1
|
Li Z, Gong S, Yu Z, Luo Y, Zhao Y, Xue E, Lu H, Xiang D, Sun F. Sleep deprivation impacts the immunological milieu of epididymis leading to low sperm quality in rats. Commun Biol 2025; 8:644. [PMID: 40263515 PMCID: PMC12015424 DOI: 10.1038/s42003-025-08091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
Sleep deprivation (SD) has been demonstrated to cause male reproductive dysfunction; however, its underlying mechanisms remain unclear. In this work, we conduct Mendelian randomization analysis, which indicates a significant association between sleep disorders and male infertility in humans. To explore the potential mechanism, ten-week-old male Sprague-Dawley rats are subjected to continuous SD for five days, showing significantly reduced epididymal sperm concentration and motility compared to the control group. SD treatment also decreases serum testosterone levels and epididymal sperm transit time in male rats. Histological analysis reveals reproductive system damage, while bulk and single-cell RNA sequencing highlight that SD significantly alters transcriptomes and induces differentially expressed genes with significant heterogeneity across three segments of the epididymis. Gene ontology analysis indicates that SD upregulates inflammatory response genes, especially in the more inflammation-sensitive cauda epididymis. Moreover, SD activates immune cells and causes cytokines and chemokines to accumulate in the cauda epididymis. However, recovery sleep mitigates this damage. Our findings reveal that continuous SD disrupts the epididymal immunological microenvironment, lowering sperm quality and potentially contributing to male infertility.
Collapse
Affiliation(s)
- Zhean Li
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shengnan Gong
- Prenatal Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ziqi Yu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yujia Luo
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yixiang Zhao
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Erfei Xue
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Lu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Di Xiang
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wang N, Zhu S, Chen S, Zou J, Zeng P, Tan S. Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms. Rev Neurosci 2025:revneuro-2024-0147. [PMID: 39829004 DOI: 10.1515/revneuro-2024-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Depression is a common mental disorder characterized by a high prevalence and significant adverse effects, making the searching for effective interventions an urgent priority. In recent years, physical activity (PA) has increasingly been recognized as a standard adjunctive treatment for mental disorders owing to its low cost, easy application, and high efficiency. Epidemiological data shows positive preventive and therapeutic effects of PA on mental illnesses such as depression. This article systematically describes the prophylactic and therapeutic effects of PA on depression and its biological basis. A comprehensive literature analysis reveals that PA significantly improves depressive symptoms by upregulating the expression of "exerkines" such as irisin, adiponectin, and BDNF to positively impacting neuropsychiatric conditions. In particular, lactate could also play a critical role in the ameliorating effects of PA on depression due to the findings about protein lactylation as a novel protein post-transcriptional modification. The literature also suggests that in terms of brain structure, PA may improve hippocampal volume, basal ganglia (neostriatum, caudate-crustal nucleus) and PFC density in patients with MDD. In summary, this study elucidates the multifaceted positive effects of PA on depression and its potential biological mechanisms with a particular emphasis on the roles of various exerkines. Future research may further investigate the effects of different types, intensities, and durations of PA on depression, as well as how to better integrate PA interventions into existing treatment strategies to achieve optimal outcomes in mental health interventions.
Collapse
Affiliation(s)
- Nan Wang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shanshan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shuyang Chen
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| |
Collapse
|
3
|
Kostka M, Morys J, Małecki A, Nowacka-Chmielewska M. Muscle-brain crosstalk mediated by exercise-induced myokines - insights from experimental studies. Front Physiol 2024; 15:1488375. [PMID: 39687518 PMCID: PMC11647023 DOI: 10.3389/fphys.2024.1488375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Over the past couple of decades, it has become apparent that skeletal muscles might be engaged in endocrine signaling, mostly as a result of exercise or physical activity in general. The importance of this phenomenon is currently studied in terms of the impact that exercise- or physical activity -induced signaling factors have, in the interaction of the "muscle-brain crosstalk." So far, skeletal muscle-derived myokines were demonstrated to intercede in the connection between muscles and a plethora of various organs such as adipose tissue, liver, or pancreas. However, the exact mechanism of muscle-brain communication is yet to be determined. It is speculated that, in particular, brain-derived neurotrophic factor (BDNF), irisin, cathepsin B (CTSB), interleukin 6 (IL-6), and insulin-like growth factor-1 (IGF-1) partake in this crosstalk by promoting neuronal proliferation and synaptic plasticity, also resulting in improved cognition and ameliorated behavioral alterations. Researchers suggest that myokines might act directly on the brain parenchyma via crossing the blood-brain barrier (BBB). The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and central nervous system (CNS) impairments. Although the hypothesis of skeletal muscles being critical sources of myokines seems promising, it should not be forgotten that the origin of these factors might vary, depending on the cell types engaged in their synthesis. Limited amount of research providing information on alterations in myokines expression in various organs at the same time, results in taking them only as circumstantial evidence on the way to determine the actual involvement of skeletal muscles in the overall state of homeostasis. The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and CNS impairments.
Collapse
Affiliation(s)
| | | | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
4
|
Zhang X, Wang Q, Wang Y, Ma C, Zhao Q, Yin H, Li L, Wang D, Huang Y, Zhao Y, Shi X, Li X, Huang C. Interleukin-6 promotes visceral adipose tissue accumulation during aging via inhibiting fat lipolysis. Int Immunopharmacol 2024; 132:111906. [PMID: 38593501 DOI: 10.1016/j.intimp.2024.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Age-related visceral obesity could contribute to the development of cardiometabolic complications. The pathogenesis of visceral fat mass accumulation during the aging process remains complex and largely unknown. Interleukin-6 (IL-6) has emerged as one of the prominent inflammaging markers which are elevated in circulation during aging. However, the precise role of IL-6 in regulating age-related visceral adipose tissue accumulation remains uncertain. RESULTS A cross-sectional study including 77 older adults (≥65 years of age) was initially conducted. There was a significant positive association between serum IL-6 levels and visceral fat mass. We subsequently validated a modest but significant elevation in serum IL-6 levels in aged mice. Furthermore, we demonstrated that compared to wildtype control, IL-6 deficiency (IL-6 KO) significantly attenuated the accumulation of visceral adipose tissue during aging. Further metabolic characterization suggested that IL-6 deficiency resulted in improved lipid metabolism parameters and energy expenditure in aged mice. Moreover, histological examinations of adipose depots revealed that the absence of IL-6 ameliorated adipocyte hypertrophy in visceral adipose tissue of aged mice. Mechanically, the ablation of IL-6 could promote the PKA-mediated lipolysis and consequently mitigate lipid accumulation in adipose tissue in aged mice. CONCLUSION Our findings identify a detrimental role of IL-6 during the aging process by promoting visceral adipose tissue accumulation through inhibition of lipolysis. Therefore, strategies aimed at preventing or reducing IL-6 levels may potentially ameliorate age-related obesity and improve metabolism during aging.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Qingxuan Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yaru Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Chen Ma
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Qing Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Hongyan Yin
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Long Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Dongmei Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China; Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
| | - Yinxiang Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yan Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xuejun Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| | - Caoxin Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| |
Collapse
|
5
|
Zhou N, Gong L, Zhang E, Wang X. Exploring exercise-driven exerkines: unraveling the regulation of metabolism and inflammation. PeerJ 2024; 12:e17267. [PMID: 38699186 PMCID: PMC11064867 DOI: 10.7717/peerj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.
Collapse
Affiliation(s)
- Nihong Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- NanoLund Center for NanoScience, Lund University, Lund, Sweden
| | - Xintang Wang
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
6
|
Ringleb M, Javelle F, Haunhorst S, Bloch W, Fennen L, Baumgart S, Drube S, Reuken PA, Pletz MW, Wagner H, Gabriel HHW, Puta C. Beyond muscles: Investigating immunoregulatory myokines in acute resistance exercise - A systematic review and meta-analysis. FASEB J 2024; 38:e23596. [PMID: 38597350 DOI: 10.1096/fj.202301619r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Myokines, released from the muscle, enable communication between the working muscles and other tissues. Their release during physical exercise is assumed to depend on immune-hormonal-metabolic interactions concerning mode (endurance or resistance exercise), duration, and intensity. This meta-analysis aims to examine the acute changes of circulating myokines inducing immunoregulatory effects caused by a bout of resistance exercise and to consider potential moderators of the results. Based on this selection strategy, a systematic literature search was conducted for resistance exercise intervention studies measuring interleukin (IL-) 6, IL-10, IL-1ra, tumor necrosis factor (TNF-) α, IL-15, IL-7, transforming growth factor (TGF-) β1, and fractalkines (FKN) before and immediately after resistance exercise in healthy individuals. Random-effects meta-analysis was performed for each myokine. We identified a moderate positive effect of resistance exercise for IL-6 and IL-1ra. Regarding IL-15 and TNF-α, small to moderate effects were found. For IL-10, no significant effect was observed. Due to no data, meta-analyses for IL-7, TGF-β1, and FKN could not be performed. No moderators (training status, type of exercise, risk of bias, age, sex, time of day, exercise volume, exercise intensity, exercise dose) of the results were detected for all tested myokines. Taken together, this systematic review and meta-analysis showed immediate positive effects of an acute resistance exercise session on IL-6, IL-1ra, TNF-α, and IL-15 levels.
Collapse
Affiliation(s)
- Miriam Ringleb
- Department of Movement Science, University of Münster, Münster, Germany
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany
| | - Florian Javelle
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Lena Fennen
- Department of Movement Science, University of Münster, Münster, Germany
| | - Sabine Baumgart
- Institute for Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sebastian Drube
- Institute for Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Philipp A Reuken
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Mathias W Pletz
- Institute for Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Heiko Wagner
- Department of Movement Science, University of Münster, Münster, Germany
| | - Holger H W Gabriel
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
7
|
Halle JL, Counts BR, Zhang Q, James KM, Puppa MJ, Alway SE, Carson JA. Mouse skeletal muscle adaptations to different durations of treadmill exercise after the cessation of FOLFOX chemotherapy. Front Physiol 2023; 14:1283674. [PMID: 38028800 PMCID: PMC10648895 DOI: 10.3389/fphys.2023.1283674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) chemotherapy is a treatment for colorectal cancer that can induce persistent fatigue and metabolic dysfunction. Regular exercise after chemotherapy cessation is widely recommended for cancer patients and has been shown to improve fatigue resistance in mice. However, gaps remain in understanding whether the early systemic and skeletal muscle adaptations to regular exercise are altered by prior FOLFOX chemotherapy treatment. Furthermore, the effects of exercise duration on early metabolic and skeletal muscle transcriptional adaptations are not fully established. Purpose: Investigate the effects of prior FOLFOX chemotherapy treatment on the early adaptations to repeated short- or long-duration treadmill exercise, including the fasting regulation of circulating metabolic regulators, skeletal muscle COXIV activity and myokine/exerkine gene expression in male mice. Methods: Male C57BL6/J mice completed 4 cycles of FOLFOX or PBS and were allowed to recover for 4-weeks. Subsets of mice performed 14 sessions (6 d/wk, 18 m/min, 5% grade) of short- (10 min/d) or long-duration (55 min/d) treadmill exercise. Blood plasma and muscle tissues were collected 48-72 h after the last exercise bout for biochemical analyses. Results: Long-duration exercise increased fasting plasma osteocalcin, LIF, and IL-6 in healthy PBS mice, and these changes were ablated by prior FOLFOX treatment. Slow-oxidative soleus muscle COXIV activity increased in response to long-duration exercise in PBS mice, which was blocked by prior FOLFOX treatment. Fast-glycolytic plantaris muscle COXIV activity increased with short-duration exercise independent of FOLFOX administration. There was a main effect for long-duration exercise to increase fasting muscle IL-6 and COXIV mRNA expression independent of FOLFOX. FOLFOX administration reduced muscle IL-6, LIF, and BDNF mRNA expression irrespective of long-duration exercise. Interestingly, short-duration exercise suppressed the FOLXOX induction of muscle myostatin mRNA expression. Conclusion: FOLFOX attenuated early exercise adaptations related to fasting circulating osteocalcin, LIF, and IL-6. However, prior FOLFOX treatment did not alter the exercise adaptations of plantaris muscle COXIV activity and plasma adiponectin. An improved understanding of mechanisms underlying exercise adaptations after chemotherapy will provide the basis for successfully treating fatigue and metabolic dysfunction in cancer survivors.
Collapse
Affiliation(s)
- Jessica L. Halle
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brittany R. Counts
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kylie M. James
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Melissa J. Puppa
- The University of Memphis, College of Health Sciences, Memphis, TN, United States
| | - Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
8
|
Cutuli D, Decandia D, Giacovazzo G, Coccurello R. Physical Exercise as Disease-Modifying Alternative against Alzheimer's Disease: A Gut-Muscle-Brain Partnership. Int J Mol Sci 2023; 24:14686. [PMID: 37834132 PMCID: PMC10572207 DOI: 10.3390/ijms241914686] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia characterized by neurodegenerative dysregulations, cognitive impairments, and neuropsychiatric symptoms. Physical exercise (PE) has emerged as a powerful tool for reducing chronic inflammation, improving overall health, and preventing cognitive decline. The connection between the immune system, gut microbiota (GM), and neuroinflammation highlights the role of the gut-brain axis in maintaining brain health and preventing neurodegenerative diseases. Neglected so far, PE has beneficial effects on microbial composition and diversity, thus providing the potential to alleviate neurological symptoms. There is bidirectional communication between the gut and muscle, with GM diversity modulation and short-chain fatty acid (SCFA) production affecting muscle metabolism and preservation, and muscle activity/exercise in turn inducing significant changes in GM composition, functionality, diversity, and SCFA production. This gut-muscle and muscle-gut interplay can then modulate cognition. For instance, irisin, an exercise-induced myokine, promotes neuroplasticity and cognitive function through BDNF signaling. Irisin and muscle-generated BDNF may mediate the positive effects of physical activity against some aspects of AD pathophysiology through the interaction of exercise with the gut microbial ecosystem, neural plasticity, anti-inflammatory signaling pathways, and neurogenesis. Understanding gut-muscle-brain interconnections hold promise for developing strategies to promote brain health, fight age-associated cognitive decline, and improve muscle health and longevity.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, University of Rome La Sapienza, 00185 Rome, Italy;
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Davide Decandia
- Department of Psychology, University of Rome La Sapienza, 00185 Rome, Italy;
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
| | - Giacomo Giacovazzo
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo (UniTE), 64100 Teramo, Italy
| | - Roberto Coccurello
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy;
- Institute for Complex Systems (ISC), National Council of Research (CNR), 00185 Rome, Italy
| |
Collapse
|
9
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
10
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
11
|
Vertyshev AY, Akberdin IR, Kolpakov FA. Numerous Trigger-like Interactions of Kinases/Protein Phosphatases in Human Skeletal Muscles Can Underlie Transient Processes in Activation of Signaling Pathways during Exercise. Int J Mol Sci 2023; 24:11223. [PMID: 37446402 DOI: 10.3390/ijms241311223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Optimizing physical training regimens to increase muscle aerobic capacity requires an understanding of the internal processes that occur during exercise that initiate subsequent adaptation. During exercise, muscle cells undergo a series of metabolic events that trigger downstream signaling pathways and induce the expression of many genes in working muscle fibers. There are a number of studies that show the dependence of changes in the activity of AMP-activated protein kinase (AMPK), one of the mediators of cellular signaling pathways, on the duration and intensity of single exercises. The activity of various AMPK isoforms can change in different directions, increasing for some isoforms and decreasing for others, depending on the intensity and duration of the load. This review summarizes research data on changes in the activity of AMPK, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and other components of the signaling pathways in skeletal muscles during exercise. Based on these data, we hypothesize that the observed changes in AMPK activity may be largely related to metabolic and signaling transients rather than exercise intensity per se. Probably, the main events associated with these transients occur at the beginning of the exercise in a time window of about 1-10 min. We hypothesize that these transients may be partly due to putative trigger-like kinase/protein phosphatase interactions regulated by feedback loops. In addition, numerous dynamically changing factors, such as [Ca2+], metabolite concentration, and reactive oxygen and nitrogen species (RONS), can shift the switching thresholds and change the states of these triggers, thereby affecting the activity of kinases (in particular, AMPK and CaMKII) and phosphatases. The review considers the putative molecular mechanisms underlying trigger-like interactions. The proposed hypothesis allows for a reinterpretation of the experimental data available in the literature as well as the generation of ideas to optimize future training regimens.
Collapse
Affiliation(s)
| | - Ilya R Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Fedor A Kolpakov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Biosoft.Ru, Ltd., 630058 Novosibirsk, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Lang CH. IMPORTANCE OF THE INNATE IMMUNE RESPONSE IN SKELETAL MUSCLE TO SEPSIS-INDUCED ALTERATIONS IN PROTEIN BALANCE. Shock 2023; 59:214-223. [PMID: 36730901 PMCID: PMC9957944 DOI: 10.1097/shk.0000000000002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT There is growing appreciation that skeletal muscle is a fully functional component of the body's innate immune system with the potential to actively participate in the host response to invading bacteria as opposed to being a passive target. In this regard, skeletal muscle in general and myocytes specifically possess an afferent limb that recognizes a wide variety of host pathogens via their interaction with multiple classes of cell membrane-bound and intracellular receptors, including toll-like receptors, cytokine receptors, NOD-like receptors, and the NLRP inflammasome. The efferent limb of the innate immune system in muscle is equally robust and with an increased synthesis and secretion of a variety of myocyte-derived cytokines (i.e., myokines), including TNF-α, IL-1, IL-6, and NO as well as multiple chemokines in response to appropriate stimulation. Herein, the current narrative review focuses primarily on the immune response of myocytes per se as opposed to other cell types within whole muscle. Moreover, because there are important differences, this review focuses specifically on systemic infection and inflammation as opposed to the response of muscle to direct injury and various types of muscular dystrophies. To date, however, there are few definitive muscle-specific studies that are necessary to directly address the relative importance of muscle-derived immune activation as a contributor to either the systemic immune response or the local immune microenvironment within muscle during sepsis and the resultant downstream metabolic disturbances.
Collapse
Affiliation(s)
- Charles H Lang
- Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
13
|
Nash D, Hughes MG, Butcher L, Aicheler R, Smith P, Cullen T, Webb R. IL-6 signaling in acute exercise and chronic training: Potential consequences for health and athletic performance. Scand J Med Sci Sports 2023; 33:4-19. [PMID: 36168944 PMCID: PMC10092579 DOI: 10.1111/sms.14241] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
The cytokine interleukin-6 (IL-6) is involved in a diverse set of physiological processes. Traditionally, IL-6 has been thought of in terms of its inflammatory actions during the acute phase response and in chronic conditions such as rheumatoid arthritis and obesity. However, IL-6 is also an important signaling molecule during exercise, being acutely released from working muscle fibers with increased exercise duration, intensity, and muscle glycogen depletion. In this context, IL-6 enables muscle-organ crosstalk, facilitating a coordinated response to help maintain muscle energy homeostasis, while also having anti-inflammatory actions. The range of actions of IL-6 can be explained by its dichotomous signaling pathways. Classical signaling involves IL-6 binding to a cell-surface receptor (mbIL-6R; present on only a small number of cell types) and is the predominant signaling mechanism during exercise. Trans-signaling involves IL-6 binding to a soluble version of its receptor (sIL-6R), with the resulting complex having a much greater half-life and the ability to signal in all cell types. Trans-signaling drives the inflammatory actions of IL-6 and is the predominant pathway in disease. A single nucleotide polymorphism (rs2228145) on the IL-6R gene can modify the classical/trans-signaling balance through increasing the levels of sIL-6R. This SNP has clinical significance, having been linked to inflammatory conditions such as rheumatoid arthritis and type 1 diabetes, as well as to the severity of symptoms experienced with COVID-19. This review will describe how acute exercise, chronic training and the rs2228145 SNP can modify the IL-6 signaling pathway and the consequent implications for health and athletic performance.
Collapse
Affiliation(s)
- Dan Nash
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Michael G Hughes
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Lee Butcher
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Rebecca Aicheler
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Paul Smith
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Tom Cullen
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Richard Webb
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
14
|
Domin R, Pytka M, Niziński J, Żołyński M, Zybek-Kocik A, Wrotkowska E, Zieliński J, Guzik P, Ruchała M. ATPase Inhibitory Factor 1-A Novel Marker of Cellular Fitness and Exercise Capacity? Int J Mol Sci 2022; 23:15303. [PMID: 36499630 PMCID: PMC9741029 DOI: 10.3390/ijms232315303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
ATPase inhibitory factor 1 is a myokine inhibiting the hydrolytic activity of mitochondrial adenosine triphosphate synthase and ecto-F1-ATPase on the surface of many cells. IF1 affects ATP metabolism in mitochondria and the extracellular space and upregulates glucose uptake in myocytes; these processes are essential in physical activity. It is unknown whether the IF1 serum concentration is associated with exercise capacity. This study explored the association between resting IF1 serum concentration and exercise capacity indices in healthy people. IF1 serum concentration was measured in samples collected at rest in 97 healthy amateur cyclists. Exercise capacity was assessed on a bike ergometer at the successive stages of the progressive cardiopulmonary exercise test (CPET). IF1 serum concentration was negatively and significantly correlated with oxygen consumption, oxygen pulse, and load at various CPET stages. A better exercise capacity was associated with lower circulating IF1. IF1 may reflect better cellular/mitochondrial energetic fitness, but there is uncertainty regarding how IF1 is released into the intravascular space. We speculate that lower IF1 concentration may reflect a better cellular/mitochondrial integrity, as this protein is bound more strongly with ATPases in mitochondria and cellular surfaces in people with higher exercise capacity.
Collapse
Affiliation(s)
- Remigiusz Domin
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| | - Michał Pytka
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
- Department of Cardiology, Intensive Therapy, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jan Niziński
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| | - Mikołaj Żołyński
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| | - Ariadna Zybek-Kocik
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jacek Zieliński
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland
| | - Przemysław Guzik
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
- Department of Cardiology, Intensive Therapy, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- University Centre for Sport and Medical Studies, Poznan University of Medical Sciences, 60-802 Poznan, Poland
| |
Collapse
|
15
|
Ahsan M, Garneau L, Aguer C. The bidirectional relationship between AMPK pathway activation and myokine secretion in skeletal muscle: How it affects energy metabolism. Front Physiol 2022; 13:1040809. [PMID: 36479347 PMCID: PMC9721351 DOI: 10.3389/fphys.2022.1040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2023] Open
Abstract
Myokines are peptides and proteins secreted by skeletal muscle cells, into the interstitium, or in the blood. Their regulation may be dependent or independent of muscle contraction to induce a variety of metabolic effects. Numerous myokines have been implicated in influencing energy metabolism via AMP-activated protein kinase (AMPK) signalling. As AMPK is centrally involved in glucose and lipid metabolism, it is important to understand how myokines influence its signalling, and vice versa. Such insight will better elucidate the mechanism of metabolic regulation during exercise and at rest. This review encompasses the latest research conducted on the relationship between AMPK signalling and myokines within skeletal muscles via autocrine or paracrine signalling.
Collapse
Affiliation(s)
- Mahdi Ahsan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Léa Garneau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
| | - Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University—Campus Outaouais, Gatineau, QC, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Li Y, He X, Lu X, Gong Z, Li Q, Zhang L, Yang R, Wu C, Huang J, Ding J, He Y, Liu W, Chen C, Cao B, Zhou D, Shi Y, Chen J, Wang C, Zhang S, Zhang J, Ye J, You H. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun 2022; 13:6350. [PMID: 36289222 PMCID: PMC9605963 DOI: 10.1038/s41467-022-34209-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
The methyltransferase like 3 (METTL3) has been generally recognized as a nuclear protein bearing oncogenic properties. We find predominantly cytoplasmic METTL3 expression inversely correlates with node metastasis in human cancers. It remains unclear if nuclear METTL3 is functionally distinct from cytosolic METTL3 in driving tumorigenesis and, if any, how tumor cells sense oncogenic insults to coordinate METTL3 functions within these intracellular compartments. Here, we report an acetylation-dependent regulation of METTL3 localization that impacts on metastatic dissemination. We identify an IL-6-dependent positive feedback axis to facilitate nuclear METTL3 functions, eliciting breast cancer metastasis. IL-6, whose mRNA transcript is subjected to METTL3-mediated m6A modification, promotes METTL3 deacetylation and nuclear translocation, thereby inducing global m6A abundance. This deacetylation-mediated nuclear shift of METTL3 can be counterbalanced by SIRT1 inhibition, a process that is further enforced by aspirin treatment, leading to ablated lung metastasis via impaired m6A methylation. Intriguingly, acetylation-mimetic METTL3 mutant reconstitution results in enhanced translation and compromised metastatic potential. Our study identifies an acetylation-dependent regulatory mechanism determining the subcellular localization of METTL3, which may provide mechanistic clues for developing therapeutic strategies to combat breast cancer metastasis.
Collapse
Affiliation(s)
- Yuanpei Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Xiaoniu He
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Xiao Lu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Zhicheng Gong
- grid.459328.10000 0004 1758 9149Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, China
| | - Qing Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Lei Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Ronghui Yang
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology, Capital Medical University, 100069 Beijing, China
| | - Chengyi Wu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Jialiang Huang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Jiancheng Ding
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Yaohui He
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Wen Liu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Ceshi Chen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
| | - Bin Cao
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, 361102 Xiamen, China
| | - Dawang Zhou
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Yufeng Shi
- grid.24516.340000000123704535Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, 200092 Shanghai, China
| | - Juxiang Chen
- grid.73113.370000 0004 0369 1660Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, 200433 Shanghai, China
| | - Chuangui Wang
- grid.412509.b0000 0004 1808 3414The Biomedical Translational Research Institute, School of Life Sciences, Shandong University of Technology, 255049 Zibo, China
| | - Shengping Zhang
- grid.16821.3c0000 0004 0368 8293Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620 Shanghai, China
| | - Jian Zhang
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi’an, China
| | - Jing Ye
- grid.233520.50000 0004 1761 4404Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032 Xi’an, China
| | - Han You
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| |
Collapse
|
17
|
Pinto AP, Muñoz VR, da Rocha AL, Rovina RL, Ferrari GD, Alberici LC, Simabuco FM, Teixeira GR, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, Freitas EC, Rivas DA, da Silva ASR. IL-6 deletion decreased REV-ERBα protein and influenced autophagy and mitochondrial markers in the skeletal muscle after acute exercise. Front Immunol 2022; 13:953272. [PMID: 36311768 PMCID: PMC9608639 DOI: 10.3389/fimmu.2022.953272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/27/2022] [Indexed: 01/28/2024] Open
Abstract
Interleukin 6 (IL-6) acts as a pro and anti-inflammatory cytokine, has an intense correlation with exercise intensity, and activates various pathways such as autophagy and mitochondrial unfolded protein response. Also, IL-6 is interconnected to circadian clock-related inflammation and can be suppressed by the nuclear receptor subfamily 1, group D, member 1 (Nr1d1, protein product REV-ERBα). Since IL-6 is linked to physical exercise-modulated metabolic pathways such as autophagy and mitochondrial metabolism, we investigated the relationship of IL-6 with REV-ERBα in the adaptations of these molecular pathways in response to acute intense physical exercise in skeletal muscle. The present study was divided into three experiments. In the first one, wild-type (WT) and IL-6 knockout (IL-6 KO) mice were divided into three groups: Basal time (Basal; sacrificed before the acute exercise), 1 hour (1hr post-Ex; sacrificed 1 hour after the acute exercise), and 3 hours (3hr post-Ex; sacrificed 3 hours after the acute exercise). In the second experiment, C2C12 cells received IL-6 physiological concentrations or REV-ERBα agonist, SR9009. In the last experiment, WT mice received SR9009 injections. After the protocols, the gastrocnemius muscle or the cells were collected for reverse transcription-quantitative polymerase chain reaction (RTq-PCR) and immunoblotting techniques. In summary, the downregulation of REV-ERBα, autophagic flux, and most mitochondrial genes was verified in the IL-6 KO mice independent of exercise. The WT and IL-6 KO treated with SR9009 showed an upregulation of autophagic genes. C2C12 cells receiving IL-6 did not modulate the Nr1d1 mRNA levels but upregulated the expression of some mitochondrial genes. However, when treated with SR9009, IL-6 and mitochondrial gene expression were upregulated in C2C12 cells. The autophagic flux in C2C12 suggest the participation of REV-ERBα protein in the IL-6-induced autophagy. In conclusion, the present study verified that the adaptations required through physical exercise (increases in mitochondrial content and improvement of autophagy machinery) might be intermediated by an interaction between IL-6 and REVERBα.
Collapse
Affiliation(s)
- Ana P. Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Vitor R. Muñoz
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Rafael L. Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Gustavo D. Ferrari
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo (FCFRP USP), Sao Paulo, Brazil
| | - Luciane C. Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo (FCFRP USP), Sao Paulo, Brazil
| | - Fernando M. Simabuco
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Giovana R. Teixeira
- Multicentric Program of Postgraduate in Physiological Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
- Department of Physical Education, State University of São Paulo (UNESP), São Paulo, Brazil
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Ellen C. Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Donato A. Rivas
- Multicentric Program of Postgraduate in Physiological Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Adelino S. R. da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
18
|
Faraldi M, Sansoni V, Perego S, Gomarasca M, Gerosa L, Ponzetti M, Rucci N, Banfi G, Lombardi G. Acute changes in free and extracellular vesicle-associated circulating miRNAs and myokine profile in professional sky-runners during the Gran Sasso d’Italia vertical run. Front Mol Biosci 2022; 9:915080. [PMID: 36090046 PMCID: PMC9459384 DOI: 10.3389/fmolb.2022.915080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
The modification of gene expression profile, a first step in adaptation to exercise, leads to changes in the level of molecules associated with skeletal muscle activity and energy metabolism—such as myokines—as well as those involved in their transcriptional regulation, like microRNA. This study aimed to investigate the influence of strenuous exercise on circulating microRNAs and their possible association with myokine response. Pre-competition and post-competition plasma samples were collected from 14 male athletes participating in a vertical run (+1,000 m gain, 3,600 m length). Circulating total (t-miRNA) and extracellular vesicle-associated (EV-miRNA) miRNAs were extracted from the pooled plasma. Nanoparticle tracking analysis was performed to investigate pre- and post-competition EV concentration and size distribution. A panel of 179 miRNAs was assayed by qPCR and analyzed by Exiqon GenEx v6 normalized on the global mean. t-miRNA and EV-miRNAs whose level was ≥5-fold up- or down-regulated were validated for each single subject. Target prediction on MirWalk v3.0, Gene-Ontology, and pathway enrichment analysis on Panther v17.0 were performed to define the potential biological role of the identified miRNAs. A panel of 14 myokines was assayed in each sample by a multiplex immunoassay. In whole plasma, five miRNAs were upregulated and two were downregulated; in the EV fraction, five miRNAs were upregulated and three were downregulated. Nanoparticle tracking analysis revealed a similar EV size distribution in pre- and post-competition samples and a decreased concentration in post-competition samples related to pre-competition samples. Gene-Ontology and pathway enrichment analysis revealed that the identified t-miRNAs and EV-miRNAs were potentially involved in metabolism regulation in response to exercise. Correlation between fold-change of the post-competition relative to pre-competition plasma level of both t-miRNAs and EV-miRNAs and myokines further confirmed these results. This study provides an example of a systemic response to acute endurance exercise, in which circulating miRNAs play a pivotal role.
Collapse
Affiliation(s)
- M. Faraldi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - V. Sansoni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - S. Perego
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- *Correspondence: S. Perego,
| | - M. Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - L. Gerosa
- Gruppo Ospedaliero San Donato Foundation, Milano, Italy
| | - M. Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - N. Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - G. Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - G. Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Polska
| |
Collapse
|
19
|
Zhang Y, Guo H, Zhang Z, Lu W, Zhu J, Shi J. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia. Exp Cell Res 2022; 415:113112. [DOI: 10.1016/j.yexcr.2022.113112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/04/2022]
|
20
|
Endothelial NOX5 Expression Modulates Thermogenesis and Lipolysis in Mice Fed with a High-Fat Diet and 3T3-L1 Adipocytes through an Interleukin-6 Dependent Mechanism. Antioxidants (Basel) 2021; 11:antiox11010030. [PMID: 35052534 PMCID: PMC8772862 DOI: 10.3390/antiox11010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is a global health issue associated with the development of metabolic syndrome, which correlates with insulin resistance, altered lipid homeostasis, and other pathologies. One of the mechanisms involved in the development of these pathologies is the increased production of reactive oxygen species (ROS). One of the main producers of ROS is the family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, among which NOX5 is the most recently discovered member. The aim of the present work is to describe the effect of endothelial NOX5 expression on neighboring adipose tissue in obesity conditions by using two systems. An in vivo model based on NOX5 conditional knock-in mice fed with a high-fat diet and an in vitro model developed with 3T3-L1 adipocytes cultured with conditioned media of endothelial NOX5-expressing bEnd.3 cells, previously treated with glucose and palmitic acid. Endothelial NOX5 expression promoted the expression and activation of specific markers of thermogenesis and lipolysis in the mesenteric and epididymal fat of those mice fed with a high-fat diet. Additionally, the activation of these processes was derived from an increase in IL-6 production as a result of NOX5 activity. Accordingly, 3T3-L1 adipocytes treated with conditioned media of endothelial NOX5-expressing cells, presented higher expression of thermogenic and lipolytic genes. Moreover, endothelial NOX5-expressing bEnd.3 cells previously treated with glucose and palmitic acid also showed interleukin (IL-6) production. Finally, it seems that the increase in IL-6 stimulated the activation of markers of thermogenesis and lipolysis through phosphorylation of STAT3 and AMPK, respectively. In conclusion, in response to obesogenic conditions, endothelial NOX5 activity could promote thermogenesis and lipolysis in the adipose tissue by regulating IL-6 production.
Collapse
|
21
|
|
22
|
Ali MM, McMillan RP, Fausnacht DW, Kavanaugh JW, Harvey MM, Stevens JR, Wu Y, Mynatt RL, Hulver MW. Muscle-Specific Deletion of Toll-like Receptor 4 Impairs Metabolic Adaptation to Wheel Running in Mice. Med Sci Sports Exerc 2021; 53:1161-1169. [PMID: 33315811 DOI: 10.1249/mss.0000000000002579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Toll-like receptor 4 (TLR4) is an inflammatory receptor expressed ubiquitously in immune cells as well as skeletal muscle and other metabolic tissues. Skeletal muscle develops favorable inflammation-mediated metabolic adaptations from exercise training. Multiple inflammatory myokines, downstream from TLR4, are proposed links to the metabolic benefits of exercise. In addition, activation of TLR4 alters skeletal muscle substrate preference. The role of skeletal muscle TLR4 (mTLR4) in exercise metabolism has not previously been investigated. Herein, we aimed to specifically test the significance of mTLR4 to exercise-induced metabolic adaptations. METHODS We developed a novel muscle-specific TLR4 knockout (mTLR4-/-) mouse model on C57BL/6J background. Male mTLR4-/- mice and wild-type (WT) littermates were compared under sedentary (SED) and voluntary wheel running (WR) conditions for 4 wk. RESULTS mTLR4 deletion revealed marked reductions in downstream interleukin-1 receptor-associated kinase-4 (IRAK4) phosphorylation. In addition, the disruption of mTLR4 signaling prominently blunted the metabolic adaptations in WR-mTLR4-/- mice as opposed to substantial improvements exhibited by the WT counterparts. Voluntary WR in WT mice, relative to SED, resulted in significant increases in skeletal muscle fatty acid oxidation, glucose oxidation, and associated mitochondrial enzyme activities, all of which were not significantly changed in mTLR4-/- mice. CONCLUSIONS This study introduces a novel mTLR4-/- mouse model and identifies mTLR4 as an immunomodulatory effector of exercise-induced metabolic adaptations in skeletal muscle.
Collapse
Affiliation(s)
- Mostafa M Ali
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | | | - Dane W Fausnacht
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | - John W Kavanaugh
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | - Mordecai M Harvey
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | - Joseph R Stevens
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | - Yaru Wu
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA
| | | | | |
Collapse
|
23
|
Abstract
Modern concepts about body composition in the elderly are described in the review. Particular attention is paid to possible causes and pathogenetic aspects of sarcopenia, as well as modern diagnostic approaches to its recognition. The ageing process is inevitably combined with diverse changes in body composition. This age-related evolution can be described by three main processes: a decrease in the growth and mineral density of bone tissue (osteopenia and osteoporosis); progressive decrease in muscle mass; an increase in adipose tissue (sarcopenia and sarcopenic obesity) with its redistribution towards central and visceral fat accumulation. Sarcopenia and osteoporosis are considered the main geriatric syndromes. These pathological conditions contribute to a significant decrease in the quality of life in the elderly; create conditions for the loss of independence and require long-term care, increase the frequency of hospitalizations and ultimately result in adverse outcomes.
Collapse
|
24
|
Hartung W, Sewerin P, Ostendorf B. [Sports and exercise therapy in inflammatory rheumatic diseases]. Z Rheumatol 2021; 80:251-262. [PMID: 33686450 DOI: 10.1007/s00393-021-00970-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Physical therapy has always been a pillar of the treatment of inflammatory rheumatic diseases in addition to targeted drug treatment; nevertheless, it is only established in the treatment guidelines for a few diseases. Within the last two decades the discovery of myokines has uncovered the physiological correlations of the anti-inflammatory effect of physical activity. For rheumatoid arthritis and spondylarthritis, several randomized controlled trials provide sufficient evidence to make well-founded recommendations. For connective tissue diseases (CTD) the data situation is clearly sparser but nevertheless shows that the positive effects of physical activity prevail. In the following article the authors present the most important clinical studies on sport and inflammatory rheumatic diseases and from these derive possible therapeutic recommendations.
Collapse
Affiliation(s)
- Wolfgang Hartung
- Asklepios Klinik Bad Abbach, Kaiser-Karl-V.-Allee 3, 93077, Bad Abbach, Deutschland.
| | | | | |
Collapse
|
25
|
Aerobic exercise and lipolysis: A review of the β-adrenergic signaling pathways in adipose tissue. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Effect of Various Exercise Regimens on Selected Exercise-Induced Cytokines in Healthy People. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031261. [PMID: 33572495 PMCID: PMC7908590 DOI: 10.3390/ijerph18031261] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
Different forms of physical activity—endurance, resistance or dynamic power—stimulate cytokine release from various tissues to the bloodstream. Receptors for exercise-induced cytokines are present in muscle tissue, adipose tissue, liver, brain, bones, cardiovascular system, immune system, pancreas, and skin. They have autocrine, paracrine and endocrine activities. Many of them regulate the myocyte growth and differentiation necessary for muscle hypertrophy and myogenesis. They also modify energy homeostasis, lipid, carbohydrate, and protein metabolism, regulate inflammation and exchange information (crosstalk) between remote organs. So far, interleukin 6 and irisin have been the best studied exercise-induced cytokines. However, many more can be grouped into myokines, hepatokines and adipomyokines. This review focuses on the less known exercise-induced cytokines such as myostatin, follistatin, decorin, brain-derived neurotrophic factor, fibroblast growth factor 21 and interleukin 15, and their relation to various forms of exercise, i.e., acute vs. chronic, regular training in healthy people.
Collapse
|
27
|
Wei X, Franke J, Ost M, Wardelmann K, Börno S, Timmermann B, Meierhofer D, Kleinridders A, Klaus S, Stricker S. Cell autonomous requirement of neurofibromin (Nf1) for postnatal muscle hypertrophic growth and metabolic homeostasis. J Cachexia Sarcopenia Muscle 2020; 11:1758-1778. [PMID: 33078583 PMCID: PMC7749575 DOI: 10.1002/jcsm.12632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a multi-organ disease caused by mutations in neurofibromin 1 (NF1). Amongst other features, NF1 patients frequently show reduced muscle mass and strength, impairing patients' mobility and increasing the risk of fall. The role of Nf1 in muscle and the cause for the NF1-associated myopathy are mostly unknown. METHODS To dissect the function of Nf1 in muscle, we created muscle-specific knockout mouse models for NF1, inactivating Nf1 in the prenatal myogenic lineage either under the Lbx1 promoter or under the Myf5 promoter. Mice were analysed during prenatal and postnatal myogenesis and muscle growth. RESULTS Nf1Lbx1 and Nf1Myf5 animals showed only mild defects in prenatal myogenesis. Nf1Lbx1 animals were perinatally lethal, while Nf1Myf5 animals survived only up to approximately 25 weeks. A comprehensive phenotypic characterization of Nf1Myf5 animals showed decreased postnatal growth, reduced muscle size, and fast fibre atrophy. Proteome and transcriptome analyses of muscle tissue indicated decreased protein synthesis and increased proteasomal degradation, and decreased glycolytic and increased oxidative activity in muscle tissue. High-resolution respirometry confirmed enhanced oxidative metabolism in Nf1Myf5 muscles, which was concomitant to a fibre type shift from type 2B to type 2A and type 1. Moreover, Nf1Myf5 muscles showed hallmarks of decreased activation of mTORC1 and increased expression of atrogenes. Remarkably, loss of Nf1 promoted a robust activation of AMPK with a gene expression profile indicative of increased fatty acid catabolism. Additionally, we observed a strong induction of genes encoding catabolic cytokines in muscle Nf1Myf5 animals, in line with a drastic reduction of white, but not brown adipose tissue. CONCLUSIONS Our results demonstrate a cell autonomous role for Nf1 in myogenic cells during postnatal muscle growth required for metabolic and proteostatic homeostasis. Furthermore, Nf1 deficiency in muscle drives cross-tissue communication and mobilization of lipid reserves.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julia Franke
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Kristina Wardelmann
- Junior Research Group Central Regulation of Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Potsdam, Germany
| | - Stefan Börno
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andre Kleinridders
- Junior Research Group Central Regulation of Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Sigmar Stricker
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
28
|
Wong CY, Al-Salami H, Dass CR. C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol 2020; 72:1667-1693. [PMID: 32812252 DOI: 10.1111/jphp.13359] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The myoblast cell line, C2C12, has been utilised extensively in vitro as an examination model in understanding metabolic disease progression. Although it is indispensable in both preclinical and pharmaceutical research, a comprehensive review of its use in the investigation of insulin resistance progression and pharmaceutical development is not available. KEY FINDINGS C2C12 is a well-documented model, which can facilitate our understanding in glucose metabolism, insulin signalling mechanism, insulin resistance, oxidative stress, reactive oxygen species and glucose transporters at cellular and molecular levels. With the aid of the C2C12 model, recent studies revealed that insulin resistance has close relationship with various metabolic diseases in terms of disease progression, pathogenesis and therapeutic management. A holistic, safe and effective disease management is highly of interest. Therefore, significant efforts have been paid to explore novel drug compounds and natural herbs that can elicit therapeutic effects in the targeted sites at both cellular (e.g. mitochondria, glucose transporter) and molecular level (e.g. genes, signalling pathway). SUMMARY The use of C2C12 myoblast cell line is meaningful in pharmaceutical and biomedical research due to their expression of GLUT-4 and other features that are representative to human skeletal muscle cells. With the use of the C2C12 cell model, the impact of drug delivery systems (nanoparticles and quantum dots) on skeletal muscle, as well as the relationship between exercise, pancreatic β-cells and endothelial cells, was discovered.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|
29
|
Liva SG, Tseng Y, Dauki AM, Sovic MG, Vu T, Henderson SE, Kuo Y, Benedict JA, Zhang X, Remaily BC, Kulp SK, Campbell M, Bekaii‐Saab T, Phelps MA, Chen C, Coss CC. Overcoming resistance to anabolic SARM therapy in experimental cancer cachexia with an HDAC inhibitor. EMBO Mol Med 2020; 12:e9910. [PMID: 31930715 PMCID: PMC7005646 DOI: 10.15252/emmm.201809910] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
No approved therapy exists for cancer-associated cachexia. The colon-26 mouse model of cancer cachexia mimics recent late-stage clinical failures of anabolic anti-cachexia therapy and was unresponsive to anabolic doses of diverse androgens, including the selective androgen receptor modulator (SARM) GTx-024. The histone deacetylase inhibitor (HDACi) AR-42 exhibited anti-cachectic activity in this model. We explored combined SARM/AR-42 therapy as an improved anti-cachectic treatment paradigm. A reduced dose of AR-42 provided limited anti-cachectic benefits, but, in combination with GTx-024, significantly improved body weight, hindlimb muscle mass, and grip strength versus controls. AR-42 suppressed the IL-6/GP130/STAT3 signaling axis in muscle without impacting circulating cytokines. GTx-024-mediated β-catenin target gene regulation was apparent in cachectic mice only when combined with AR-42. Our data suggest cachectic signaling in this model involves catabolic signaling insensitive to anabolic GTx-024 therapy and a blockade of GTx-024-mediated anabolic signaling. AR-42 mitigates catabolic gene activation and restores anabolic responsiveness to GTx-024. Combining GTx-024, a clinically established anabolic therapy, with AR-42, a clinically evaluated HDACi, represents a promising approach to improve anabolic response in cachectic patients.
Collapse
Affiliation(s)
- Sophia G Liva
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Yu‐Chou Tseng
- Division of Medicinal Chemistry and PharmacognosyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Anees M Dauki
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Michael G Sovic
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Trang Vu
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Sally E Henderson
- Department of Veterinary BiosciencesCollege of Veterinary MedicineOhio State UniversityColumbusOHUSA
| | - Yi‐Chiu Kuo
- Division of Medicinal Chemistry and PharmacognosyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Jason A Benedict
- Center for BiostatisticsDepartment of Biomedical InformaticsThe Ohio State UniversityColumbusOHUSA
| | - Xiaoli Zhang
- Center for BiostatisticsDepartment of Biomedical InformaticsThe Ohio State UniversityColumbusOHUSA
| | - Bryan C Remaily
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Samuel K Kulp
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
| | - Moray Campbell
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
- The Ohio State University Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| | | | - Mitchell A Phelps
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
- The Ohio State University Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| | - Ching‐Shih Chen
- Division of Medicinal Chemistry and PharmacognosyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityTaichungTaiwan
| | - Christopher C Coss
- Division of Pharmaceutics and PharmacologyCollege of PharmacyThe Ohio State UniversityColumbusOHUSA
- The Ohio State University Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
30
|
Kristóf E, Klusóczki Á, Veress R, Shaw A, Combi ZS, Varga K, Győry F, Balajthy Z, Bai P, Bacso Z, Fésüs L. Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp Cell Res 2019; 377:47-55. [PMID: 30794803 DOI: 10.1016/j.yexcr.2019.02.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
Brown and beige adipocytes contribute significantly to the regulation of whole body energy expenditure and systemic metabolic homeostasis not exclusively by thermogenesis through mitochondrial uncoupling. Several studies have provided evidence in rodents that brown and beige adipocytes produce a set of adipokines ("batokines") which regulate local tissue homeostasis and have beneficial effects on physiological functions of the entire body. We observed elevated secretion of Interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1, but not tumor necrosis factor alpha (TNFα) or IL-1β pro-inflammatory cytokines, by ex vivo differentiating human beige adipocytes (induced by either PPARγ agonist or irisin) compared to white. Higher levels of IL-6, IL-8 and MCP-1 were released from human deep neck adipose tissue biopsies (enriched in browning cells) than from subcutaneous ones. IL-6 was produced in a sustained manner and mostly by the adipocytes and not by the undifferentiated progenitors. Continuous blocking of IL-6 receptor by specific antibody during beige differentiation resulted in downregulation of brown marker genes and increased morphological changes that are characteristic of white adipocytes. The data suggest that beige adipocytes adjust their production of IL-6 to reach an optimal level for differentiation in the medium enhancing browning in an autocrine manner.
Collapse
Affiliation(s)
- Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Ágnes Klusóczki
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Roland Veress
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Abhirup Shaw
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Zsolt Sándor Combi
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Klára Varga
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Ferenc Győry
- Department of Surgery, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Zoltán Balajthy
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Péter Bai
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Faculty of Medicine, Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, University of Debrecen, Faculties of Medicine and Pharmacy, Debrecen, Hungary
| | - László Fésüs
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary; MTA-DE Stem Cells, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary.
| |
Collapse
|
31
|
Kim S, Choi JY, Moon S, Park DH, Kwak HB, Kang JH. Roles of myokines in exercise-induced improvement of neuropsychiatric function. Pflugers Arch 2019; 471:491-505. [PMID: 30627775 DOI: 10.1007/s00424-019-02253-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 01/28/2023]
Abstract
Exercise is a well-known non-pharmacological intervention to improve brain functions, including cognition, memory, and motor coordination. Contraction of skeletal muscles during exercise releases humoral factors that regulate the whole-body metabolism via interaction with other non-muscle organs. Myokines are muscle-derived effectors that regulate body metabolism by autocrine, paracrine, or endocrine action and were reportedly suggested as "exercise factors" that can improve the brain function. However, several aspects remain to be elucidated, namely the specific activities of myokines related to the whole-body metabolism or brain function, the mechanisms of regulation of other organs or cells, the sources of "exercise factors" that regulate brain function, and their mechanisms of interaction with non-muscle organs. In this paper, we present the physiological functions of myokines secreted by exercise, including regulation of the whole-body metabolism by interaction with other organs and adaptation of skeletal muscles to exercise. In addition, we discuss the functions of myokines that possibly contribute to exercise-induced improvement of brain function. Among several myokines, brain-derived neurotrophic factor (BDNF) is the most studied myokine that regulates adult neurogenesis and synaptic plasticity. However, the source of circulating BDNF and its upstream effector, insulin-like growth factor (IGF-1), and irisin and the effect size of peripheral BDNF, irisin, and IGF-1 released after exercise should be further investigated. Recently, cathepsin B has been reported to be secreted from skeletal muscles and upregulate BDNF following exercise, which was associated with improved cognitive function. We reviewed the level of evidence for the effect of myokine on the brain function. Level of evidence for the association of the change in circulating myokine following exercise and improvement of neuropsychiatric function is lower than the level of evidence for the benefit of exercise on the brain. Therefore, more clinical evidences for the association of myokine release after exercise and their effect on the brain function are required. Finally, we discuss the effect size of the action of myokines on cognitive benefits of exercise, in addition to other contributors, such as improvement of the cardiovascular system or the effect of "exercise factors" released from non-muscle organs, particularly in patients with sarcopenia.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Ji-Young Choi
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
32
|
Ramezani J, Azarbayjani MA, Peeri M. Simultaneous Effects of Aerobic Training and Berberine Chloride on Plasma Glucose, IL-6 and TNF-α in Type 1 Diabetic Male Wistar Rats. NUTRITION AND FOOD SCIENCES RESEARCH 2019. [DOI: 10.29252/nfsr.6.1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
33
|
de Carvalho Marchesin J, Celiberto LS, Orlando AB, de Medeiros AI, Pinto RA, Zuanon JAS, Spolidorio LC, dos Santos A, Taranto MP, Cavallini DCU. A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes - An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3805-3823. [PMID: 30251697 DOI: 10.1016/j.bbadis.2018.08.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes has traditionally been viewed as a metabolic disorder characterised by chronic high glucose levels, insulin resistance, and declining insulin secretion from the pancreas. Modern lifestyle, with abundant nutrient supply and reduced physical activity, has resulted in dramatic increases in the rates of obesity-associated disease conditions, including diabetes. The associated excess of nutrients induces a state of systemic low-grade chronic inflammation that results from production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. Here, we review the mechanisms by which obesity induces adipose tissue dysregulation, detailing the roles of adipose tissue secreted factors and their action upon other cells and tissues central to glucose homeostasis and type 2 diabetes. Furthermore, given the emerging importance of adipokines, cytokines and chemokines in disease progression, we suggest that type 2 diabetes should now be viewed as an autoinflammatory disease, albeit one that is driven by metabolic dysregulation.
Collapse
Affiliation(s)
- Laura L Gonzalez
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karin Garrie
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
35
|
Chen XL, Wang Y, Peng WW, Zheng YJ, Zhang TN, Wang PJ, Huang JD, Zeng QY. Effects of interleukin-6 and IL-6/AMPK signaling pathway on mitochondrial biogenesis and astrocytes viability under experimental septic condition. Int Immunopharmacol 2018; 59:287-294. [PMID: 29674256 DOI: 10.1016/j.intimp.2018.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Interleukin-6 (IL-6) is a neuromodulation factor with extensive and complex biological activities. IL-6 has been reported to activate AMPK, while AMPK regulates mitochondrial biogenesis and autophagy. The aim of this study was to investigate the role of IL-6 in mitochondrial biogenesis using astrocytes under experimental septic condition and examined how IL-6/AMPK signaling pathway affected this process. METHODS The primary cultures of cerebral cortical astrocytes were randomly allocated into six groups: control group, LPS+IFN-γ group, IL-6 group (LPS+IFN-γ+IL-6), C group (LPS+IFN-γ+IL-6+Compound C), siRNA group (LPS+IFN-γ+IL-6+IL-6R siRNA) and siRNA+C group (LPS+IFN-γ+IL-6+IL-6R siRNA+ Compound C). All groups were stimulated for 6 h. Cytokines and reactive oxygen species (ROS) analyses, detection of adenosine triphosphate (ATP), mtDNA content and cell viability, evaluation of the mitochondrial ultrastructure and volume density, western blots of proteins associated with mitochondrial biogenesis and phospho-adenosine monophosphate activated protein kinase (p-AMPK) were performed respectively. RESULTS Compared with LPS+IFN-γ group, IL-6 group had milder ultrastructural damage of mitochondria, higher mtDNA content and mitochondrial volume density, higher expression of proteins associated with mitochondrial biogenesis (PGC-1α, NRF-1 and TFAM) and p-AMPK, and thus higher cell viability, whereas blocking IL-6/AMPK signaling pathway, the protective effect of IL-6 has been diminished, compared with IL-6 group. CONCLUSION IL-6 enhances mitochondrial biogenesis in astrocytes under experimental septic condition through IL-6/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xiao-Lan Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wan-Wan Peng
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Jun Zheng
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Tian-Nan Zhang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Ping-Jun Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Da Huang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Qi-Yi Zeng
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
36
|
MORAIS GP, DA ROCHA A, PINTO AP, DA C. OLIVEIRA L, DE VICENTE LG, FERREIRA GN, DE FREITAS EC, DA SILVA ASR. Uphill Running Excessive Training Increases Gastrocnemius Glycogen Content in C57BL/6 Mice. Physiol Res 2018; 67:107-115. [PMID: 29137482 DOI: 10.33549/physiolres.933614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The main aim of the present investigation was to verify the effects of three overtraining (OT) protocols performed in downhill (OTR/down), uphill (OTR/up) and without inclination (OTR) on the protein levels of Akt (Ser473), AMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4 as well as on the glycogen contents in mice gastrocnemius. A trained (TR) protocol was used as positive control. Rodents were divided into naïve (N, sedentary mice), control (CT, sedentary mice submitted to the performance evaluations), TR, OTR/down, OTR/up and OTR groups. At the end of the experimental protocols, gastrocnemius samples were removed and used for immunoblotting analysis as well as for glycogen measurements. There was no significant difference between the experimental groups for the protein levels of pAkt (Ser473), pAMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4. However, the OTR/up protocol exhibited higher contents of glycogen compared to the CT and TR groups. In summary, the OTR/up group increased the gastrocnemius glycogen content without significant changes of pAkt (Ser473), pAMPKα (Thr172), PGC-1α, plasma membrane GLUT-1 and GLUT-4.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A. S. R. DA SILVA
- Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
37
|
Fix DK, Hardee JP, Gao S, VanderVeen BN, Velázquez KT, Carson JA. Role of gp130 in basal and exercise-trained skeletal muscle mitochondrial quality control. J Appl Physiol (1985) 2018; 124:1456-1470. [PMID: 29389248 DOI: 10.1152/japplphysiol.01063.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The IL-6 cytokine family activates intracellular signaling pathways through glycoprotein-130 (gp130), and this signaling has established regulatory roles in muscle glucose metabolism and proteostasis. Although the IL-6 family has been implicated as myokines regulating the muscles' metabolic response to exercise, gp130's role in mitochondrial quality control involving fission, fusion, mitophagy, and biogenesis is not well understood. Therefore, we examined gp130's role in basal and exercise-trained muscle mitochondrial quality control. Muscles from C57BL/6, skeletal muscle-specific gp130 knockout (KO) mice, and C2C12 myotubes, were examined. KO did not alter treadmill run-to-fatigue or indices of mitochondrial content [cytochrome- c oxidase (COX) activity] or biogenesis (AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α, mitochondrial transcription factor A, and COX IV). KO increased mitochondrial fission 1 protein (FIS-1) while suppressing mitofusin-1 (MFN-1), which was recapitulated in myotubes after gp130 knockdown. KO induced ubiquitin-binding protein p62, Parkin, and ubiquitin in isolated mitochondria from gastrocnemius muscles. Knockdown of gp130 in myotubes suppressed STAT3 and induced accumulation of microtubule-associated protein-1 light chain 3B (LC3)-II relative to LC3-I. Suppression of myotube STAT3 did not alter FIS-1 or MFN-1. Exercise training increased muscle gp130 and suppressed STAT3. KO did not alter the exercise-training induction of COX activity, biogenesis, FIS-1, or Beclin-1. KO increased MFN-1 and suppressed 4-hydroxynonenal after exercise training. These findings suggest a role for gp130 in the modulation of mitochondrial dynamics and autophagic processes. NEW & NOTEWORTHY Although the IL-6 family of cytokines has been implicated in the regulation of skeletal muscle protein turnover and metabolism, less is understood about its role in mitochondrial quality control. We examined the glycoprotein-130 receptor in the regulation of skeletal muscle mitochondria quality control in the basal and exercise-trained states. We report that the muscle glycoprotein-130 receptor modulates basal mitochondrial dynamics and autophagic processes and is not necessary for exercise-training mitochondrial adaptations to quality control.
Collapse
Affiliation(s)
- Dennis K Fix
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina , Columbia, South Carolina
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina , Columbia, South Carolina
| | - Song Gao
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina , Columbia, South Carolina
| | - Brandon N VanderVeen
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina , Columbia, South Carolina
| | - Kandy T Velázquez
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina , Columbia, South Carolina.,Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina , Columbia, South Carolina
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Department of Exercise Science, University of South Carolina , Columbia, South Carolina.,Center for Colon Cancer Research, University of South Carolina , Columbia, South Carolina
| |
Collapse
|
38
|
Rovira M, Arrey G, Planas JV. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish. Front Physiol 2017; 8:1063. [PMID: 29326600 PMCID: PMC5741866 DOI: 10.3389/fphys.2017.01063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR) and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK) was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest improved aerobic capacity as a result of swimming-induced exercise. Finally, the induction of myokine expression by swimming-induced exercise support the hypothesis that these myokines may have been produced and secreted by the exercised zebrafish muscle and acted on fast muscle cells to promote metabolic remodeling. These results support the use of zebrafish as a suitable model for studies on muscle remodeling in vertebrates, including humans.
Collapse
Affiliation(s)
- Mireia Rovira
- Departament de Biologia Cel·lular, Facultat de Biologia, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain
| | - Gerard Arrey
- Departament de Biologia Cel·lular, Facultat de Biologia, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain
| | - Josep V Planas
- Departament de Biologia Cel·lular, Facultat de Biologia, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Knudsen JG, Gudiksen A, Bertholdt L, Overby P, Villesen I, Schwartz CL, Pilegaard H. Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise. PLoS One 2017; 12:e0189301. [PMID: 29253016 PMCID: PMC5734691 DOI: 10.1371/journal.pone.0189301] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism.
Collapse
Affiliation(s)
- Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JGK); (HP)
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Bertholdt
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Overby
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Villesen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Camilla L. Schwartz
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JGK); (HP)
| |
Collapse
|
40
|
The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2017; 41:14-29. [DOI: 10.1007/s12272-017-0994-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
41
|
Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Res Rev 2017; 36:1-10. [PMID: 28223244 DOI: 10.1016/j.arr.2017.01.006] [Citation(s) in RCA: 357] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Frailty is a common negative consequence of ageing. Sarcopenia, the syndrome of loss of muscle mass, quality and strength, is more common in older adults and has been considered a precursor syndrome or the physical manifestation of frailty. The pathophysiology of both syndromes is incompletely described with multiple causes, inter-relationships and complex pathways proposed. Age-associated changes to the immune system (both immunesenescence, the decline in immune function with ageing, and inflammageing, a state of chronic inflammation) have been suggested as contributors to sarcopenia and frailty but a direct causative role remains to be established. Frailty, sarcopenia and immunesenescence are commonly described in older adults but are not ubiquitous to ageing. There is evidence that all three conditions are reversible and all three appear to share common inflammatory drivers. It is unclear whether frailty, sarcopenia and immunesenescence are separate entities that co-occur due to coincidental or potentially confounding factors, or whether they are more intimately linked by the same underlying cellular mechanisms. This review explores these possibilities focusing on innate immunity, and in particular associations with neutrophil dysfunction, inflammation and known mechanisms described to date. Furthermore, we consider whether the age-related decline in immune cell function (such as neutrophil migration), increased inflammation and the dysregulation of the phosphoinositide 3-kinase (PI3K)-Akt pathway in neutrophils could contribute pathogenically to sarcopenia and frailty.
Collapse
|
42
|
Hermanns HM, Wohlfahrt J, Mais C, Hergovits S, Jahn D, Geier A. Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction. Biol Chem 2017; 397:695-708. [PMID: 27071147 DOI: 10.1515/hsz-2015-0277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
The pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) are key players of the innate and adaptive immunity. Their activity needs to be tightly controlled to allow the initiation of an appropriate immune response as defense mechanism against pathogens or tissue injury. Excessive or sustained signaling of either of these cytokines leads to severe diseases, including rheumatoid arthritis, inflammatory bowel diseases (Crohn's disease, ulcerative colitis), steatohepatitis, periodic fevers and even cancer. Studies carried out in the last 30 years have emphasized that an elaborate control system for each of these cytokines exists. Here, we summarize what is currently known about the involvement of receptor endocytosis in the regulation of these pro-inflammatory cytokines' signaling cascades. Particularly in the last few years it was shown that this cellular process is far more than a mere feedback mechanism to clear cytokines from the circulation and to shut off their signal transduction.
Collapse
|
43
|
Clark A, Mach N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front Physiol 2017; 8:319. [PMID: 28579962 PMCID: PMC5437217 DOI: 10.3389/fphys.2017.00319] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
Many physiological changes occur in response to endurance exercise in order to adapt to the increasing energy needs, mitochondria biogenesis, increased reactive oxygen species (ROS) production and acute inflammatory responses. Mitochondria are organelles within each cell that are crucial for ATP production and are also a major producer of ROS and reactive nitrogen species during intense exercise. Recent evidence shows there is a bidirectional interaction between mitochondria and microbiota. The gut microbiota have been shown to regulate key transcriptional co-activators, transcription factors and enzymes involved in mitochondrial biogenesis such as PGC-1α, SIRT1, and AMPK genes. Furthermore, the gut microbiota and its metabolites, such as short chain fatty acids and secondary bile acids, also contribute to host energy production, ROS modulation and inflammation in the gut by attenuating TNFα- mediated immune responses and inflammasomes such as NLRP3. On the other hand, mitochondria, particularly mitochondrial ROS production, have a crucial role in regulating the gut microbiota via modulating intestinal barrier function and mucosal immune responses. Recently, it has also been shown that genetic variants within the mitochondrial genome, could affect mitochondrial function and therefore the intestinal microbiota composition and activity. Diet is also known to dramatically modulate the composition of the gut microbiota. Therefore, studies targeting the gut microbiota can be useful for managing mitochondrial related ROS production, pro-inflammatory signals and metabolic limits in endurance athletes.
Collapse
Affiliation(s)
- Allison Clark
- Health Science Department, Open University of CataloniaBarcelona, Spain
| | - Núria Mach
- Health Science Department, Open University of CataloniaBarcelona, Spain.,UMR 1313, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
44
|
Pettersen K, Andersen S, Degen S, Tadini V, Grosjean J, Hatakeyama S, Tesfahun AN, Moestue S, Kim J, Nonstad U, Romundstad PR, Skorpen F, Sørhaug S, Amundsen T, Grønberg BH, Strasser F, Stephens N, Hoem D, Molven A, Kaasa S, Fearon K, Jacobi C, Bjørkøy G. Cancer cachexia associates with a systemic autophagy-inducing activity mimicked by cancer cell-derived IL-6 trans-signaling. Sci Rep 2017; 7:2046. [PMID: 28515477 PMCID: PMC5435723 DOI: 10.1038/s41598-017-02088-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
The majority of cancer patients with advanced disease experience weight loss, including loss of lean body mass. Severe weight loss is characteristic for cancer cachexia, a condition that significantly impairs functional status and survival. The underlying causes of cachexia are incompletely understood, and currently no therapeutic approach can completely reverse the condition. Autophagy coordinates lysosomal destruction of cytosolic constituents and is systemically induced by starvation. We hypothesized that starvation-mimicking signaling compounds secreted from tumor cells may cause a systemic acceleration of autophagy during cachexia. We found that IL-6 secreted by tumor cells accelerates autophagy in myotubes when complexed with soluble IL-6 receptor (trans-signaling). In lung cancer patients, were cachexia is prevalent, there was a significant correlation between elevated IL-6 expression in the tumor and poor prognosis of the patients. We found evidence for an autophagy-inducing bioactivity in serum from cancer patients and that this is clearly associated with weight loss. Importantly, the autophagy-inducing bioactivity was reduced by interference with IL-6 trans-signaling. Together, our findings suggest that IL-6 trans-signaling may be targeted in cancer cachexia.
Collapse
Affiliation(s)
- Kristine Pettersen
- Department of Medical Laboratory Technology, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Sonja Andersen
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Simone Degen
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Valentina Tadini
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Joël Grosjean
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Shinji Hatakeyama
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Almaz N Tesfahun
- Department of Medical Laboratory Technology, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Siver Moestue
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jana Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Unni Nonstad
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Pål R Romundstad
- Department of Public Health and General Practice, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Frank Skorpen
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway.,European Palliative Care Research Centre, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Sveinung Sørhaug
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Department of Thoracic Medicine, St.Olavs Hospital - Trondheim University Hospital, 7006, Trondheim, Norway
| | - Tore Amundsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Department of Thoracic Medicine, St.Olavs Hospital - Trondheim University Hospital, 7006, Trondheim, Norway
| | - Bjørn H Grønberg
- The Cancer Clinic, St.Olavs Hospital - Trondheim University Hospital, 7030, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Florian Strasser
- Oncological Palliative Medicine, Division ofClinic Oncology/Hematology, Department of Internal Medicine and Palliative Care Center, Cantonal Hospital, St. Gallen, Switzerland
| | - Nathan Stephens
- Clinical and Surgical Sciences, School of Clinical Sciences and Community Health, The University of Edinburgh, Royal Infirmary, N-5021, Edinburgh, UK
| | - Dag Hoem
- Department of Gastrointestinal Surgery, Haukeland University Hospital, N-5020, Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5021, Bergen, Norway
| | - Stein Kaasa
- European Palliative Care Research Centre, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway.,The Cancer Clinic, St.Olavs Hospital - Trondheim University Hospital, 7030, Trondheim, Norway
| | - Kenneth Fearon
- European Palliative Care Research Centre, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway.,Clinical and Surgical Sciences, School of Clinical Sciences and Community Health, The University of Edinburgh, Royal Infirmary, N-5021, Edinburgh, UK
| | - Carsten Jacobi
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland.
| | - Geir Bjørkøy
- Department of Medical Laboratory Technology, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway. .,Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway.
| |
Collapse
|
45
|
Interleukin-6 increases the expression and activity of insulin-degrading enzyme. Sci Rep 2017; 7:46750. [PMID: 28429777 PMCID: PMC5399448 DOI: 10.1038/srep46750] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/21/2017] [Indexed: 12/23/2022] Open
Abstract
Impairment of the insulin-degrading enzyme (IDE) is associated with obesity and type 2 diabetes mellitus (T2DM). Here, we used 4-mo-old male C57BL/6 interleukin-6 (IL-6) knockout mice (KO) to investigate the role of this cytokine on IDE expression and activity. IL-6 KO mice displayed lower insulin clearance in the liver and skeletal muscle, compared with wild type (WT), due to reduced IDE expression and activity. We also observed that after 3-h incubation, IL-6, 50 and 100 ng ml−1, increased the expression of IDE in HEPG2 and C2C12 cells, respectively. In addition, during acute exercise, the inhibition of IL-6 prevented an increase in insulin clearance and IDE expression and activity, mainly in the skeletal muscle. Finally, IL-6 and IDE concentrations were significantly increased in plasma from humans, after an acute exercise, compared to pre-exercise values. Although the increase in plasma IDE activity was only marginal, a positive correlation between IL-6 and IDE activity, and between IL-6 and IDE protein expression, was observed. Our outcomes indicate a novel function of IL-6 on the insulin metabolism expanding the possibilities for new potential therapeutic strategies, focused on insulin degradation, for the treatment and/or prevention of diseases related to hyperinsulinemia, such as obesity and T2DM.
Collapse
|
46
|
Monje FJ, Cicvaric A, Acevedo Aguilar JP, Elbau I, Horvath O, Diao W, Glat M, Pollak DD. Disrupted Ultradian Activity Rhythms and Differential Expression of Several Clock Genes in Interleukin-6-Deficient Mice. Front Neurol 2017; 8:99. [PMID: 28382017 PMCID: PMC5360714 DOI: 10.3389/fneur.2017.00099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
The characteristics of the cycles of activity and rest stand out among the most intensively investigated aspects of circadian rhythmicity in humans and experimental animals. Alterations in the circadian patterns of activity and rest are strongly linked to cognitive and emotional dysfunctions in severe mental illnesses such as Alzheimer’s disease (AD) and major depression (MDD). The proinflammatory cytokine interleukin 6 (IL-6) has been prominently associated with the pathogenesis of AD and MDD. However, the potential involvement of IL-6 in the modulation of the diurnal rhythms of activity and rest has not been investigated. Here, we set out to study the role of IL-6 in circadian rhythmicity through the characterization of patterns of behavioral locomotor activity in IL-6 knockout (IL-6 KO) mice and wild-type littermate controls. Deletion of IL-6 did not alter the length of the circadian period or the amount of locomotor activity under either light-entrained or free-running conditions. IL-6 KO mice also presented a normal phase shift in response to light exposure at night. However, the temporal architecture of the behavioral rhythmicity throughout the day, as characterized by the quantity of ultradian activity bouts, was significantly impaired under light-entrained and free-running conditions in IL-6 KO. Moreover, the assessment of clock gene expression in the hippocampus, a brain region involved in AD and depression, revealed altered levels of cry1, dec2, and rev-erb-beta in IL-6 KO mice. These data propose that IL-6 participates in the regulation of ultradian activity/rest rhythmicity and clock gene expression in the mammalian brain. Furthermore, we propose IL-6-dependent circadian misalignment as a common pathogenetic principle in some neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Juan Pablo Acevedo Aguilar
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Immanuel Elbau
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Max Planck Institute of Psychiatry, Munich, Germany
| | - Orsolya Horvath
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Weifei Diao
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Micaela Glat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
47
|
Gudiksen A, Bertholdt L, Vingborg MB, Hansen HW, Ringholm S, Pilegaard H. Muscle interleukin-6 and fasting-induced PDH regulation in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2017; 312:E204-E214. [PMID: 28028037 DOI: 10.1152/ajpendo.00291.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/22/2022]
Abstract
Fasting prompts a metabolic shift in substrate utilization from carbohydrate to predominant fat oxidation in skeletal muscle, and pyruvate dehydrogenase (PDH) is seen as a controlling link between the competitive oxidation of carbohydrate and fat during metabolic challenges like fasting. Interleukin (IL)-6 has been proposed to be released from muscle with concomitant effects on both glucose and fat utilization. The aim was to test the hypothesis that muscle IL-6 has a regulatory impact on fasting-induced suppression of skeletal muscle PDH. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) were either fed or fasted for 6 or 18 h. Lack of muscle IL-6 elevated the respiratory exchange ratio in the fed and early fasting state, but not with prolonged fasting. Activity of PDH in the active form (PDHa) was higher in fed and fasted IL-6 MKO than in control mice at 18 h, but not at 6 h, whereas lack of muscle IL-6 did not prevent downregulation of PDHa activity in skeletal muscle or changes in plasma and muscle substrate levels in response to 18 h of fasting. Phosphorylation of three of four sites on PDH-E1α increased with 18 h of fasting, but was lower in IL-6 MKO mice than in control. In addition, both PDK4 mRNA and protein increased with 6 and 18 h of fasting in both genotypes, but PDK4 protein was lower in IL-6 MKO than in control. In conclusion, skeletal muscle IL-6 seems to regulate whole body substrate utilization in the fed, but not fasted, state and influence skeletal muscle PDHa activity in a circadian manner. However, skeletal muscle IL-6 is not required for maintaining metabolic flexibility in response to fasting.
Collapse
Affiliation(s)
- Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laerke Bertholdt
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Birkkjaer Vingborg
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Watson Hansen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Ringholm
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 2017; 74:1-20. [PMID: 28093238 DOI: 10.1016/j.neubiorev.2017.01.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
|
49
|
Cox AA, Sagot Y, Hedou G, Grek C, Wilkes T, Vinik AI, Ghatnekar G. Low-Dose Pulsatile Interleukin-6 As a Treatment Option for Diabetic Peripheral Neuropathy. Front Endocrinol (Lausanne) 2017; 8:89. [PMID: 28512447 PMCID: PMC5411416 DOI: 10.3389/fendo.2017.00089] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 01/27/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) remains one of the most common and serious complications of diabetes. Currently, pharmacological agents are limited to treating the pain associated with DPN, and do not address the underlying pathological mechanisms driving nerve damage, thus leaving a significant unmet medical need. Interestingly, research conducted using exercise as a treatment for DPN has revealed interleukin-6 (IL-6) signaling to be associated with many positive benefits such as enhanced blood flow and lipid metabolism, decreased chronic inflammation, and peripheral nerve fiber regeneration. IL-6, once known solely as a pro-inflammatory cytokine, is now understood to signal as a multifunctional cytokine, capable of eliciting both pro- and anti-inflammatory responses in a context-dependent fashion. IL-6 released from muscle in response to exercise signals as a myokine and as such has a unique kinetic profile, whereby levels are transiently elevated up to 100-fold and return to baseline levels within 4 h. Importantly, this kinetic profile is in stark contrast to long-term IL-6 elevation that is associated with pro-inflammatory states. Given exercise induces IL-6 myokine signaling, and exercise has been shown to elicit numerous beneficial effects for the treatment of DPN, a causal link has been suggested. Here, we discuss both the clinical and preclinical literature related to the application of IL-6 as a treatment strategy for DPN. In addition, we discuss how IL-6 may directly modulate Schwann and nerve cells to explore a mechanistic understanding of how this treatment elicits a neuroprotective and/or regenerative response. Collectively, studies suggest that IL-6, when administered in a low-dose pulsatile strategy to mimic the body's natural response to exercise, may prove to be an effective treatment for the protection and/or restoration of peripheral nerve function in DPN. This review highlights the studies supporting this assertion and provides rationale for continued investigation of IL-6 for the treatment of DPN.
Collapse
Affiliation(s)
| | - Yves Sagot
- Relief Therapeutics SA, Zurich, Switzerland
| | - Gael Hedou
- Relief Therapeutics SA, Zurich, Switzerland
| | | | | | | | - Gautam Ghatnekar
- FirstString Research, Mt. Pleasant, SC, USA
- *Correspondence: Gautam Ghatnekar,
| |
Collapse
|
50
|
Oh KJ, Lee DS, Kim WK, Han BS, Lee SC, Bae KH. Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. Int J Mol Sci 2016; 18:ijms18010008. [PMID: 28025491 PMCID: PMC5297643 DOI: 10.3390/ijms18010008] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/24/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Obesity and type II diabetes are characterized by insulin resistance in peripheral tissues. A high caloric intake combined with a sedentary lifestyle is the leading cause of these conditions. Whole-body insulin resistance and its improvement are the result of the combined actions of each insulin-sensitive organ. Among the fundamental molecular mechanisms by which each organ is able to communicate and engage in cross-talk are cytokines or peptides which stem from secretory organs. Recently, it was reported that several cytokines or peptides are secreted from muscle (myokines), adipose tissue (adipokines) and liver (hepatokines) in response to certain nutrition and/or physical activity conditions. Cytokines exert autocrine, paracrine or endocrine effects for the maintenance of energy homeostasis. The present review is focused on the relationship and cross-talk amongst muscle, adipose tissue and the liver as secretory organs in metabolic diseases.
Collapse
Affiliation(s)
- Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Baek Soo Han
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|