV inhibited Cullin3 neddylation, stabilized Nrf2, decreased ROS, reduced retinal inflammation, suppressed Müller gliosis, and mitigated DR. Based on MSC-sEV miRNA sequencing, bioinformatics software, and dual-luciferase reporter assay, miR-143-3p was identified to be the key effector for MSC-sEV's role in regulating neural precursor cell expressed developmentally down-regulated 8 (NEDD8)-mediated neddylation. sEV were able to be internalized by Müller cells. Compared to advanced glycation end-products (AGEs)-induced Müller cells, sEV coculture decreased Cullin3 neddylation, activated Nrf2 signal pathway to combat ROS-induced inflammation. The barrier function of endothelial cells was impaired when endothelial cells were treated with the supernatant of AGEs-induced Müller cells, but was restored when treated with supernatant of AGEs-induced Müller cells cocultured with sEV. The protective effect of sEV was, however, compromised when miR-143-3p was inhibited in sEV. Moreover, the protective efficacy of sEV was diminished when NEDD8 was overexpressed in Müller cells. These findings showed MSC-sEV delivered miR-143-3p to inhibit Cullin3 neddylation, stabilizing Nrf2 to counteract ROS-induced inflammation and reducing vascular leakage. Our findings suggest that MSC-sEV may be a potential nanotherapeutic agent for DR, and that Cullin3 neddylation could be a new target for DR therapy.
Collapse
Affiliation(s)
- Yueqin Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jun Tong
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Cong Liu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Chang He
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jinjin Xiang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Huayong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Zhenggao Xie
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
8
|
Serikbaeva A, Li Y, Ma S, Yi D, Kazlauskas A. Resilience to diabetic retinopathy. Prog Retin Eye Res 2024; 101:101271. [PMID: 38740254 PMCID: PMC11262066 DOI: 10.1016/j.preteyeres.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes (DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, and its deterioration results in progressive accumulation of retinal damage. The concepts that co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities within the DR field. Identification of biomarkers and mediators of protection from DM-mediated damage will enable development of resilience-based therapies that will indefinitely delay the onset of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Simon Ma
- Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Darvin Yi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA.
| |
Collapse
|
9
|
Yang X, Wu X. The impact of sestrin2 on reactive oxygen species in diabetic retinopathy. Cell Biochem Funct 2024; 42:e4024. [PMID: 38666564 DOI: 10.1002/cbf.4024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Diabetic retinopathy (DR) is a significant complication of diabetes that often leads to blindness, impacting Müller cells, the primary retinal macroglia involved in DR pathogenesis. Reactive oxygen species (ROS) play a crucial role in the development of DR. The objective of this study was to investigate the involvement of sestrin2 in DR using a high-glucose (HG)-induced Müller cell model and assessing cell proliferation with 5-ethynyl-2-deoxyuridine (EdU) labeling. Following this, sestrin2 was upregulated in Müller cells to investigate its effects on ROS, tube formation, and inflammation both in vitro and in vivo, as well as its interaction with the nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway. The findings demonstrated a gradual increase in the number of EdU-positive cells over time, with a subsequent decrease after 72 h of exposure to high glucose levels. Additionally, the expression of sestrin2 exhibited a progressive increase over time, followed by a decrease at 72 h. The rh-sestrin2 treatment suppressed the injury of Müller cells, decreased ROS level, and inhibited the tube formation. Rh-sestrin2 treatment enhanced the expression of sestrin2, Nrf2, heme oxygenase-1 (HO-1), and glutamine synthetase (GS); however, the ML385 treatment reversed the protective effect of rh-sestrin2. Finally, we evaluated the effect of sestrin2 in a DR rat model. Sestrin2 overexpression treatment improved the pathological injury of retina and attenuated the oxidative damage and inflammatory reaction. Our results highlighted the inhibitory effect of sestrin2 in the damage of retina, thus presenting a novel therapeutic sight for DR.
Collapse
Affiliation(s)
- Xueli Yang
- Department of Ophthalmology, YanTaiShan Hospital, Yantai, China
| | - Xiaoli Wu
- Department of Ophthalmology, Shandong Rongjun General Hospital, Jinan, China
| |
Collapse
|
10
|
Hart SN, Lenin R, Sturgill J, Kern PA, Nikolajczyk B. MITOCHONDRIA-ASSOCIATED MEMBRANES ARE NOT ALTERED IN IMMUNE CELLS IN T2D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586170. [PMID: 38585802 PMCID: PMC10996535 DOI: 10.1101/2024.03.25.586170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Metabolism research is increasingly recognizing the contributions of organelle crosstalk to metabolic regulation. Mitochondria-associated membranes (MAMs), which are structures connecting the mitochondria and endoplasmic reticulum (ER), are critical in a myriad of cellular functions linked to cellular metabolism. MAMs control calcium signaling, mitochondrial transport, redox balance, protein folding/degradation, and in some studies, metabolic health. The possibility that MAMs drive changes in cellular function in individuals with Type 2 Diabetes (T2D) is controversial. Although disruptions in MAMs that change the distance between the mitochondria and ER, MAM protein composition, or disrupt downstream signaling, can perpetuate inflammation, one key trait of T2D. However, the full scope of this structure's role in immune cell health and thus T2D-associated inflammation remains unknown. We show that human immune cell MAM proteins and their associated functions are not altered by T2D and thus unlikely to contribute to metaflammation.
Collapse
Affiliation(s)
- Samantha N Hart
- Department of Molecular and Cellular Biochemistry, University of Kentucky
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky
| | - Raji Lenin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | - Jamie Sturgill
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky
| | - Philip A Kern
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky
- Department of Internal Medicine, University of Kentucky
| | - Barbara Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, University of Kentucky
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky
| |
Collapse
|
11
|
Feng Z, Yang Y, Shi CX, Liu AQ, Wu CL, Liu WQ, Yu SX, Yu HD, Zuo ZF, Liu XZ. Salidroside ameliorates diabetic retinopathy and Müller cell inflammation via the PI3K/Akt/GSK-3β/NF-𝜅B pathway. Mol Vis 2024; 30:1-16. [PMID: 39588324 PMCID: PMC11588348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/07/2024] [Indexed: 11/27/2024] Open
Abstract
Purpose To determine whether salidroside (SAL) modulates inflammatory cytokines in rat retinal Müller cells (rMC-1) in a hyperglycemic environment by investigating the anti-inflammatory mechanisms of SAL in vitro and in vivo. Methods A streptozotocin (STZ)-induced diabetic rat model was established to examine the effects of SAL using hematoxylin and eosin (H&E) staining and immunohistochemistry. rMC-1 cells were grown in 50 mM of high-glucose medium. These simulated diabetic conditions were used to evaluate the anti-inflammatory effects of SAL using a Cell Counting Kit-8 (CCK-8) assay, immunofluorescence staining, western blotting, and real-time polymerase chain reaction (qRT‒PCR). H&E staining was used to analyze the number of ganglion cells in the retina. rMC-1 lysates were processed for qRT‒PCR to measure the steady-state mRNA expression levels of inflammatory markers, such as interleukin 6 (IL-6), interleukin 10 (IL-10), and interleukin 1β (IL-1β). Western blot analysis and immunofluorescence staining were performed to determine the levels of these inflammatory markers. Results Our study showed that SAL reversed retinal ganglion cell loss and attenuated nuclear factor kappa B (NF-𝜅B) p65 translocation to the nucleus in STZ-induced diabetic rats. Incubating rMC-1 in different concentrations of SAL for 24 to 48 h affected cell viability. Furthermore, SAL treatment significantly decreased the protein levels of IL-6, TNF-α, and IL-1β compared with those in cells cultured in high glucose (HG). The mRNA expression levels of IL-6 and IL-1β were considerably reduced after SAL treatment, whereas the mRNA expression levels of IL-10 were significantly increased. Interestingly, the beneficial effects of SAL on HG-treated rMC-1 cells were abolished by the PI3K inhibitor LY294002. Conclusions These results indicate that SAL treatment reduces cytokine activation in cultured rMC-1. Furthermore, SAL prevents diabetic retinopathy (DR), in part, by modulating the PI3K/Akt/GSK-3β/NF-kB pathway to inhibit Müller cell activation. Thus, SAL is expected to be a potential agent for ameliorating the progression of DR.
Collapse
Affiliation(s)
- Zhen Feng
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
- Zhejiang Changzheng Vocational Technical College, Shenyang, China
| | - Yang Yang
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
- Zhejiang Changzheng Vocational Technical College, Shenyang, China
| | | | - An-Qi Liu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chuan-Ling Wu
- Zhejiang Industrial Vocational and Technical College, Shaoxing, Zhejiang, China
| | - Wen-Qiang Liu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Sheng-Xue Yu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Hong-Dan Yu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
- Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, Guangxi, China
| | - Xue-Zheng Liu
- Department of Anatomy, Histology and Embryology, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
12
|
Llorián-Salvador M, Cabeza-Fernández S, Gomez-Sanchez JA, de la Fuente AG. Glial cell alterations in diabetes-induced neurodegeneration. Cell Mol Life Sci 2024; 81:47. [PMID: 38236305 PMCID: PMC10796438 DOI: 10.1007/s00018-023-05024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 01/19/2024]
Abstract
Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration.
Collapse
Affiliation(s)
- María Llorián-Salvador
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
| | - Sonia Cabeza-Fernández
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain
| | - Jose A Gomez-Sanchez
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain
| | - Alerie G de la Fuente
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain.
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain.
| |
Collapse
|
13
|
Cai Y, Tu H, Wu C, Liu T, Chen S, Shen L, Xiao Q, Zhao S, Xu S, Lin W, Yan P, Dong J. Therapeutic potential of elema-1,3,7(11),8-tetraen-8,12-lactam from Curcuma wenyujin on diabetic retinopathy via anti-inflammatory and anti-angiogenic pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116843. [PMID: 37414197 DOI: 10.1016/j.jep.2023.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, the causes of diabetic retinopathy (DR) are blood stasis and heat. Curcuma wenyujin Y. H. Chen & C. Ling and its extracts have the effects of promoting blood circulation to remove blood stasis, clearing the heart, and cooling the blood, and have been used in the treatment of DR. Elema-1,3,7 (11),8-tetraen-8,12-lactam (Ele), an N-containing sesquiterpene isolated from this plant. However, the anti-inflammatory and anti-angiogenic effects of Ele and its therapeutic potential in DR are still unknown. AIM OF THE STUDY To evaluate the anti-inflammatory and anti-angiogenic effects of Ele and its therapeutic potential in DR. MATERIALS AND METHODS In vitro, anti-inflammatory and anti-angiogenic effects were assessed using TNF-α or VEGF-stimulated HUVECs. Protein expression was analyzed using Western blotting. ICAM-1 and TNF-α mRNA expressions were analyzed using real-time quantitative RT-PCR. The therapeutic potential in DR was assessed using both animal models of STZ-induced diabetes and oxygen-induced retinopathy. The retinal vascular permeability was measured using Evans blue, and the quantitation of retinal leukostasis using FITC-coupled Con A. The retinal neovascular tufts were analyzed using fluorescein angiography and counting pre-retinal vascular lumens. RESULTS Ele inhibited NF-κB pathway, and ICAM-1, TNF-α mRNA expression in TNF-α- stimulated HUVECs. It also inhibits the multistep process of angiogenesis by inhibiting the phosphorylation of VEGFR2 and its downstream signaling kinases Src, Erk1/2, Akt, and mTOR in VEGF-stimulated HUVECs. Intravitreal injection of Ele can significantly reduce retinal microvascular leakage, leukostasis, and expression of ICAM-1, TNF-α in diabetic rats and inhibits oxygen-induced retinal neovascularization and VEGFR2 phosphorylation in OIR mice. CONCLUSIONS Ele has anti-inflammatory and anti-angiogenic effects through inhibiting NF-κB and VEGFR2 signaling pathways, and it may be a potential drug candidate for DR.
Collapse
Affiliation(s)
- Yuan Cai
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Hongfeng Tu
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Cimei Wu
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Tong Liu
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Shuangshuang Chen
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Linlin Shen
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Qinwen Xiao
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Sumin Zhao
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Shaoying Xu
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Weiwei Lin
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Pengcheng Yan
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Jianyong Dong
- Pharmacy School, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| |
Collapse
|
14
|
Liu L, Jiang Y, Steinle JJ. Semaphorin 7a regulates inflammatory mediators and permeability in retinal endothelial cells. Microvasc Res 2023; 150:104587. [PMID: 37453650 PMCID: PMC10528930 DOI: 10.1016/j.mvr.2023.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Research supports a key role for inflammation in damaging the retinal vasculature. Current work is designed to investigate regulation of key inflammatory pathways. In this study, we hypothesized that semaphorin 7a (Sema7a) was involved in the increased inflammatory mediators and permeability changes in retinal endothelial cells (REC) grown in high glucose. For these studies, we used diabetic mouse samples and REC to investigate our hypothesis. Primary retinal endothelial cells were grown in normal (5 mM) or high glucose (25 mM glucose) for measurements. In a subset of cells grown in high glucose, cells were transfected with Sema7a siRNA or scrambled siRNA. We measured levels of key inflammatory mediators and zonula occludens-1 (ZO-1) and occludin levels by Western blot. Data suggest that high glucose increased inflammatory mediators and reduced the tight junction proteins, which follows what is often observed in cells grown in high glucose. Sema7a siRNA significantly decreased inflammatory proteins and increased levels of ZO-1 and occludin. These data suggest that Sema7a mediates the actions of high glucose in REC. Use of Sema7a siRNA may offer a new avenue for treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Youde Jiang
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jena J Steinle
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
15
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
16
|
Haydinger CD, Oliver GF, Ashander LM, Smith JR. Oxidative Stress and Its Regulation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1649. [PMID: 37627644 PMCID: PMC10451779 DOI: 10.3390/antiox12081649] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic retinopathy is the retinal disease associated with hyperglycemia in patients who suffer from type 1 or type 2 diabetes. It includes maculopathy, involving the central retina and characterized by ischemia and/or edema, and peripheral retinopathy that progresses to a proliferative stage with neovascularization. Approximately 10% of the global population is estimated to suffer from diabetes, and around one in 5 of these individuals have diabetic retinopathy. One of the major effects of hyperglycemia is oxidative stress, the pathological state in which elevated production of reactive oxygen species damages tissues, cells, and macromolecules. The retina is relatively prone to oxidative stress due to its high metabolic activity. This review provides a summary of the role of oxidative stress in diabetic retinopathy, including a description of the retinal cell players and the molecular mechanisms. It discusses pathological processes, including the formation and effects of advanced glycation end-products, the impact of metabolic memory, and involvements of non-coding RNA. The opportunities for the therapeutic blockade of oxidative stress in diabetic retinopathy are also considered.
Collapse
Affiliation(s)
| | | | | | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (C.D.H.); (G.F.O.); (L.M.A.)
| |
Collapse
|
17
|
Robles-Osorio ML, Sabath E. Tight junction disruption and the pathogenesis of the chronic complications of diabetes mellitus: A narrative review. World J Diabetes 2023; 14:1013-1026. [PMID: 37547580 PMCID: PMC10401447 DOI: 10.4239/wjd.v14.i7.1013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
The chronic complications of diabetes mellitus constitute a major public health problem. For example, diabetic eye diseases are the most important cause of blindness, and diabetic nephropathy is the most frequent cause of chronic kidney disease worldwide. The cellular and molecular mechanisms of these chronic complications are still poorly understood, preventing the development of effective treatment strategies. Tight junctions (TJs) are epithelial intercellular junctions located at the most apical region of cell-cell contacts, and their main function is to restrict the passage of molecules through the paracellular space. The TJs consist of over 40 proteins, and the most important are occludin, claudins and the zonula occludens. Accumulating evidence suggests that TJ disruption in different organs, such as the brain, nerves, retina and kidneys, plays a fundamental pathophysiological role in the development of chronic complications. Increased permeability of the blood-brain barrier and the blood-retinal barrier has been demonstrated in diabetic neuropathy, brain injury and diabetic retinopathy. The consequences of TJ disruption on kidney function or progression of kidney disease are currently unknown. In the present review, we highlighted the molecular events that lead to barrier dysfunction in diabetes. Further investigation of the mechanisms underlying TJ disruption is expected to provide new insights into therapeutic approaches to ameliorate the chronic complications of diabetes mellitus.
Collapse
Affiliation(s)
| | - Ernesto Sabath
- Renal and Metabolism Unit, Hospital General de Querétaro, Queretaro 76180, Mexico
- Department of Nutrition, Universidad Autónoma de Queretaro, Queretaro 76230, Mexico
| |
Collapse
|
18
|
Li X, Su X, Xia F, Qiu J, Zhang J, Wu H, Xie X, Xu M. Bibliometric and visual analysis of diabetes mellitus and pyroptosis from 2011 to 2022. Eur J Med Res 2023; 28:235. [PMID: 37443131 DOI: 10.1186/s40001-023-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To visualize and analyze the published literature on diabetes mellitus and pyroptosis based on a bibliometric approach, so as to provide a comprehensive picture of the hot research directions and dynamic progress in this field. METHODS This study was based on the web of science core collection database to conduct a comprehensive search of the published literature in the field of diabetes mellitus and Pyroptosis from January 1985 to August 2022, including the published research literature in this field, as well as a visual analysis of the number of citations, year of publication, journal, author, research institution, country, and research topic. RESULTS A total of 139 literature on research related to diabetes mellitus and cellular scorch from 2011 to 2022 were retrieved, with a total of 3009 citations and a maximum of 255 citations for a single article, which had a first author Schmid-Burgk, JL The first author of this article is from Germany; among 20 publishing countries, China leads with 100 articles; among 222 publishing institutions, Harbin Medical University leads with 18 articles and 184 citations; among 980 authors, Chen, X from China tops the list of high-impact authors with 5 articles and 29 citations. Among the 98 journals, "CELL DEATH DISEASE" ranked first in both volume and high-impact journals with 4 articles and 29 citations. Among 349 keywords, "pyroptosis" ranked first with a cumulative frequency of 65 times. The cluster analysis was divided into three categories, chronic complications of diabetes mellitus and pyroptosis (67 articles), diabetes mellitus and pyroptosis (60 articles), and diabetes mellitus combined with other diseases and pyroptosis (12 articles), and the number of articles related to diabetes mellitus and its chronic complications increased rapidly from 2019, among which, diabetic cardiomyopathy (27 articles) had the highest number of articles. CONCLUSIONS Based on a comprehensive analysis of published literature in the field of diabetes mellitus and pyroptosis from 2011 to 2022, this study achieved a visual analysis of studies with significant and outstanding contributions to the field, thus framing a picture showing the development and changes in the field. At the same time, this study provides research information and direction for clinicians and investigators to conduct diabetes mellitus and pyroptosis-related research in the future.
Collapse
Affiliation(s)
- Xiaodong Li
- The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, 550000, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiaojuan Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Fenglin Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jiaqi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Haiyan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Mingchao Xu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620010, China.
| |
Collapse
|
19
|
Yang Y, Jiang G, Huang R, Liu Y, Chang X, Fu S. Targeting the NLRP3 inflammasome in diabetic retinopathy: From Pathogenesis to Therapeutic Strategies. Biochem Pharmacol 2023; 212:115569. [PMID: 37100255 DOI: 10.1016/j.bcp.2023.115569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Diabetic retinopathy (DR) is a common diabetic microvascular complication and the main cause of vision loss in working-aged people. The NLRP3 inflammasome is a cytosolic multimeric complex that plays a significant role in innate immunity. After sensing injury, the NLRP3 inflammasome induces inflammatory mediator secretion and triggers a form of inflammatory cell death known as pyroptosis. Studies over the past five years have shown increased expression of NLRP3 and related inflammatory mediators in vitreous samples from DR patients at different clinical stages. Many NLRP3-targeted inhibitors have shown great antiangiogenic and anti-inflammatory effects in diabetes mellitus models, suggesting that the NLRP3 inflammasome is involved in the progression of DR. This review covers the molecular mechanisms of NLRP3 inflammasome activation. Furthermore, we discuss the implications of the NLRP3 inflammasome in DR, including the induction of pyroptosis and inflammation and the promotion of microangiopathy and retinal neurodegeneration. We also summarize the research progress on targeting the NLRP3 inflammasome in DR therapeutics with the expectation of providing new insights into DR progression and treatment.
Collapse
Affiliation(s)
- Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Gengchen Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Yi Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Songbo Fu
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou, Gansu, The People's Republic of China, 730000; Gansu Province Clinical Research Center for Endocrine Disease, Gansu, The People's Republic of China, 730000.
| |
Collapse
|
20
|
Yan J, Deng J, Cheng F, Zhang T, Deng Y, Cai Y, Cong W. Thioredoxin-Interacting Protein Inhibited Vascular Endothelial Cell-Induced HREC Angiogenesis Treatment of Diabetic Retinopathy. Appl Biochem Biotechnol 2023; 195:1268-1283. [PMID: 36346561 DOI: 10.1007/s12010-022-04191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Abstract
Diabetic retinopathy is the most common reason for blindness among employed adults worldwide. Hyperglycemia and the overaccumulation of vascular endothelial growth factor (VEGF) lead to diabetic retinopathy, pathological angiogenesis in diabetic retinopathy, and consequent visual impairment. Expression levels of thioredoxin-interacting protein (TXNIP) substantially increase in retinal endothelial cells in diabetic circumstances. The part of TXNIP in retinal angiogenesis combined with diabetes remains unclear. This study examined the effect of reduced TXNIP expression levels and determined how it affects diabetic retinal angiogenesis. Display of human retinal vascular endothelial cells (HRECs) to moderately high glucose (MHG) encouraged tube formation and cell migration, not cell proliferation. In response to MHG conditions, in HRECs, TXNIP knockdown inhibited the production of reactive oxygen species (ROS), cell migration, tube formation, and the Akt/mTOR activation pathway. In addition, gene silencing of TXNIP decreased the VEGF-triggered angiogenic response in HRECs by preventing activation of both VEGF receptor 2 and the downstream components of the Akt/mTOR pathway signaling. Furthermore, TXNIP knockout mice reduced VEGF-induced or VEGF- and MHG-triggered ex vivo retinal angiogenesis compared to wild-type mice. Finally, our findings revealed that TXNIP knockdown suppressed VEGF- and MHG-triggered angiogenic responses in HRECs and mouse retinas, indicating that TXNIP is a promising therapeutic window against the proliferation of diabetic patients' retinopathy.
Collapse
Affiliation(s)
- Jian Yan
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Jiantao Deng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Fang Cheng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Tao Zhang
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Yixuan Deng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Yulian Cai
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Wendong Cong
- Department of Neurology, Guangdong Province, Longgang District Central Hospital, Longgang Road, Shenzhen, 6082518117, No, China.
| |
Collapse
|
21
|
Johnston EK, Abbott RD. Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells 2023; 12:407. [PMID: 36766750 PMCID: PMC9913478 DOI: 10.3390/cells12030407] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity is an ever-increasing phenomenon, with 42% of Americans being considered obese (BMI ≥ 30) and 9.2% being considered morbidly obese (BMI ≥ 40) as of 2016. With obesity being characterized by an abundance of adipose tissue expansion, abnormal tissue remodeling is a typical consequence. Importantly, this pathological tissue expansion is associated with many alterations in the cellular populations and phenotypes within the tissue, lending to cellular, paracrine, mechanical, and metabolic alterations that have local and systemic effects, including diabetes and cardiovascular disease. In particular, vascular dynamics shift during the progression of obesity, providing signaling cues that drive metabolic dysfunction. In this review, paracrine-, autocrine-, and matrix-dependent signaling between adipocytes and endothelial cells is discussed in the context of the development and progression of obesity and its consequential diseases, including adipose fibrosis, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Protective Effects of Human Pericyte-like Adipose-Derived Mesenchymal Stem Cells on Human Retinal Endothelial Cells in an In Vitro Model of Diabetic Retinopathy: Evidence for Autologous Cell Therapy. Int J Mol Sci 2023; 24:ijms24020913. [PMID: 36674425 PMCID: PMC9860961 DOI: 10.3390/ijms24020913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Diabetic retinopathy (DR) is characterized by morphologic and metabolic alterations in endothelial cells (ECs) and pericytes (PCs) of the blood-retinal barrier (BRB). The loss of interendothelial junctions, increased vascular permeability, microaneurysms, and finally, EC detachment are the main features of DR. In this scenario, a pivotal role is played by the extensive loss of PCs. Based on previous results, the aim of this study was to assess possible beneficial effects exerted by adipose mesenchymal stem cells (ASCs) and their pericyte-like differentiated phenotype (P-ASCs) on human retinal endothelial cells (HRECs) in high glucose conditions (25 mM glucose, HG). P-ASCs were more able to preserve BRB integrity than ASCs in terms of (a) increased transendothelial electrical resistance (TEER); (b) increased expression of adherens junction and tight junction proteins (VE-cadherin and ZO-1); (c) reduction in mRNA levels of inflammatory cytokines TNF-α, IL-1β, and MMP-9; (d) reduction in the angiogenic factor VEGF and in fibrotic TGF-β1. Moreover, P-ASCs counteracted the HG-induced activation of the pro-inflammatory phospho-ERK1/2/phospho-cPLA2/COX-2 pathway. Finally, crosstalk between HRECs and ASCs or P-ASCs based on the PDGF-B/PDGFR-β axis at the mRNA level is described herein. Thus, P-ASCs might be considered valuable candidates for therapeutic approaches aimed at countering BRB disruption in DR.
Collapse
|
23
|
Hassanein EHM, Althagafy HS, Atwa AM, Kozman MR, Kotb El-Sayed MI, Soubh AA. Taurine attenuated methotrexate-induced intestinal injury by regulating NF-κB/iNOS and Keap1/Nrf2/HO-1 signals. Life Sci 2022; 311:121180. [PMID: 36370869 DOI: 10.1016/j.lfs.2022.121180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Methotrexate (MTX) is a well-known and widely used cytotoxic chemotherapeutic agent. However, intestinal mucosa damage is a serious adverse effect of MTX. Taurine (TUR) is a sulfur-containing free β-amino acid with antioxidant and therapeutic value against several diseases. The current study aimed to determine the protective effect of TUR against MTX-induced intestinal injury. Rats were allocated into four groups. The first group received vehicles only. The second group received TUR at a dose of 250 mg/kg i.p. For induction of intestinal injury, the rats in the third group were given MTX once at a dose of 20 mg/kg, i.p. The fourth group received TUR 7 days before and 7 days after MTX, as previously described. TUR significantly attenuated the cytokine release by suppressing NF-κB and iNOS expressions. Moreover, cotreatment with TUR attenuated the increased MDA level while it enhanced the antioxidant GSH and SOD levels mediated by effective downregulation of Keap1 expression, while the expression of Nrf2, HO-1, and cytoglobin were up-regulated. Additionally, TUR mitigated the apoptosis and proliferation indices by decreasing the elevated levels of intestinal PCNA and caspase-3. Finally, TUR potently increased the cytotoxic activity of MTX toward Caco-2, MCF-7, and A549 cancer cells. In conclusion, TUR was a promising agent for relieving MTX-mediated intestinal injury via various antioxidant, anti-inflammatory, and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Magy R Kozman
- Department of Clinical Pharmacology, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Mohamed I Kotb El-Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Cairo, Egypt
| | - Ayman A Soubh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| |
Collapse
|
24
|
Serikbaeva A, Li Y, Ganesh B, Zelkha R, Kazlauskas A. Hyperglycemia Promotes Mitophagy and Thereby Mitigates Hyperglycemia-Induced Damage. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1779-1794. [PMID: 36063899 PMCID: PMC9765315 DOI: 10.1016/j.ajpath.2022.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022]
Abstract
The observation that diabetic retinopathy (DR) typically takes decades to develop suggests the existence of an endogenous system that protects from diabetes-induced damage. To investigate the existance of such a system, primary human retinal endothelial cells were cultured in either normal glucose (5 mmol/L) or high glucose (30 mmol/L; HG). Prolonged exposure to HG was beneficial instead of detrimental. Although tumor necrosis factor-α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 was unaffected after 1 day of HG, it waned as the exposure to HG was extended. Similarly, oxidative stress-induced death decreased with prolonged exposure to HG. Furthermore, mitochondrial functionality, which was compromised by 1 day of HG, was improved by 10 days of HG, and this change required increased clearance of damaged mitochondria (mitophagy). Finally, antagonizing mitochondrial dynamics compromised the cells' ability to endure HG: susceptibility to cell death increased, and basal barrier function and responsiveness to vascular endothelial growth factor deteriorated. These observations indicate the existence of an endogenous system that protects human retinal endothelial cells from the deleterious effects of HG. Hyperglycemia-induced mitochondrial adaptation is a plausible contributor to the mechanism responsible for the delayed onset of DR; loss of hyperglycemia-induced mitochondrial adaptation may set the stage for the development of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Yueru Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Balaji Ganesh
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | - Ruth Zelkha
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
25
|
Deng P, Liang H, Wang S, Hao R, Han J, Sun X, Pan X, Li D, Wu Y, Huang Z, Xue J, Chen Z. Combined metabolomics and network pharmacology to elucidate the mechanisms of Dracorhodin Perchlorate in treating diabetic foot ulcer rats. Front Pharmacol 2022; 13:1038656. [PMID: 36532755 PMCID: PMC9752146 DOI: 10.3389/fphar.2022.1038656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 10/10/2023] Open
Abstract
Background: Diabetic foot ulcer (DFU) is a severe chronic complication of diabetes, that can result in disability or death. Dracorhodin Perchlorate (DP) is effective for treating DFU, but the potential mechanisms need to be investigated. We aimed to explore the mechanisms underlying the acceleration of wound healing in DFU by the topical application of DP through the combination of metabolomics and network pharmacology. Methods: A DFU rat model was established, and the rate of ulcer wound healing was assessed. Different metabolites were found in the skin tissues of each group, and MetaboAnalyst was performed to analyse metabolic pathways. The candidate targets of DP in the treatment of DFU were screened using network pharmacology. Cytoscape was applied to construct an integrated network of metabolomics and network pharmacology. Moreover, the obtained hub targets were validated using molecular docking. After the topical application of DP, blood glucose, the rate of wound healing and pro-inflammatory cytokine levels were assessed. Results: The levels of IL-1, hs-CRP and TNF-α of the Adm group were significantly downregulated. A total of 114 metabolites were identified. These could be important to the therapeutic effects of DP in the treatment of DFU. Based on the network pharmacology, seven hub genes were found, which were partially consistent with the metabolomics results. We focused on four hub targets by further integrated analysis, namely, PAH, GSTM1, DHFR and CAT, and the crucial metabolites and pathways. Molecular docking results demonstrated that DP was well combined with the hub targets. Conclusion: Our research based on metabolomics and network pharmacology demonstrated that DP improves wound healing in DFU through multiple targets and pathways, and it can potentially be used for DFU treatment.
Collapse
Affiliation(s)
- Pin Deng
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Huan Liang
- Department of Orthopedics, Beijing Longfu Hospital, Beijing, China
| | - Shulong Wang
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Ruinan Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jinglu Han
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xiaojie Sun
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xuyue Pan
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Dongxiao Li
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yinwen Wu
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
| | - Zhichao Huang
- School of Graduates, Beijing University of Chinese Medicine, Beijing, China
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhaojun Chen
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
26
|
MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression? Int J Mol Sci 2022; 23:ijms232012099. [PMID: 36292956 PMCID: PMC9603433 DOI: 10.3390/ijms232012099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic disease associated with diabetes mellitus and is a leading cause of visual impairment among the working population in the US. Clinically, DR has been diagnosed and treated as a vascular complication, but it adversely impacts both neural retina and retinal vasculature. Degeneration of retinal neurons and microvasculature manifests in the diabetic retina and early stages of DR. Retinal photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. Chronic inflammation is a hallmark of diabetes and a contributor to cell apoptosis, and retinal photoreceptors are a major source of intraocular inflammation that contributes to vascular abnormalities in diabetes. As the levels of microRNAs (miRs) are changed in the plasma and vitreous of diabetic patients, miRs have been suggested as biomarkers to determine the progression of diabetic ocular diseases, including DR. However, few miRs have been thoroughly investigated as contributors to the pathogenesis of DR. Among these miRs, miR-150 is downregulated in diabetic patients and is an endogenous suppressor of inflammation, apoptosis, and pathological angiogenesis. In this review, how miR-150 and its downstream targets contribute to diabetes-associated retinal degeneration and pathological angiogenesis in DR are discussed. Currently, there is no effective treatment to stop or reverse diabetes-caused neural and vascular degeneration in the retina. Understanding the molecular mechanism of the pathogenesis of DR may shed light for the future development of more effective treatments for DR and other diabetes-associated ocular diseases.
Collapse
|
27
|
Shahin D. H. H, Sultana R, Farooq J, Taj T, Khaiser UF, Alanazi NSA, Alshammari MK, Alshammari MN, Alsubaie FH, Asdaq SMB, Alotaibi AA, Alamir AA, Imran M, Jomah S. Insights into the Uses of Traditional Plants for Diabetes Nephropathy: A Review. Curr Issues Mol Biol 2022; 44:2887-2902. [PMID: 35877423 PMCID: PMC9316237 DOI: 10.3390/cimb44070199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney illness characterized by proteinuria, glomerular enlargement, reduced glomerular filtration, and renal fibrosis. DN is the most common cause of end-stage kidney disease, accounting for nearly one-third of all cases of diabetes worldwide. Hyperglycemia is a major factor in the onset and progression of diabetic nephropathy. Many contemporary medicines are derived from plants since they have therapeutic properties and are relatively free of adverse effects. Glycosides, alkaloids, terpenoids, and flavonoids are among the few chemical compounds found in plants that are utilized to treat diabetic nephropathy. The purpose of this review was to consolidate information on the clinical and pharmacological evidence supporting the use of a variety of medicinal plants to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Haleema Shahin D. H.
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India
- Correspondence: (R.S.); (S.M.B.A.)
| | - Juveriya Farooq
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Umaima Farheen Khaiser
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | | | | | | | - Firas Hamdan Alsubaie
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (M.N.A.); (F.H.A.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (R.S.); (S.M.B.A.)
| | - Abdulmueen A. Alotaibi
- Department of Anaesthesia Technology, College of Applied Sciences, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia;
| | - Abdulrhman ahmed Alamir
- Department of Emergency Medicine, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
28
|
Zhu BT. Biochemical mechanism underlying the pathogenesis of diabetic retinopathy and other diabetic complications in humans: the methanol-formaldehyde-formic acid hypothesis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:415-451. [PMID: 35607958 PMCID: PMC9828688 DOI: 10.3724/abbs.2022012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia in diabetic patients is associated with abnormally-elevated cellular glucose levels. It is hypothesized that increased cellular glucose will lead to increased formation of endogenous methanol and/or formaldehyde, both of which are then metabolically converted to formic acid. These one-carbon metabolites are known to be present naturally in humans, and their levels are increased under diabetic conditions. Mechanistically, while formaldehyde is a cross-linking agent capable of causing extensive cytotoxicity, formic acid is an inhibitor of mitochondrial cytochrome oxidase, capable of inducing histotoxic hypoxia, ATP deficiency and cytotoxicity. Chronic increase in the production and accumulation of these toxic one-carbon metabolites in diabetic patients can drive the pathogenesis of ocular as well as other diabetic complications. This hypothesis is supported by a large body of experimental and clinical observations scattered in the literature. For instance, methanol is known to have organ- and species-selective toxicities, including the characteristic ocular lesions commonly seen in humans and non-human primates, but not in rodents. Similarly, some of the diabetic complications (such as ocular lesions) also have a characteristic species-selective pattern, closely resembling methanol intoxication. Moreover, while alcohol consumption or combined use of folic acid plus vitamin B is beneficial for mitigating acute methanol toxicity in humans, their use also improves the outcomes of diabetic complications. In addition, there is also a large body of evidence from biochemical and cellular studies. Together, there is considerable experimental support for the proposed hypothesis that increased metabolic formation of toxic one-carbon metabolites in diabetic patients contributes importantly to the development of various clinical complications.
Collapse
Affiliation(s)
- Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhen518172China
- Department of PharmacologyToxicology and TherapeuticsSchool of MedicineUniversity of Kansas Medical CenterKansas CityKS66160USA
| |
Collapse
|
29
|
Kong H, Zhao H, Chen T, Song Y, Cui Y. Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy. Cell Death Dis 2022; 13:336. [PMID: 35410316 PMCID: PMC9001662 DOI: 10.1038/s41419-022-04786-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
Retinal endothelial cells (RECs) are the primary target cells for diabetes-induced vascular damage. The P2X7/NLRP3 pathway plays an essential role in amplifying inflammation via an ATP feedback loop, promoting the inflammatory response, pyroptosis, and apoptosis of RECs in the early stages of diabetic retinopathy induced by hyperglycemia and inflammation. 3TC, a type of nucleoside reverse transcriptase inhibitor, is effective against inflammation, as it can targeting formation of the P2X7 large pore formation. Hence, our aim was to evaluated the anti-inflammatory effects and potential mechanisms of action of 3TC in vitro in retinal microvascular endothelial cells treated with high-glucose (HG) and lipopolysaccharide (LPS), as well as in vivo in the retinas of C57BL/6J male mice with streptozotocin-induced diabetes. The expression of inflammasome-related proteins P2X7 and NLRP3, and apoptosis in the retinas of 3TC-treated diabetic mice were compared to those of untreated diabetic mice. Furthermore, the anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects of 3TC were evaluated in vitro in cultured mice retinal endothelial cells. Co-application of HG and LPS significantly increased the secretion of IL-6, IL-1β, and TNF-α, and ATP levels, whereas 3TC decreased cell inflammation, apoptosis, and pyroptosis. Inhibition of P2X7R and NLRP3 inflammasome activation decreased NLRP3 inflammasome-mediated injury. 3TC prevented cytokine and ATP release following co-application of HG and LPS/BzATP. Our findings provide new insights regarding the mechanisms of action of 3TC in diabetic environment-induced retinal injury, including apoptosis and pyroptosis.
Collapse
Affiliation(s)
- Hui Kong
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
- Department of Ophthalmology, Qianfoshan Hospital of Shandong First Medical University, Jinan, Shandong Province, China
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hongran Zhao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- Shandong University, Jinan, Shandong Province, China
| | - Tianran Chen
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- Shandong University, Jinan, Shandong Province, China
| | - Yanling Song
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- Shandong University, Jinan, Shandong Province, China
| | - Yan Cui
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China.
- Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
30
|
Cabrera-Becerra SE, Vera-Juárez G, García-Rubio VG, Ocampo-Ortega SA, Blancas-Napoles CM, Aguilera-Mendez A, Romero-Nava R, Huang F, Hong E, Villafaña S. siRNA knockdown of Angiopoietin 2 significantly reduces neovascularization in diabetic rats. J Drug Target 2022; 30:673-686. [PMID: 35289235 DOI: 10.1080/1061186x.2022.2052888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diabetes is a disease that leads to proliferative diabetic retinopathy (PDR), which is associated with an increase of new vessels formation due to an overexpression of angiogenic factors, such as angiopoietin 2 (ANGPT2). The aim of this work was to design a siRNA targeting ANGPT2 to decrease the retinal neovascularization associated with PDR. Adult male Wistar rats weighing 325-375 g were used. Diabetes was induced by a single dose of streptozotocin (STZ, 60 mg/kg i.p.). The siRNAs were designed, synthesized and administered intravitreally at the beginning of diabetes induction (t0), and after 4 weeks of diabetes evolution (t4), subsequently evaluated the retinal neovascularization (junctions and lacunarity) and ANGPT2 expression in the retina by RT-PCR, after 4 weeks of the siRNAs administration. The results showed that the administration of STZ produced significantly increases in blood glucose levels, retinal neovascularization (augmented junctions and lower lacunarity) and ANGPT2 expression, while the administration the ANGPT2-siRNAs at different groups (t0 and t4) reduces the junctions and increases the lacunarity in diabetic rats. Therefore, we conclude that the administration of siRNAs targeting ANGPT2 could be an option to decrease the retinal neovascularization associated with PDR and halt the progression of blindness caused by diabetes.
Collapse
Affiliation(s)
- Sandra Edith Cabrera-Becerra
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gerardo Vera-Juárez
- Laboratorio de neurofarmacología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Vanessa Giselle García-Rubio
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Adrián Ocampo-Ortega
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Citlali Margarita Blancas-Napoles
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Asdrubal Aguilera-Mendez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás Hidalgo, Morelia, México
| | - Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Fengyang Huang
- Departamento de Farmacología y Toxicología, Hospital Infantil de México "Federico Gómez", Ciudad de México, México
| | - Enrique Hong
- Departamento de Neurofarmacología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Santiago Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
31
|
Oxidative Stress, Vascular Endothelium, and the Pathology of Neurodegeneration in Retina. Antioxidants (Basel) 2022; 11:antiox11030543. [PMID: 35326193 PMCID: PMC8944517 DOI: 10.3390/antiox11030543] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OS) is an imbalance between free radicals/ROS and antioxidants, which evokes a biological response and is an important risk factor for diseases, in both the cardiovascular system and central nervous system (CNS). The underlying mechanisms driving pathophysiological complications that arise from OS remain largely unclear. The vascular endothelium is emerging as a primary target of excessive glucocorticoid and catecholamine action. Endothelial dysfunction (ED) has been implicated to play a crucial role in the development of neurodegeneration in the CNS. The retina is known as an extension of the CNS. Stress and endothelium dysfunction are suspected to be interlinked and associated with neurodegenerative diseases in the retina as well. In this narrative review, we explore the role of OS-led ED in the retina by focusing on mechanistic links between OS and ED, ED in the pathophysiology of different retinal neurodegenerative conditions, and how a better understanding of the role of endothelial function could lead to new therapeutic approaches for neurodegenerative diseases in the retina.
Collapse
|
32
|
He S, Gu C, Su T, Qiu Q. Research Progress of circRNAs in Inflammatory Mechanisms of Diabetic Retinopathy: An Emerging Star with Potential Therapeutic Targets. Curr Eye Res 2021; 47:165-178. [PMID: 34963381 DOI: 10.1080/02713683.2021.1995002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE We summarized the existing studies to elaborate the biogenesis and function of circRNAs, the effect of aberrant circRNAs expression in the mechanism of inflammation and diabetic retinopathy (DR) respectively and further explored the vital roles of circRNAs in inflammation involved in DR. Methods: We conducted a systematical literature search of abundant electronic databases (PubMed, GeneMedical and MEDLINE) up to August 2021. Results: In this review, we exhibited the biogenesis and function of circRNAs and highlighted the components of inflammatory mediators implicated in DR. Numerous circRNAs, such as circHIPK3, circZNF609, circRNA_0084043, circ_0002570, circ_0041795, circEhmt1 and circ-ITCH were discovered to play vital roles in inflammation involved in DR, which provided new ideas for diagnosis and treatment of DR. Moreover, we proposed not only the epigenetic functions of circRNAs but also novel forms of the inflammatory response, including pyroptosis, to inspire further exploration and creative research in this field. Conclusion: CircRNAs were implicated in the progression and development of inflammation in DR via aberrant expression and modulation of gene expression, serving as an emerging star with potential therapeutic targets.
Collapse
Affiliation(s)
- Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China.,Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Xizang, PR China
| |
Collapse
|
33
|
Meng C, Gu C, He S, Su T, Lhamo T, Draga D, Qiu Q. Pyroptosis in the Retinal Neurovascular Unit: New Insights Into Diabetic Retinopathy. Front Immunol 2021; 12:763092. [PMID: 34737754 PMCID: PMC8560732 DOI: 10.3389/fimmu.2021.763092] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is prevalent among people with long-term diabetes mellitus (DM) and remains the leading cause of visual impairment in working-aged people. DR is related to chronic low-level inflammatory reactions. Pyroptosis is an emerging type of inflammatory cell death mediated by gasdermin D (GSDMD), NOD-like receptors and inflammatory caspases that promote interleukin-1β (IL-1β) and IL-18 release. In addition, the retinal neurovascular unit (NVU) is the functional basis of the retina. Recent studies have shown that pyroptosis may participate in the destruction of retinal NVU cells in simulated hyperglycemic DR environments. In this review, we will clarify the importance of pyroptosis in the retinal NVU during the development of DR.
Collapse
Affiliation(s)
- Chunren Meng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Thashi Lhamo
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| | - Deji Draga
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| |
Collapse
|
34
|
Lo WC, Chang CC, Chan CH, Singh AK, Deng YH, Lin CY, Tsao W, Chien ST, Lin CH, Deng WP. Platelet-Derived Biomaterials Exert Chondroprotective and Chondroregenerative Effects on Diabetes Mellitus-Induced Intervertebral Disc Degeneration. Life (Basel) 2021; 11:1054. [PMID: 34685425 PMCID: PMC8540580 DOI: 10.3390/life11101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022] Open
Abstract
Complications of diabetes mellitus (DM) range from acute to chronic conditions, leading to multiorgan disorders such as nephropathy, retinopathy, and neuropathy. However, little is known about the influence of DM on intervertebral disc degeneration (IVDD). Moreover, traditional surgical outcomes in DM patients have been found poor, and to date, no definitive alternative treatment exists for DM-induced IVDD. Recently, among various novel approaches in regenerative medicine, the concentrated platelet-derived biomaterials (PDB), which is comprised of transforming growth factor-β1 (TGF-β1), platelet-derived growth factor (PDGF), etc., have been reported as safe, biocompatible, and efficacious alternatives for various disorders. Therefore, we initially investigated the correlations between DM and IVDD, through establishing in vitro and in vivo DM models, and further evaluated the therapeutic effects of PDB in this comorbid pathology. In vitro model was established by culturing immortalized human nucleus pulposus cells (ihNPs) in high-glucose medium, whereas in vivo DM model was developed by administering streptozotocin, nicotinamide and high-fat diet to the mice. Our results revealed that DM deteriorates both ihNPs and IVD tissues, by elevating reactive oxygen species (ROS)-induced oxidative stress, inhibiting chondrogenic markers and disc height. Contrarily, PDB ameliorated IVDD by restoring cellular growth, chondrogenic markers and disc height, possibly through suppressing ROS levels. These data imply that PDB may serve as a potential chondroprotective and chondroregenerative candidate for DM-induced IVDD.
Collapse
Affiliation(s)
- Wen-Cheng Lo
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chun-Hao Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-H.C.); (A.K.S.); (Y.-H.D.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-Y.L.); (W.T.); (S.-T.C.)
| | - Abhinay Kumar Singh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-H.C.); (A.K.S.); (Y.-H.D.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-Y.L.); (W.T.); (S.-T.C.)
| | - Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-H.C.); (A.K.S.); (Y.-H.D.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-Y.L.); (W.T.); (S.-T.C.)
| | - Chia-Ying Lin
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-Y.L.); (W.T.); (S.-T.C.)
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Wen Tsao
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-Y.L.); (W.T.); (S.-T.C.)
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shaw-Ting Chien
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-Y.L.); (W.T.); (S.-T.C.)
| | - Chang-Hsien Lin
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Family Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-H.C.); (A.K.S.); (Y.-H.D.)
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (C.-Y.L.); (W.T.); (S.-T.C.)
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Life Science, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
35
|
Durak A, Akkus E, Canpolat AG, Tuncay E, Corapcioglu D, Turan B. Glucagon-like peptide-1 receptor agonist treatment of high carbohydrate intake-induced metabolic syndrome provides pleiotropic effects on cardiac dysfunction through alleviations in electrical and intracellular Ca 2+ abnormalities and mitochondrial dysfunction. Clin Exp Pharmacol Physiol 2021; 49:46-59. [PMID: 34519087 DOI: 10.1111/1440-1681.13590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The pleiotropic effects of glucagon-like peptide-1 receptor (GLP-1R) agonists on the heart have been recognised in obese or diabetic patients. However, little is known regarding the molecular mechanisms of these agonists in cardioprotective actions under metabolic disturbances. We evaluated the effects of GLP-1R agonist liraglutide treatment on left ventricular cardiomyocytes from high-carbohydrate induced metabolic syndrome rats (MetS rats), characterised with insulin resistance and cardiac dysfunction with a long-QT. Liraglutide (0.3 mg/kg for 4 weeks) treatment of MetS rats significantly reversed long-QT, through a shortening the prolonged action potential duration and recovering inhibited K+ -currents. We also determined a significant recovery in the leaky sarcoplasmic reticulum (SR) and high cytosolic Ca2+ -level, which are confirmed with a full recovery in activated Na+ /Ca2+ -exchanger currents (INCX ). Moreover, the liraglutide treatment significantly reversed the depolarised mitochondrial membrane potential (MMP), increased production of oxidant markers, and cellular acidification together with the depressed ATP production. Our light microscopy analysis of isolated cardiomyocytes showed marked recoveries in the liraglutide-treated MetS group such as marked reverses in highly dilated T-tubules and SR-mitochondria junctions. Moreover, we determined a significant increase in depressed GLUT4 protein level in liraglutide-treated MetS group, possibly associated with recovery in casein kinase 2α. Overall, the study demonstrated a molecular mechanism of liraglutide-induced cardioprotection in MetS rats, at most, via its pleiotropic effects, such as alleviation in the electrical abnormalities, Ca2+ -homeostasis, and mitochondrial dysfunction in ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Aysegul Durak
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Erman Akkus
- Faculty of Medicine, Department of Internal Medicine, Ankara University, Ankara, Turkey
| | - Asena Gokcay Canpolat
- Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey
| | - Demet Corapcioglu
- Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara University, Ankara, Turkey
| | - Belma Turan
- Faculty of Medicine, Department of Biophysics, Ankara University, Ankara, Turkey.,Faculty of Medicine, Department of Biophysics, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
36
|
Wei J, Xiang XH, Tang Y, Qin DL, Wu JM, Yu CL, Qiu WQ, Wu AG, Lv HB. Lychee seed polyphenol protects blood–retinal barrier by increasing tight joint proteins and inhibiting the activation of TLR4/MYD88/NF-κB-mediated NLRP3 inflammasome. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1968352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Jing Wei
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiao-Hong Xiang
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - Wen-Qiao Qiu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology; College of Preclinical Medicine, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Hong-Bin Lv
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
37
|
Al Sabaani N. Exendin-4 inhibits high glucose-induced oxidative stress in retinal pigment epithelial cells by modulating the expression and activation of p 66Shc. Cutan Ocul Toxicol 2021; 40:175-186. [PMID: 34275397 DOI: 10.1080/15569527.2020.1844727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Activation of p66Sch, an adaptor protein, is associated with oxidative stress and apoptosis and has been implicated in the pathogenesis of diabetes-induced retinal pigment epithelial cell damage and diabetic retinopathy. Exendin-4 is a glucagon-like protein that protects against diabetic retinopathy, but the mechanism of action is not well understood. This study aimed to investigate whether Exendin-4 could protect against high glucose-induced oxidative stress and apoptosis in the adult human retinal pigment epithelial-19 cell line by modulating levels and activation of p66Shc and to study the underlying mechanisms. MATERIALS AND METHODS Adult human retinal pigment epithelial-19 cells were cultured under low (5 µM) or high glucose (100 µM) conditions in the presence or absence of Exendin-4 and with or without pre-incubation with Exendin-9-39, a glucagon-like peptide-1 receptor antagonist. RESULTS In a dose-dependent manner, Exendin-4 inhibited high glucose-induced cell death and decreased levels of reactive oxygen species, lactate dehydrogenase release, and single single-stranded DNA. At the most effective concentration (100 µM), Exendin-4 reduced mitochondrial levels of phospho-p66Shc (Ser36), cytoplasmic levels of cleaved caspase-3 and cytochrome-c, and NADPH oxidase levels in high glucose-treated cells. It also increased levels of glutathione and magnesium superoxide dismutase and protein levels of magnesium superoxide dismutase but downregulated total protein levels of protein kinase-β and p66Shc and inhibited c-Jun N-terminal kinase phosphorylation in both low- and high glucose-treated cells. All these Exendin-4 effects, however, were inhibited by Exendin-9-39. CONCLUSIONS Exendin-4 protects against high glucose-induced adult human retinal pigment epithelial-19 cell damage by increasing antioxidants, downregulating NADPH, and inhibiting mitochondria-mediated apoptosis, effects that are associated with the inhibition of c-Jun N-terminal kinase and downregulation of protein kinase-β and p66Shc.
Collapse
Affiliation(s)
- Nasser Al Sabaani
- Ophthalmology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
38
|
Tokunaga Y, Yoshizaki H, Toriumi A, Kawaharada R, Ishida C, Hori M, Nakamura A. Effects of omega-7 palmitoleic acids on skeletal muscle differentiation in a hyperglycemic condition. J Vet Med Sci 2021; 83:1369-1377. [PMID: 34248106 PMCID: PMC8498828 DOI: 10.1292/jvms.21-0309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maternal obesity and diabetes are known to be involved in fetal myogenesis, but the later stages of myogenesis are not well understood. In this study, we investigated the influence of a
hyperglycemic environment on L6 skeletal myoblast differentiation and the function of omega-7 palmitoleic acids. Exposure to a high concentration of glucose (25 mM) in high-glucose culture
medium (HG) increased the expression of myogenic genes (MyoD, Myogenin, MRF4, Myhc2x, and Myhc2a) and the
synthesis of myosin. HG also activated the PI3K/AKT pathway revealed muscle cell differentiation. Furthermore, the levels of reactive oxygen species (ROS) and an inflammatory cytokine
(Tnfaip3; tumor necrosis factor alpha-induced protein 3), which are crucial for the growth and differentiation of skeletal muscle, were increased by HG. Palmitoleic acids
suppressed the expression levels of myogenic regulatory genes and increased the expression level of a cell proliferation-related gene (Pax3). Trans-palmitoleic acid and
eicosapentaenoic acid (TPA and EPA) increased the phosphorylation level of MAPK/ERK1/2 and downregulated ROS generation and Tnfaip3 expression. In contrast, cis-palmitoleic
acid inactivated MAPK/ERK1/2, leading to increased ROS generation. In conclusion, a hyperglycemic environment mediated by HG induced excessive muscle differentiation. Palmitoleic acids
inhibited myoblast differentiation by downregulating muscle-specific genes. Moreover, trans-palmitoleic acids may have beneficial antioxidant and/or anti-inflammatory effects in cells.
Collapse
Affiliation(s)
- Yayoi Tokunaga
- Graduate School of Agriculture and Life Sciences, Faculty of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hitomi Yoshizaki
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women's University, 4-1-1 Osakaue, Hino, Tokyo 191-8510, Japan
| | - Akiyo Toriumi
- Graduate School of Medical and Dental Sciences, Comprehensive Reproductive Medicine, National University Corporation Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ritsuko Kawaharada
- Department of Health and Nutrition, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki, Gunma 370-0033, Japan
| | - Chisato Ishida
- Department of Nutrition, Japanese Haramachi Red Cross Hospital, 698 Haramachi, Agatsumagun, Higashiagatsuma-machi, Gunma 377-0801, Japan
| | - Masatoshi Hori
- Graduate School of Agriculture and Life Sciences, Faculty of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akio Nakamura
- Department of Molecular Nutrition, Faculty of Human Life Sciences, Jissen Women's University, 4-1-1 Osakaue, Hino, Tokyo 191-8510, Japan
| |
Collapse
|
39
|
Mateos-Olivares M, García-Onrubia L, Valentín-Bravo FJ, González-Sarmiento R, Lopez-Galvez M, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Rho-Kinase Inhibitors for the Treatment of Refractory Diabetic Macular Oedema. Cells 2021; 10:cells10071683. [PMID: 34359853 PMCID: PMC8307715 DOI: 10.3390/cells10071683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic macular oedema (DMO) is one of the leading causes of vision loss associated with diabetic retinopathy (DR). New insights in managing this condition have changed the paradigm in its treatment, with intravitreal injections of antivascular endothelial growth factor (anti-VEGF) having become the standard therapy for DMO worldwide. However, there is no single standard therapy for all patients DMO refractory to anti-VEGF treatment; thus, further investigation is still needed. The key obstacles in developing suitable therapeutics for refractory DMO lie in its complex pathophysiology; therefore, there is an opportunity for further improvements in the progress and applications of new drugs. Previous studies have indicated that Rho-associated kinase (Rho-kinase/ROCK) is an essential molecule in the pathogenesis of DMO. This is why the Rho/ROCK signalling pathway has been proposed as a possible target for new treatments. The present review focuses on the recent progress on the possible role of ROCK and its therapeutic potential in DMO. A systematic literature search was performed, covering the years 1991 to 2021, using the following keywords: "rho-Associated Kinas-es", "Diabetic Retinopathy", "Macular Edema", "Ripasudil", "Fasudil" and "Netarsudil". Better insight into the pathological role of Rho-kinase/ROCK may lead to the development of new strategies for refractory DMO treatment and prevention.
Collapse
Affiliation(s)
- Milagros Mateos-Olivares
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Luis García-Onrubia
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Fco. Javier Valentín-Bravo
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Rogelio González-Sarmiento
- Area of Infectious, Inflammatory and Metabolic Disease, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Maribel Lopez-Galvez
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - J. Carlos Pastor
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| | - Salvador Pastor-Idoate
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| |
Collapse
|
40
|
Sudaramoorthy A, Shanmugam G, Shanmugam N. Inhibitory effect of Salvia coccinea on inflammatory responses through NF-κB signaling pathways in THP-1 cells and acute rat diabetes mellitus. Acta Histochem 2021; 123:151735. [PMID: 34052674 DOI: 10.1016/j.acthis.2021.151735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Hyperglycemia-induced oxidative stress has been implicated in diabetes and its complications. Medicinal plants possessing antioxidant activity may decrease oxidative stress by scavenging radicals and reducing power activity and would be a promising strategy for the treatment of inflammatory disorders like diabetes. This study was designed to evaluate the antioxidant effect of Aqueous Extract of S.coccinea leaf (AESL) in HG treated THP-1 cells and streptozotocin (STZ)-induced diabetic Wistar rats. AESL and the standard antidiabetic drug glibenclamide were administered orally by intragastric tube for 14 days and pre-treated HG grown THP-1 cells. AESL treatment reduced HG induced increase in ROS production, NF-κB dependent proinflammatory gene expression by influencing NF-κB nuclear translocation in THP-1 cells. Oral administration of AESL inhibited STZ-induced increase in serum lipid peroxidation, aspartate transaminase, alanine transaminase, and Lactate dehydrogenase of diabetic rats. Significant increase in activity of superoxide dismutase, catalase and glutathione peroxidase, and a reduced level of glutathione, were observed in AESL treatment. The results demonstrate that AESL is useful in controlling blood glucose and also has antioxidant potential to influence the translocation of NF-κB, protect damage caused by hyperglycemia-induced inflammation.
Collapse
Affiliation(s)
- Arun Sudaramoorthy
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Gobinath Shanmugam
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Narkunaraja Shanmugam
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
41
|
Andrews-Guzmán M, Ruz M, Arredondo-Olguín M. Zinc Modulates the Response to Apoptosis in an In Vitro Model with High Glucose and Inflammatory Stimuli in C2C12 Cells. Biol Trace Elem Res 2021; 199:2288-2294. [PMID: 32840726 DOI: 10.1007/s12011-020-02348-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Apoptosis is programmed cell death and its alteration is related to cancer, neurologic, autoimmune, and chronic diseases. A number of factors can affect this process. The aim of this paper is to study the effect of supplemental zinc on apoptosis-related genes in C2C12 myoblast cells after being challenged with a series of stimuli, such as high glucose, insulin, and an inflammatory agent. C2C12 myoblast cells were cultured for 24 h with zinc (Zn) (ZnSO4) 10 or 100 μM and/or glucose 10 or 30 mM. In addition to these stimuli, the cells were challenged with insulin 1 nM or interleukin-6 (IL-6) 5 nM. The mRNA expression of proapoptotic genes caspase 3 and Fas, the antiapoptotic genes, Xiap and Bcl-xL and the ratio of pro-/antiapoptotic genes Bax/Bcl-2, were determined by qRT-PCR. The expression of caspase-3 gene was significantly increased in the presence of the combination high Zn/high glucose with and without the presence of insulin and IL6 in the culture medium Fas expression instead, showed uneven responses. The expression of Bcl-xL and Xiap was increased in most conditions by having high Zn in the medium regardless of the presence of insulin or IL6. Bax/Bcl2 ratio was decreased in the presence of high Zn. Zn was able to stimulate the expression of antiapoptotic genes. This effect was specially noted in high-glucose conditions with and without the presence of insulin. This effect is partially overridden by the presence of an inflammatory agent such as IL-6.
Collapse
Affiliation(s)
- Mónica Andrews-Guzmán
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Miguel Arredondo-Olguín
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
42
|
Liu L, Jiang Y, Steinle J. Epac1 regulates TLR4 signaling in the diabetic retinal vasculature. Cytokine 2021; 144:155576. [PMID: 34020266 DOI: 10.1016/j.cyto.2021.155576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 4 (TLR4) polymorphisms occur in diabetic patients. Previous work showed that TLR4 is in the retina of diabetic mice, as well as in retinal endothelial cells (REC) and Müller cells. Since we have shown that exchange protein activated by cAMP 1 (Epac1) can reduce inflammatory mediators, we hypothesized that Epac1 would inhibit TLR4 signaling. We also hypothesized that direct TLR4 inhibition would protect the diabetic retina. Human REC in normal and high glucose were treated with an Epac1 agonist to explore the actions of Epac1 on TLR4 signaling in vitro. Subsequently, 2-month diabetic endothelial cell specific knockout mice for Epac1 (Cdh5Cre-Epac1) and Epac1 floxed mice retinas were used for Western blotting for TLR4 signaling pathways. We also used direct inhibition of TLR4 via Tak242 to investigate diabetes-induced changes in retinal permeability and neuronal loss in the mice. The Epac1 agonist reduced TLR4 signaling in REC grown in high glucose. TLR4 levels and both MyD88-dependent and -independent signaling pathways are increased in Cdh5Cre-Epac1 mice compared to Epac1 floxed mice. Tak242 reduced TLR4 signaling in diabetic mice and reduced diabetes-induced increases in permeability and cell loss in the ganglion cell layer in the Epac1 floxed and Cdh5Cre-Epac1 mice. In conclusion, Epac1 reduced TLR4 signaling in the retina and in REC. Direct inhibition of TLR4 was able to protect the retina against diabetes-induced changes in permeability and cell numbers in the ganglion cell layer.
Collapse
Affiliation(s)
- Li Liu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Youde Jiang
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Jena Steinle
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|
43
|
Bhatti JS, Tamarai K, Kandimalla R, Manczak M, Yin X, Ramasubramanian B, Sawant N, Pradeepkiran JA, Vijayan M, Kumar S, Reddy PH. Protective effects of a mitochondria-targeted small peptide SS31 against hyperglycemia-induced mitochondrial abnormalities in the liver tissues of diabetic mice, Tallyho/JngJ mice. Mitochondrion 2021; 58:49-58. [PMID: 33639273 DOI: 10.1016/j.mito.2021.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/17/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Type 2 Diabetes mellitus (T2DM) has become a major public health issue associated with a high risk of late-onset Alzheimer's disease (LOAD). Mitochondrial dysfunction is one of the molecular events that occur in the LOAD pathophysiology. The present study was planned to investigate the molecular alterations induced by hyperglycemia in the mitochondria of diabetic mice and further explore the possible ameliorative role of the mitochondria-targeted small peptide, SS31 in diabetic mice. For this purpose, we used a polygenic mouse model of type 2 diabetes, TALLYHO/JngJ (TH), and nondiabetic, SWR/J mice strains. The diabetic status in TH mice was confirmed at 8 weeks of age. The 24 weeks old experimental animals were segregated into three groups: Non-diabetic controls (SWR/J mice), diabetic (TH mice) and, SS31 treated diabetic TH mice. The mRNA and protein expression levels of mitochondrial proteins were investigated in all the study groups in the liver tissues using qPCR and immunoblot analysis. Also, the mitochondrial functions including H2O2 production, ATP generation, and lipid peroxidation were assessed in all the groups. Mitochondrial dysfunction was observed in TH mice as evident by significantly elevated H2O2 production, lipid peroxidation, and reduced ATP production. The mRNA expression and Western blot analysis of mitochondrial dynamics (Drp1 and Fis1 - fission; Mfn1, Mfn2, and Opa1 -fusion), and biogenesis (PGC-1α, Nrf1, Nrf2, and TFAM) genes were significantly altered in diabetic TH mice. Furthermore, SS31 treatment significantly reduced the mitochondrial abnormalities and restore mitochondrial functions in diabetic TH mice.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Kavya Tamarai
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India; Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Bhagavathi Ramasubramanian
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Jangampalli Adi Pradeepkiran
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Murali Vijayan
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Subodh Kumar
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| |
Collapse
|
44
|
Ola MS. Does Hyperglycemia Cause Oxidative Stress in the Diabetic Rat Retina? Cells 2021; 10:794. [PMID: 33918273 PMCID: PMC8067231 DOI: 10.3390/cells10040794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetes, being a metabolic disease dysregulates a large number of metabolites and factors. However, among those altered metabolites, hyperglycemia is considered as the major factor to cause an increase in oxidative stress that initiates the pathophysiology of retinal damage leading to diabetic retinopathy. Diabetes-induced oxidative stress in the diabetic retina and its damaging effects are well known, but still, the exact source and the mechanism of hyperglycemia-induced reactive oxygen species (ROS) generation especially through mitochondria remains uncertain. In this study, we analyzed precisely the generation of ROS and the antioxidant capacity of enzymes in a real-time situation under ex vivo and in vivo conditions in the control and streptozotocin-induced diabetic rat retinas. We also measured the rate of flux through the citric acid cycle by determining the oxidation of glucose to CO2 and glutamate, under ex vivo conditions in the control and diabetic retinas. Measurements of H2O2 clearance from the ex vivo control and diabetic retinas indicated that activities of mitochondrial antioxidant enzymes are intact in the diabetic retina. Short-term hyperglycemia seems to influence a decrease in ROS generation in the diabetic retina compared to controls, which is also correlated with a decreased oxidation rate of glucose in the diabetic retina. However, an increase in the formation of ROS was observed in the diabetic retinas compared to controls under in vivo conditions. Thus, our results suggest of diabetes/hyperglycemia-induced non-mitochondrial sources may serve as major sources of ROS generation in the diabetic retina as opposed to widely believed hyperglycemia-induced mitochondrial sources of excess ROS. Therefore, hyperglycemia per se may not cause an increase in oxidative stress, especially through mitochondria to damage the retina as in the case of diabetic retinopathy.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, 2B10, Building 5, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
45
|
Simon MV, Basu SK, Qaladize B, Grambergs R, Rotstein NP, Mandal N. Sphingolipids as critical players in retinal physiology and pathology. J Lipid Res 2021; 62:100037. [PMID: 32948663 PMCID: PMC7933806 DOI: 10.1194/jlr.tr120000972] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- M Victoria Simon
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Sandip K Basu
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bano Qaladize
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Richard Grambergs
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina.
| | - Nawajes Mandal
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
46
|
Giordo R, Nasrallah GK, Posadino AM, Galimi F, Capobianco G, Eid AH, Pintus G. Resveratrol-Elicited PKC Inhibition Counteracts NOX-Mediated Endothelial to Mesenchymal Transition in Human Retinal Endothelial Cells Exposed to High Glucose. Antioxidants (Basel) 2021; 10:224. [PMID: 33540918 PMCID: PMC7913144 DOI: 10.3390/antiox10020224] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes-associated long-term hyperglycaemia leads to oxidative stress-mediated fibrosis in different tissues and organs. Endothelial-to-mesenchymal-transition (EndMT) appears to play a role in diabetes-associated fibrotic conditions. Here, we investigate whether EndMT is implicated in the diabetic retinopathy fibrotic process and evaluate the possibility that resveratrol could counteract EndMT by inhibiting high glucose (HG)-induced increases in ROS. Primary Human Retinal Endothelial Cells (HRECs) were either pre-treated for 24 h with 1 µM resveratrol or left untreated, then glucose (30 mM) was applied at 3-day intervals for 10 days. qRT-PCR and ELISA were used to detect mRNA or protein expression of endothelial markers (CD31, CDH5, vWF) or mesenchymal markers (VIM, αSMA and collagen I), respectively. Intracellular ROS levels were measured with carboxy-DCFDA, while NOX-associated ROS levels were evaluated using the NADPH-specific redox biosensor p47-roGFP. Treatment of HRECs with HG increased intracellular ROS levels and promoted phenotype shifting towards EndMT, evidenced by decreased expression of endothelial markers concomitant with increased expression of mesenchymal ones. HG-induced EndMT appears to be mediated by NADPH-associated ROS generation as pre-treatment of HRECs with resveratrol or the NADPH inhibitor, diphenyleneiodonium chloride (DPI), attenuated ROS production and EndMT transition, suggesting that the effect of resveratrol on HG-induced ROS occurs via down-regulation of NADPH oxidase. It is worth noting that resveratrol or Chelerythrine, a Protein kinase C (PKC) inhibitor, reduce ROS and EndMT in HG-exposed cells, suggesting that NADPH activation occurs via a PKC-dependent mechanism. Taken together, our results provide the basis for a resveratrol-based potential protective therapy to prevent diabetic-associated complications.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Gheyath K. Nasrallah
- Department of Biomedical Sciences, College of Health Sciences member of QU Health, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (F.G.)
| | - Francesco Galimi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (F.G.)
| | - Giampiero Capobianco
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (F.G.)
| |
Collapse
|
47
|
Bhatti JS, Thamarai K, Kandimalla R, Manczak M, Yin X, Kumar S, Vijayan M, Reddy PH. Mitochondria-Targeted Small Peptide, SS31 Ameliorates Diabetes Induced Mitochondrial Dynamics in Male TallyHO/JngJ Mice. Mol Neurobiol 2021; 58:795-808. [PMID: 33025510 PMCID: PMC7856017 DOI: 10.1007/s12035-020-02142-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
Abstract
The escalating burden of type 2 diabetes (T2D) and its related complications has become a major public health challenge worldwide. Substantial evidence indicates that T2D is one of the culprits for the high prevalence of Alzheimer's disease (AD) in diabetic subjects. This study aimed to investigate the possible mitochondrial alterations in the pancreas induced by hyperglycemia in diabetes. We used a diabetic TallyHO/JngJ (TH) and non-diabetic, SWR/J mice strains. The diabetic and non-diabetic status in animals was assessed by performing intraperitoneal glucose tolerance test at four time points, i.e., 4, 8, 16, and 24 weeks of age. We divided 24-week-old TH and SWR/J mice into 3 groups: controls, diabetic TH mice, and diabetic TH mice treated with SS31 peptide. After the treatment of male TH mice with SS31, intraperitoneally, for 4 weeks, we studied mitochondrial dynamics, biogenesis, and function. The mRNA and protein expression levels of mitochondrial proteins were evaluated using qPCR and immunoblot analysis. The diabetic mice after 24 weeks of age showed overt pancreatic injury as demonstrated by disintegration and atrophy of β cells with vacuolization and reduced islet size. Mitochondrial dysfunction was observed in TH mice, as evidenced by significantly elevated H2O2 production, lipid peroxidation, and reduced ATP production. Furthermore, mRNA expression and immunoblot analysis of mitochondrial dynamics genes were significantly affected in diabetic mice, compared with controls. However, treatment of animals with SS31 reduced mitochondrial dysfunction and restored most of the mitochondrial functions and mitochondrial dynamics processes to near normal in TH mice. In conclusion, mitochondrial dysfunction is established as one of the molecular events that occur in the pathophysiology of T2D. Further, SS31 treatment may confer protection against the mitochondrial alterations induced by hyperglycemia in diabetic TallyHO/JngJ mice.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA
| | - Kavya Thamarai
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, 506007, India
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, Telangana, 500007, India
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA
| | - Subodh Kumar
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA
| | - Murali Vijayan
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX, 79430, USA.
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA.
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA.
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA.
- Neurology and Public Health Departments, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA.
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street / 4B 207, MS 9424, Lubbock, TX, 79430, USA.
| |
Collapse
|
48
|
van Romunde SHM, van der Sommen CM, Martinez Ciriano JP, Vingerling JR, Yzer S. Prevalence and Severity of Diabetic Retinopathy in Patients with Macular Telangiectasia Type 2. Ophthalmol Retina 2021; 5:999-1004. [PMID: 33444807 DOI: 10.1016/j.oret.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE To study the prevalence and severity of diabetic retinopathy (DR) in patients with macular telangiectasia type 2 (MacTel 2). DESIGN Retrospective case series. PARTICIPANTS Patients with a diagnosis of MacTel 2 treated at the Rotterdam Eye Hospital or Erasmus Medical Center between 2014 and 2018 were included. METHODS The following information was retrieved from patient files: demographics, history of diabetes mellitus and hypertension, presence of DR, and severity of DR, that is, mild, moderate, severe, or proliferative. Presence of diabetic macular edema (DME) was assessed using OCT. MAIN OUTCOME MEASURES Presence and severity of DR. RESULTS Two hundred six eyes of 103 patients were included. At the onset of MacTel 2, the mean age was 61 years (standard deviation [SD], 9.8 years) and 64 (62%) were women. Mean follow-up was 71 months (SD, 60 months). Diabetes mellitus type 2 was present in 50 patients (49%) and hypertension was present in 47 patients (46%). Mild DR was present in 22 eyes (11%), of which 14 eyes (7%) showed signs at baseline and 8 eyes (4%) showed signs at a later time during follow-up. Ten eyes (5%) demonstrated remission of mild DR during follow-up. Both eyes (1%) in 1 patient progressed to moderate DR. Severe DR, proliferative DR, and DME did not occur. CONCLUSIONS Although diabetes mellitus was highly prevalent among MacTel 2 patients, no patients showed severe or proliferative DR or DME. These findings suggest that MacTel 2 could have a protective effect on the progression of DR. We hypothesize that our results may be explained by the role of Müller cells in the development of MacTel 2 and DR, and therefore a link between both diseases warrants additional studies.
Collapse
Affiliation(s)
| | | | | | | | - Suzanne Yzer
- Rotterdam Eye Hospital, Rotterdam, The Netherlands
| |
Collapse
|
49
|
Zhao Y, Xiong Z, Chen Y, Wang G, Zhao Y. Activation of Insulin-Like Growth Factor-2 Ameliorates Retinal Cell Damage and Exerts Protection in in vitro Model of Diabetic Retinopathy. Neuroimmunomodulation 2021; 28:266-275. [PMID: 33951651 DOI: 10.1159/000515662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The major event in the development of diabetes-related blindness and vision impairment is the onset of retinal cell damage. Overall awareness of insulin-like growth factor-2 (IGF2) mechanisms emphasizes its protective behavior in retinal cells that help to provide new information about the development of treatment for retinal complications. OBJECTIVES This study analyzes the effect of in vitro changes associated with the cell survival and rescue mechanism in IGF2 inhibition and activation using chromeceptin and IGF2 peptides in ARPE-19 cells cultured in high glucose conditions. METHOD Cell death was induced using high glucose (15 mmol/L), IGF2 inhibition was done using chromeceptin (1 µM) (Sigma Aldrich, Saint Louis, MO, USA), and IGF2 activation was done using IGF2 peptide (10 ng/mL). The cells were analyzed for changes in cell proliferation, apoptosis markers, antioxidant molecules, and alteration of cytokines. RESULTS The study demonstrated that cells lacking IGF2 exhibited a significant increase in reactive oxygen levels with apoptosis patterns. Also, gene expression analysis by qRT-PCR demonstrated a significant increase in Yes-associated protein 1, CDK2, TNF-α, and BIRC5 genes in cells under high glucose stress and IGF inhibition compared to control. Further, the cytokine analysis also revealed that cells devoid of IGF2 activated an increase in cytokines such as IL-8, CX43, ICAM-1, IL-17, CCL3, and MCP-1 and decreased paraoxonase compared to normal control cells. On the other hand, ARPE-19 cells grown in high glucose shows that IGF2 increases the survival genes with reduced levels of inflammatory cytokines. CONCLUSION The finding of the investigation, therefore, shows that the use of IGF2 activators may prevent the progression of ocular dysfunction in the control of diabetes-related complications.
Collapse
Affiliation(s)
- Yantao Zhao
- Department of Ophthalmology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhaohui Xiong
- Department of Ophthalmology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuping Chen
- Department of Ophthalmology, People's Hospital of Gaoqing County, Zibo City, China
| | - Guoqiang Wang
- Department of Ophthalmology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Ophthalmology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
50
|
Babel RA, Dandekar MP. A Review on Cellular and Molecular Mechanisms Linked to the Development of Diabetes Complications. Curr Diabetes Rev 2021; 17:457-473. [PMID: 33143626 DOI: 10.2174/1573399816666201103143818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Modern lifestyle, changing eating habits and reduced physical work have been known to culminate into making diabetes a global pandemic. Hyperglycemia during the course of diabetes is an important causative factor for the development of both microvascular (retinopathy, nephropathy and neuropathy) and macrovascular (coronary artery disease, stroke and peripheral artery disease) complications. In this article, we summarize several mechanisms accountable for the development of both microvascular and macrovascular complications of diabetes. Several metabolic and cellular events are linked to the augmentation of oxidative stress like the activation of advanced glycation end products (AGE) pathway, polyol pathway, Protein Kinase C (PKC) pathway, Poly-ADP Ribose Polymerase (PARP) and hexosamine pathway. Oxidative stress also leads to the production of reactive oxygen species (ROS) like hydroxyl radical, superoxide anion and peroxides. Enhanced levels of ROS rescind the anti-oxidant defence mechanisms associated with superoxide dismutase, glutathione and ascorbic acid. Moreover, ROS triggers oxidative damages at the level of DNA, protein and lipids, which eventually cause cell necrosis or apoptosis. These physiological insults may be related to the microvascular complications of diabetes by negatively impacting the eyes, kidneys and the brain. While underlying pathomechanism of the macrovascular complications is quite complex, hyperglycemia associated atherosclerotic abnormalities like changes in the coagulation system, thrombin formation, fibrinolysis, platelet and endothelial function and vascular smooth muscle are well proven. Since hyperglycemia also modulates the vascular inflammation, cytokines, macrophage activation and gene expression of growth factors, elevated blood glucose level may play a central role in the development of macrovascular complications of diabetes. Taken collectively, chronic hyperglycemia and increased production of ROS are the miscreants for the development of microvascular and macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Rishabh A Babel
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|