1
|
Li X, Qu S. Novel insights into the central protective role of ACE2 in diabetic cardiomyopathy: from underlying signaling pathways to therapeutic perspectives. Mol Cell Biochem 2025; 480:3535-3551. [PMID: 39928210 DOI: 10.1007/s11010-024-05196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac complication specific to individuals with diabetes. It is defined as abnormalities of myocardial structure and function in diabetic patients who do not exhibit any obvious coronary artery disease, hypertensive heart disease, valvular heart disease, or inherited cardiomyopathy. A significant cardiovascular protective factor identified recently is angiotensin-converting enzyme 2 (ACE2), which is a rising star in the renin angiotensin system (RAS) and is responsible for the onset and progression of DCM. Nonetheless, there is not a comprehensive review outlining ACE2's effect on DCM. From the perspective of the pathogenesis of DCM, this review summarizes the myocardial protective role of ACE2 in the aspects of alleviating myocardial structure and dysfunction, correcting energy metabolism disorders, and restoring vascular function. Concurrently, we propose the connections between ACE2 and underlying signaling pathways, including ADAM17, Apelin/APJ, and Nrf2. Additionally, we highlight ACE2-related pharmaceutical treatment options and clinical application prospects for preventing and managing DCM. Further and underlying research is extensively required to completely comprehend the principal pathophysiological mechanism of DCM and the distinctive function of ACE2, switching experimental findings into clinical practice and identifying efficient therapeutic approaches.
Collapse
Affiliation(s)
- Xinyi Li
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Kura B, Kindernay L, Singla D, Dulova U, Bartekova M. Mechanistic insight into the role of cardiac-enriched microRNAs in diabetic heart injury. Am J Physiol Heart Circ Physiol 2025; 328:H865-H884. [PMID: 40033927 PMCID: PMC12069993 DOI: 10.1152/ajpheart.00736.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Cardiovascular complications, particularly diabetic cardiomyopathy (DCM), are the primary causes of morbidity and mortality among individuals with diabetes. Hyperglycemia associated with diabetes leads to cardiomyocyte hypertrophy, apoptosis, and myocardial fibrosis, culminating in heart failure (HF). Patients with diabetes face a 2-4 times greater risk of developing HF compared with those without diabetes. Consequently, there is a growing interest in exploring the molecular mechanisms that contribute to the development of DCM. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNA molecules that participate in the maintenance of physiological homeostasis through the regulation of essential processes such as metabolism, cell proliferation, and apoptosis. At the posttranscriptional level, miRNAs modulate gene expression by binding directly to genes' mRNAs. Multiple cardiac-enriched miRNAs were reported to be dysregulated under diabetic conditions. Different studies revealed the role of specific miRNAs in the pathogenesis of diabetes and related cardiovascular complications, including cardiomyocyte hypertrophy and fibrosis, mitochondrial dysfunction, metabolic impairment, inflammatory response, or cardiomyocyte death. Circulating miRNAs have been shown to represent the potential biomarkers for early detection of diabetic heart injury. A deeper understanding of miRNAs and their role in diabetes-related pathophysiological processes could lead to new therapeutic strategies for addressing cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dinender Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Ulrika Dulova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Song Q, Wang P, Wu Y, Yao Z, Wang W, Tang G, Zhang P. Understanding uremic cardiomyopathy: from pathogenesis to diagnosis and the horizon of therapeutic innovations. PeerJ 2025; 13:e18978. [PMID: 40183047 PMCID: PMC11967432 DOI: 10.7717/peerj.18978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/22/2025] [Indexed: 04/05/2025] Open
Abstract
Uremic cardiomyopathy (UC) is a significant cardiovascular complication in individuals with end-stage renal disease. This review aims to explore the multifaceted landscape of UC, including the key pathophysiological mechanisms, diagnostic challenges, and current therapeutic approaches. The prevalence of cardiac hypertrophy, as a hallmark of UC, is highlighted and some new insights to its intricate pathogenesis, involving uremic toxins, oxidative stress, and inflammatory responses is elucidated. Diagnostic complexities, including the absence of specific biomarkers, are discussed, and the need for advanced imaging modalities and emerging diagnostic strategies are emphasized. Current therapeutic interventions, although lacking specificity, are addressed, paving its way to the potential future directions in targeted therapies. The review concludes new insights into the critical importance of ongoing research and technological advancements which will enhance early detection, precision treatment, and ultimately improve outcomes for individuals with UC.
Collapse
Affiliation(s)
- Qiong Song
- Department of Nephrology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi Province, China
- Department of Nephrology, The Second People’s Hospital of Shaanxi Province, Xi’an, Shaanxi, China
| | - Pengbo Wang
- Department of Nephrology, The Second People’s Hospital of Shaanxi Province, Xi’an, Shaanxi, China
| | - Yunfang Wu
- Department of Endocrinology, The First Hospital of Lanzhou City, Lanzhou, Gansu Province, China
| | - Zhuan’e Yao
- Department of Nephrology, The Second People’s Hospital of Shaanxi Province, Xi’an, Shaanxi, China
| | - Wei Wang
- Department of Nephrology, The Second People’s Hospital of Shaanxi Province, Xi’an, Shaanxi, China
| | - Guangbo Tang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Peng Zhang
- Department of Nephrology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi Province, China
| |
Collapse
|
4
|
Wang ZY, Huang L, Li LQ, Zhang CQ, Guo LY, Liu YN, Liao LM. Quantitative evaluation of radiation-induced heart disease in beagle dogs by speckle tracking echocardiography. BMC Cardiovasc Disord 2025; 25:199. [PMID: 40108535 PMCID: PMC11924760 DOI: 10.1186/s12872-025-04636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
OBJECTIVE This study aimed to detect early changes in left ventricular systolic function in Beagle dogs after radiotherapy using two-dimensional speckle tracking echocardiography and to explore its potential value in evaluating radiation-induced heart disease. METHODS Thirty-six Beagle dogs were randomized into a control group (n = 18) and an irradiation group (n = 18). The irradiation group received a single dose of 20 Gy to the left ventricular anterior wall, while controls underwent sham irradiation. Conventional echocardiography and 2D speckle tracking echocardiography were performed at baseline and 3, 6, and 12 months post-procedure. Additionally, six dogs were randomly selected from each group and euthanized at 3-, 6-, and 12-month post-irradiation, and their hearts were collected for histopathological testing. RESULTS In the irradiation group, the global longitudinal strain of the left ventricle and regional strain in the irradiated area were significantly reduced versus baseline and controls by 3 months, with progressive decline at 6 and 12 months. Strain reduction correlated spatially with pathological injury. Conversely, there were no substantial differences in conventional echocardiographic parameters between the groups after 3 months. Conventional parameters (e.g., LVEF) showed differences only at later timepoints. Histopathology revealed progressive cardiomyocyte damage, fibrosis, and microvascular injury in irradiated regions, extending to the posterior wall by 12 months. CONCLUSION Two-dimensional speckle tracking echocardiography-derived strain parameters spatially correlate with radiation-induced pathological changes and detect subtle systolic dysfunction prior to irreversible remodeling. Speckle tracking may localize regions of peak radiation dose delivery.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Long Huang
- Department of Oncology, The Second Affifiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li-Qun Li
- Department of Ultrasound, Yanshan County People's Hospital, Yanshan, Jingxi, China
| | - Chun-Quan Zhang
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liang-Yun Guo
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yan-Na Liu
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ling-Min Liao
- Department of Ultrasound, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Paulik KA, Ivanics T, Dunay GA, Fülöp Á, Kerék M, Takács K, Benyó Z, Miklós Z. Inhibition of the Renin-Angiotensin System Improves Hemodynamic Function of the Diabetic Rat Heart by Restoring Intracellular Calcium Regulation. Biomedicines 2025; 13:757. [PMID: 40149735 PMCID: PMC11940043 DOI: 10.3390/biomedicines13030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Disrupted intracellular calcium (Ca2+i) regulation and renin-angiotensin system (RAS) activation are pathogenetic factors in diabetic cardiomyopathy, a major complication of type 1 (T1D) and type 2 (T2D) diabetes. This study explored their potential link in diabetic rat hearts. Methods: Experiments were conducted on T1D and T2D Sprague-Dawley rats induced by streptozotocin and fructose-rich diet, respectively. In T1D, rats were treated with Enalapril (Ena) or Losartan (Los) for six weeks, whereas T2D animals received high-dose (HD) or low-dose (LD) Ena for 8 weeks. Heart function was assessed via echocardiography, Ca2+i transients by Indo-1 fluorometry in Langendorff-perfused hearts, and key Ca2+i cycling proteins by Western blot. Data: mean ± SD. Results: Diabetic hearts exhibited reduced contractile performance that was improved by RAS inhibition both in vivo (ejection fraction (%): T1D model: Control: 79 ± 7, T1D: 54 ± 11, T1D + Ena: 65 ± 10, T1D + Los: 69 ± 10, n = 18, 18, 15, 10; T2D model: Control: 73 ± 8, T2D: 52 ± 6, T2D + LDEna: 62 ± 8, T2D + HDEna: 76 ± 8, n = 9, 8, 6, 7) and ex vivo (+dPressure/dtmax (mmHg/s): T1D model: Control: 2532 ± 341, T1D: 2192 ± 208, T1D + Ena: 2523 ± 485, T1D + Los: 2643 ± 455; T2D model: Control: 2514 ± 197, T2D: 1930 ± 291, T2D + LDEna: 2311 ± 289, T2D + HDEna: 2614 ± 268). Analysis of Ca2+i transients showed impaired Ca2+i release and removal dynamics and increased diastolic Ca2+i levels in both models that were restored by Ena and Los treatments. We observed a decrease in sarcoendoplasmic reticulum Ca2+-ATPase2a (SERCA2a) expression, accompanied by a compensatory increase in 16Ser-phosphorylated phospholamban (P-PLB) in T2D that was prevented by both LD and HD Ena (expression level (% of Control): SERCA2a: T2D: 36 ± 32, T2D + LDEna: 112 ± 32, T2D + HDEna: 106 ± 30; P-PLB: T2D: 557 ± 156, T2D + LDEna: 129 ± 38, T2D + HDEna: 108 ± 42; n = 4, 4, 4). Conclusions: The study highlights the critical role of RAS activation, most likely occurring at the tissue level, in disrupting Ca2+i homeostasis in diabetic cardiomyopathy. RAS inhibition with Ena or Los mitigates these disturbances independent of blood pressure effects, underlining their importance in managing diabetic heart failure.
Collapse
Affiliation(s)
- Krisztina Anna Paulik
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
| | - Tamás Ivanics
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
| | - Gábor A. Dunay
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
- Klinikum Westbrandenburg, Brandenburg Medical School (MHB), 14770 Brandenburg an der Havel, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senfteberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
| | - Klára Takács
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Zsuzsanna Miklós
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
- National Korányi Institute for Pulmonology, 1122 Budapest, Hungary
| |
Collapse
|
6
|
Jaiswal A, Yadav P, Rawat PS, Kaur M, Babu SS, Khurana A, Bhatti JS, Navik U. Empagliflozin in diabetic cardiomyopathy: elucidating mechanisms, therapeutic potentials, and future directions. Mol Biol Rep 2025; 52:158. [PMID: 39853512 DOI: 10.1007/s11033-025-10260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Diabetic cardiomyopathy (DCM) represents a significant health burden, exacerbated by the global increase in type 2 diabetes mellitus (T2DM). This condition contributes substantially to the morbidity and mortality associated with diabetes, primarily through myocardial dysfunction independent of coronary artery disease. Current treatment strategies focus on managing symptoms rather than targeting the underlying pathophysiological mechanisms, highlighting a critical need for specific therapeutic interventions. This review explores the multifaceted role of empagliflozin, a sodium-glucose cotransporter 2 (SGLT-2) inhibitor, in addressing the complex etiology of DCM. We discuss the key mechanisms by which hyperglycemia contributes to cardiac dysfunction, including oxidative stress, mitochondrial impairment, and inflammation, and how empagliflozin mitigates these effects. Empagliflozin's effects on reducing hospitalization for heart failure and potentially lowering cardiovascular mortality mark it as a promising candidate for DCM management. By elucidating the underlying mechanisms through which empagliflozin operates, this review underscores its therapeutic potential and paves the way for future research into its broader applications in diabetic cardiac care. This synthesis aims to foster a deeper understanding of DCM and encourage the integration of empagliflozin into treatment paradigms, offering hope for improved outcomes in patients suffering from this debilitating condition.
Collapse
Affiliation(s)
- Aiswarya Jaiswal
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Maninder Kaur
- Department of Human Anatomy, Bhojia Dental College and Hospital, Budh, Baddi, Himachal Pradesh, 173205, India
| | | | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
7
|
Allen BG, Merlen C, Branco AF, Pétrin D, Hébert TE. Understanding the impact of nuclear-localized GPCRs on cellular signalling. Cell Signal 2024; 123:111358. [PMID: 39181220 DOI: 10.1016/j.cellsig.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
G protein-coupled receptors (GPCRs) have historically been associated with signalling events driven from the plasma membrane. More recently, signalling from endosomes has been recognized as a feature of internalizing receptors. However, there was little consideration given to the notion that GPCRs can be targeted to distinct subcellular locations that did not involve an initial trafficking to the cell surface. Here, we focus on the evidence for and the potential impact of GPCR signalling specifically initiated from the nuclear membrane. We also discuss the possibilities for selectively targeting this and other internal pools of receptors as novel venues for drug discovery.
Collapse
Affiliation(s)
- Bruce G Allen
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada; Departments of Biochemistry and Molecular Medicine, Medicine, Pharmacology and Physiology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | - Ana F Branco
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
8
|
Yanik T, Katirci E, Simsek M, Korgun ET, Kipmen-Korgun D. Effects of Hyperglycemia on Angiogenesis in Human Placental Endothelial Cells. Z Geburtshilfe Neonatol 2024; 228:346-354. [PMID: 38740370 DOI: 10.1055/a-2282-9007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The placenta is a temporary organ that provides communication between the mother and fetus. Maternal diabetes and abnormal placental angiogenesis may be linked. We investigated the angiogenesis mechanism resulting from VEGF and glucose stimulation in PECs obtained from human term placenta. Immunohistochemistry was performed to characterize PECs obtained from human term placenta. D-glucose was added to the medium containing PECs to establish normoglycemic and hyperglycemic conditions. The expression levels of VEGF, VEGFR-1 and VEGFR-2 genes and proteins in PECs from the control and experimental groups were analyzed by RT-PCR and Western blotting, respectively. With 48-hours incubation, gene expressions increased due to hyperglycemia, while protein levels increased due to the combined effect of VEGF and hyperglycemia. While VEGFR-2 gene expression and protein amounts increased in 24-hours due to the combined effect of VEGF and hyperglycemia, the effect of VEGF stimulation and glucose level on VEGFR-2 decreased in 48-hour incubation with time. VEGF, VEGFR-1 and VEGFR-2 genes and proteins were affected by hyperglycemic conditions in PECs. Hyperglycemia occurring in various conditions such as gestational diabetes mellitus and diabetes mellitus may affect VEGF, VEGFR-1 and VEGFR-2 genes and proteins of PECs derived from human term placenta.
Collapse
Affiliation(s)
- Turkan Yanik
- Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Ertan Katirci
- Histology and Embryology, Ahi Evran University Faculty of Medicine, Kirsehir, Turkey
| | - Mehmet Simsek
- Obstetrics And Gynaecology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Emin Turkay Korgun
- Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Dijle Kipmen-Korgun
- Department Of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
9
|
Giardinelli S, Meliota G, Mentino D, D’Amato G, Faienza MF. Molecular Basis of Cardiomyopathies in Type 2 Diabetes. Int J Mol Sci 2024; 25:8280. [PMID: 39125850 PMCID: PMC11313011 DOI: 10.3390/ijms25158280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic cardiomyopathy (DbCM) is a common complication in individuals with type 2 diabetes mellitus (T2DM), and its exact pathogenesis is still debated. It was hypothesized that chronic hyperglycemia and insulin resistance activate critical cellular pathways that are responsible for numerous functional and anatomical perturbations in the heart. Interstitial inflammation, oxidative stress, myocardial apoptosis, mitochondria dysfunction, defective cardiac metabolism, cardiac remodeling, hypertrophy and fibrosis with consequent impaired contractility are the most common mechanisms implicated. Epigenetic changes also have an emerging role in the regulation of these crucial pathways. The aim of this review was to highlight the increasing knowledge on the molecular mechanisms of DbCM and the new therapies targeting specific pathways.
Collapse
Affiliation(s)
- Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy;
| | - Giovanni Meliota
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy;
| | - Donatella Mentino
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriele D’Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy;
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
10
|
Chen Q, Wang J, Sun L, Ba B, Shen D. Mechanism of Astragalus membranaceus (Huangqi, HQ) for treatment of heart failure based on network pharmacology and molecular docking. J Cell Mol Med 2024; 28:e18331. [PMID: 38780500 PMCID: PMC11114218 DOI: 10.1111/jcmm.18331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is a leading cause of death in the elderly. Traditional Chinese medicine, a verified alternative therapeutic regimen, has been used to treat heart failure, which is less expensive and has fewer adverse effects. In this study, a total of 15 active ingredients of Astragalus membranaceus (Huangqi, HQ) were obtained; among them, Isorhamnetin, Quercetin, Calycosin, Formononetin, and Kaempferol were found to be linked to heart failure. Ang II significantly enlarged the cell size of cardiomyocytes, which could be partially reduced by Quercetin, Isorhamnetin, Calycosin, Kaempferol, or Formononetin. Ang II significantly up-regulated ANP, BNP, β-MHC, and CTGF expressions, whereas Quercetin, Isorhamnetin, Calycosin, Kaempferol or Formononetin treatment partially downregulated ANP, BNP, β-MHC and CTGF expressions. Five active ingredients of HQ attenuated inflammation in Ang II-induced cardiomyocytes by inhibiting the levels of TNF-α, IL-1β, IL-18 and IL-6. Molecular docking shows Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol can bind with its target protein ESR1 in a good bond by intermolecular force. Quercetin, Calycosin, Kaempferol or Formononetin treatment promoted the expression levels of ESR1 and phosphorylated ESR1 in Ang II-stimulated cardiomyocytes; however, Isorhamnetin treatment had no effect on ESR1 and phosphorylated ESR1 expression levels. In conclusion, our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HQ against heart failure. Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol might be the primary active ingredients of HQ, dominating its cardioprotective effects against heart failure through regulating ESR1 expression, which provided a basis for the clinical application of HQ to regulate cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Qiuxiang Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan UniversityHubei Key Laboratory of CardiologyWuhanChina
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juan Wang
- Department of CardiologyThe Fifth Affiliated Hospital of Xinjiang medical UniversityUrumchiChina
| | - Lihua Sun
- Department of CardiologyThe Fifth Affiliated Hospital of Xinjiang medical UniversityUrumchiChina
| | - Bayinsilema Ba
- Department of CardiologyThe Fifth Affiliated Hospital of Xinjiang medical UniversityUrumchiChina
| | - Difei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan UniversityHubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
11
|
Tecce N, de Alteriis G, de Alteriis G, Verde L, Tecce MF, Colao A, Muscogiuri G. Harnessing the Synergy of SGLT2 Inhibitors and Continuous Ketone Monitoring (CKM) in Managing Heart Failure among Patients with Type 1 Diabetes. Healthcare (Basel) 2024; 12:753. [PMID: 38610175 PMCID: PMC11011472 DOI: 10.3390/healthcare12070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Heart failure (HF) management in type 1 diabetes (T1D) is particularly challenging due to its increased prevalence and the associated risks of hospitalization and mortality, driven by diabetic cardiomyopathy. Sodium-glucose cotransporter-2 inhibitors (SGLT2-is) offer a promising avenue for treating HF, specifically the preserved ejection fraction variant most common in T1D, but their utility is hampered by the risk of euglycemic diabetic ketoacidosis (DKA). This review investigates the potential of SGLT2-is in T1D HF management alongside emergent Continuous Ketone Monitoring (CKM) technology as a means to mitigate DKA risk through a comprehensive analysis of clinical trials, observational studies, and reviews. The evidence suggests that SGLT2-is significantly reduce HF hospitalization and enhance cardiovascular outcomes. However, their application in T1D patients remains limited due to DKA concerns. CKM technology emerges as a crucial tool in this context, offering real-time monitoring of ketone levels, which enables the safe incorporation of SGLT2-is into treatment regimes by allowing for early detection and intervention in the development of ketosis. The synergy between SGLT2-is and CKM has the potential to revolutionize HF treatment in T1D, promising improved patient safety, quality of life, and reduced HF-related morbidity and mortality. Future research should aim to employ clinical trials directly assessing this integrated approach, potentially guiding new management protocols for HF in T1D.
Collapse
Affiliation(s)
- Nicola Tecce
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
| | - Giorgio de Alteriis
- Department of Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy;
| | - Giulia de Alteriis
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
| | - Ludovica Verde
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy;
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
- Cattedra Unesco “Educazione alla Salute e Allo Sviluppo Sostenibile”, University Federico II, 80131 Napoli, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Napoli, Italy; (G.d.A.); (A.C.)
- Cattedra Unesco “Educazione alla Salute e Allo Sviluppo Sostenibile”, University Federico II, 80131 Napoli, Italy
| |
Collapse
|
12
|
Julián MT, Pérez-Montes de Oca A, Julve J, Alonso N. The double burden: type 1 diabetes and heart failure-a comprehensive review. Cardiovasc Diabetol 2024; 23:65. [PMID: 38347569 PMCID: PMC10863220 DOI: 10.1186/s12933-024-02136-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Heart failure (HF) is increasing at an alarming rate, primary due to the rising in aging, obesity and diabetes. Notably, individuals with type 1 diabetes (T1D) face a significantly elevated risk of HF, leading to more hospitalizations and increased case fatality rates. Several risk factors contribute to HF in T1D, including poor glycemic control, female gender, smoking, hypertension, elevated BMI, and albuminuria. However, early and intensive glycemic control can mitigate the long-term risk of HF in individuals with T1D. The pathophysiology of diabetes-associated HF is complex and multifactorial, and the underlying mechanisms in T1D remain incompletely elucidated. In terms of treatment, much of the evidence comes from type 2 diabetes (T2D) populations, so applying it to T1D requires caution. Sodium-glucose cotransporter 2 inhibitors have shown benefits in HF outcomes, even in non-diabetic populations. However, most of the information about HF and the evidence from cardiovascular safety trials related to glucose lowering medications refer to T2D. Glycemic control is key, but the link between hypoglycemia and HF hospitalization risk requires further study. Glycemic variability, common in T1D, is an independent HF risk factor. Technological advances offer the potential to improve glycemic control, including glycemic variability, and may play a role in preventing HF. In summary, HF in T1D is a complex challenge with unique dimensions. This review focuses on HF in individuals with T1D, exploring its epidemiology, risk factors, pathophysiology, diagnosis and treatment, which is crucial for developing tailored prevention and management strategies for this population.
Collapse
Affiliation(s)
- María Teresa Julián
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alejandra Pérez-Montes de Oca
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Alonso
- Department of Endocrinology and Nutrition, Hospital Germans Trias i Pujol, Badalona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Balogh DB, Molnar A, Degi A, Toth A, Lenart L, Saeed A, Barczi A, Szabo AJ, Wagner LJ, Reusz G, Fekete A. Cardioprotective and Antifibrotic Effects of Low-Dose Renin-Angiotensin-Aldosterone System Inhibitors in Type 1 Diabetic Rat Model. Int J Mol Sci 2023; 24:17043. [PMID: 38069366 PMCID: PMC10707380 DOI: 10.3390/ijms242317043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiovascular complications are associated with up to 50% mortality, and current therapies are not effective enough. Renin-angiotensin-aldosterone system inhibitors (RAASis) are the standard of care for diabetic patients with hypertension and albuminuria. Based on our previous studies reporting the renoprotective effects of low-dose RAASis, here, we hypothesized that low-dose RAASi treatment has cardioprotective and antifibrotic benefits in type 1 diabetes mellitus (T1DM). After five weeks of T1DM, adult male Wistar rats received low doses of ramipril, losartan, or eplerenone for two weeks. Heart rate, blood pressure, and pulse wave velocity (PWV) were recorded. Aortic intima-media thickness (IMT), collagen accumulation, and myocardial fibrosis were assessed. All RAASis reduced PWV elevation, prevented the progression of myocardial fibrosis, and normalized B-type natriuretic peptide, troponin I, and fibroblast growth factor 23 levels without affecting blood pressure. Interestingly, only eplerenone reversed the decline in Klotho levels and reduced IMT and fibrosis in the media of the aorta. Our comparative analysis suggests that mineralocorticoid receptor antagonists, particularly eplerenone, may offer superior efficacy in halting both the arterial and the myocardial injuries in T1DM compared to angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor blockers.
Collapse
Affiliation(s)
- Dora B. Balogh
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (A.T.); (L.L.); (A.S.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary; (A.M.); (A.D.); (A.J.S.); (G.R.)
| | - Agnes Molnar
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary; (A.M.); (A.D.); (A.J.S.); (G.R.)
| | - Arianna Degi
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary; (A.M.); (A.D.); (A.J.S.); (G.R.)
| | - Akos Toth
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (A.T.); (L.L.); (A.S.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary; (A.M.); (A.D.); (A.J.S.); (G.R.)
| | - Lilla Lenart
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (A.T.); (L.L.); (A.S.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary; (A.M.); (A.D.); (A.J.S.); (G.R.)
| | - Adar Saeed
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (A.T.); (L.L.); (A.S.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary; (A.M.); (A.D.); (A.J.S.); (G.R.)
| | - Adrienn Barczi
- Medical Imaging Center, Semmelweis University, 1082 Budapest, Hungary;
| | - Attila J. Szabo
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary; (A.M.); (A.D.); (A.J.S.); (G.R.)
| | - Laszlo J. Wagner
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary;
| | - Gyorgy Reusz
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary; (A.M.); (A.D.); (A.J.S.); (G.R.)
| | - Andrea Fekete
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (A.T.); (L.L.); (A.S.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary; (A.M.); (A.D.); (A.J.S.); (G.R.)
| |
Collapse
|
14
|
Li H, Zhu X, Cao X, Lu Y, Zhou J, Zhang X. Single-cell analysis reveals lysyl oxidase (Lox) + fibroblast subset involved in cardiac fibrosis of diabetic mice. J Adv Res 2023; 54:223-237. [PMID: 36706988 DOI: 10.1016/j.jare.2023.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Myocardial fibrosis and cardiac dysfunction are the main characteristics of diabetic heart disease. However, the molecular mechanisms underlying diabetic myocardial fibrosis remain unclear. OBJECTIVES This study aimed to investigate the heterogeneity of cardiac fibroblasts in diabetic mice and its possible mechanism in the development of diabetic myocardial fibrosis. METHODS We established a diabetic mouse model by injecting mice with streptozotocin. The overall cell profiles in diabetic hearts were analyzed using single-cell RNA transcriptomic techniques. Cardiac function was evaluated by echocardiography. Cardiac fibrosis was assessed by Masson's trichrome and Sirius red staining. Protein expression was analyzed using Western blotting and immunofluorescence staining. RESULTS A total of 11,585 cells were captured in control (Ctrl) and diabetic (DM) hearts. Twelve cell types were identified in this study. The number of fibroblasts was significantly higher in the DM hearts than in the Ctrl group. The fibroblasts were further re-clustered into nine subsets. Interestingly, cluster 4 fibroblasts were significantly increased in diabetic hearts compared with other fibroblast clusters. Lysyl oxidase (Lox) was highly expressed in DM fibroblasts (especially in cluster 4). Beta-aminopropionitrile, a Lox inhibitor, inhibited collagen expression and alleviated cardiac dysfunction in the diabetic group. Lysyl oxidase inhibition also reduced high glucose-induced collagen protein upregulation in primary fibroblasts. Moreover, a TGF-β receptor inhibitor not only prevented an increase in Lox and Col I but also inhibited the phosphorylation of Smad2/3 in fibroblasts. CONCLUSIONS This study revealed the heterogeneity of cardiac fibroblasts in diabetic mice for the first time. Fibroblasts with high expression of Lox (cluster 4 fibroblasts) were identified to play a crucial role in fibrosis in diabetic heart disease. The findings of this study may provide a possible therapeutic target for interstitial fibrosis.
Collapse
Affiliation(s)
- Heyangzi Li
- Department of Basic Medicine Sciences, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Zhu
- Department of Gynecology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xi Cao
- Department of Basic Medicine Sciences, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yicheng Lu
- Department of Basic Medicine Sciences, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- Department of Gynecology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoming Zhang
- Department of Basic Medicine Sciences, and Department of Gynecology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Sharma A, De Blasio M, Ritchie R. Current challenges in the treatment of cardiac fibrosis: Recent insights into the sex-specific differences of glucose-lowering therapies on the diabetic heart: IUPHAR Review 33. Br J Pharmacol 2023; 180:2916-2933. [PMID: 35174479 PMCID: PMC10952904 DOI: 10.1111/bph.15820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Abstract
A significant cardiac complication of diabetes is cardiomyopathy, a form of ventricular dysfunction that develops independently of coronary artery disease, hypertension and valvular diseases, which may subsequently lead to heart failure. Several structural features underlie the development of diabetic cardiomyopathy and eventual diabetes-induced heart failure. Pathological cardiac fibrosis (interstitial and perivascular), in addition to capillary rarefaction and myocardial apoptosis, are particularly noteworthy. Sex differences in the incidence, development and presentation of diabetes, heart failure and interstitial myocardial fibrosis have been identified. Nevertheless, therapeutics specifically targeting diabetes-associated cardiac fibrosis remain lacking and treatment approaches remain the same regardless of patient sex or the co-morbidities that patients may present. This review addresses the observed anti-fibrotic effects of newer glucose-lowering therapies and traditional cardiovascular disease treatments, in the diabetic myocardium (from both preclinical and clinical contexts). Furthermore, any known sex differences in these treatment effects are also explored. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (MIPS)Monash UniversityParkvilleVictoriaAustralia
| | - Miles De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (MIPS)Monash UniversityParkvilleVictoriaAustralia
- Department of PharmacologyMonash UniversityClaytonVictoriaAustralia
| | - Rebecca Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (MIPS)Monash UniversityParkvilleVictoriaAustralia
- Department of PharmacologyMonash UniversityClaytonVictoriaAustralia
- Department of MedicineMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
16
|
Silva-Velasco DL, Beltran-Ornelas JH, Tapia-Martínez J, Sánchez-López A, de la Cruz SH, Cervantes-Pérez LG, Del Valle-Mondragón L, Sánchez-Mendoza A, Centurión D. NaHS restores the vascular alterations in the renin-angiotensin system induced by hyperglycemia in rats. Peptides 2023; 164:171001. [PMID: 36990388 DOI: 10.1016/j.peptides.2023.171001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Hyperglycemia (HG) impairs the renin-angiotensin system (RAS), which may contribute to vascular dysfunction. Besides, hydrogen sulfide (H2S) exerts beneficial cardiovascular effects in metabolic diseases. Therefore, our study aimed to determine the effects of chronic administration of sodium hydrosulfide (NaHS; inorganic H2S donor) and DL-Propargylglycine [DL-PAG; cystathionine-ץ-lyase (CSE) inhibitor] on the RAS-mediated vascular responses impairments observed in thoracic aortas from male diabetic Wistar rats. For that purpose, neonatal rats were divided into two groups that received: 1) citrate buffer (n = 12) or 2) streptozotocin (STZ, 70 mg/kg; n = 48) on the third postnatal day. After 12 weeks, diabetic animals were divided into 4 subgroups (n = 12 each) that received daily i.p. injections during 4 weeks of: 1) non-treatment; 2) vehicle (PBS, 1 mL/kg); 3) NaHS (5.6 mg/kg); and 4) DL-PAG (10 mg/kg). After treatments (16 weeks), blood glucose, angiotensin-(1-7) [Ang-(1-7)], and angiotensin II (Ang II) levels, vascular responses to Ang-(1-7) and Ang II, and the expression of angiotensin AT1, AT2, and Mas receptors, angiotensin converting enzyme (ACE) and ACE type 2 (ACE2) were determined. HG induced: 1) increased blood glucose levels and expression of angiotensin II AT1 receptor; 2) impaired Ang-(1-7) and Ang II mediated vascular responses; 3) decreased angiotensin levels and expression of angiotensin II AT2 and angiotensin-(1-7) Mas receptors, and ACE2; and 4) no changes in ACE expression. Interestingly, NaHS, but not DL-PAG, reversed HG-induced impairments, except for blood glucose level changes. These results suggest that NaHS restores vascular function in streptozotocin-induced HG through RAS modulation.
Collapse
Affiliation(s)
- Diana L Silva-Velasco
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Jesus H Beltran-Ornelas
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Jorge Tapia-Martínez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Luz Graciela Cervantes-Pérez
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico
| | - Leonardo Del Valle-Mondragón
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico.
| |
Collapse
|
17
|
Brilliant J, Yadav R, Akhtar T, Calkins H, Trayanova N, Spragg D. Clinical and Structural Factors Affecting Ablation Outcomes in Atrial Fibrillation Patients - A Review. Curr Cardiol Rev 2023; 19:83-96. [PMID: 36999694 PMCID: PMC10518883 DOI: 10.2174/1573403x19666230331103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 04/01/2023] Open
Abstract
Catheter ablation is an effective and durable treatment option for patients with atrial fibrillation (AF). Ablation outcomes vary widely, with optimal results in patients with paroxysmal AF and diminishing results in patients with persistent or long-standing persistent AF. A number of clinical factors including obesity, hypertension, diabetes, obstructive sleep apnea, and alcohol use contribute to AF recurrence following ablation, likely through modulation of the atrial electroanatomic substrate. In this article, we review the clinical risk factors and the electro-anatomic features that contribute to AF recurrence in patients undergoing ablation for AF.
Collapse
Affiliation(s)
- Justin Brilliant
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Ritu Yadav
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Tauseef Akhtar
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - Natalia Trayanova
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| | - David Spragg
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD 21287, United States
| |
Collapse
|
18
|
Cardioprotective Mechanisms against Reperfusion Injury in Acute Myocardial Infarction: Targeting Angiotensin II Receptors. Biomedicines 2022; 11:biomedicines11010017. [PMID: 36672525 PMCID: PMC9856001 DOI: 10.3390/biomedicines11010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion injury is a process associated with cardiologic interventions, such as percutaneous coronary angioplasty after an acute myocardial infarction. Blood flow restoration causes a quick burst of reactive oxygen species (ROS), which generates multiple organelle damage, leading to the activation of cell death pathways. Therefore, the intervention contributes to a greater necrotic zone, thus increasing the risk of cardiovascular complications. A major cardiovascular ROS source in this setting is the activation of multiple NADPH oxidases, which could result via the occupancy of type 1 angiotensin II receptors (AT1R); hence, the renin angiotensin system (RAS) is associated with the generation of ROS during reperfusion. In addition, ROS can promote the expression of NF-κΒ, a proinflammatory transcription factor. Recent studies have described an intracellular RAS pathway that is associated with increased intramitochondrial ROS through the action of isoform NOX4 of NADPH oxidase, thereby contributing to mitochondrial dysfunction. On the other hand, the angiotensin II/ angiotensin type 2 receptor (Ang II/AT2R) axis exerts its effects by counter-modulating the action of AT1R, by activating endothelial nitric oxide synthase (eNOS) and stimulating cardioprotective pathways such as akt. The aim of this review is to discuss the possible use of AT1R blockers to hamper both the Ang II/AT1R axis and the associated ROS burst. Moreover; we suggest that AT1R antagonist drugs should act synergistically with other cardioprotective agents, such as ascorbic acid, N-acetylcysteine and deferoxamine, leading to an enhanced reduction in the reperfusion injury. This therapy is currently being tested in our laboratory and has shown promising outcomes in experimental studies.
Collapse
|
19
|
Wang H, Tian Y, Zhang Q, Liu W, Meng L, Jiang X, Xin Y. Essential role of Nrf2 in sulforaphane-induced protection against angiotensin II-induced aortic injury. Life Sci 2022; 306:120780. [PMID: 35839861 DOI: 10.1016/j.lfs.2022.120780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
AIMS Cardiovascular disease (CVD) is the leading cause of death worldwide. Inflammation and oxidative stress are the primary factors underlying angiotensin II (Ang II)-induced aortic damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important antioxidative stress factor. Sulforaphane (SFN), which is naturally found in cruciferous vegetables, is an Nrf2 agonist that is safe for oral administration. Here, we aimed to explore the potential of SFN in protecting against Ang II-induced aortic damage by upregulating Nrf2 expression via the extracellular signal-regulated kinase (ERK)/glycogen synthase kinase-3 beta (GSK-3β)/Fyn pathway. MAIN METHODS AND KEY FINDINGS Wild-type (WT) C57BL/6J and Nrf2-knockout (Nrf2-KO) mice were injected with Ang II to induce aortic inflammation, oxidative stress, and cardiac remodeling (increased fibrosis and wall thickness). SFN treatment prevented aortic damage via Nrf2 activation in the WT mice. However, the protective effect of SFN on Ang II-induced aortic damage and upregulation of genes downstream of Nrf2 were not observed in Nrf2-KO mice. SFN induced the upregulation of aortic Nrf2 and inhibited the accumulation of ERK, GSK-3β, and Fyn in the nuclei. SIGNIFICANCE These results revealed that Nrf2 plays a central role in protecting against Ang II-induced aortic injury. Furthermore, SFN prevented Ang II-induced aortic damage by activating Nrf2 through the ERK/GSK-3β/Fyn pathway.
Collapse
Affiliation(s)
- Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Department of Gynecology, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Qihe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Wenyun Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
Mengstie MA, Abebe EC, Teklemariam AB, Mulu AT, Teshome AA, Zewde EA, Muche ZT, Azezew MT. Molecular and cellular mechanisms in diabetic heart failure: Potential therapeutic targets. Front Endocrinol (Lausanne) 2022; 13:947294. [PMID: 36120460 PMCID: PMC9478122 DOI: 10.3389/fendo.2022.947294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes Mellitus (DM) is a worldwide health issue that can lead to a variety of complications. DM is a serious metabolic disorder that causes long-term microvascular and macro-vascular complications, as well as the failure of various organ systems. Diabetes-related cardiovascular diseases (CVD) including heart failure cause significant morbidity and mortality worldwide. Concurrent hypertensive heart disease and/or coronary artery disease have been thought to be the causes of diabetic heart failure in DM patients. However, heart failure is extremely common in DM patients even in the absence of other risk factors such as coronary artery disease and hypertension. The occurrence of diabetes-induced heart failure has recently received a lot of attention. Understanding how diabetes increases the risk of heart failure and how it mediates major cellular and molecular alteration will aid in the development of therapeutics to prevent these changes. Hence, this review aimed to summarize the current knowledge and most recent findings in cellular and molecular mechanisms of diabetes-induced heart failure.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
21
|
Xue F, Cheng J, Liu Y, Cheng C, Zhang M, Sui W, Chen W, Hao P, Zhang Y, Zhang C. Cardiomyocyte-specific knockout of ADAM17 ameliorates left ventricular remodeling and function in diabetic cardiomyopathy of mice. Signal Transduct Target Ther 2022; 7:259. [PMID: 35909160 PMCID: PMC9339545 DOI: 10.1038/s41392-022-01054-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 05/06/2022] [Accepted: 06/05/2022] [Indexed: 02/08/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has proven beneficial in attenuating diabetic cardiomyopathy (DCM) but has been found to be a substrate of a disintegrin and metalloprotease protein-17 (ADAM17). However, whether ADAM17 plays a role in the pathogenesis and intervention of DCM is obscure. In this study, we created cardiomyocyte-specific knockout of ADAM17 (A17α-MHCKO) mice, and left ventricular dimension, function, pathology and molecular biology were assessed in ADAM17fl/fl control, A17α-MHCKO control, ADAM17fl/fl diabetic and A17α-MHCKO diabetic mice. Both differentiated H9c2 cells and neonatal rat cardiomyocytes (NRCMs) were used to explore the molecular mechanisms underlying the effect of ADAM17 on DCM. The results showed that protein expression and activity of ADAM17 were upregulated whereas the protein expression of ACE2 was downregulated in the myocardium of diabetic mice. Cardiomyocyte-specific knockout of ADAM17 mitigated cardiac fibrosis and cardiomyocyte apoptosis and ameliorated cardiac dysfunction in mice with DCM. Bioinformatic analyses detected a number of genes enriched in metabolic pathways, in particular the AMPK signaling pathway, expressed differentially between the hearts of A17α-MHCKO and ADAM17fl/fl diabetic mice. The mechanism may involve activated AMPK pathway, increased autophagosome formation and improved autophagic flux, which reduced the apoptotic response in cardiomyocytes. In addition, hypoxia-inducible factor-1α (HIF-1α) might act as an upstream mediator of upregulated ADAM17 and ADAM17 might affect AMPK signaling via α1 A-adrenergic receptor (ADRA1A). These results indicated that ADAM17 activity and ACE2 shedding were enhanced in DCM, which was reversed by cardiomyocyte-specific ADAM17 knockout. Thus, inhibition of ADAM17 may provide a promising approach to the treatment of DCM.
Collapse
Affiliation(s)
- Fei Xue
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yanping Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Cheng Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wenqiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
22
|
Dugbartey GJ, Wonje QL, Alornyo KK, Adams I, Diaba DE. Alpha-lipoic acid treatment improves adverse cardiac remodelling in the diabetic heart - The role of cardiac hydrogen sulfide-synthesizing enzymes. Biochem Pharmacol 2022; 203:115179. [PMID: 35853498 DOI: 10.1016/j.bcp.2022.115179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Alpha-lipoic acid (ALA) is a licensed drug for the treatment of diabetic neuropathy. We recently reported that it also improves diabetic cardiomyopathy (DCM) in type 2 diabetes mellitus (T2DM). In this study, we present evidence supporting our hypothesis that the cardioprotective effect of ALA is via upregulation of cardiac hydrogen sulfide (H2S)-synthesizing enzymes. METHODS Following 12 h of overnight fasting, T2DM was induced in 23 out of 30 male Sprague-Dawley rats by intraperitoneal administration of nicotinamide (110 mg/kg) followed by streptozotocin (55 mg/kg) while the rest served as healthy control (HC). T2DM rats then received either oral administration of ALA (60 mg/kg/day; n = 7) or 40 mg/kg/day DL-propargylglycine (PAG, an endogenous H2S inhibitor; n = 7) intraperitoneally for 6 weeks after which all rats were sacrificed and samples collected for analysis. Untreated T2DM rats served as diabetic control (DCM; n = 9). RESULTS T2DM resulted in weight loss, islet destruction, reduced pancreatic β-cell function and hyperglycemia. Histologically, DCM rats showed significant myocardial damage evidenced by myocardial degeneration, cardiomyocyte vacuolation and apoptosis, cardiac fibrosis and inflammation, which positively correlated with elevated levels of cardiac damage markers compared to HC rats (p < 0.001). These pathological alterations worsened significantly in PAG-treated rats (p < 0.05). However, ALA treatment restored normoinsulemia, normoglycemia, prevented DCM, and improved lipid and antioxidant status. Mechanistically, ALA significantly upregulated the expression of cardiac H2S-synthesizing enzymes and increased plasma H2S concentration compared to DCM rats (p < 0.001). CONCLUSION ALA preserves myocardial integrity in T2DM likely by maintaining the expression of cardiac H2S-synthezing enzymes and increasing plasma H2S level.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Quinsker L Wonje
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Deborah E Diaba
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
23
|
Zhao S, Tan Y, Qin J, Xu H, Liu L, Wan H, Zhang C, Fan W, Qu S. MicroRNA-223-3p promotes pyroptosis of cardiomyocyte and release of inflammasome factors via downregulating the expression level of SPI1 (PU.1). Toxicology 2022; 476:153252. [PMID: 35792203 DOI: 10.1016/j.tox.2022.153252] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common heart disease in patients with diabetes mellitus (DM), and is sometimes its main cause of death. Among all the causes of DCM, myocardial cell death is considered to be the most basic pathological change. Furthermore, studies have shown that pyroptosis, the pro-inflammatory programmed cell death, contributes to the progress of DCM. MicroRNAs (miRNAs) also have been proved to take part in the formation of DCM. However, it is not clear whether and how miRNAs regulate myocardial cell pyroptosis in DCM development. In our study, the results showed that the expression of miR-223-3p was significantly increased in cardiomyocytes induced by high glucose, whereas the down-regulation of miR-223-3p weakened it. To understand the the signal transduction mechanism of miR-223-3p leading to pyroptosis, we found inhibition of miR-223-3p expression down-reguulated caspase-1, pro-inflammatory cytokines IL-1β and other pyroptosis-associated poteins. Moreover, miR-223-3p repressed SPI1 expression. Furthermore, we silenced SPI1 with siRNA to mimick the effect of miR-223-3p, up-regulating the expression of caspase-1 and resulting to pyroptosis. The above findings inspired us to propose a new signaling pathway to regulate scoria of cardiomyocytes under hyperglycemia: miR-223-3p↑→ SPI1↓→ caspase-1↑ → IL-1β and other pyroptosis-associated poteins↑→ pyroptosis↑. In summary, miR-223-3p could be a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Simin Zhao
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Yao Tan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jianning Qin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Haiqiang Xu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Lingyun Liu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Hengquan Wan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Chi Zhang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wenjing Fan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, and The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang City, Hunan Province 421001, PR China
| |
Collapse
|
24
|
Khaksari M, Raji-Amirhasani A, Bashiri H, Ebrahimi MN, Azizian H. Protective effects of combining SERMs with estrogen on metabolic parameters in postmenopausal diabetic cardiovascular dysfunction: The role of cytokines and angiotensin II. Steroids 2022; 183:109023. [PMID: 35358567 DOI: 10.1016/j.steroids.2022.109023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The beneficial effects of the administration of selective estrogen receptor modulators (SERMs) and estrogen (E2), alone or in combination with each other, have been reported in postmenopausal diabetic cardiovascular dysfunction. In the present study, we determined the mechanism of action of SERMs and E2 on inflammatory balance, angiotensin II (Ang II) serum levels, and glycemic profile in a postmenopausal diabetic rat model. METHODS Ovariectomized rats with type 2 diabetes received daily SERMs (tamoxifen and raloxifene) and E2 for one month. After treatment, cardiovascular risk indices, glycemic profile, and serum Ang II, TNF-α and IL-10 levels were measured. RESULTS Type 2 diabetes caused an abnormal glycemic profile, which was exacerbated by ovariectomy. All treatments inhibited the effects of diabetes and ovariectomy on the glycemic profile, with combined treatments (SERMs + E2) showing stronger effects. Cardiovascular risk indices that became abnormal by diabetes and worsened by ovariectomy were improved in all treatment modalities. Also, combined treatment reduced serum Ang II, TNF-α, and the ratio of TNF-α to IL-10, indicating an improvement in inflammatory balance. CONCLUSION Our study showed the administration of SERMs and E2, alone or in combination, could be an effective alternative in the treatment of menopausal diabetes, and generally, the beneficial effects of combined treatments were more effective than the effects of E2 or SERMs alone. It appears that E2 or SERMs benefit the cardiovascular system by improving inflammatory balance and reducing Ang II levels.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alireza Raji-Amirhasani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hossein Azizian
- Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
25
|
D’Elia JA, Bayliss GP, Weinrauch LA. The Diabetic Cardiorenal Nexus. Int J Mol Sci 2022; 23:ijms23137351. [PMID: 35806355 PMCID: PMC9266839 DOI: 10.3390/ijms23137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
The end-stage of the clinical combination of heart failure and kidney disease has become known as cardiorenal syndrome. Adverse consequences related to diabetes, hyperlipidemia, obesity, hypertension and renal impairment on cardiovascular function, morbidity and mortality are well known. Guidelines for the treatment of these risk factors have led to the improved prognosis of patients with coronary artery disease and reduced ejection fraction. Heart failure hospital admissions and readmission often occur, however, in the presence of metabolic, renal dysfunction and relatively preserved systolic function. In this domain, few advances have been described. Diabetes, kidney and cardiac dysfunction act synergistically to magnify healthcare costs. Current therapy relies on improving hemodynamic factors destructive to both the heart and kidney. We consider that additional hemodynamic solutions may be limited without the use of animal models focusing on the cardiomyocyte, nephron and extracellular matrices. We review herein potential common pathophysiologic targets for treatment to prevent and ameliorate this syndrome.
Collapse
Affiliation(s)
- John A. D’Elia
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Boston, MA 02215, USA
| | - George P. Bayliss
- Division of Organ Transplantation, Rhode Island Hospital, Providence, RI 02903, USA;
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Boston, MA 02215, USA
- Correspondence: ; Tel.: +617-923-0800; Fax: +617-926-5665
| |
Collapse
|
26
|
Dugbartey GJ, Wonje QL, Alornyo KK, Robertson L, Adams I, Boima V, Mensah SD. Combination Therapy of Alpha-Lipoic Acid, Gliclazide and Ramipril Protects Against Development of Diabetic Cardiomyopathy via Inhibition of TGF-β/Smad Pathway. Front Pharmacol 2022; 13:850542. [PMID: 35401218 PMCID: PMC8988231 DOI: 10.3389/fphar.2022.850542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is a major long-term complication of diabetes mellitus, accounting for over 20% of annual mortality rate of diabetic patients globally. Although several existing anti-diabetic drugs have improved glycemic status in diabetic patients, prevalence of DCM is still high. This study investigates cardiac effect of alpha-lipoic acid (ALA) supplementation of anti-diabetic therapy in experimental DCM. Methods: Following 12 h of overnight fasting, 44 male Sprague Dawley rats were randomly assigned to two groups of healthy control (n = 7) and diabetic (n = 37) groups, and fasting blood glucose was measured. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by intraperitoneal (i.p.) administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). After confirmation of T2DM on day 3, diabetic rats received monotherapies with ALA (60 mg/kg; n = 7), gliclazide (15 mg/kg; n = 7), ramipril (10 mg/kg; n = 7) or combination of the three drugs (n = 7) for 6 weeks while untreated diabetic rats received distilled water and were used as diabetic control (n = 9). Rats were then sacrificed, and blood, pancreas and heart tissues were harvested for analyses using standard methods. Results: T2DM induction caused pancreatic islet destruction, hyperglycemia, weight loss, high relative heart weight, and development of DCM, which was characterized by myocardial degeneration and vacuolation, cardiac fibrosis, elevated cardiac damage markers (plasma and cardiac creatine kinase-myocardial band, brain natriuretic peptide and cardiac troponin I). Triple combination therapy of ALA, gliclazide and ramipril preserved islet structure, maintained body weight and blood glucose level, and prevented DCM development compared to diabetic control (p < 0.001). In addition, the combination therapy markedly reduced plasma levels of inflammatory markers (IL-1β, IL-6 and TNF-α), plasma and cardiac tissue malondialdehyde, triglycerides and total cholesterol while significantly increasing cardiac glutathione and superoxide dismutase activity and high-density lipoprotein-cholesterol compared to diabetic control (p < 0.001). Mechanistically, induction of T2DM upregulated cardiac expression of TGF-β1, phosphorylated Smad2 and Smad3 proteins, which were downregulated following triple combination therapy (p < 0.001). Conclusion: Triple combination therapy of ALA, gliclazide and ramipril prevented DCM development by inhibiting TGF-β1/Smad pathway. Our findings can be extrapolated to the human heart, which would provide effective additional pharmacological therapy against DCM in T2DM patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Quinsker L Wonje
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Louis Robertson
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel D Mensah
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
27
|
Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview. Endocr Regul 2022; 56:55-65. [PMID: 35180818 DOI: 10.2478/enr-2022-0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular complications are the main cause of mortality and morbidity in the diabetic patients, in whom changes in myocardial structure and function have been described. Numerous molecular mechanisms have been proposed that could contribute to the development of a cardiac damage. In this regard, angiotensin II (Ang II), a proinflammatory peptide that constitutes the main effector of the renin-angiotensin system (RAS) has taken a relevant role. The aim of this review was to analyze the role of Ang II in the different biochemical pathways that could be involved in the development of cardiovascular damage during diabetes. We performed an exhaustive review in the main databases, using the following terms: angiotensin II, cardiovascular damage, renin angiotensin system, inflammation, and diabetes mellitus. Classically, the RAS has been defined as a complex system of enzymes, receptors, and peptides that help control the blood pressure and the fluid homeostasis. However, in recent years, this concept has undergone substantial changes. Although this system has been known for decades, recent discoveries in cellular and molecular biology, as well as cardiovascular physiology, have introduced a better understanding of its function and relationship to the development of the diabetic cardiomyopathy.
Collapse
|
28
|
Mittal A, Garg R, Bahl A, Khullar M. Molecular Mechanisms and Epigenetic Regulation in Diabetic Cardiomyopathy. Front Cardiovasc Med 2022; 8:725532. [PMID: 34977165 PMCID: PMC8716459 DOI: 10.3389/fcvm.2021.725532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is an important lifestyle disease. Type 2 diabetes is one of the prime contributors to cardiovascular diseases (CVD) and diabetic cardiomyopathy (DbCM) and leads to increased morbidity and mortality in patients with DM. DbCM is a typical cardiac disease, characterized by cardiac remodeling in the presence of DM and in the absence of other comorbidities such as hypertension, valvular diseases, and coronary artery disease. DbCM is associated with defective cardiac metabolism, altered mitochondrial structure and function, and other physiological and pathophysiological signaling mechanisms such as oxidative stress, inflammation, myocardial apoptosis, and autophagy. Epigenetic modifiers are crucial players in the pathogenesis of DbCM. Thus, it is important to explore the role of epigenetic modifiers or modifications in regulating molecular pathways associated with DbCM. In this review, we have discussed the role of various epigenetic mechanisms such as histone modifications (acetylation and methylation), DNA methylation and non-coding RNAs in modulating molecular pathways involved in the pathophysiology of the DbCM.
Collapse
Affiliation(s)
- Anupam Mittal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Garg
- Council of Scientific and Industrial Research - Institute of Microbial Technology, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
29
|
Sukumaran V, Gurusamy N, Yalcin HC, Venkatesh S. Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system. Pflugers Arch 2022; 474:63-81. [PMID: 34967935 PMCID: PMC12120836 DOI: 10.1007/s00424-021-02651-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Experimental and clinical evidence suggests that diabetic subjects are predisposed to a distinct cardiovascular dysfunction, known as diabetic cardiomyopathy (DCM), which could be an autonomous disease independent of concomitant micro and macrovascular disorders. DCM is one of the prominent causes of global morbidity and mortality and is on a rising trend with the increase in the prevalence of diabetes mellitus (DM). DCM is characterized by an early left ventricle diastolic dysfunction associated with the slow progression of cardiomyocyte hypertrophy leading to heart failure, which still has no effective therapy. Although the well-known "Renin Angiotensin Aldosterone System (RAAS)" inhibition is considered a gold-standard treatment in heart failure, its role in DCM is still unclear. At the cellular level of DCM, RAAS induces various secondary mechanisms, adding complications to poor prognosis and treatment of DCM. This review highlights the importance of RAAS signaling and its major secondary mechanisms involving inflammation, oxidative stress, mitochondrial dysfunction, and autophagy, their role in establishing DCM. In addition, studies lacking in the specific area of DCM are also highlighted. Therefore, understanding the complex role of RAAS in DCM may lead to the identification of better prognosis and therapeutic strategies in treating DCM.
Collapse
Affiliation(s)
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Al-Tarfa, 2371, Doha, Qatar
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
30
|
Kumar V, Goyal A, Gupta JK. Role of ACE and ACE-2 in abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Ramesh P, Yeo JL, Brady EM, McCann GP. Role of inflammation in diabetic cardiomyopathy. Ther Adv Endocrinol Metab 2022; 13:20420188221083530. [PMID: 35308180 PMCID: PMC8928358 DOI: 10.1177/20420188221083530] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
The prevalence of type 2 diabetes (T2D) has reached a pandemic scale. Systemic chronic inflammation dominates the diabetes pathophysiology and has been implicated as a causal factor for the development of vascular complications. Heart failure (HF) is regarded as the most common cardiovascular complication of T2D and the diabetic diagnosis is an independent risk factor for HF development. Key molecular mechanisms pivotal to the development of diabetic cardiomyopathy include the NF-κB pathway and renin-angiotensin-aldosterone system, in addition to advanced glycation end product accumulation and inflammatory interleukin overexpression. Chronic myocardial inflammation in T2D mediates structural and metabolic changes, including cardiomyocyte apoptosis, impaired calcium handling, myocardial hypertrophy and fibrosis, all of which contribute to the diabetic HF phenotype. Advanced cardiovascular magnetic resonance imaging (CMR) has emerged as a gold standard non-invasive tool to delineate myocardial structural and functional changes. This review explores the role of chronic inflammation in diabetic cardiomyopathy and the ability of CMR to identify inflammation-mediated myocardial sequelae, such as oedema and diffuse fibrosis.
Collapse
Affiliation(s)
- Pranav Ramesh
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| | | | - Emer M. Brady
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| | - Gerry P. McCann
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| |
Collapse
|
32
|
Bunaim MK, Kamisah Y, Mohd Mustazil MN, Fadhlullah Zuhair JS, Juliana AH, Muhammad N. Centella asiatica (L.) Urb. Prevents Hypertension and Protects the Heart in Chronic Nitric Oxide Deficiency Rat Model. Front Pharmacol 2021; 12:742562. [PMID: 34925007 PMCID: PMC8678489 DOI: 10.3389/fphar.2021.742562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Hypertension is a major risk factor for cardiovascular disease (CVD), which is the number one cause of global mortality. The potential use of natural products to alleviate high blood pressure has been demonstrated to exert a cardioprotective effect. Centella asiatica (L.) Urb. belongs to the plant family Apiaceae (Umbelliferae). It contains a high amount of triterpenoid and flavonoid that have antioxidant properties and are involved in the renin-angiotensin-aldosterone system which is an important hormonal system for blood pressure regulation. Objective: This study aimed to investigate the effects of C. asiatica ethanolic extract on blood pressure and heart in a hypertensive rat model, which was induced using oral N(G)-nitro-l-arginine methyl ester (l-NAME). Methods: Male Sprague-Dawley rats were divided into five groups and were given different treatments for 8 weeks. Group 1 only received deionized water. Groups 2, 4, and 5 were given l-NAME (40 mg/kg, orally). Groups 4 and 5 concurrently received C. asiatica extract (500 mg/kg, orally) and captopril (5 mg/kg, orally), respectively. Group 3 only received C. asiatica extract (500 mg/kg body weight, orally). Systolic blood pressure (SBP) was measured at weeks 0, 4, and 8, while serum nitric oxide (NO) was measured at weeks 0 and 8. At necropsy, cardiac and aortic malondialdehyde (MDA) contents, cardiac angiotensin-converting enzyme (ACE) activity, and serum level of brain natriuretic peptide (BNP) were measured. Results: After 8 weeks, the administrations of C. asiatica extract and captopril showed significant (p < 0.05) effects on preventing the elevation of SBP, reducing the serum nitric oxide level, as well as increasing the cardiac and aortic MDA content, cardiac ACE activity, and serum brain natriuretic peptide level. Conclusion: C. asiatica extract can prevent the development of hypertension and cardiac damage induced by l-NAME, and these effects were comparable to captopril.
Collapse
Affiliation(s)
- Mohd Khairulanwar Bunaim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Noor Mohd Mustazil
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Abdul Hamid Juliana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Luo MY, Su JH, Gong SX, Liang N, Huang WQ, Chen W, Wang AP, Tian Y. Ferroptosis: New Dawn for Overcoming the Cardio-Cerebrovascular Diseases. Front Cell Dev Biol 2021; 9:733908. [PMID: 34858973 PMCID: PMC8632439 DOI: 10.3389/fcell.2021.733908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
The dynamic balance of cardiomyocytes and neurons is essential to maintain the normal physiological functions of heart and brain. If excessive cells die in tissues, serious Cardio-Cerebrovascular Diseases would occur, namely, hypertension, myocardial infarction, and ischemic stroke. The regulation of cell death plays a role in promoting or alleviating Cardio-Cerebrovascular Diseases. Ferroptosis is an iron-dependent new type of cell death that has been proved to occur in a variety of diseases. In our review, we focus on the critical role of ferroptosis and its regulatory mechanisms involved in Cardio-Cerebrovascular Diseases, and discuss the important function of ferroptosis-related inhibitors in order to propose potential implications for the prevention and treatment of Cardio-Cerebrovascular Diseases.
Collapse
Affiliation(s)
- Meng-Yi Luo
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Jian-Hui Su
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, University of South China, Hengyang, China
| | - Na Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Chen
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|
34
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
35
|
Heart Failure in Type 1 Diabetes: A Complication of Concern? A Narrative Review. J Clin Med 2021; 10:jcm10194497. [PMID: 34640518 PMCID: PMC8509458 DOI: 10.3390/jcm10194497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) has been a hot topic in diabetology in the last few years, mainly due to the central role of sodium-glucose cotransporter 2 inhibitors (iSGLT2) in the prevention and treatment of cardiovascular disease and heart failure. It is well known that HF is a common complication in diabetes. However, most of the knowledge about it and the evidence of cardiovascular safety trials with antidiabetic drugs refer to type 2 diabetes (T2D). The epidemiology, etiology, and pathophysiology of HF in type 1 diabetes (T1D) is still not well studied, though there are emerging data about it since life expectancy for T1D has increased in the last decades and there are more elderly patients with T1D. The association of T1D and HF confers a worse prognosis than in T2D, thus it is important to investigate the characteristics, risk factors, and pathophysiology of this disease in order to effectively design prevention strategies and therapeutic tools.
Collapse
|
36
|
Qi Z, Wang T, Chen X, Wong CK, Ding Q, Sauer H, Chen ZF, Long C, Yao X, Cai Z, Tsang SY. Extracellular and Intracellular Angiotensin II Regulate the Automaticity of Developing Cardiomyocytes via Different Signaling Pathways. Front Mol Biosci 2021; 8:699827. [PMID: 34513920 PMCID: PMC8425478 DOI: 10.3389/fmolb.2021.699827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Angiotensin II (Ang II) plays an important role in regulating various physiological processes. However, little is known about the existence of intracellular Ang II (iAng II), whether iAng II would regulate the automaticity of early differentiating cardiomyocytes, and the underlying mechanism involved. Here, iAng II was detected by immunocytochemistry and ultra-high performance liquid chromatography combined with electrospray ionization triple quadrupole tandem mass spectrometry in mouse embryonic stem cell–derived cardiomyocytes (mESC-CMs) and neonatal rat ventricular myocytes. Expression of AT1R-YFP in mESC-CMs revealed that Ang II type 1 receptors were located on the surface membrane, while immunostaining of Ang II type 2 receptors (AT2R) revealed that AT2R were predominately located on the nucleus and the sarcoplasmic reticulum. While extracellular Ang II increased spontaneous action potentials (APs), dual patch clamping revealed that intracellular delivery of Ang II or AT2R activator C21 decreased spontaneous APs. Interestingly, iAng II was found to decrease the caffeine-induced increase in spontaneous APs and caffeine-induced calcium release, suggesting that iAng II decreased spontaneous APs via the AT2R- and ryanodine receptor–mediated pathways. This is the first study that provides evidence of the presence and function of iAng II in regulating the automaticity behavior of ESC-CMs and may therefore shed light on the role of iAng II in fate determination.
Collapse
Affiliation(s)
- Zenghua Qi
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China.,Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Tao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
| | - Xiangmao Chen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chun Kit Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| | - Qianqian Ding
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Zhi-Feng Chen
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, SAR China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China.,Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| |
Collapse
|
37
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
38
|
New perspectives of the cardiac cellular landscape: mapping cellular mediators of cardiac fibrosis using single-cell transcriptomics. Biochem Soc Trans 2021; 48:2483-2493. [PMID: 33259583 DOI: 10.1042/bst20191255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Single-cell transcriptomics enables inference of context-dependent phenotypes of individual cells and determination of cellular diversity of complex tissues. Cardiac fibrosis is a leading factor in the development of heart failure and a major cause of morbidity and mortality worldwide with no effective treatment. Single-cell RNA-sequencing (scRNA-seq) offers a promising new platform to identify new cellular and molecular protagonists that may drive cardiac fibrosis and development of heart failure. This review will summarize the application scRNA-seq for understanding cardiac fibrosis and development of heart failure. We will also discuss some key considerations in interpreting scRNA-seq data and some of its limitations.
Collapse
|
39
|
Azizian H, Khaksari M, Asadikaram G, Esmailidehaj M, Shahrokhi N. Progesterone eliminates 17β-estradiol-Mediated cardioprotection against diabetic cardiovascular dysfunction in ovariectomized rats. Biomed J 2021; 44:461-470. [PMID: 34507919 PMCID: PMC8514797 DOI: 10.1016/j.bj.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type2 Diabetes (T2D) remains one of the most important causes of cardiovascular diseases (CVD). Menopause leads to an increase in CVD and metabolic syndrome, which indicates the role of sex steroids as a protective factor. In the present study, we surveyed the effects of 17β-estradiol (E2) alone and in combination with progesterone (P4) on cardiovascular dysfunction in T2D. METHODS Female ovariectomized (OVX) diabetic rats were divided into eight groups: Sham-Control, Diabetes (Dia), OVX + Dia, OVX + Dia + Vehicle, OVX + Dia + E2, OVX + Dia + P4, OVX + Dia + E2+P4, and OVX + Dia + E2+Vehicle. T2D was induced by a high-fat diet and streptozotocin. E2 and P4 were administrated every four days for four weeks. The heart cytokines and angiotensin II, lipid profile, insulin, water, and food intake and cardiovascular indices were measured. RESULTS Results showed that single treatment with E2 decreased fasting blood glucose, water, and food intake, atherogenic and cardiac risk indices, and blood pressure. Also, P4 led to a decrease in atherogenic and cardiac risk indices. TNFα and IL-6 levels were increased and IL-10 was decreased in the Dia group, while E2 alone was able to inhibit these changes. The combined use of E2 and P4 eliminated the beneficial effects of E2 on these indices. Although diabetes results in an increment of cholesterol, LDL and triglyceride, hormone therapy with E2 was associated with improved dyslipidemia. CONCLUSION The use of E2 alone, and not the individual use of P4, and its combination with E2 improved cardiovascular function in OVX diabetic animals, possibly by reducing the amount of inflammatory cytokines and improving metabolic parameters.
Collapse
Affiliation(s)
- Hossein Azizian
- Neurobiomedical Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman, Iran.
| | - Gholamreza Asadikaram
- Department of Biochemistry, and Metabolism & Endocrinology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mansour Esmailidehaj
- Neurobiomedical Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nader Shahrokhi
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
40
|
Badreldeen A, El Razaky O, Erfan A, El-Bendary A, El Amrousy D. Comparative study of the efficacy of captopril, simvastatin, and L-carnitine as cardioprotective drugs in children with type 1 diabetes mellitus: a randomised controlled trial. Cardiol Young 2021; 31:1315-1322. [PMID: 33536102 DOI: 10.1017/s1047951121000226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To assess the efficacy and safety of captopril, simvastatin, and L-carnitine as cardioprotective drugs in children with type 1 diabetes mellitus on different echocardiographic parameters, electrocardiographic parameter, lipid profile, and carotid intima-media thickness. METHODS This randomised controlled trial was conducted on 100 children with type 1 diabetes mellitus for more than 3 years during the period from September 2018 to June 2020. Fifty healthy children of matched age and sex served as a control group. The patients were randomly assigned into four groups (25 children each): no-treatment group who received no cardioprotective drug, simvastatin group who received simvastatin (10-20 mg/day), captopril group who received captopril (0.2 mg/kg/day), and L-carnitine group who received L-carnitine (50 mg/kg/day) for 4 months. Lipid profile, serum troponin I, carotid intima-media thickness, and echocardiographic examinations were performed on all included children before and after the treatment. RESULTS Total cholesterol and low-density lipoprotein were significantly decreased in children who received simvastatin or L-carnitine. Triglycerides significantly decreased only in children who received simvastatin. High-density lipoprotein significantly increased in simvastatin and L-carnitine groups only. Serum troponin I decreased significantly in all the three treatment groups. Carotid intima-media thickness showed no significant change in all treatment groups. Echocardiographic parameters significantly improved in simvastatin, L-carnitine, and captopril groups. CONCLUSION Captopril, simvastatin, and L-carnitine have a significant beneficial effect on cardiac functions in children with type 1 diabetes mellitus. However, only simvastatin and L-carnitine have a beneficial effect on the lipid profile. The drugs were safe and well tolerated.Clinical trial registration: The clinical trial was registered at www.clinicaltrial.gov (NCT03660293).
Collapse
Affiliation(s)
| | - Osama El Razaky
- Pediatric Department, Tanta University Hospital, Tanta, Egypt
| | - Adel Erfan
- Pediatric Department, Tanta University Hospital, Tanta, Egypt
| | | | - Doaa El Amrousy
- Pediatric Department, Tanta University Hospital, Tanta, Egypt
| |
Collapse
|
41
|
Huang S, Wang W, Li L, Wang T, Zhao Y, Lin Y, Huang W, Wang Y, Huang Z. P2X7 Receptor Deficiency Ameliorates STZ-induced Cardiac Damage and Remodeling Through PKCβ and ERK. Front Cell Dev Biol 2021; 9:692028. [PMID: 34395424 PMCID: PMC8358615 DOI: 10.3389/fcell.2021.692028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus which result in cardiac remodeling and subsequent heart failure. However, the role of P2X7 receptor (P2X7R) in DCM has yet to be elucidated. The principal objective of this study was to investigate whether P2X7R participates in the pathogenesis of DCM. In this study, the C57BL/6 diabetic mouse model was treated with a P2X7R inhibitor (A438079). Cardiac dysfunction and remodeling were attenuated by the intraperitoneal injection of A438079 or P2X7R deficiency. In vitro, A438079 reduced high glucose (HG) induced cell damage in H9c2 cells and primary rat cardiomyocytes. Furthermore, HG/streptozotocin (STZ)-induced P2X7R activation mediated downstream protein kinase C-β (PKCβ) and extracellular regulated protein kinases (ERK) activation. This study provided evidence that P2X7R plays an important role in the pathogenesis of STZ-induced diabetic cardiac damage and remodeling through the PKCβ/ERK axis and suggested that P2X7R might be a potential target in the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shanjun Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Weiqi Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Ting Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yihan Zhao
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya Lin
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yonghua Wang
- Department of Physical Education, Wenzhou Medical University, Wenzhou, China
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Ferrario CM, Groban L, Wang H, Cheng CP, VonCannon JL, Wright KN, Sun X, Ahmad S. The Angiotensin-(1-12)/Chymase axis as an alternate component of the tissue renin angiotensin system. Mol Cell Endocrinol 2021; 529:111119. [PMID: 33309638 PMCID: PMC8127338 DOI: 10.1016/j.mce.2020.111119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023]
Abstract
The identification of an alternate extended form of angiotensin I composed of the first twelve amino acids at the N-terminal of angiotensinogen has generated new knowledge of the importance of noncanonical mechanisms for renin independent generation of angiotensins. The human sequence of the dodecapeptide angiotensin-(1-12) [N-Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-Leu10-Val1-Ile12-COOH] is an endogenous substrate that in the rat has been documented to be present in multiple organs including the heart, brain, kidney, gut, adrenal gland, and the bone marrow. Newer studies have confirmed the existence of Ang-(1-12) as an Ang II-forming substrate in the blood and heart of normal and diseased patients. Studies to-date document that angiotensin II generation from angiotensin-(1-12) does not require renin participation while chymase rather than angiotensin converting enzyme shows high catalytic activity in converting this tissue substrate into angiotensin II directly.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Che Ping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Jessica L VonCannon
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kendra N Wright
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sarfaraz Ahmad
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
43
|
The Mystery of Diabetic Cardiomyopathy: From Early Concepts and Underlying Mechanisms to Novel Therapeutic Possibilities. Int J Mol Sci 2021; 22:ijms22115973. [PMID: 34205870 PMCID: PMC8198766 DOI: 10.3390/ijms22115973] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic patients are predisposed to diabetic cardiomyopathy, a specific form of cardiomyopathy which is characterized by the development of myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis that develops independently of concomitant macrovascular and microvascular diabetic complications. Its pathophysiology is multifactorial and poorly understood and no specific therapeutic guideline has yet been established. Diabetic cardiomyopathy is a challenging diagnosis, made after excluding other potential entities, treated with different pharmacotherapeutic agents targeting various pathophysiological pathways that need yet to be unraveled. It has great clinical importance as diabetes is a disease with pandemic proportions. This review focuses on the potential mechanisms contributing to this entity, diagnostic options, as well as on potential therapeutic interventions taking in consideration their clinical feasibility and limitations in everyday practice. Besides conventional therapies, we discuss novel therapeutic possibilities that have not yet been translated into clinical practice.
Collapse
|
44
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
45
|
Cai B, Du J. Role of bone morphogenic protein-4 in gestational diabetes mellitus-related hypertension. Exp Ther Med 2021; 22:762. [PMID: 34035859 DOI: 10.3892/etm.2021.10194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperglycaemia stimulates the synthesis and release of bone morphogenetic protein-4 (BMP-4) in vascular endothelial cells, which further induces peroxide production and inflammatory responses, leading to vascular endothelial dysfunction. However, the role of BMP-4 in gestational diabetes mellitus (GDM)-related vascular endothelial dysfunction remains unclear. In the present study, the hypothesis that the overexpression of BMP-4 would induce GDM-related hypertension by impairing vascular endothelial function was evaluated. An animal model of GDM was established in Sprague-Dawley (SD) rats. Based on blood pressure, rats were divided into control, GDM and GDM + hypertension (HT) groups. The expression levels of BMP-4, cyclooxygenase-2 (COX-2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (NOX-1) and vascular cell adhesion molecule 1 (VCAM-1) in the endothelium of the abdominal aorta of rats in each group were determined via immunohistochemistry and western blotting. Pregnant SD rats were divided into four groups, separately infused with BMP-4, BMP-4 + noggin, noggin or vehicle by osmotic pumps, and blood pressure and vasorelaxation were examined. Immunohistochemistry indicated that the expression levels of the four proteins were lower in the control group than in the GDM and GDM + HT groups. The positive expression rate of VCAM-1 was significantly lower in the control group than in the GDM and GDM+HT groups, and the differences were statistically significant (χ2=17.325, P<0.05; χ2=10.080, P<0.05). Western blotting revealed that the expression level of the COX-2 protein exhibited a sequential increase in the three groups. The expression level of COX-2 in the control and GDM groups was significantly lower than that in the GDM+HT group (3.358±1.286; P<0.05 and P<0.05, respectively). The expression level of VCAM-1 protein in the three groups also exhibited a significant sequential increase (F=31.732; P≤0.001). The expression level of VCAM-1 in the control and GDM groups was significantly lower than that in the GDM+HT group (2.698±0.223; P≤0.001 and P≤0.001, respectively). Infusion of BMP-4 increased systolic blood pressure (from 82 to 112 mmHg) and impaired vasorelaxation in pregnant SD rats after 2 weeks. Co-treatment with noggin completely blocked BMP-4-induced effects. Thus, the BMP-4/NOX-1/COX-2 signalling pathway may be involved in GDM-related hypertension, but VCAM-1 may be substantially associated with GDM-related hypertension. Furthermore, overexpression of BMP-4 could lead to hypertension by impairing endothelial function in pregnancy.
Collapse
Affiliation(s)
- Benshuo Cai
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Juan Du
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
46
|
Zhang X, Dong Y, Dong H, Cui Y, Du Q, Wang X, Li L, Zhang H. Telmisartan Mitigates TNF-α-Induced Type II Collagen Reduction by Upregulating SOX-9. ACS OMEGA 2021; 6:11756-11761. [PMID: 34056329 PMCID: PMC8154015 DOI: 10.1021/acsomega.1c01170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The proinflammatory cytokine tumor necrosis factor-α (TNF-α)-induced degradation of extracellular matrix (ECM), such as type II collagen in chondrocytes, plays an important role in the development of osteoarthritis (OA). Telmisartan, an angiotensin II (Ang-II) receptor blocker, is a licensed drug used for the treatment of hypertension. However, the effects of Telmisartan in tumor necrosis factor-α (TNF-α)-induced damage to chondrocytes and the progression of OA are unknown. In this study, we found that treatment with Telmisartan attenuated TNF-α-induced oxidative stress by reducing the levels of mitochondrial reactive oxygen species (ROS) and the production of protein carbonyl in human C28/I2 chondrocytes. Interestingly, Telmisartan inhibited TNF-α-induced expression and secretions of proinflammatory mediators such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and monocyte chemotactic protein 1 (MCP-1). Notably, stimulation with TNF-α reduced the levels of type II collagen at both the mRNA and the protein levels, which was rescued by the treatment with Telmisartan. Mechanistically, we found that Telmisartan restored TNF-α-induced reduction of SOX-9. Silencing of SOX-9 blocked the inhibitory effects of Telmisartan against TNF-α-induced degradation of type II collagen. These findings suggest that Telmisartan might be a potential and promising agent for the treatment of OA.
Collapse
Affiliation(s)
- Xiuying Zhang
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| | - Yanfeng Dong
- Department
of Cardiology, Zhangdian District peopleundefineds
Hospital, Zibo 255036, China
| | - Hanyu Dong
- Department
of Endocrinology, Zibo Maternal and Child
Health Hospital, Zibo 255036, China
| | - Yanhui Cui
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| | - Qing Du
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| | - Xiaoli Wang
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| | - Lanlan Li
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| | - Hongju Zhang
- Department
of Rheumatology and Immunology, Zibo Central
Hospital, Zibo 255036, China
| |
Collapse
|
47
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
48
|
Barssotti L, Abreu ICME, Brandão ABP, Albuquerque RCMF, Ferreira FG, Salgado MAC, Dias DDS, De Angelis K, Yokota R, Casarini DE, Souza LB, Taddei CR, Cunha TS. Saccharomyces boulardii modulates oxidative stress and renin angiotensin system attenuating diabetes-induced liver injury in mice. Sci Rep 2021; 11:9189. [PMID: 33911129 PMCID: PMC8080591 DOI: 10.1038/s41598-021-88497-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic disease characterized by hyperglycemia due to a deficiency in endogenous insulin production, resulting from pancreatic beta cell death. Persistent hyperglycemia leads to enhanced oxidative stress and liver injury. Several studies have evaluated the anti-diabetic and protective effects of probiotic strains in animal models. In the present study, we investigated, through histopathological and biochemical analyses, the effects of eight weeks of administration of Saccharomyces boulardii (S. boulardii) yeast on the liver of streptozotocin (STZ) induced diabetic C57BL/6 mice. Our results demonstrated that S. boulardii attenuates hepatocytes hydropic degeneration and hepatic vessels congestion in STZ-induced diabetic mice. The treatment attenuated the oxidative stress in diabetic mice leading to a reduction of carbonylated protein concentration and increased activity of antioxidant enzymes superoxide dismutase and glutathione peroxidase, compared to untreated diabetic animals. The results also show the beneficial influence of S. boulardii in regulating the hepatic concentration of renin angiotensin system (RAS) peptides. Therefore, our results demonstrated that S. boulardii administration to STZ-induced diabetic mice reduces oxidative stress and normalizes the concentration of RAS peptides, supporting the hypothesis that this yeast may have a role as a potential adjunctive therapy to attenuate diabetes-induced liver injury.
Collapse
Affiliation(s)
- Leticia Barssotti
- Department of Science and Technology, Federal University of São Paulo (Unifesp), São José dos Campos, Brazil
| | - Isabel C M E Abreu
- Department of Medicine, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Ana Beatriz P Brandão
- Department of Medicine, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | | | - Fabiana G Ferreira
- Department of Science and Technology, Federal University of São Paulo (Unifesp), São José dos Campos, Brazil
| | - Miguel A C Salgado
- Department of Bioscience and Oral Diagnosis, State University Julio de Mesquita Filho (Unesp), São José dos Campos, Brazil
| | - Danielle D S Dias
- Department of Physiology, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Kátia De Angelis
- Department of Physiology, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Rodrigo Yokota
- Department of Medicine, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Dulce E Casarini
- Department of Medicine, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Lívia B Souza
- Department of Medicine, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Carla R Taddei
- Department of Clinical and Toxicological Analyses, University of São Paulo (Usp), São Paulo, Brazil
| | - Tatiana S Cunha
- Department of Science and Technology, Federal University of São Paulo (Unifesp), São José dos Campos, Brazil.
- Federal University of São Paulo (Unifesp) - Institute of Science and Technology, Talim, 330 - Vila Nair, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
49
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
50
|
Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun QY, Lopaschuk GD. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovasc Res 2021; 118:686-715. [PMID: 33783483 DOI: 10.1093/cvr/cvab120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus increases the risk of developing heart failure, and the co-existence of both diseases worsens cardiovascular outcomes, hospitalization and the progression of heart failure. Despite current advancements on therapeutic strategies to manage hyperglycemia, the likelihood of developing diabetes-induced heart failure is still significant, especially with the accelerating global prevalence of diabetes and an ageing population. This raises the likelihood of other contributing mechanisms beyond hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has been considerable interest in understanding the alterations in cardiac structure and function in the diabetic patients, collectively termed as "diabetic cardiomyopathy". However, the factors that contribute to the development of diabetic cardiomyopathies is not fully understood. This review summarizes the main characteristics of diabetic cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This includes perturbations in insulin resistance, fuel preference, reactive oxygen species generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational modifications in the heart of the diabetic. This review also discusses the impact of antihyperglycemic therapies on the development of heart failure, as well as how current heart failure therapies influence glycemic control in diabetic patients. We also highlight the current knowledge gaps in understanding how diabetes induces heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiu Yu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|