1
|
Flak JN. Functionally Separate Populations of Ventromedial Hypothalamic Neurons in Obesity and Diabetes: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2025; 74:4-11. [PMID: 39418333 PMCID: PMC11664020 DOI: 10.2337/dbi24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The ventromedial hypothalamic nucleus (VMN) maintains healthy metabolic function through several important roles. Collectively, homeostasis is maintained via intermingled cells within the VMN that raise blood glucose, lower blood glucose, and stimulate energy expenditure when needed. In this article I discuss the defining factors for the VMN cell types that govern distinct functions induced by the VMN, particularly in relation to energy balance and blood glucose levels. Special attention is given to distinct features of VMN cells responsible for these processes. Finally, these topics are reviewed in the context of research funded by the American Diabetes Association Pathway to Stop Diabetes initiative, with highlighting of key findings and current unresolved questions for future investigations.
Collapse
Affiliation(s)
- Jonathan N. Flak
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN
| |
Collapse
|
2
|
Swan P, Johnson B, le Roux CW, Miras AD. Harnessing the melanocortin system in the control of food intake and glucose homeostasis. Peptides 2024; 179:171255. [PMID: 38834138 DOI: 10.1016/j.peptides.2024.171255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
The central and peripheral melanocortin system, comprising of five receptors and their endogenous ligands, is responsible for a wide array of physiological functions such as skin pigmentation, sexual function and development, and inflammation. A growing body of both clinical and pre-clinical research is demonstrating the relevance of this system in metabolic health. Disruption of hypothalamic melanocortin signalling is the most common cause of monogenic obesity in humans. Setmelanotide, an FDA-approved analogue of alpha-melanocyte stimulating hormone (α-MSH) that functions by restoring central melanocortin signalling, has proven to be a potent pharmacological tool in the treatment of syndromic obesity. As the first effective therapy targeting the melanocortin system to treat metabolic disorders, its approval has sparked research to further harness the links between these melanocortin receptors and metabolic processes. Here, we outline the structure of the central and peripheral melanocortin system, discuss its critical role in the regulation of food intake, and review promising targets that may hold potential to treat metabolic disorders in humans.
Collapse
Affiliation(s)
- Patrick Swan
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland.
| | - Brett Johnson
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, United Kingdom
| | - Carel W le Roux
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Alexander D Miras
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom; Division of Diabetes, Endocrinology and Metabolism, Imperial College London, United Kingdom
| |
Collapse
|
3
|
Watts CA, Smith J, Giacomino R, Walter D, Jang G, Malik A, Harvey N, Novak CM. Chemogenetic Excitation of Ventromedial Hypothalamic Steroidogenic Factor 1 (SF1) Neurons Increases Muscle Thermogenesis in Mice. Biomolecules 2024; 14:821. [PMID: 39062535 PMCID: PMC11274921 DOI: 10.3390/biom14070821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Allostatic adaptations to a perceived threat are crucial for survival and may tap into mechanisms serving the homeostatic control of energy balance. We previously established that exposure to predator odor (PO) in rats significantly increases skeletal muscle thermogenesis and energy expenditure (EE). Evidence highlights steroidogenic factor 1 (SF1) cells within the central and dorsomedial ventromedial hypothalamus (c/dmVMH) as a modulator of both energy homeostasis and defensive behavior. However, the brain mechanism driving elevated EE and muscle thermogenesis during PO exposure has yet to be elucidated. To assess the ability of SF1 neurons of the c/dmVMH to induce muscle thermogenesis, we used the combined technology of chemogenetics, transgenic mice, temperature transponders, and indirect calorimetry. Here, we evaluate EE and muscle thermogenesis in SF1-Cre mice exposed to PO (ferret odor) compared to transgenic and viral controls. We detected significant increases in muscle temperature, EE, and oxygen consumption following the chemogenetic stimulation of SF1 cells. However, there were no detectable changes in muscle temperature in response to PO in either the presence or absence of chemogenetic stimulation. While the specific role of the VMH SF1 cells in PO-induced thermogenesis remains uncertain, these data establish a supporting role for SF1 neurons in the induction of muscle thermogenesis and EE similar to what is seen after predator threats.
Collapse
Affiliation(s)
- Christina A. Watts
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA;
| | - Jordan Smith
- College of Public Health, Kent State University, Kent, OH 44242, USA
| | - Roman Giacomino
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Dinah Walter
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Guensu Jang
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Aalia Malik
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Nicholas Harvey
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Colleen M. Novak
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA;
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Hashsham A, Kodur N, Su J, Tomlinson AJ, Yacawych WT, Flak JN, Lewis KT, Oles LR, Mori H, Bozadjieva-Kramer N, Turcu AF, MacDougald OA, Myers MG, Affinati AH. Control of Physiologic Glucose Homeostasis via the Hypothalamic Modulation of Gluconeogenic Substrate Availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594873. [PMID: 38826340 PMCID: PMC11142065 DOI: 10.1101/2024.05.20.594873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The brain augments glucose production during fasting, but the mechanisms are poorly understood. Here, we show that Cckbr-expressing neurons in the ventromedial hypothalamic nucleus (VMNCckbr cells) prevent low blood glucose during fasting through sympathetic nervous system (SNS)-mediated augmentation of adipose tissue lipolysis and substrate release. Activating VMNCckbr neurons mobilized gluconeogenic substrates without altering glycogenolysis or gluconeogenic enzyme expression. Silencing these cells (CckbrTetTox animals) reduced fasting blood glucose, impaired lipolysis, and decreased circulating glycerol (but not other gluconeogenic substrates) despite normal insulin, counterregulatory hormones, liver glycogen, and liver gluconeogenic gene expression. Furthermore, β3-adrenergic adipose tissue stimulation in CckbrTetTox animals restored lipolysis and blood glucose. Hence, VMNCckbr neurons impact blood glucose not by controlling islet or liver physiology, but rather by mobilizing gluconeogenic substrates. These findings establish a central role for hypothalamic and SNS signaling during normal glucose homeostasis and highlight the importance of gluconeogenic substrate mobilization during physiologic fasting.
Collapse
Affiliation(s)
- Abdullah Hashsham
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Nandan Kodur
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jiaao Su
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | | | - Warren T. Yacawych
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Jon N. Flak
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Kenneth T. Lewis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Lily R. Oles
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Hiroyuki Mori
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Nadejda Bozadjieva-Kramer
- Veterans Affairs Ann Arbor Healthcare System; Research Service, Ann Arbor, MI
- University of Michigan, Department of Surgery; Ann Arbor, MI
| | - Adina F. Turcu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Ormond A. MacDougald
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Martin G. Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
5
|
Pena-Leon V, Perez-Lois R, Villalon M, Prida E, Muñoz-Moreno D, Fernø J, Quiñones M, Al-Massadi O, Seoane LM. Novel mechanisms involved in leptin sensitization in obesity. Biochem Pharmacol 2024; 223:116129. [PMID: 38490517 DOI: 10.1016/j.bcp.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Leptin is a hormone that is secreted by adipocytes in proportion to adipose tissue size, and that informs the brain about the energy status of the body. Leptin acts through its receptor LepRb, expressed mainly in the hypothalamus, and induces a negative energy balance by potent inhibition of feeding and activation of energy expenditure. These actions have led to huge expectations for the development of therapeutic targets for metabolic complications based on leptin-derived compounds. However, the majority of patients with obesity presents elevated leptin production, suggesting that in this setting leptin is ineffective in the regulation of energy balance. This resistance to the action of leptin in obesity has led to the development of "leptin sensitizers," which have been tested in preclinical studies. Much research has focused on generating combined treatments that act on multiple levels of the gastrointestinal-brain axis. The gastrointestinal-brain axis secretes a variety of different anorexigenic signals, such as uroguanylin, glucagon-like peptide-1, amylin, or cholecystokinin, which can alleviate the resistance to leptin action. Moreover, alternative mechanism such as pharmacokinetics, proteostasis, the role of specific kinases, chaperones, ER stress and neonatal feeding modifications are also implicated in leptin resistance. This review will cover the current knowledge regarding the interaction of leptin with different endocrine factors from the gastrointestinal-brain axis and other novel mechanisms that improve leptin sensitivity in obesity.
Collapse
Affiliation(s)
- Veronica Pena-Leon
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Raquel Perez-Lois
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Maria Villalon
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Eva Prida
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Diego Muñoz-Moreno
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, 5201 Bergen, Norway
| | - Mar Quiñones
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Omar Al-Massadi
- Translational Endocrinology group, Endocrinology Section, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (IDIS/CHUS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Departamento de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Lu W, Feng W, Lai J, Yuan D, Xiao W, Li Y. Role of adipokines in sarcopenia. Chin Med J (Engl) 2023; 136:1794-1804. [PMID: 37442757 PMCID: PMC10406092 DOI: 10.1097/cm9.0000000000002255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Sarcopenia is an age-related disease that mainly involves decreases in muscle mass, muscle strength and muscle function. At the same time, the body fat content increases with aging, especially the visceral fat content. Adipose tissue is an endocrine organ that secretes biologically active factors called adipokines, which act on local and distant tissues. Studies have revealed that some adipokines exert regulatory effects on muscle, such as higher serum leptin levels causing a decrease in muscle function and adiponectin inhibits the transcriptional activity of Forkhead box O3 (FoxO3) by activating peroxisome proliferators-activated receptor-γ coactivator -1α (PGC-1α) and sensitizing cells to insulin, thereby repressing atrophy-related genes (atrogin-1 and muscle RING finger 1 [MuRF1]) to prevent the loss of muscle mass. Here, we describe the effects on muscle of adipokines produced by adipose tissue, such as leptin, adiponectin, resistin, mucin and lipocalin-2, and discuss the importance of these adipokines for understanding the development of sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jieyu Lai
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Dongliang Yuan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
7
|
Malin SK, Stewart NR, Ude AA, Alderman BL. Brain insulin resistance and cognitive function: influence of exercise. J Appl Physiol (1985) 2022; 133:1368-1380. [PMID: 36269295 PMCID: PMC9744647 DOI: 10.1152/japplphysiol.00375.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
Exercise has systemic health benefits in people, in part, through improving whole body insulin sensitivity. The brain is an insulin-sensitive organ that is often underdiscussed relative to skeletal muscle, liver, and adipose tissue. Although brain insulin action may have only subtle impacts on peripheral regulation of systemic glucose homeostasis, it is important for weight regulation as well as mental health. In fact, brain insulin signaling is also involved in processes that support healthy cognition. Furthermore, brain insulin resistance has been associated with age-related declines in memory and executive function as well as Alzheimer's disease pathology. Herein, we provide an overview of brain insulin sensitivity in relation to cognitive function from animal and human studies, with particular emphasis placed on the impact exercise may have on brain insulin sensitivity. Mechanisms discussed include mitochondrial function, brain growth factors, and neurogenesis, which collectively help combat obesity-related metabolic disease and Alzheimer's dementia.
Collapse
Affiliation(s)
- Steven K Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, New Jersey
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Nathan R Stewart
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
| | - Andrew A Ude
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
| | - Brandon L Alderman
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
- Center of Alcohol and Substance Use Studies, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
8
|
Zhang X, Su J, Huang T, Wang X, Wu C, Li J, Li J, Zhang J, Wang Y. Characterization of the chicken melanocortin 5 receptor and its potential role in regulating hepatic glucolipid metabolism. Front Physiol 2022; 13:917712. [PMID: 36277187 PMCID: PMC9583845 DOI: 10.3389/fphys.2022.917712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Melanocortin receptors (MC1R-MC5R) and their accessory proteins (MRAPs) are involved in a variety of physiological processes, including pigmentation, lipolysis, adrenal steroidogenesis, and immunology. However, the physiological roles of MC5R are rarely characterized in vertebrates, particularly in birds. In this work, we cloned the full-length cDNA of chicken MC5R and identified its core promoter region. Functional studies revealed that cMC5R was more sensitive to ACTH/α-MSH than β-MSH/γ-MSH, and was coupled to the cAMP/PKA signaling pathway. We demonstrated that MRAP2 decreased MC5R sensitivity to α-MSH, whereas MRAP1 did not have a similar effect, and that both MRAPs significantly reduced MC5R expression on the cell membrane surface. Transcriptome and qPCR data showed that both MRAP1 and MC5R were highly expressed in chicken liver. Additionally, we observed that ACTH might increase hepatic glucose production and decrease lipogenesis in primary hepatocytes, and dose-dependently downregulated the expression levels of ELOVL6 and THRSPA genes. These findings indicated that ACTH may act directly on hepatocytes to regulate glucolipid metabolism, which will help to understand the function of MC5R in avian.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiancheng Su
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianjiao Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinglong Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chenlei Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Choi JH, Kim MS. Homeostatic Regulation of Glucose Metabolism by the Central Nervous System. Endocrinol Metab (Seoul) 2022; 37:9-25. [PMID: 35255598 PMCID: PMC8901968 DOI: 10.3803/enm.2021.1364] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Evidence for involvement of the central nervous system (CNS) in the regulation of glucose metabolism dates back to the 19th century, although the majority of the research on glucose metabolism has focused on the peripheral metabolic organs. Due to recent advances in neuroscience, it has now become clear that the CNS is indeed vital for maintaining glucose homeostasis. To achieve normoglycemia, specific populations of neurons and glia in the hypothalamus sense changes in the blood concentrations of glucose and of glucoregulatory hormones such as insulin, leptin, glucagon-like peptide 1, and glucagon. This information is integrated and transmitted to other areas of the brain where it eventually modulates various processes in glucose metabolism (i.e., hepatic glucose production, glucose uptake in the brown adipose tissue and skeletal muscle, pancreatic insulin and glucagon secretion, renal glucose reabsorption, etc.). Errors in these processes lead to hyper- or hypoglycemia. We here review the current understanding of the brain regulation of glucose metabolism.
Collapse
Affiliation(s)
- Jong Han Choi
- Division of Endocrinology and Metabolism, Konkuk University Medical Center, Seoul,
Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
- Appeptite Regulation Laboratory, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
10
|
Feeding Rhythm-Induced Hypothalamic Agouti-Related Protein Elevation via Glucocorticoids Leads to Insulin Resistance in Skeletal Muscle. Int J Mol Sci 2021; 22:ijms221910831. [PMID: 34639172 PMCID: PMC8509554 DOI: 10.3390/ijms221910831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Circadian phase shifts in peripheral clocks induced by changes in feeding rhythm often result in insulin resistance. However, whether the hypothalamic control system for energy metabolism is involved in the feeding rhythm-related development of insulin resistance is unknown. Here, we show the physiological significance and mechanism of the involvement of the agouti-related protein (AgRP) in evening feeding-associated alterations in insulin sensitivity. Evening feeding during the active dark period increased hypothalamic AgRP expression and skeletal muscle insulin resistance in mice. Inhibiting AgRP expression by administering an antisense oligo or a glucocorticoid receptor antagonist mitigated these effects. AgRP-producing neuron-specific glucocorticoid receptor-knockout (AgRP-GR-KO) mice had normal skeletal muscle insulin sensitivity even under evening feeding schedules. Hepatic vagotomy enhanced AgRP expression in the hypothalamus even during ad-lib feeding in wild-type mice but not in AgRP-GR-KO mice. The findings of this study indicate that feeding in the late active period may affect hypothalamic AgRP expression via glucocorticoids and induce skeletal muscle insulin resistance.
Collapse
|
11
|
Kaneko K, Lin HY, Fu Y, Saha PK, De la Puente-Gomez AB, Xu Y, Ohinata K, Chen P, Morozov A, Fukuda M. Rap1 in the VMH regulates glucose homeostasis. JCI Insight 2021; 6:142545. [PMID: 33974562 PMCID: PMC8262364 DOI: 10.1172/jci.insight.142545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is a critical regulator of glucose metabolism and is capable of correcting diabetes conditions independently of an effect on energy balance. The small GTPase Rap1 in the forebrain is implicated in high-fat diet–induced (HFD-induced) obesity and glucose imbalance. Here, we report that increasing Rap1 activity selectively in the medial hypothalamus elevated blood glucose without increasing the body weight of HFD-fed mice. In contrast, decreasing hypothalamic Rap1 activity protected mice from diet-induced hyperglycemia but did not prevent weight gain. The remarkable glycemic effect of Rap1 was reproduced when Rap1 was specifically deleted in steroidogenic factor-1–positive (SF-1–positive) neurons in the ventromedial hypothalamic nucleus (VMH) known to regulate glucose metabolism. While having no effect on body weight regardless of sex, diet, and age, Rap1 deficiency in the VMH SF1 neurons markedly lowered blood glucose and insulin levels, improved glucose and insulin tolerance, and protected mice against HFD-induced neural leptin resistance and peripheral insulin resistance at the cellular and whole-body levels. Last, acute pharmacological inhibition of brain exchange protein directly activated by cAMP 2, a direct activator of Rap1, corrected glucose imbalance in obese mouse models. Our findings uncover the primary role of VMH Rap1 in glycemic control and implicate Rap1 signaling as a potential target for therapeutic intervention in diabetes.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Hsiao-Yun Lin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yukiko Fu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | | | - Ana B De la Puente-Gomez
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Peter Chen
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexei Morozov
- Unit on Behavioral Genetics, Laboratory of Molecular Pathophysiology, National Institute of Mental Health, NIH, Maryland, USA.,Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Lee ML, Matsunaga H, Sugiura Y, Hayasaka T, Yamamoto I, Ishimoto T, Imoto D, Suematsu M, Iijima N, Kimura K, Diano S, Toda C. Prostaglandin in the ventromedial hypothalamus regulates peripheral glucose metabolism. Nat Commun 2021; 12:2330. [PMID: 33879780 PMCID: PMC8058102 DOI: 10.1038/s41467-021-22431-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 03/12/2021] [Indexed: 11/24/2022] Open
Abstract
The hypothalamus plays a central role in monitoring and regulating systemic glucose metabolism. The brain is enriched with phospholipids containing poly-unsaturated fatty acids, which are biologically active in physiological regulation. Here, we show that intraperitoneal glucose injection induces changes in hypothalamic distribution and amounts of phospholipids, especially arachidonic-acid-containing phospholipids, that are then metabolized to produce prostaglandins. Knockdown of cytosolic phospholipase A2 (cPLA2), a key enzyme for generating arachidonic acid from phospholipids, in the hypothalamic ventromedial nucleus (VMH), lowers insulin sensitivity in muscles during regular chow diet (RCD) feeding. Conversely, the down-regulation of glucose metabolism by high fat diet (HFD) feeding is improved by knockdown of cPLA2 in the VMH through changing hepatic insulin sensitivity and hypothalamic inflammation. Our data suggest that cPLA2-mediated hypothalamic phospholipid metabolism is critical for controlling systemic glucose metabolism during RCD, while continuous activation of the same pathway to produce prostaglandins during HFD deteriorates glucose metabolism. The ventromedial hypothalamus regulates systemic glucose metabolism. Here the authors show that cytosolic phospholipase A2 mediated phospholipid metabolism contributes to this regulation in healthy animals but exert deteriorating effects on glucose homeostasis under high-fat-diet feeding.
Collapse
Affiliation(s)
- Ming-Liang Lee
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirokazu Matsunaga
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Hayasaka
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Izumi Yamamoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taiga Ishimoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Daigo Imoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Norifumi Iijima
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sabrina Diano
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Chitoku Toda
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
13
|
Sutton Hickey AK, Goforth PB, Gonzalez IE, Dell'Orco J, Pei H, Myers MG, Olson DP. Melanocortin 3 receptor-expressing neurons in the ventromedial hypothalamus promote glucose disposal. Proc Natl Acad Sci U S A 2021; 118:e2103090118. [PMID: 33827930 PMCID: PMC8053962 DOI: 10.1073/pnas.2103090118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ventromedial hypothalamus (VMH) is a critical neural node that senses blood glucose and promotes glucose utilization or mobilization during hypoglycemia. The VMH neurons that control these distinct physiologic processes are largely unknown. Here, we show that melanocortin 3 receptor (Mc3R)-expressing VMH neurons (VMHMC3R) sense glucose changes both directly and indirectly via altered excitatory input. We identify presynaptic nodes that potentially regulate VMHMC3R neuronal activity, including inputs from proopiomelanocortin (POMC)-producing neurons in the arcuate nucleus. We find that VMHMC3R neuron activation blunts, and their silencing enhances glucose excursion following a glucose load. Overall, these findings demonstrate that VMHMC3R neurons are a glucose-responsive hypothalamic subpopulation that promotes glucose disposal upon activation; this highlights a potential site for targeting dysregulated glycemia.
Collapse
Affiliation(s)
- Amy K Sutton Hickey
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Paulette B Goforth
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ian E Gonzalez
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - James Dell'Orco
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Hongjuan Pei
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - David P Olson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109;
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
14
|
Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr Rev 2021; 42:1-28. [PMID: 33150398 PMCID: PMC7846142 DOI: 10.1210/endrev/bnaa027] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/18/2022]
Abstract
The discovery of leptin was intrinsically associated with its ability to regulate body weight. However, the effects of leptin are more far-reaching and include profound glucose-lowering and anti-lipogenic effects, independent of leptin's regulation of body weight. Regulation of glucose metabolism by leptin is mediated both centrally and via peripheral tissues and is influenced by the activation status of insulin signaling pathways. Ectopic fat accumulation is diminished by both central and peripheral leptin, an effect that is beneficial in obesity-associated disorders. The magnitude of leptin action depends upon the tissue, sex, and context being examined. Peripheral tissues that are of particular relevance include the endocrine pancreas, liver, skeletal muscle, adipose tissues, immune cells, and the cardiovascular system. As a result of its potent metabolic activity, leptin is used to control hyperglycemia in patients with lipodystrophy and is being explored as an adjunct to insulin in patients with type 1 diabetes. To fully understand the role of leptin in physiology and to maximize its therapeutic potential, the mechanisms of leptin action in these tissues needs to be further explored.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.,Department of Surgery, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
The Role of Ventromedial Hypothalamus Receptors in the Central Regulation of Food Intake. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10120-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Kondoh K. [Use of Transsynaptic Viral Tracers for Observing Neural Circuit Control of Physiological Responses]. YAKUGAKU ZASSHI 2020; 140:985-992. [PMID: 32741872 DOI: 10.1248/yakushi.20-00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central neural circuits in the brain receive and integrate environmental and internal information to enable the animals to execute appropriate behaviors and physiological responses. Communication between the brain and peripheral organs via peripheral neural circuits maintains energy homeostasis in the body. Therefore it is important to investigate the anatomical organization of central and peripheral neural circuits for elucidating the mechanisms of energy homeostasis. Transsynaptic viral tracers can travel through connected neurons via synaptic connections and have been used to delineate the anatomical organization of neural circuits with specific functions. Herein, I review our recent studies investigating neural circuits and their involvement in physiological changes using transsynaptic tracers.
Collapse
Affiliation(s)
- Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences.,Basic Sciences Division, Fred Hutchinson Cancer Research Center.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
17
|
Straat ME, Schinkelshoek MS, Fronczek R, Lammers GJ, Rensen PCN, Boon MR. Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Front Endocrinol (Lausanne) 2020; 11:145. [PMID: 32373062 PMCID: PMC7176868 DOI: 10.3389/fendo.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/02/2020] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 is a neurological sleep-wake disorder caused by the destruction of orexin (hypocretin)-producing neurons. These neurons are particularly located in the lateral hypothalamus and have widespread projections throughout the brain, where they are involved, e.g., in the regulation of the sleep-wake cycle and appetite. Interestingly, a higher prevalence of obesity has been reported in patients with narcolepsy type 1 compared to healthy controls, despite a normal to decreased food intake and comparable physical activity. This suggests the involvement of tissues implicated in total energy expenditure, including skeletal muscle, liver, white adipose tissue (WAT), and brown adipose tissue (BAT). Recent evidence from pre-clinical studies with orexin knock-out mice demonstrates a crucial role for the orexin system in the functionality of brown adipose tissue (BAT), probably through multiple pathways. Since BAT is a highly metabolically active organ that combusts fatty acids and glucose toward heat, thereby contributing to energy metabolism, this raises the question of whether BAT plays a role in the development of obesity and related metabolic diseases in narcolepsy type 1. BAT is densely innervated by the sympathetic nervous system that activates BAT, for instance, following cold exposure. The sympathetic outflow toward BAT is mainly mediated by the dorsomedial, ventromedial, arcuate, and paraventricular nuclei in the hypothalamus. This review focuses on the current knowledge on the role of the orexin system in the control of energy balance, with specific focus on BAT metabolism and adiposity in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Maaike E. Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Maaike E. Straat
| | - Mink S. Schinkelshoek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Gerrit Jan Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Patrick C. N. Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
18
|
Bruder-Nascimento T, Kress TC, Belin de Chantemele EJ. Recent advances in understanding lipodystrophy: a focus on lipodystrophy-associated cardiovascular disease and potential effects of leptin therapy on cardiovascular function. F1000Res 2019; 8:F1000 Faculty Rev-1756. [PMID: 31656583 PMCID: PMC6798323 DOI: 10.12688/f1000research.20150.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
Lipodystrophy is a disease characterized by a partial or total absence of adipose tissue leading to severe metabolic derangements including marked insulin resistance, type 2 diabetes, hypertriglyceridemia, and steatohepatitis. Lipodystrophy is also a source of major cardiovascular disorders which, in addition to hepatic failure and infection, contribute to a significant reduction in life expectancy. Metreleptin, the synthetic analog of the adipocyte-derived hormone leptin and current therapy of choice for patients with lipodystrophy, successfully improves metabolic function. However, while leptin has been associated with hypertension, vascular diseases, and inflammation in the context of obesity, it remains unknown whether its daily administration could further impair cardiovascular function in patients with lipodystrophy. The goal of this short review is to describe the cardiovascular phenotype of patients with lipodystrophy, speculate on the etiology of the disorders, and discuss how the use of murine models of lipodystrophy could be beneficial to address the question of the contribution of leptin to lipodystrophy-associated cardiovascular disease.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor C. Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric J. Belin de Chantemele
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Medicine, Section of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
19
|
Carcinoembryonic Cell Adhesion-Related Molecule 2 Regulates Insulin Secretion and Energy Balance. Int J Mol Sci 2019; 20:ijms20133231. [PMID: 31266142 PMCID: PMC6651791 DOI: 10.3390/ijms20133231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
The Carcinoembryonic Antigen-Related Cell Adhesion Molecule (CEACAM) family of proteins plays a significant role in regulating peripheral insulin action by participating in the regulation of insulin metabolism and energy balance. In light of their differential expression, CEACAM1 regulates chiefly insulin extraction, whereas CEACAM2 appears to play a more important role in regulating insulin secretion and overall energy balance, including food intake, energy expenditure and spontaneous physical activity. We will focus this review on the role of CEACAM2 in regulating insulin metabolism and energy balance with an overarching goal to emphasize the importance of the coordinated regulatory effect of these related plasma membrane glycoproteins on insulin metabolism and action.
Collapse
|
20
|
Doslikova B, Tchir D, McKinty A, Zhu X, Marks DL, Baracos VE, Colmers WF. Convergent neuronal projections from paraventricular nucleus, parabrachial nucleus, and brainstem onto gastrocnemius muscle, white and brown adipose tissue in male rats. J Comp Neurol 2019; 527:2826-2842. [PMID: 31045239 DOI: 10.1002/cne.24710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
When energy balance is altered by aerobic exercise, starvation, and cold exposure, for example, there appears to be coordination of the responses of skeletal muscle, white adipose (WAT), and brown adipose (BAT) tissues. We hypothesized that WAT, BAT, and skeletal muscle may share an integrated regulation by the central nervous system (CNS); specifically, that neurons in brain regions associated with energy balance would possess neuroanatomical connections to permit coordination of multiple, complementary responses in these downstream tissues. To study this, we used trans-neuronal viral retrograde tract tracing, using isogenic strains of pseudorabies virus (PRV) with distinct fluorescent reporters (either eGFP or mRFP), injected pairwise into male rat gastrocnemius, subcutaneous WAT and interscapular BAT, coupled with neurochemical characterization of specific cell populations for cocaine- and amphetamine-related transcript (CART), oxytocin (OX), corticotrophin releasing hormone (CRH) and calcitonin gene-related peptide (CGRP). Cells in the paraventricular (PVN) and parabrachial (PBN) nuclei and brainstem showed dual projections to muscle + WAT, muscle + BAT, and WAT + BAT. Dual PRV-labeled cells were found in parvocellular, magnocellular and descending/pre-autonomic regions of the PVN, and multiple structural divisions of the PBN and brainstem. In most PBN subdivisions, more than 50% of CGRP cells dually projected to muscle + WAT and muscle + BAT. Similarly, 31-68% of CGRP cells projected both to WAT + BAT. However, dual PRV-labeled cells in PVN only occasionally expressed OX or CRH but not CART. These studies reveal for the first time both separate and shared outflow circuitries among skeletal muscle and subcutaneous WAT and BAT.
Collapse
Affiliation(s)
- Barbora Doslikova
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Devan Tchir
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda McKinty
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon
| | - Vickie E Baracos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - William F Colmers
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Shiuchi T, Miyatake Y, Otsuka A, Chikahisa S, Sakaue H, Séi H. Role of orexin in exercise-induced leptin sensitivity in the mediobasal hypothalamus of mice. Biochem Biophys Res Commun 2019; 514:166-172. [PMID: 31029425 DOI: 10.1016/j.bbrc.2019.04.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/19/2019] [Indexed: 01/12/2023]
Abstract
Orexin is known as an important neuropeptide in the regulation of energy metabolism. However, the role of orexin in exercise-induced leptin sensitivity in the hypothalamus has been unclear. In this study, we determined the effect of transient treadmill exercise on leptin sensitivity in the mediobasal hypothalamus (MBH) of mice and examined the role of orexin in post-exercise leptin sensitivity. Treadmill running for 45 min increased the orexin neuron activity in mice. Intraperitoneal injection of a submaximal dose of leptin after exercise stimulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in MBH of mice post-exercise compared with that in non-exercised mice, although intracerebroventricular (icv) injection of leptin did not enhance STAT3 phosphorylation, even after exercise. Icv injection of an orexin receptor antagonist, SB334867 reduced STAT3 phosphorylation, which was enhanced by icv injection of orexin but not by direct injection of orexin into MBH. Exercise increased the phosphorylation of extracellular signal-regulated kinases (ERKs) in the MBH of mice, while ERK phosphorylation was reduced by SB334867. Leptin injection after exercise increased the leptin level in MBH, whereas icv injection of SB334867 suppressed the increase in the leptin level in MBH of mice. These results indicate that the activation of orexin neurons by exercise may contribute to the enhancement of leptin sensitivity in MBH. This effect may be mediated by increased transportation of circulating leptin into MBH, with the involvement of ERK phosphorylation.
Collapse
Affiliation(s)
- Tetsuya Shiuchi
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Yumiko Miyatake
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Airi Otsuka
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Sachiko Chikahisa
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Hiroyoshi Séi
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
22
|
Alvarsson A, Stanley SA. Remote control of glucose-sensing neurons to analyze glucose metabolism. Am J Physiol Endocrinol Metab 2018; 315:E327-E339. [PMID: 29812985 PMCID: PMC6171010 DOI: 10.1152/ajpendo.00469.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
The central nervous system relies on a continual supply of glucose, and must be able to detect glucose levels and regulate peripheral organ functions to ensure that its energy requirements are met. Specialized glucose-sensing neurons, first described half a century ago, use glucose as a signal and modulate their firing rates as glucose levels change. Glucose-excited neurons are activated by increasing glucose concentrations, while glucose-inhibited neurons increase their firing rate as glucose concentrations fall and decrease their firing rate as glucose concentrations rise. Glucose-sensing neurons are present in multiple brain regions and are highly expressed in hypothalamic regions, where they are involved in functions related to glucose homeostasis. However, the roles of glucose-sensing neurons in healthy and disease states remain poorly understood. Technologies that can rapidly and reversibly activate or inhibit defined neural populations provide invaluable tools to investigate how specific neural populations regulate metabolism and other physiological roles. Optogenetics has high temporal and spatial resolutions, requires implants for neural stimulation, and is suitable for modulating local neural populations. Chemogenetics, which requires injection of a synthetic ligand, can target both local and widespread populations. Radio- and magnetogenetics offer rapid neural activation in localized or widespread neural populations without the need for implants or injections. These tools will allow us to better understand glucose-sensing neurons and their metabolism-regulating circuits.
Collapse
Affiliation(s)
- Alexandra Alvarsson
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Sarah A Stanley
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai , New York, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
23
|
Pozo M, Claret M. Hypothalamic Control of Systemic Glucose Homeostasis: The Pancreas Connection. Trends Endocrinol Metab 2018; 29:581-594. [PMID: 29866501 DOI: 10.1016/j.tem.2018.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
Maintenance of glucose homeostasis is mandatory for organismal survival. It is accomplished by complex and coordinated interplay between glucose detection mechanisms and multiple effector systems. The brain, in particular homeostatic regions such as the hypothalamus, plays a crucial role in orchestrating such a highly integral response. We review here current understanding of how the hypothalamus senses glucose availability and participates in systemic glucose homeostasis. We provide an update of the relevant signaling pathways and neuronal subsets involved, as well as of the mechanisms modulating metabolic processes in peripheral tissues such as liver, skeletal muscle, fat, and especially the pancreas. We also discuss the relevance of these networks in human biology and prevalent metabolic conditions such as diabetes and obesity.
Collapse
Affiliation(s)
- Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain.
| |
Collapse
|
24
|
Gavini CK, Britton SL, Koch LG, Novak CM. Inherently Lean Rats Have Enhanced Activity and Skeletal Muscle Response to Central Melanocortin Receptors. Obesity (Silver Spring) 2018; 26:885-894. [PMID: 29566460 PMCID: PMC5916025 DOI: 10.1002/oby.22166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Activity thermogenesis and energy expenditure (EE) are elevated in intrinsically lean rats (high-capacity runners [HCR]) and are also stimulated by melanocortin receptor activation in the ventromedial hypothalamus (VMH). This study determined whether HCR are more responsive to central modulation of activity EE compared with low-capacity runners (LCR). METHODS HCR and LCR rats received intra-VMH microinjections of melanotan II (MTII), a mixed melanocortin receptor agonist. Changes in EE, respiratory exchange ratio, activity EE, muscle heat, norepinephrine turnover, and muscle energetic modulators were compared. RESULTS HCR were significantly more responsive to intra-VMH MTII-induced changes in EE, activity EE, norepinephrine turnover to some muscle subgroups, and muscle mRNA expression of some energetic modulators. Though HCR had high muscle activity thermogenesis, limited MTII-induced modulation of muscle thermogenesis during activity was seen in LCR only. CONCLUSIONS An inherently lean, high-capacity rat phenotype showed elevated response to central melanocortin stimulation of activity EE and use of fat as fuel. This may be driven by sympathetic outflow to skeletal muscle, which was elevated after MTII. Central melanocortin receptor activation also altered skeletal muscle energetic modulators in a manner consistent with elevated EE and lowered respiratory exchange ratio.
Collapse
Affiliation(s)
- Chaitanya K. Gavini
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren G. Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Colleen M. Novak
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
25
|
Cao W, Li M, Wu T, Feng F, Feng T, Xu Y, Sun C. αMSH prevents ROS-induced apoptosis by inhibiting Foxo1/mTORC2 in mice adipose tissue. Oncotarget 2018; 8:40872-40884. [PMID: 28388573 PMCID: PMC5522219 DOI: 10.18632/oncotarget.16606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
Alpha-melanocyte stimulating hormone (αMSH) is an important adenohypophysis polypeptide hormone that regulates body metabolic status. To date, it is well known that the disorder of hypothalamic αMSH secretion is related to many metabolic diseases, such as obesity and type II diabetes. However, the underlying mechanisms are poorly understood. In our study, we focused on the reactive oxygen species (ROS)-induced adipocyte apoptosis and tried to unveil the role of αMSH in this process and the signal pathway which αMSH acts through. Kunming white mice were used and induced to oxidative stress status by hydrogen peroxide (H2O2) injection and a significant reduction of αMSH were found in mice serum, while elevated ROS level and mRNA level of pro-apoptotic genes were observed in mice adipose tissue. What is more, when detect the function of αMSH in ROS-induced apoptosis, similar inhibitory trend was found with the oxidative stress inhibitor N-acetyl-L-cysteine (NAC) in ROS-induced adipocyte apoptosis and this trend is αMSH receptor melanocortin 5 receptor (MC5R) depended, while an opposite trend was found between αMSH and Foxo1, which is a known positive regulator of adipocyte apoptosis. Further, we found that the repress effect of αMSH in adipocytes apoptosis is acting through Foxo1/mTORC2 pathway. These findings indicate that, αMSH has a strong inhibitory effect on ROS-induced adipocyte apoptosis and underlying mechanism is interacting with key factors in mTOR signal pathway. Our study demonstrated a great role of αMSH in adipocyte apoptosis and brings a new therapeutic mean to the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Weina Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meihang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongying Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
26
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Morrison SF. Efferent neural pathways for the control of brown adipose tissue thermogenesis and shivering. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:281-303. [PMID: 30454595 DOI: 10.1016/b978-0-444-63912-7.00017-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fundamental central neural circuits for thermoregulation orchestrate behavioral and autonomic repertoires that maintain body core temperature during thermal challenges that arise from either the ambient or the internal environment. This review summarizes our understanding of the neural pathways within the fundamental thermoregulatory reflex circuitry that comprise the efferent (i.e., beyond thermosensory) control of brown adipose tissue (BAT) and shivering thermogenesis: the motor neuron systems consisting of the BAT sympathetic preganglionic neurons and BAT sympathetic ganglion cells, and the alpha- and gamma-motoneurons; the premotor neurons in the region of the rostral raphe pallidus, and the thermogenesis-promoting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area. Also included are inputs to, and neurochemical modulators of, these efferent neuronal populations that could influence their activity during thermoregulatory responses. Signals of metabolic status can be particularly significant for the energy-hungry thermoeffectors for heat production.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
28
|
Thomas A, Belaidi E, Moulin S, Horman S, van der Zon GC, Viollet B, Levy P, Bertrand L, Pepin JL, Godin-Ribuot D, Guigas B. Chronic Intermittent Hypoxia Impairs Insulin Sensitivity but Improves Whole-Body Glucose Tolerance by Activating Skeletal Muscle AMPK. Diabetes 2017; 66:2942-2951. [PMID: 28882901 DOI: 10.2337/db17-0186] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/30/2017] [Indexed: 11/13/2022]
Abstract
Obstructive sleep apnea syndrome is a highly prevalent disease resulting in transient respiratory arrest and chronic intermittent hypoxia (cIH). cIH is associated with insulin resistance and impaired metabolic homeostasis in rodents and humans, but the exact underlying mechanisms remain unclear. In the current study, we investigated the effects of 2 weeks of cIH (1-min cycle, fraction of inspired oxygen 21-5%, 8 h/day) on whole-body insulin sensitivity and glucose tolerance in lean mice. Although food intake and body weight were reduced compared with normoxia, cIH induced systemic insulin resistance in a hypoxia-inducible factor 1-independent manner and impaired insulin signaling in liver, white adipose tissue, and skeletal muscle. Unexpectedly, cIH improved whole-body glucose tolerance independently of changes in body weight and glucose-induced insulin response. This effect was associated with elevated phosphorylation of Thr172-AMPK and Ser237-TBC1 domain family member 1 (TBC1D1) in skeletal muscle, suggesting a tissue-specific AMPK-dependent increase in TBC1D1-driven glucose uptake. Remarkably, although food intake, body weight, and systemic insulin sensitivity were still affected, the improvement in glucose tolerance by cIH was abolished in muscle-specific AMPKα1α2-deficient mice. We conclude that cIH impairs insulin sensitivity while improving whole-body glucose tolerance by promoting specific activation of the skeletal muscle AMPK pathway.
Collapse
Affiliation(s)
- Amandine Thomas
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Elise Belaidi
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Sophie Moulin
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Gerard C van der Zon
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Benoit Viollet
- Institut Cochin, INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patrick Levy
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Louis Pepin
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Diane Godin-Ribuot
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Bruno Guigas
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
29
|
Induction of glucose uptake in skeletal muscle by central leptin is mediated by muscle β 2-adrenergic receptor but not by AMPK. Sci Rep 2017; 7:15141. [PMID: 29123236 PMCID: PMC5680211 DOI: 10.1038/s41598-017-15548-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/25/2017] [Indexed: 01/04/2023] Open
Abstract
Leptin increases glucose uptake and fatty acid oxidation (FAO) in red-type skeletal muscle. However, the mechanism remains unknown. We have investigated the role of β2-adrenergic receptor (AR), the major β-AR isoform in skeletal muscle, and AMPK in leptin-induced muscle glucose uptake of mice. Leptin injection into the ventromedial hypothalamus (VMH) increased 2-deoxy-D-glucose (2DG) uptake in red-type skeletal muscle in wild-type (WT) mice accompanied with increased phosphorylation of the insulin receptor (IR) and Akt as well as of norepinephrine (NE) turnover in the muscle. Leptin-induced 2DG uptake was not observed in β-AR-deficient (β-less) mice despite that AMPK phosphorylation was increased in the muscle. Forced expression of β2-AR in the unilateral hind limb of β-less mice restored leptin-induced glucose uptake and enhancement of insulin signalling in red-type skeletal muscle. Leptin increased 2DG uptake and enhanced insulin signalling in red-type skeletal muscle of mice expressing a dominant negative form of AMPK (DN-AMPK) in skeletal muscle. Thus, leptin increases glucose uptake and enhances insulin signalling in red-type skeletal muscle via activation of sympathetic nerves and β2-AR in muscle and in a manner independent of muscle AMPK.
Collapse
|
30
|
Dore R, Levata L, Gachkar S, Jöhren O, Mittag J, Lehnert H, Schulz C. The thermogenic effect of nesfatin-1 requires recruitment of the melanocortin system. J Endocrinol 2017; 235:111-122. [PMID: 28851749 DOI: 10.1530/joe-17-0151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022]
Abstract
Nesfatin-1 is a bioactive polypeptide expressed both in the brain and peripheral tissues and involved in the control of energy balance by reducing food intake. Central administration of nesfatin-1 significantly increases energy expenditure, as demonstrated by a higher dry heat loss; yet, the mechanisms underlying the thermogenic effect of central nesfatin-1 remain unknown. Therefore, in this study, we sought to investigate whether the increase in energy expenditure induced by nesfatin-1 is mediated by the central melanocortin pathway, which was previously reported to mediate central nesfatin-1´s effects on feeding and numerous other physiological functions. With the application of direct calorimetry, we found that intracerebroventricular nesfatin-1 (25 pmol) treatment increased dry heat loss and that this effect was fully blocked by simultaneous administration of an equimolar dose of the melanocortin 3/4 receptor antagonist, SHU9119. Interestingly, the nesfatin-1-induced increase in dry heat loss was positively correlated with body weight loss. In addition, as assessed with thermal imaging, intracerebroventricular nesfatin-1 (100 pmol) increased interscapular brown adipose tissue (iBAT) as well as tail temperature, suggesting increased heat production in the iBAT and heat dissipation over the tail surface. Finally, nesfatin-1 upregulated pro-opiomelanocortin and melanocortin 3 receptor mRNA expression in the hypothalamus, accompanied by a significant increase in iodothyronine deiodinase 2 and by a nonsignificant increase in uncoupling protein 1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha mRNA in the iBAT. Overall, we clearly demonstrate that nesfatin-1 requires the activation of the central melanocortin system to increase iBAT thermogenesis and, in turn, overall energy expenditure.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Luka Levata
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Sogol Gachkar
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Center of BrainBehavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
31
|
Coutinho EA, Okamoto S, Ishikawa AW, Yokota S, Wada N, Hirabayashi T, Saito K, Sato T, Takagi K, Wang CC, Kobayashi K, Ogawa Y, Shioda S, Yoshimura Y, Minokoshi Y. Activation of SF1 Neurons in the Ventromedial Hypothalamus by DREADD Technology Increases Insulin Sensitivity in Peripheral Tissues. Diabetes 2017; 66:2372-2386. [PMID: 28673934 DOI: 10.2337/db16-1344] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/08/2017] [Indexed: 11/13/2022]
Abstract
The ventromedial hypothalamus (VMH) regulates glucose and energy metabolism in mammals. Optogenetic stimulation of VMH neurons that express steroidogenic factor 1 (SF1) induces hyperglycemia. However, leptin acting via the VMH stimulates whole-body glucose utilization and insulin sensitivity in some peripheral tissues, and this effect of leptin appears to be mediated by SF1 neurons. We examined the effects of activation of SF1 neurons with DREADD (designer receptors exclusively activated by designer drugs) technology. Activation of SF1 neurons by an intraperitoneal injection of clozapine-N-oxide (CNO), a specific hM3Dq ligand, reduced food intake and increased energy expenditure in mice expressing hM3Dq in SF1 neurons. It also increased whole-body glucose utilization and glucose uptake in red-type skeletal muscle, heart, and interscapular brown adipose tissue, as well as glucose production and glycogen phosphorylase a activity in the liver, thereby maintaining blood glucose levels. During hyperinsulinemic-euglycemic clamp, such activation of SF1 neurons increased insulin-induced glucose uptake in the same peripheral tissues and tended to enhance insulin-induced suppression of glucose production by suppressing gluconeogenic gene expression and glycogen phosphorylase a activity in the liver. DREADD technology is thus an important tool for studies of the role of the brain in the regulation of insulin sensitivity in peripheral tissues.
Collapse
Affiliation(s)
- Eulalia A Coutinho
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Science, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Shiki Okamoto
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Science, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Ayako Wendy Ishikawa
- Department of Physiological Science, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Division of Visual Information Processing, Department of Fundamental Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Shigefumi Yokota
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Nobuhiro Wada
- Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Hirabayashi
- Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Kumiko Saito
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Tatsuya Sato
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Kazuyo Takagi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Human Life Science, Nagoya University of Economics, Inuyama, Aichi, Japan
| | - Chen-Chi Wang
- Department of Physiological Science, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Center for Experimental Animals, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Kenta Kobayashi
- Department of Physiological Science, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Japan Agency for Medical Research and Development, CREST (AMED-CREST), Tokyo, Japan
| | - Seiji Shioda
- Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Yumiko Yoshimura
- Department of Physiological Science, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
- Division of Visual Information Processing, Department of Fundamental Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Science, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| |
Collapse
|
32
|
Kim JD, Toda C, Ramírez CM, Fernández-Hernando C, Diano S. Hypothalamic Ventromedial Lin28a Enhances Glucose Metabolism in Diet-Induced Obesity. Diabetes 2017; 66:2102-2111. [PMID: 28550108 PMCID: PMC5521863 DOI: 10.2337/db16-1558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/16/2017] [Indexed: 01/28/2023]
Abstract
The Lin28a/Let-7 axis has been studied in peripheral tissues for its role in metabolism regulation. However, its central function remains unclear. Here we found that Lin28a is highly expressed in the hypothalamus compared with peripheral tissues. Its expression is positively correlated with positive energy balance, suggesting a potential central role for Lin28a in metabolism regulation. Thus, we targeted the hypothalamic ventromedial nucleus (VMH) to selectively overexpress (Lin28aKIVMH ) or downregulate (Lin28aKDVMH ) Lin28a expression in mice. With mice on a standard chow diet, body weight and glucose homeostasis were not affected in Lin28aKIVMH or Lin28aKDVMH mice. On a high-fat diet, although no differences in body weight and composition were observed, Lin28aKIVMH mice showed improved glucose tolerance and insulin sensitivity compared with controls. Conversely, Lin28aKDVMH mice displayed glucose intolerance and insulin resistance. Changes in VMH AKT activation of diet-induced obese Lin28aKIVMH or Lin28aKDVMH mice were not associated with alterations in Let-7 levels or insulin receptor activation. Rather, we observed altered expression of TANK-binding kinase-1 (TBK-1), which was found to be a direct Lin28a target mRNA. VMH-specific inhibition of TBK-1 in mice with diet-induced obesity impaired glucose metabolism and AKT activation. Altogether, our data show a TBK-1-dependent role for central Lin28a in glucose homeostasis.
Collapse
Affiliation(s)
- Jung Dae Kim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
| | - Chitoku Toda
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
| | - Cristina M Ramírez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
- Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
- Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT
| | - Sabrina Diano
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
- Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
33
|
Pozo M, Rodríguez-Rodríguez R, Ramírez S, Seoane-Collazo P, López M, Serra D, Herrero L, Casals N. Hypothalamic Regulation of Liver and Muscle Nutrient Partitioning by Brain-Specific Carnitine Palmitoyltransferase 1C in Male Mice. Endocrinology 2017; 158:2226-2238. [PMID: 28472467 DOI: 10.1210/en.2017-00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
Carnitine palmitoyltransferase (CPT) 1C, a brain-specific protein localized in the endoplasmic reticulum of neurons, is expressed in almost all brain regions. Based on global knockout (KO) models, CPT1C has demonstrated relevance in hippocampus-dependent spatial learning and in hypothalamic regulation of energy balance. Specifically, it has been shown that CPT1C is protective against high-fat diet-induced obesity (DIO), and that CPT1C KO mice show reduced peripheral fatty acid oxidation (FAO) during both fasting and DIO. However, the mechanisms mediating CPT1C-dependent regulation of energy homeostasis remain unclear. Here, we focus on the mechanistic understanding of hypothalamic CPT1C on the regulation of fuel selection in liver and muscle of male mice during energy deprivation situations, such as fasting. In CPT1C-deficient mice, modulation of the main hypothalamic energy sensors (5' adenosine monophosphate-activated protein kinase, Sirtuin 1, and mammalian target of rapamycin) was impaired and plasma catecholamine levels were decreased. Consequently, CPT1C-deficient mice presented defective fasting-induced FAO in liver, leading to higher triacylglycerol accumulation and lower glycogen levels. Moreover, muscle pyruvate dehydrogenase activity was increased, which was indicative of glycolysis enhancement. The respiratory quotient did not decrease in CPT1C KO mice after 48 hours of fasting, confirming a defective switch on fuel substrate selection under hypoglycemia. Phenotype reversion studies identified the mediobasal hypothalamus (MBH) as the main area mediating CPT1C effects on fuel selection. Overall, our data demonstrate that CPT1C in the MBH is necessary for proper hypothalamic sensing of a negative energy balance and fuel partitioning in liver and muscle.
Collapse
Affiliation(s)
- Macarena Pozo
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Sara Ramírez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Patricia Seoane-Collazo
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
34
|
D'souza AM, Neumann UH, Glavas MM, Kieffer TJ. The glucoregulatory actions of leptin. Mol Metab 2017; 6:1052-1065. [PMID: 28951828 PMCID: PMC5605734 DOI: 10.1016/j.molmet.2017.04.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
Background The hormone leptin is an important regulator of metabolic homeostasis, able to inhibit food intake and increase energy expenditure. Leptin can also independently lower blood glucose levels, particularly in hyperglycemic models of leptin or insulin deficiency. Despite significant efforts and relevance to diabetes, the mechanisms by which leptin acts to regulate blood glucose levels are not fully understood. Scope of review Here we assess literature relevant to the glucose lowering effects of leptin. Leptin receptors are widely expressed in multiple cell types, and we describe both peripheral and central effects of leptin that may be involved in lowering blood glucose. In addition, we summarize the potential clinical application of leptin in regulating glucose homeostasis. Major conclusions Leptin exerts a plethora of metabolic effects on various tissues including suppressing production of glucagon and corticosterone, increasing glucose uptake, and inhibiting hepatic glucose output. A more in-depth understanding of the mechanisms of the glucose-lowering actions of leptin may reveal new strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Anna M D'souza
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ursula H Neumann
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Surgery, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
35
|
Shimazu T, Minokoshi Y. Systemic Glucoregulation by Glucose-Sensing Neurons in the Ventromedial Hypothalamic Nucleus (VMH). J Endocr Soc 2017; 1:449-459. [PMID: 29264500 PMCID: PMC5686683 DOI: 10.1210/js.2016-1104] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/07/2017] [Indexed: 01/31/2023] Open
Abstract
The ventromedial hypothalamic nucleus (VMH) regulates glucose production in the liver as well as glucose uptake and utilization in peripheral tissues, including skeletal muscle and brown adipose tissue, via efferent sympathetic innervation and neuroendocrine mechanisms. The action of leptin on VMH neurons also increases glucose uptake in specific peripheral tissues through the sympathetic nervous system, with improved insulin sensitivity. On the other hand, subsets of VMH neurons, such as those that express steroidogenic factor 1 (SF1), sense changes in the ambient glucose concentration and are characterized as glucose-excited (GE) and glucose-inhibited (GI) neurons whose action potential frequency increases and decreases, respectively, as glucose levels rise. However, how these glucose-sensing (GE and GI) neurons in the VMH contribute to systemic glucoregulation remains poorly understood. In this review, we provide historical background and discuss recent advances related to glucoregulation by VMH neurons. In particular, the article describes the role of GE neurons in the control of peripheral glucose utilization and insulin sensitivity, which depend on mitochondrial uncoupling protein 2 of the neurons, as well as that of GI neurons in the control of hepatic glucose production through hypoglycemia-induced counterregulatory mechanisms.
Collapse
Affiliation(s)
- Takashi Shimazu
- Department of Medical Biochemistry, Graduate School of Medicine, Ehime University, Tohon-shi, Ehime 791-0295, Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, 38 Myodaiji, Okazaki, Aichi 444-8585, Japan.,Department of Physiological Sciences, School of Life Science, Sokendai (The Graduate University for Advanced Studies), 38 Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
36
|
Almundarij TI, Gavini CK, Novak CM. Suppressed sympathetic outflow to skeletal muscle, muscle thermogenesis, and activity energy expenditure with calorie restriction. Physiol Rep 2017; 5:5/4/e13171. [PMID: 28242830 PMCID: PMC5328781 DOI: 10.14814/phy2.13171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/29/2017] [Indexed: 12/21/2022] Open
Abstract
During weight loss, adaptive thermogenesis occurs where energy expenditure (EE) is suppressed beyond that predicted for the smaller body size. Here, we investigated the contributions of resting and nonresting EE to the reduced total EE seen after 3 weeks of 50% calorie restriction (CR) in rats, focusing on activity‐associated EE, muscle thermogenesis, and sympathetic outflow. Prolonged food restriction resulted in a 42% reduction in daily EE, through a 40% decrease in resting EE, and a 48% decline in nonresting EE. These decreases in EE were significant even when the reductions in body weight and lean mass were taken into account. Along with a decreased caloric need for low‐to‐moderate‐intensity treadmill activity with 50% CR, baseline and activity‐related muscle thermogenesis were also suppressed, though the ability to increase muscle thermogenesis above baseline levels was not compromised. When sympathetic drive was measured by assessing norepinephrine turnover (NETO), 50% CR was found to decrease NETO in three of the four muscle groups examined, whereas elevated NETO was found in white adipose tissue of food‐restricted rats. Central activation of melanocortin 4 receptors in the ventromedial hypothalamus stimulated this pathway, enhancing activity EE; this was not compromised by 50% CR. These data suggest that suppressed activity EE contributes to adaptive thermogenesis during energy restriction. This may stem from decreased sympathetic drive to skeletal muscle, increasing locomotor efficiency and reducing skeletal muscle thermogenesis. The capacity to increase activity EE in response to central stimuli is retained, however, presenting a potential target for preventing weight regain.
Collapse
Affiliation(s)
- Tariq I Almundarij
- College of Agriculture and Veterinary Medicine, Al Qassim University, Buraydah, Al-Qassim Province, Saudi Arabia.,Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Chaitanya K Gavini
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, Ohio .,School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
37
|
Minokoshi Y. Hypothalamic control of glucose and lipid metabolism in skeletal muscle. ACTA ACUST UNITED AC 2017. [DOI: 10.7600/jpfsm.6.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (Sokendai)
| |
Collapse
|
38
|
Ladyman SR, Augustine RA, Scherf E, Phillipps HR, Brown CH, Grattan DR. Attenuated hypothalamic responses to α-melanocyte stimulating hormone during pregnancy in the rat. J Physiol 2016; 594:1087-101. [PMID: 26613967 DOI: 10.1113/jp271605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Increased appetite and weight gain occurs during pregnancy, associated with development of leptin resistance, and satiety responses to the anorectic peptide α-melanocyte stimulating hormone (α-MSH) are suppressed. This study investigated hypothalamic responses to α-MSH during pregnancy, using c-fos expression in specific hypothalamic nuclei as a marker of neuronal signalling, and in vivo electrophysiology in supraoptic nucleus (SON) oxytocin neurons, as a representative α-MSH-responsive neuronal population that shows a well-characterised α-MSH-induced inhibition of firing. While icv injection of α-MSH significantly increased the number of c-fos-positive cells in the paraventricular, supraoptic, arcuate and ventromedial hypothalamic nuclei in non-pregnant rats, this response was suppressed in pregnant rats. Similarly, SON oxytocin neurons in pregnant rats did not demonstrate characteristic α-MSH-induced inhibition of firing that was observed in non-pregnant animals. Given the known functions of α-MSH in the hypothalamus, the attenuated responses are likely to facilitate adaptive changes in appetite regulation and oxytocin secretion during pregnancy. ABSTRACT During pregnancy, a state of positive energy balance develops to support the growing fetus and to deposit fat in preparation for the subsequent metabolic demands of lactation. As part of this maternal adaptation, the satiety response to the anorectic peptide α-melanocyte stimulating hormone (α-MSH) is suppressed. To investigate whether pregnancy is associated with changes in the response of hypothalamic α-MSH target neurons, non-pregnant and pregnant rats were treated with α-MSH or vehicle and c-fos expression in hypothalamic nuclei was then examined. Furthermore, the firing rate of supraoptic nucleus (SON) oxytocin neurons, a known α-MSH responsive neuronal population, was examined in non-pregnant and pregnant rats following α-MSH treatment. Intracerebroventricular injection of α-MSH significantly increased the number of c-fos-positive cells in the paraventricular, arcuate and ventromedial hypothalamic nuclei in non-pregnant rats, but no significant increase was observed in any of these regions in pregnant rats. In the SON, α-MSH did induce expression of c-fos during pregnancy, but this was significantly reduced compared to that observed in the non-pregnant group. Furthermore, during pregnancy, SON oxytocin neurons did not demonstrate the characteristic α-MSH-induced inhibition of firing rate that was observed in non-pregnant animals. Melanocortin receptor mRNA levels during pregnancy were similar to non-pregnant animals, suggesting that receptor down-regulation is unlikely to be a mechanism underlying the attenuated responses to α-MSH during pregnancy. Given the known functions of α-MSH in the hypothalamus, the attenuated responses will facilitate adaptive changes in appetite regulation and oxytocin secretion during pregnancy.
Collapse
Affiliation(s)
- S R Ladyman
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - R A Augustine
- Department of Physiology and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - E Scherf
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - H R Phillipps
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - C H Brown
- Department of Physiology and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - D R Grattan
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
39
|
Endospanin1 affects oppositely body weight regulation and glucose homeostasis by differentially regulating central leptin signaling. Mol Metab 2016; 6:159-172. [PMID: 28123946 PMCID: PMC5220283 DOI: 10.1016/j.molmet.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 01/05/2023] Open
Abstract
The hypothalamic arcuate nucleus (ARC) is a major integration center for energy and glucose homeostasis that responds to leptin. Resistance to leptin in the ARC is an important component of the development of obesity and type 2 diabetes. Recently, we showed that Endospanin1 (Endo1) is a negative regulator of the leptin receptor (OBR) that interacts with OBR and retains the receptor inside the cell, leading to a decreased activation of the anorectic STAT3 pathway. Endo1 is up-regulated in the ARC of high fat diet (HFD)-fed mice, and its silencing in the ARC of lean and obese mice prevents and reverses the development of obesity. OBJECTIVE Herein we investigated whether decreased Endo1 expression in the hypothalamic ARC, associated with reduced obesity, could also ameliorate glucose homeostasis accordingly. METHODS We studied glucose homeostasis in lean or obese mice silenced for Endo1 in the ARC via stereotactic injection of shRNA-expressing lentiviral vectors. RESULTS We observed that despite being leaner, Endo1-silenced mice showed impaired glucose homeostasis on HFD. Mechanistically, we show that Endo1 interacts with p85, the regulatory subunit of PI3K, and mediates leptin-induced PI3K activation. CONCLUSIONS Our results thus define Endo1 as an important hypothalamic integrator of leptin signaling, and its silencing differentially regulates the OBR-dependent functions.
Collapse
Key Words
- ARC, arcuate nucleus
- BW, body weight
- CD, chow diet
- DIO, diet-induced obesity
- Diabetes
- Endo1, Endospanin1
- GTT, glucose tolerance test
- HFD, high fat diet
- Insulin
- LIF, leukemia inhibitory factor
- Leptin receptor
- OB-RGRP/Endospanin1
- OBR, leptin receptor
- Obesity
- PLA, proximity ligation assay
- T2D, type 2 diabetes
- ip, intraperitoneal
Collapse
|
40
|
Gavini CK, Jones WC, Novak CM. Ventromedial hypothalamic melanocortin receptor activation: regulation of activity energy expenditure and skeletal muscle thermogenesis. J Physiol 2016; 594:5285-301. [PMID: 27126579 PMCID: PMC5023712 DOI: 10.1113/jp272352] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS The ventromedial hypothalamus (VMH) and the central melanocortin system both play vital roles in regulating energy balance by modulating energy intake and utilization. Recent evidence suggests that activation of the VMH alters skeletal muscle metabolism. We show that intra-VMH melanocortin receptor activation increases energy expenditure and physical activity, switches fuel utilization to fats, and lowers work efficiency such that excess calories are dissipated by skeletal muscle as heat. We also show that intra-VMH melanocortin receptor activation increases sympathetic nervous system outflow to skeletal muscle. Intra-VMH melanocortin receptor activation also induced significant changes in the expression of mediators of energy expenditure in muscle. These results support the role of melanocortin receptors in the VMH in the modulation of skeletal muscle metabolism. ABSTRACT The ventromedial hypothalamus (VMH) and the brain melanocortin system both play vital roles in increasing energy expenditure (EE) and physical activity, decreasing appetite and modulating sympathetic nervous system (SNS) outflow. Because of recent evidence showing that VMH activation modulates skeletal muscle metabolism, we propose the existence of an axis between the VMH and skeletal muscle, modulated by brain melanocortins, modelled on the brain control of brown adipose tissue. Activation of melanocortin receptors in the VMH of rats using a non-specific agonist melanotan II (MTII), compared to vehicle, increased oxygen consumption and EE and decreased the respiratory exchange ratio. Intra-VMH MTII enhanced activity-related EE even when activity levels were held constant. MTII treatment increased gastrocnemius muscle heat dissipation during controlled activity, as well as in the home cage. Compared to vehicle-treated rats, rats with intra-VMH melanocortin receptor activation had higher skeletal muscle norepinephrine turnover, indicating an increased SNS drive to muscle. Lastly, intra-VMH MTII induced mRNA expression of muscle energetic mediators, whereas short-term changes at the protein level were primarily limited to phosphorylation events. These results support the hypothesis that melanocortin peptides act in the VMH to increase EE by lowering the economy of activity via the enhanced expression of mediators of EE in the periphery including skeletal muscle. The data are consistent with the role of melanocortins in the VMH in the modulation of skeletal muscle metabolism.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/physiology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/physiology
- Animals
- Energy Metabolism
- Hypothalamus/physiology
- Liver/drug effects
- Liver/metabolism
- Liver/physiology
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Norepinephrine/metabolism
- Peptides, Cyclic/pharmacology
- Physical Conditioning, Animal
- Rats, Sprague-Dawley
- Receptors, Melanocortin/agonists
- Receptors, Melanocortin/physiology
- Thermogenesis
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Chaitanya K Gavini
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| | - William C Jones
- Department of Exercise Science/Physiology, College of Education, Health, and Human Services, Kent State University, Kent, OH, USA
| | - Colleen M Novak
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
41
|
Enriori PJ, Chen W, Garcia-Rudaz MC, Grayson BE, Evans AE, Comstock SM, Gebhardt U, Müller HL, Reinehr T, Henry BA, Brown RD, Bruce CR, Simonds SE, Litwak SA, McGee SL, Luquet S, Martinez S, Jastroch M, Tschöp MH, Watt MJ, Clarke IJ, Roth CL, Grove KL, Cowley MA. α-Melanocyte stimulating hormone promotes muscle glucose uptake via melanocortin 5 receptors. Mol Metab 2016; 5:807-822. [PMID: 27688995 PMCID: PMC5034615 DOI: 10.1016/j.molmet.2016.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/21/2023] Open
Abstract
Objective Central melanocortin pathways are well-established regulators of energy balance. However, scant data exist about the role of systemic melanocortin peptides. We set out to determine if peripheral α-melanocyte stimulating hormone (α-MSH) plays a role in glucose homeostasis and tested the hypothesis that the pituitary is able to sense a physiological increase in circulating glucose and responds by secreting α-MSH. Methods We established glucose-stimulated α-MSH secretion using humans, non-human primates, and mouse models. Continuous α-MSH infusions were performed during glucose tolerance tests and hyperinsulinemic-euglycemic clamps to evaluate the systemic effect of α-MSH in glucose regulation. Complementary ex vivo and in vitro techniques were employed to delineate the direct action of α-MSH via the melanocortin 5 receptor (MC5R)–PKA axis in skeletal muscles. Combined treatment of non-selective/selective phosphodiesterase inhibitor and α-MSH was adopted to restore glucose tolerance in obese mice. Results Here we demonstrate that pituitary secretion of α-MSH is increased by glucose. Peripheral α-MSH increases temperature in skeletal muscles, acts directly on soleus and gastrocnemius muscles to significantly increase glucose uptake, and enhances whole-body glucose clearance via the activation of muscle MC5R and protein kinase A. These actions are absent in obese mice, accompanied by a blunting of α-MSH-induced cAMP levels in skeletal muscles of obese mice. Both selective and non-selective phosphodiesterase inhibition restores α-MSH induced skeletal muscle glucose uptake and improves glucose disposal in obese mice. Conclusion These data describe a novel endocrine circuit that modulates glucose homeostasis by pituitary α-MSH, which increases muscle glucose uptake and thermogenesis through the activation of a MC5R-PKA-pathway, which is disrupted in obesity. Glucose stimulates α-MSH release from the pituitary. Systemic α-MSH drives glucose disposal and thermogenesis in skeletal muscles. α-MSH acts on MC5R expressed on skeletal muscles and activate cAMP-PKA pathway. The combined treatment of nonselective or selective PDE 4 inhibitor and α-MSH ameliorates glucose intolerance in obese mice.
Collapse
Affiliation(s)
- Pablo J Enriori
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Weiyi Chen
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Maria C Garcia-Rudaz
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | | | - Anne E Evans
- Division Neuroscience, Oregon Health and Science University, Oregon, USA
| | - Sarah M Comstock
- Division Neuroscience, Oregon Health and Science University, Oregon, USA
| | - Ursel Gebhardt
- Department of Pediatrics, Vestische Children Hospital Datteln, University of Witten/Herdecke, Germany
| | - Hermann L Müller
- Department of Pediatrics, Vestische Children Hospital Datteln, University of Witten/Herdecke, Germany
| | - Thomas Reinehr
- Department of Pediatrics, Klinikum Oldenburg GmbH, Germany
| | - Belinda A Henry
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Russell D Brown
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Clinton R Bruce
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Stephanie E Simonds
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Sara A Litwak
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine, Deakin University, Vic, Australia
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Sarah Martinez
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg & Division of Metabolic Diseases, Technische Universität, München, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg & Division of Metabolic Diseases, Technische Universität, München, Germany
| | - Matthew J Watt
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Iain J Clarke
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia
| | - Christian L Roth
- Division of Endocrinology, Seattle Children's Hospital Research Institute, WA, USA
| | - Kevin L Grove
- Division Neuroscience, Oregon Health and Science University, Oregon, USA
| | - Michael A Cowley
- Biomedical Discovery Institute/Department of Physiology, Monash University, Vic, Australia.
| |
Collapse
|
42
|
Bhaskar V, Goldfine ID, Gerstner R, Michelson K, Tran C, Nonet G, Bohmann D, Pongo E, Zhao J, Horwitz AH, Takeuchi T, White M, Corbin JA. An allosteric antibody to the leptin receptor reduces body weight and reverses the diabetic phenotype in the Lep(ob) /Lep(ob) mouse. Obesity (Silver Spring) 2016; 24:1687-94. [PMID: 27330016 DOI: 10.1002/oby.21539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Leptin (LEP) deficiency results in major metabolic perturbations, including obesity, dyslipidemia, and diabetes. Although LEP deficiency can be treated with daily injections of a recombinant LEP, generation of an antibody activating the LEP receptor (LEPR) that has both an intrinsically long half-life and low immunogenicity could be useful in the treatment of this condition. METHODS Phage display technology coupled with flow cytometry and cell-based in vitro assays were employed to identify an allosteric agonist of the mouse LEPR. LEP-deficient Lep(ob) /Lep(ob) mice were used to compare in vivo effects of LEP to antibody administration. To evaluate hypothalamic effects of treatment, changes in mRNA levels of neuropeptide Y and proopiomelanocortin were measured. RESULTS XPA.80.037 is a monoclonal antibody that demonstrates allosteric agonism of the mouse LEPR. Treatment of Lep(ob) /Lep(ob) mice with XPA.80.037 markedly reduced hyperphagia and body weight, normalized blood glucose and plasma insulin levels, and corrected dyslipidemia. These metabolic alterations correlated with changes in mRNA levels of neuropeptide Y and proopiomelanocortin, suggesting that XPA.80.037 had hypothalamic effects. CONCLUSIONS Agonist allosteric monoclonal antibodies to the LEPR can correct metabolic effects associated with LEP deficiency in vivo and thereby have the potential to treat conditions of LEP deficiency.
Collapse
Affiliation(s)
- Vinay Bhaskar
- Preclinical Development, XOMA Corporation, Berkeley, California, USA
| | - Ira D Goldfine
- Preclinical Development, XOMA Corporation, Berkeley, California, USA
| | - Resi Gerstner
- Discovery Research, XOMA Corporation, Berkeley, California, USA
| | | | - Catarina Tran
- Discovery Research, XOMA Corporation, Berkeley, California, USA
| | - Genevieve Nonet
- Discovery Research, XOMA Corporation, Berkeley, California, USA
| | - David Bohmann
- Discovery Research, XOMA Corporation, Berkeley, California, USA
| | - Elizabeth Pongo
- Discovery Research, XOMA Corporation, Berkeley, California, USA
| | - Jingsong Zhao
- Preclinical Development, XOMA Corporation, Berkeley, California, USA
| | | | | | - Mark White
- Discovery Research, XOMA Corporation, Berkeley, California, USA
| | - John A Corbin
- Discovery Research, XOMA Corporation, Berkeley, California, USA
| |
Collapse
|
43
|
UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness. Cell 2016; 164:872-83. [PMID: 26919426 DOI: 10.1016/j.cell.2016.02.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 01/21/2023]
Abstract
The ventromedial nucleus of the hypothalamus (VMH) plays a critical role in regulating systemic glucose homeostasis. How neurons in this brain area adapt to the changing metabolic environment to regulate circulating glucose levels is ill defined. Here, we show that glucose load results in mitochondrial fission and reduced reactive oxygen species in VMH neurons mediated by dynamin-related peptide 1 (DRP1) under the control of uncoupling protein 2 (UCP2). Probed by genetic manipulations and chemical-genetic control of VMH neuronal circuitry, we unmasked that this mitochondrial adaptation determines the size of the pool of glucose-excited neurons in the VMH and that this process regulates systemic glucose homeostasis. Thus, our data unmasked a critical cellular biological process controlled by mitochondrial dynamics in VMH regulation of systemic glucose homeostasis.
Collapse
|
44
|
Abstract
The marked (18)F-flurodeoxyglucose uptake by brown adipose tissue (BAT) enabled its identification in human positron emission tomography imaging studies. In this Perspective, we discuss how glucose extraction by BAT and beige adipose tissue (BeAT) sufficiently impacts on glycemic control. We then present a unique overview of the central circuits modulated by gluco-regulatory hormones, temperature, and glucose itself, which converge on sympathetic preganglionic neurons and whose activation syphon circulating glucose into BAT/BeAT. Targeted stimulation of the sympathetic nervous system at specific nodes to selectively recruit BAT/BeAT may represent a safe and effective means of treating diabetes.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, University of Leipzig, Leipzig, Saxony 04103, Germany.
| | - Michael A Cowley
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Wiebke K Fenske
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, University of Leipzig, Leipzig, Saxony 04103, Germany
| |
Collapse
|
45
|
Denroche HC, Kwon MM, Glavas MM, Tudurí E, Philippe M, Quong WL, Kieffer TJ. The role of autonomic efferents and uncoupling protein 1 in the glucose-lowering effect of leptin therapy. Mol Metab 2016; 5:716-724. [PMID: 27656409 PMCID: PMC5021671 DOI: 10.1016/j.molmet.2016.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/19/2016] [Indexed: 01/06/2023] Open
Abstract
Objective Leptin reverses hyperglycemia in rodent models of type 1 diabetes (T1D). Direct application of leptin to the brain can lower blood glucose in diabetic rodents, and can activate autonomic efferents and non-shivering thermogenesis in brown adipose tissue (BAT). We investigated whether leptin reverses hyperglycemia through a mechanism that requires autonomic innervation, or uncoupling protein 1 (UCP1)-mediated thermogenesis. Methods To examine the role of parasympathetic and sympathetic efferents in the glucose-lowering action of leptin, mice with a subdiaphragmatic vagotomy or 6-hydroxydopamine induced chemical sympathectomy were injected with streptozotocin (STZ) to induce hyperglycemia, and subsequently leptin treated. To test whether the glucose-lowering action of leptin requires activation of UCP1-mediated thermogenesis in BAT, we administered leptin in STZ-diabetic Ucp1 knockout (Ucp1−/−) mice and wildtype controls. Results Leptin ameliorated STZ-induced hyperglycemia in both intact and vagotomised mice. Similarly, mice with a partial chemical sympathectomy did not have an attenuated response to leptin-mediated glucose lowering relative to sham controls, and showed intact leptin-induced Ucp1 expression in BAT. Although leptin activated BAT thermogenesis in STZ-diabetic mice, the anti-diabetic effect of leptin was not blunted in Ucp1−/− mice. Conclusions These results suggest that leptin lowers blood glucose in insulin-deficient diabetes through a manner that does not require parasympathetic or sympathetic innervation, and thus imply that leptin lowers blood glucose through an alternative CNS-mediated mechanism or redundant target tissues. Furthermore, we conclude that the glucose lowering action of leptin is independent of UCP1-dependent thermogenesis. Leptin does not require vagal innervation to reverse hyperglycemia. Leptin therapy reverses hyperglycemia in mice with a partial chemical sympathectomy. Leptin reverses hyperglycemia independent of uncoupling protein 1.
Collapse
Key Words
- 6OHDA, 6-hydroxydopamine
- ANS, autonomic nervous system
- BAT, brown adipose tissue
- Brown adipose tissue
- CCK, cholecystokinin
- CNS, central nervous system
- Glucose
- STZ, streptozotocin
- Streptozotocin
- Sympathectomy
- T1D, type 1 diabetes
- TH, tyrosine hydroxylase
- Type 1 diabetes
- UCP1, uncoupling protein 1
- Vagotomy
- iBAT, interscapular BAT
Collapse
Affiliation(s)
- Heather C Denroche
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle M Kwon
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria M Glavas
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eva Tudurí
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marion Philippe
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Whitney L Quong
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
46
|
Shpakov AO. The brain leptin signaling system and its functional state in metabolic syndrome and type 2 diabetes mellitus. J EVOL BIOCHEM PHYS+ 2016; 52:177-195. [DOI: 10.1134/s0022093016030017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
Raskin P, Cincotta AH. Bromocriptine-QR therapy for the management of type 2 diabetes mellitus: developmental basis and therapeutic profile summary. Expert Rev Endocrinol Metab 2016; 11:113-148. [PMID: 30058874 DOI: 10.1586/17446651.2016.1131119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An extended series of studies indicate that endogenous phase shifts in circadian neuronal input signaling to the biological clock system centered within the hypothalamic suprachiasmatic nucleus (SCN) facilitates shifts in metabolic status. In particular, a diminution of the circadian peak in dopaminergic input to the peri-SCN facilitates the onset of fattening, insulin resistance and glucose intolerance while reversal of low circadian peak dopaminergic activity to the peri-SCN via direct timed dopamine administration to this area normalizes the obese, insulin resistant, glucose intolerant state in high fat fed animals. Systemic circadian-timed daily administration of a potent dopamine D2 receptor agonist, bromocriptine, to increase diminished circadian peak dopaminergic hypothalamic activity across a wide variety of animal models of metabolic syndrome and type 2 diabetes mellitus (T2DM) results in improvements in the obese, insulin resistant, glucose intolerant condition by improving hypothalamic fuel sensing and reducing insulin resistance, elevated sympathetic tone, and leptin resistance. A circadian-timed (within 2 hours of waking in the morning) once daily administration of a quick release formulation of bromocriptine (bromocriptine-QR) has been approved for the treatment of T2DM by the U.S. Food and Drug Administration. Clinical studies with such bromocriptine-QR therapy (1.6 to 4.8 mg/day) indicate that it improves glycemic control by reducing postprandial glucose levels without raising plasma insulin. Across studies of various T2DM populations, bromocriptine-QR has been demonstrated to reduce HbA1c by -0.5 to -1.7. The drug has a good safety profile with transient mild to moderate nausea, headache and dizziness as the most frequent adverse events noted with the medication. In a large randomized clinical study of T2DM subjects, bromocriptine-QR exposure was associated with a 42% hazard ratio reduction of a pre-specified adverse cardiovascular endpoint including myocardial infarction, stroke, hospitalization for congestive heart failure, revascularization surgery, or unstable angina. Bromocriptine-QR represents a novel method of treating T2DM that may have benefits for cardiovascular disease as well.
Collapse
Affiliation(s)
- Philip Raskin
- a Southwestern Medical Center , University of Texas , Dallas , TX , USA
| | | |
Collapse
|
48
|
Labbé SM, Caron A, Lanfray D, Monge-Rofarello B, Bartness TJ, Richard D. Hypothalamic control of brown adipose tissue thermogenesis. Front Syst Neurosci 2015; 9:150. [PMID: 26578907 PMCID: PMC4630288 DOI: 10.3389/fnsys.2015.00150] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities.
Collapse
Affiliation(s)
- Sebastien M Labbé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Alexandre Caron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Boris Monge-Rofarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal (COR), Georgia State University Atlanta, GA, USA
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| |
Collapse
|
49
|
Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1:FSO25. [PMID: 28031898 PMCID: PMC5137856 DOI: 10.4155/fso.15.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
Collapse
|
50
|
Leptin Is Required for Glucose Homeostasis after Roux-en-Y Gastric Bypass in Mice. PLoS One 2015; 10:e0139960. [PMID: 26445459 PMCID: PMC4596552 DOI: 10.1371/journal.pone.0139960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/18/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND & AIMS Leptin, the protein product of the ob gene, increases energy expenditure and reduces food intake, thereby promoting weight reduction. Leptin also regulates glucose homeostasis and hepatic insulin sensitivity via hypothalamic proopiomelanocortin neurons in mice. Roux-en-Y gastric bypass (RYGB) induces weight loss that is substantial and sustained despite reducing plasma leptin levels. In addition, patients who fail to undergo diabetes remission after RYGB are hypoletinemic compared to those who do and to lean controls. We have previously demonstrated that the beneficial effects of RYGB in mice require the melanocortin-4 receptor, a downstream effector of leptin action. Based on these observations, we hypothesized that leptin is required for sustained weight reduction and improved glucose homeostasis observed after RYGB. METHODS To investigate this hypothesis, we performed RYGB or sham operations on leptin-deficient ob/ob mice maintained on regular chow. To investigate whether leptin is involved in post-RYGB weight maintenance, we challenged post-surgical mice with high fat diet. RESULTS RYGB reduced total body weight, fat and lean mass and caused reduction in calorie intake in ob/ob mice. However, it failed to improve glucose tolerance, glucose-stimulated plasma insulin, insulin tolerance, and fasting plasma insulin. High fat diet eliminated the reduction in calorie intake observed after RYGB in ob/ob mice and promoted weight regain, although not to the same extent as in sham-operated mice. We conclude that leptin is required for the effects of RYGB on glucose homeostasis but not body weight or composition in mice. Our data also suggest that leptin may play a role in post-RYGB weight maintenance.
Collapse
|