1
|
Li Q, Zhang M, Gao Q, Chen X. High fat-induced the upregulation of LOX-1 in RF/6A cells under high glucose condition. J Diabetes Complications 2025; 39:109019. [PMID: 40168811 DOI: 10.1016/j.jdiacomp.2025.109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
OBJECTIVE To investigate the effect of ox-LDL on the expression of lectin-like receptor of ox-LDL (LOX-1) and intercellular adhesion molecule-1 (ICAM-1) in RF/6A cells under high-glucose condition. METHODS RF/6A cells were cultured in normal or high-glucose medium for two days. Furthermore, RF/6A cells were cultured in medium with high glucose and ox-LDL or normal medium with ox-LDL. The concentrations of ox-LDL were determined by initial screening based on migration and immunofluorescence. The expressions of LOX-1 and ICAM-1 were determined by western blot. RESULTS The maximal effect of glucose on RF/6A cells was observed with the concentration of 25 mmol/l for 48 h. The LOX-1 expression was upregulated under high glucose condition than normal glucose (p < 0.05). There were significant LOX-1 overexpression and blocked ICAM-1 activation in RF/6A cells under high-glucose condition (p < 0.05). In the normal medium with ox-LDL groups, LOX-1 expression was both increased than in the normal medium group (p < 0.05). In the high glucose medium with ox-LDL groups, the expression levels of LOX-1 and ICAM-1 were increased than the high glucose medium group (p < 0.05). CONCLUSION A certain concentration of ox-LDL blocks high-glucose-induced retinal vascular endothelial injury by inhibiting the upregulation of ICAM-1 due to a high-glucose environment. Dyslipidemia may play an important role in the development of diabetic retinopathy, emphasizing the importance of active regulation of blood lipids in diabetic retinopathy therapy.
Collapse
Affiliation(s)
- Qin Li
- Department of Ophthalmology, Bright Gaoxin Eye Hospital, Urumqi, Xinjiang 830013, China
| | - Mingmei Zhang
- Department of Ophthalmology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Qianying Gao
- Department of Ophthalmology, Ophthalmological Center of Sun Yat-sen University, Guangzhou, Guangdong 510030, China
| | - Xueyi Chen
- Department of Ophthalmology, Lanzhou Aier Eye Hospital, Lanzhou, Gansu 730030, China.
| |
Collapse
|
2
|
He D, Chang Y, Jiang B, Yang M, Deng C, Zhu X. Downregulation of LOX Overexpression Promotes Retinal Ganglion Cells Survival in an Acute Ocular Hypertension Model. Curr Eye Res 2024; 49:1171-1179. [PMID: 38979820 DOI: 10.1080/02713683.2024.2371140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE To investigate the effect of reducing Lysyl oxidase (LOX) overexpression on retinal ganglion cells (RGCs) apoptosis in an acute ocular hypertension (AOH) rat model. METHODS AOH rat model was performed by anterior chamber perfusion and either received an intravitreal injection with β-aminopropionitrile (BAPN) or normal saline. After 2wk, Quantification of survival RGCs in the retina was performed using Retrograde FluoroGold labeling. The mRNA expression levels of LOX, LOXL1-4, collagen 1a1 (Col1a1), collagen 3a1 (Col3a1), collagen4a1 (Col4a1), elastin (Eln), fibronectin1 (Fbn1), fibronectin4 (Fbn4) were determined by RT-qPCR. LOX expression was determined by Western blot (WB) analysis and immunohistochemistry. The RNA expression of LOX, Eln and Col1a1 in RGCs retrograde-labeled with 1,1'-dioctadecyl-3,3,3',3' tetra-methylindocarbocyanine perchlorate(DiI)that selected through FACS sorting were determined by RT-qPCR analysis. Changes of the retinal function were detected by Electroretinogram (ERG) analysis. RESULTS Results showed that significant LOX overexpression and loss of RGCs related to IOP exposure in AOH retinas. PCR analysis indicated significant increased mRNA level of Col1a1, Col3al and Eln in AOH retinas. Significant increase mRNA expression of LOX, Col1a1 and Eln in the RGCs were observed in AOH group compared with CON group. AOH rats injected with BAPN showed a significant decrease in LOX expression, reduced the loss of RGCs and retinal function damage. CONCLUSIONS The results demonstrated that changes of LOX and specific ECM components in retina were correlated with AOH. Findings from this study indicated that preventing LOX over-expression may be protective against RGCs loss and retinal function damage in AOH animal model.
Collapse
Affiliation(s)
- Dengling He
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Yun Chang
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Bingcai Jiang
- Department of Ophthalmology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Man Yang
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Chengmin Deng
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Xiaoyan Zhu
- Zunyi Medical University, Zunyi City, Guizhou Province, China
- Department of Ophthalmology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Adewale AT, Sharma S, Mouawad JE, Nguyen XX, Bradshaw AD, Feghali-Bostwick C. IGF-II regulates lysyl oxidase propeptide and mediates its effects in part via basic helix-loop-helix E40. Matrix Biol 2024; 132:24-33. [PMID: 38852924 PMCID: PMC11329355 DOI: 10.1016/j.matbio.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Pulmonary fibrosis (PF) is a clinically severe and commonly fatal complication of Systemic Sclerosis (SSc). Our group has previously reported profibrotic roles for Insulin-like Growth Factor II (IGF-II) and Lysyl Oxidase (LOX) in SSc-PF. We sought to identify downstream regulatory mediators of IGF-II. In the present work, we show that SSc lung tissues have higher baseline levels of the total (N-glycosylated/unglycosylated) LOX-Propeptide (LOX-PP) than control lung tissues. LOX-PP-mediated changes were consistent with the extracellular matrix (ECM) deregulation implicated in SSc-PF progression. Furthermore, Tolloid-like 1 (TLL1) and Bone Morphogenetic Protein 1 (BMP1), enzymes that can cleave ProLOX to release LOX-PP, were increased in SSc lung fibrosis and the bleomycin (BLM)-induced murine lung fibrosis model, respectively. In addition, IGF-II regulated the levels of ProLOX, active LOX, LOX-PP, BMP1, and isoforms of TLL1. The Class E Basic Helix-Loop-Helix protein 40 (BHLHE40) transcription factor localized to the nucleus in response to IGF-II. BHLHE40 silencing downregulated TLL1 isoforms and LOX-PP, and restored features of ECM deregulation triggered by IGF-II. Our findings indicate that IGF-II, BHLHE40, and LOX-PP may serve as targets of therapeutic intervention to halt SSc-PF progression.
Collapse
Affiliation(s)
- Adegboyega Timothy Adewale
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Shailza Sharma
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| | - Joe E Mouawad
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Xinh-Xinh Nguyen
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Amy D Bradshaw
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| |
Collapse
|
4
|
Zhao A, Jiang H, Palomares AR, Larsson A, He W, Grünler J, Zheng X, Rodriguez Wallberg KA, Catrina SB, Deng Q. Appropriate glycemic management protects the germline but not the uterine environment in hyperglycemia. EMBO Rep 2024; 25:1752-1772. [PMID: 38491313 PMCID: PMC11014859 DOI: 10.1038/s44319-024-00097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
Emerging evidence indicates that parental diseases can impact the health of subsequent generations through epigenetic inheritance. Recently, it was shown that maternal diabetes alters the metaphase II oocyte transcriptome, causing metabolic dysfunction in offspring. However, type 1 diabetes (T1D) mouse models frequently utilized in previous studies may be subject to several confounding factors due to severe hyperglycemia. This limits clinical translatability given improvements in glycemic control for T1D subjects. Here, we optimize a T1D mouse model to investigate the effects of appropriately managed maternal glycemic levels on oocytes and intrauterine development. We show that diabetic mice with appropriate glycemic control exhibit better long-term health, including maintenance of the oocyte transcriptome and chromatin accessibility. We further show that human oocytes undergoing in vitro maturation challenged with mildly increased levels of glucose, reflecting appropriate glycemic management, also retain their transcriptome. However, fetal growth and placental function are affected in mice despite appropriate glycemic control, suggesting the uterine environment rather than the germline as a pathological factor in developmental programming in appropriately managed diabetes.
Collapse
Affiliation(s)
- Allan Zhao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jiang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Alice Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Wenteng He
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jacob Grünler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Xiaowei Zheng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kenny A Rodriguez Wallberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Division of Gynecology and Reproduction, Department of Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Centrum, Stockholm, Sweden
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Chandrakumar S, Santiago Tierno I, Agarwal M, Lessieur EM, Du Y, Tang J, Kiser J, Yang X, Rodriguez A, Kern TS, Ghosh K. Mechanical Regulation of Retinal Vascular Inflammation and Degeneration in Diabetes. Diabetes 2024; 73:280-291. [PMID: 37986627 PMCID: PMC10796303 DOI: 10.2337/db23-0584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Vascular inflammation is known to cause degeneration of retinal capillaries in early diabetic retinopathy (DR), a major microvascular complication of diabetes. Past studies investigating these diabetes-induced retinal vascular abnormalities have focused primarily on the role of molecular or biochemical cues. Here we show that retinal vascular inflammation and degeneration in diabetes are also mechanically regulated by the increase in retinal vascular stiffness caused by overexpression of the collagen-cross-linking enzyme lysyl oxidase (LOX). Treatment of diabetic mice with LOX inhibitor β-aminopropionitrile (BAPN) prevented the increase in retinal capillary stiffness, vascular intracellular adhesion molecule-1 overexpression, and leukostasis. Consistent with these anti-inflammatory effects, BAPN treatment of diabetic mice blocked the upregulation of proapoptotic caspase-3 in retinal vessels, which concomitantly reduced retinal capillary degeneration, pericyte ghost formation, and the diabetes-induced loss of contrast sensitivity in these mice. Finally, our in vitro studies indicate that retinal capillary stiffening is sufficient to increase the adhesiveness and neutrophil elastase-induced death of retinal endothelial cells. By uncovering a link between LOX-dependent capillary stiffening and the development of retinal vascular and functional defects in diabetes, these findings offer a new insight into DR pathogenesis that has important translational potential. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sathishkumar Chandrakumar
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | - Irene Santiago Tierno
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA
| | - Mahesh Agarwal
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | - Emma M. Lessieur
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Yunpeng Du
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Jie Tang
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH
| | - Jianying Kiser
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Xiao Yang
- Department of Bioengineering, University of California, Riverside, Riverside, CA
| | | | - Timothy S. Kern
- Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Kaustabh Ghosh
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
6
|
Van Stiphout CM, Kelly G, Pallegar NK, Elbakry E, Vilchis-Celis AV, Christian SL, Viloria-Petit AM. Identification of lysyl oxidase as an adipocyte-secreted mediator that promotes a partial mesenchymal-to-epithelial transition in MDA-MB-231 cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1-19. [PMID: 38468823 PMCID: PMC10927314 DOI: 10.37349/etat.2024.00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 03/13/2024] Open
Abstract
Aim Breast cancer (BC) is the most common cancer in women worldwide, where adiposity has been linked to BC morbidity. In general, obese premenopausal women diagnosed with triple-negative BC (TNBC) tend to have larger tumours with more metastases, particularly to the bone marrow, and worse prognosis. Previous work using a 3-dimensional (3D) co-culture system consisting of TNBC cells, adipocytes and the laminin-rich extracellular matrix (ECM) trademarked as Matrigel, demonstrated that adipocytes and adipocyte-derived conditioned media (CM) caused a partial mesenchymal-to-epithelial transition (MET). Given that MET has been associated with secondary tumour formation, this study sought to identify molecular mediators responsible for this phenotypic change. Methods Adipocytes were cultured with and without Matrigel, where semi-quantitative proteomics was used to identify proteins whose presence in the CM was induced or enhanced by Matrigel, which were referred to as adipocyte-secreted ECM-induced proteins (AEPs). The AEPs identified were assessed for association with prognosis in published proteomic datasets and prior literature. Of these, 4 were evaluated by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), followed by a functional and MET marker analysis of 1 AEP on MDA-MB-231 cells grown on Matrigel or as monolayers. Results The 4 AEPs showed a positive correlation between protein expression and poor prognosis. RT-qPCR analysis reported no significant change in AEPs mRNA expression. However, lysyl oxidase (LOX) was increased in CM of ECM-exposed adipocytes. Recombinant LOX (rLOX) caused the mesenchymal MDA-MB-231 TNBC cells to form less branched 3D structures and reduced the expression of vimentin. Conclusions The data suggest that adipocyte-secreted LOX changes the mesenchymal phenotype of BC cells in a manner that could promote secondary tumour formation, particularly at sites high in adipocytes such as the bone marrow. Future efforts should focus on determining whether targeting LOX could reduce BC metastasis in obese individuals.
Collapse
Affiliation(s)
- Cassidy M. Van Stiphout
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Grant Kelly
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Nikitha K. Pallegar
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Eman Elbakry
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Ana Valeria Vilchis-Celis
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Morphology, National Polytechnic Institute, Mexico City, CDMX 07738, Mexico
| | - Sherri L. Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Alicia M. Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Zhu X, Cheng D, Ruan K, Shen M, Ye Y. Causal relationships between type 2 diabetes, glycemic traits and keratoconus. Front Med (Lausanne) 2023; 10:1264061. [PMID: 38020157 PMCID: PMC10658005 DOI: 10.3389/fmed.2023.1264061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The relationship between diabetes mellitus and keratoconus remains controversial. This study aimed to assess the potential causal relationships among type 2 diabetes, glycemic traits, and the risk of keratoconus. Methods We used a two-sample Mendelian randomization (MR) design based on genome-wide association summary statistics. Fasting glucose, proinsulin levels, adiponectin, hemoglobin A1c (HbA1c) and type 2 diabetes with and without body mass index (BMI) adjustment were used as exposures and keratoconus was used as the outcome. MR analysis was performed using the inverse-variance weighted method, MR-Egger regression method, weighted-mode method, weighted median method and the MR-pleiotropy residual sum and outlier test (PRESSO). Results Results showed that genetically predicted lower fasting glucose were significantly associated with a higher risk of keratoconus [IVW: odds ratio (OR) = 0.382; 95% confidence interval (CI) = 0.261-0.560; p = 8.162 × 10-7]. Genetically predicted lower proinsulin levels were potentially linked to a higher risk of keratoconus (IVW: OR = 0.739; 95% CI = 0.568-0.963; p = 0.025). In addition, genetically predicted type 2 diabetes negatively correlated with keratoconus (IVW: BMI-unadjusted: OR = 0.869; 95% CI = 0.775-0.974, p = 0.016; BMI-adjusted: OR = 0.880, 95% CI = 0.789-0.982, p = 0.022). These associations were further corroborated by the evidence from all sensitivity analyses. Conclusion These findings provide genetic evidence that higher fasting glucose levels are associated with a lower risk of keratoconus. However, further studies are required to confirmed this hypothesis and to understand the mechanisms underlying this putative causative relationship.
Collapse
Affiliation(s)
| | | | | | | | - Yufeng Ye
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Chandrakumar S, Santiago Tierno I, Agarwal M, Matisioudis N, Kern TS, Ghosh K. Subendothelial Matrix Stiffening by Lysyl Oxidase Enhances RAGE-Mediated Retinal Endothelial Activation in Diabetes. Diabetes 2023; 72:973-985. [PMID: 37058096 PMCID: PMC10281239 DOI: 10.2337/db22-0761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Endothelial cell (EC) activation is a crucial determinant of retinal vascular inflammation associated with diabetic retinopathy (DR), a major microvascular complication of diabetes. We previously showed that, similar to abnormal biochemical factors, aberrant mechanical cues in the form of lysyl oxidase (LOX)-dependent subendothelial matrix stiffening also contribute significantly to retinal EC activation in diabetes. Yet, how LOX is itself regulated and precisely how it mechanically controls retinal EC activation in diabetes is poorly understood. Here, we show that high-glucose-induced LOX upregulation in human retinal ECs (HRECs) is mediated by proinflammatory receptor for advanced glycation end products (RAGE). HRECs treated with methylglyoxal (MGO), an active precursor to the advanced glycation end product (AGE) MG-H1, exhibited LOX upregulation that was blocked by a RAGE inhibitor, thus confirming the ability of RAGE to promote LOX expression. Crucially, as a downstream effector of RAGE, LOX was found to mediate both the proinflammatory and matrix remodeling effects of AGE/RAGE, primarily through its ability to crosslink or stiffen matrix. Finally, using decellularized HREC-derived matrices and a mouse model of diabetes, we demonstrate that LOX-dependent matrix stiffening feeds back to enhance RAGE, thereby achieving its autoregulation and proinflammatory effects. Collectively, these findings provide fresh mechanistic insights into the regulation and proinflammatory role of LOX-dependent mechanical cues in diabetes while simultaneously implicating LOX as an alternative (downstream) target to block AGE/RAGE signaling in DR. ARTICLE HIGHLIGHTS We investigated the regulation and proinflammatory role of retinal endothelial lysyl oxidase (LOX) in diabetes. Findings reveal that LOX is upregulated by advanced glycation end products (AGE) and receptor for AGE (RAGE) and mediates AGE/RAGE-induced retinal endothelial cell activation and subendothelial matrix remodeling. We also show that LOX-dependent subendothelial matrix stiffening feeds back to enhance retinal endothelial RAGE. These findings implicate LOX as a key proinflammatory factor and an alternative (downstream) target to block AGE/RAGE signaling in diabetic retinopathy.
Collapse
Affiliation(s)
- Sathishkumar Chandrakumar
- Department of Bioengineering, University of California, Riverside, CA
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | - Irene Santiago Tierno
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrated Physiology Interdepartmental PhD Program, University of California, Los Angeles, CA
| | - Mahesh Agarwal
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | | | - Timothy S. Kern
- Department of Ophthalmology, University of California, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Kaustabh Ghosh
- Department of Bioengineering, University of California, Riverside, CA
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrated Physiology Interdepartmental PhD Program, University of California, Los Angeles, CA
| |
Collapse
|
9
|
Bates ME, Troop L, Brown ME, Puetzer JL. Temporal application of lysyl oxidase during hierarchical collagen fiber formation differentially effects tissue mechanics. Acta Biomater 2023; 160:98-111. [PMID: 36822485 PMCID: PMC10064799 DOI: 10.1016/j.actbio.2023.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
The primary source of strength in menisci, tendons, and ligaments are hierarchical collagen fibers; however, these fibers are not regenerated after injury nor in engineered replacements, resulting in limited repair options. Collagen strength is reliant on fiber alignment, density, diameter, and crosslinking. Recently, we developed a culture system which guides cells in high-density collagen gels to develop native-like hierarchically organized collagen fibers, which match native fiber alignment and diameters by 6 weeks. However, tensile moduli plateau at 1MPa, suggesting crosslinking may be lacking. Collagen crosslinking is regulated by lysyl oxidase (LOX) which forms immature crosslinks that condense into mature trivalent crosslinks. Trivalent crosslinks are thought to be the primarily source of strength in fibers, but it's not well understood how they form. The objective of this study was to evaluate the effect of exogenous LOX in our culture system at different stages of hierarchical fiber formation to produce stronger replacements and to better understand factors affecting crosslink maturation. We found treatment with LOX isoform LOXL2 did not restrict hierarchical fiber formation, with constructs still forming aligned collagen fibrils by 2 weeks, larger fibers by 4 weeks, and early fascicles by 6 weeks. However, LOXL2 treatment did significantly increase mature pyridinium (PYD) crosslink accumulation and tissue mechanics, with timing of LOXL2 supplementation during fiber formation having a significant effect. Overall, we found one week of LOXL2 supplementation at 4 weeks produced constructs with native-like fiber organization, increased PYD accumulation, and increased mechanics, ultimately matching the tensile modulus of immature bovine menisci. STATEMENT OF SIGNIFICANCE: Collagen fibers are the primary source of strength and function in connective tissues throughout the body, however it remains a challenge to develop these fibers in engineered replacements, greatly reducing treatment options. Here we demonstrate lysyl oxidase like 2 (LOXL2) can be used to significantly improve the mechanics of tissue engineered constructs, but timing of application is important and will most likely depend on degree of collagen organization or maturation. Currently there is limited understanding of how collagen crosslinking is regulated, and this system is a promising platform to further investigate cellular regulation of LOX crosslinking. Understanding the mechanism that regulates LOX production and activity is needed to ultimately regenerate functional repair or replacements for connective tissues throughout the body.
Collapse
Affiliation(s)
- Madison E Bates
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284
| | - Leia Troop
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284
| | - M Ethan Brown
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284; Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, 23284, United States.
| |
Collapse
|
10
|
Rodent Models of Diabetic Retinopathy as a Useful Research Tool to Study Neurovascular Cross-Talk. BIOLOGY 2023; 12:biology12020262. [PMID: 36829539 PMCID: PMC9952991 DOI: 10.3390/biology12020262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Diabetes is a group of metabolic diseases leading to dysfunction of various organs, including ocular complications such as diabetic retinopathy (DR). Nowadays, DR treatments involve invasive options and are applied at the sight-threatening stages of DR. It is important to investigate noninvasive or pharmacological methods enabling the disease to be controlled at the early stage or to prevent ocular complications. Animal models are useful in DR laboratory practice, and this review is dedicated to them. The first part describes the characteristics of the most commonly used genetic rodent models in DR research. The second part focuses on the main chemically induced models. The authors pay particular attention to the streptozotocin model. Moreover, this section is enriched with practical aspects and contains the current protocols used in research in the last three years. Both parts include suggestions on which aspect of DR can be tested using a given model and the disadvantages of each model. Although animal models show huge variability, they are still an important and irreplaceable research tool. Note that the choice of a research model should be thoroughly considered and dependent on the aspect of the disease to be analyzed.
Collapse
|
11
|
Moledina M, Charteris DG, Chandra A. The Genetic Architecture of Non-Syndromic Rhegmatogenous Retinal Detachment. Genes (Basel) 2022; 13:genes13091675. [PMID: 36140841 PMCID: PMC9498391 DOI: 10.3390/genes13091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Rhegmatogenous retinal detachment (RRD) is the most common form of retinal detachment (RD), affecting 1 in 10,000 patients per year. The condition has significant ocular morbidity, with a sizeable proportion of patients obtaining poor visual outcomes. Despite this, the genetics underpinning Idiopathic Retinal Detachment (IRD) remain poorly understood; this is likely due to small sample sizes in relevant studies. The majority of research pertains to the well-characterised Mende lian syndromes, such as Sticklers and Wagners, associated with RRD. Nevertheless, in recent years, there has been an increasing body of literature identifying the common genetic mutations and mechanisms associated with IRD. Several recent Genomic Wide Association Studies (GWAS) studies have identified a number of genetic loci related to the development of IRD. Our review aims to provide an up-to-date summary of the significant genetic mechanisms and associations of Idiopathic RRD.
Collapse
Affiliation(s)
- Malik Moledina
- Department of Ophthalmology, Southend University Hospital, Mid & South Essex NHS Foundation Trust, Southend-on-Sea SS0 0RY, UK
| | - David G. Charteris
- Institute of Ophthalmology, University College, London EC1V 9EL, UK
- Vitreoretinal Unit, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Aman Chandra
- Department of Ophthalmology, Southend University Hospital, Mid & South Essex NHS Foundation Trust, Southend-on-Sea SS0 0RY, UK
- School of Medicine, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
- Correspondence: ; Tel.: +44-7914-817445
| |
Collapse
|
12
|
Resnikoff HA, Miller CG, Schwarzbauer JE. Implications of fibrotic extracellular matrix in diabetic retinopathy. Exp Biol Med (Maywood) 2022; 247:1093-1102. [PMID: 35410521 PMCID: PMC9335512 DOI: 10.1177/15353702221087175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fibrosis is an accumulation of extracellular matrix (ECM) proteins and fibers in a disordered fashion, which compromises cell and tissue functions. High glucose-induced fibrosis, a major pathophysiological change of diabetic retinopathy (DR), severely affects vision by compromising the retinal vasculature and ultimately disrupting retinal tissue organization. The retina is a highly vascularized, stratified tissue with multiple cell types organized into distinct layers. Chronically high blood glucose stimulates certain retinal cells to increase production and assembly of ECM proteins resulting in excess ECM deposition primarily in the capillary walls on the basal side of the endothelium. This subendothelial fibrosis of the capillaries is the earliest histological change in the diabetic retina and has been linked to the vascular dysfunction that underlies DR. Proteins that are not normally abundant in the capillary basement membrane (BM) matrix, such as the ECM protein fibronectin, are assembled in significant quantities, disrupting the architecture of the BM and altering its properties. Cell culture models have identified multiple mechanisms through which elevated glucose can stimulate fibronectin matrix assembly, including intracellular signaling pathways, alternative splicing, and non-enzymatic glycation of the ECM. The fibrotic subendothelial matrix alters cell adhesion and supports further accumulation of other ECM proteins leading to disruption of endothelial cell-cell junctions. We review evidence supporting the notion that these molecular changes in the ECM contribute to the pathogenesis of DR, including vascular leakage, loss of endothelial cells and pericytes, changes in blood flow, and neovascularization. We propose that the accumulation of ECM, especially fibronectin matrix, first around the vasculature and later in extravascular locations, plays a critical role in DR and vision loss. Strategies for DR prevention and treatment should consider the ECM a potential therapeutic target.
Collapse
Affiliation(s)
- Henry A Resnikoff
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Charles G Miller
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA,Jean E Schwarzbauer.
| |
Collapse
|
13
|
Trackman PC, Peymanfar Y, Roy S. Functions and Mechanisms of Pro-Lysyl Oxidase Processing in Cancers and Eye Pathologies with a Focus on Diabetic Retinopathy. Int J Mol Sci 2022; 23:5088. [PMID: 35563478 PMCID: PMC9105217 DOI: 10.3390/ijms23095088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Lysyl oxidases are multifunctional proteins derived from five lysyl oxidase paralogues (LOX) and lysyl oxidase-like 1 through lysyl oxidase-like 4 (LOXL1-LOXL4). All participate in the biosynthesis of and maturation of connective tissues by catalyzing the oxidative deamination of lysine residues in collagens and elastin, which ultimately results in the development of cross-links required to function. In addition, the five LOX genes have been linked to fibrosis and cancer when overexpressed, while tumor suppression by the propeptide derived from pro-LOX has been documented. Similarly, in diabetic retinopathy, LOX overexpression, activity, and elevated LOX propeptide have been documented. The proteolytic processing of pro-forms of the respective proteins is beginning to draw attention as the resultant peptides appear to exhibit their own biological activities. In this review we focus on the LOX paralogue, and what is known regarding its extracellular biosynthetic processing and the still incomplete knowledge regarding the activities and mechanisms of the released lysyl oxidase propeptide (LOX-PP). In addition, a summary of the roles of both LOX and LOX-PP in diabetic retinopathy, and brief mentions of the roles for LOX and closely related LOXL1 in glaucoma, and keratoconus, respectively, are included.
Collapse
Affiliation(s)
- Philip C. Trackman
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
- Department of Translational Dental Medicine, Boston University Henry M Goldman School of Dental Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Yaser Peymanfar
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA;
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
14
|
Rojas A, Lindner C, Schneider I, Gonzàlez I, Araya H, Morales E, Gómez M, Urdaneta N, Araya P, Morales MA. Diabetes mellitus contribution to the remodeling of the tumor microenvironment in gastric cancer. World J Gastrointest Oncol 2021; 13:1997-2012. [PMID: 35070037 PMCID: PMC8713306 DOI: 10.4251/wjgo.v13.i12.1997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Compelling pieces of evidence derived from both clinical and experimental research has demonstrated the crucial contribution of diabetes mellitus (DM) as a risk factor associated with increased cancer incidence and mortality in many human neoplasms, including gastric cancer (GC). DM is considered a systemic inflammatory disease and therefore, this inflammatory status may have profound effects on the tumor microenvironment (TME), particularly by driving many molecular mechanisms to generate a more aggressive TME. DM is an active driver in the modification of the behavior of many cell components of the TME as well as altering the mechanical properties of the extracellular matrix (ECM), leading to an increased ECM stiffening. Additionally, DM can alter many cellular signaling mechanisms and thus favoring tumor growth, invasion, and metastatic potential, as well as key elements in regulating cellular functions and cross-talks, such as the microRNAs network, the production, and cargo of exosomes, the metabolism of cell stroma and resistance to hypoxia. In the present review, we intend to highlight the mechanistic contributions of DM to the remodeling of TME in GC.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Iván Schneider
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Ileana Gonzàlez
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Hernan Araya
- Department of Clinical Sciences, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
- Servicio de Oncología, Hospital Regional de Talca, Talca 34600000, Chile
| | - Erik Morales
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
- Servicio de Anatomía Patologica, Hospital Regional de Talca, Talca 34600000, Chile
| | - Milibeth Gómez
- Department of Clinical Sciences, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
- Servicio de Oncología, Hospital Regional de Talca, Talca 34600000, Chile
| | - Nelson Urdaneta
- Department of Clinical Sciences, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
- Servicio de Oncología, Hospital Regional de Talca, Talca 34600000, Chile
| | - Paulina Araya
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Miguel Angel Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
15
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
16
|
TRIM46 contributes to high glucose-induced ferroptosis and cell growth inhibition in human retinal capillary endothelial cells by facilitating GPX4 ubiquitination. Exp Cell Res 2021; 407:112800. [PMID: 34487731 DOI: 10.1016/j.yexcr.2021.112800] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Increased permeability of retinal capillary endothelial cells is a key feature in the progression of diabetic retinopathy (DR). Precisely why and how diabetes causes dysfunction in retinal capillary endothelial cells is not well understood, making it challenging to explore more advanced therapeutics. METHODS Cell proliferation was assessed by the Cell Counting Kit-8 assay. Ferroptosis was evaluated by measuring lipid reactive oxygen species levels by flow cytometry and determining malondialdehyde, superoxide dismutase, and glutathione peroxidase levels through biochemical assays. Western blot analysis and quantitative PCR were respectively used to check the expression of proteins and RNAs. Co-immunoprecipitation assays were used to confirm the interaction between TRIM46 and GPX4. RESULTS High glucose (HG, 25 mM glucose) significantly suppressed cell growth, which could be reversed by the ferroptosis inhibitor, ferrostatin-1. HG treatment time-dependently induced ferroptosis in human retinal capillary endothelial cells (HRCECs) and induced TRIM46 expression. Lentiviral-mediated overexpression of TRIM46 decreased cell resistance against HG-induced ferroptosis, whereas knockdown showed the opposite effect. Administration of RSL3, a ferroptosis agonist, was able to reverse the protective effects of TRIM46 silencing. TRIM46 interacted with GPX4, an important enzyme that suppresses ferroptosis, and promoted GPX4 ubiquitination. Furthermore, lentiviral-mediated overexpression ofGPX4 ameliorated the effects of TRIM46 overexpression and conferred protection to cells against HG-induced ferroptosis. CONCLUSION TRIM46 and GPX4 form a regulatory pathway that controls HG-induced ferroptosis of HRCECs. Inhibiting this pathway or sustaining the expression of GPX4 enables cells to resist damage caused by HG. We provide new mechanistic insight into the pathology of DR and identified TRIM46 and GPX4 as two molecular targets for the development of effective drugs for DR treatment.
Collapse
|
17
|
Behmer Hansen RA, Wang X, Kaw G, Pierre V, Senyo SE. Accounting for Material Changes in Decellularized Tissue with Underutilized Methodologies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6696295. [PMID: 34159202 PMCID: PMC8187050 DOI: 10.1155/2021/6696295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Tissue decellularization has rapidly developed to be a practical approach in tissue engineering research; biological tissue is cleared of cells resulting in a protein-rich husk as a natural scaffold for growing transplanted cells as a donor organ therapy. Minimally processed, acellular extracellular matrix reproduces natural interactions with cells in vitro and for tissue engineering applications in animal models. There are many decellularization techniques that achieve preservation of molecular profile (proteins and sugars), microstructure features such as organization of ECM layers (interstitial matrix and basement membrane) and organ level macrofeatures (vasculature and tissue compartments). While structural and molecular cues receive attention, mechanical and material properties of decellularized tissues are not often discussed. The effects of decellularization on an organ depend on the tissue properties, clearing mechanism, chemical interactions, solubility, temperature, and treatment duration. Physical characterization by a few labs including work from the authors provides evidence that decellularization protocols should be tailored to specific research questions. Physical characterization beyond histology and immunohistochemistry of the decellularized matrix (dECM) extends evaluation of retained functional features of the original tissue. We direct our attention to current technologies that can be employed for structure function analysis of dECM using underutilized tools such as atomic force microscopy (AFM), cryogenic electron microscopy (cryo-EM), dynamic mechanical analysis (DMA), Fourier-transform infrared spectroscopy (FTIR), mass spectrometry, and rheometry. Structural imaging and mechanical functional testing combined with high-throughput molecular analyses opens a new approach for a deeper appreciation of how cellular behavior is influenced by the isolated microenvironment (specifically dECM). Additionally, the impact of these features with different decellularization techniques and generation of synthetic material scaffolds with desired attributes are informed. Ultimately, this mechanical profiling provides a new dimension to our understanding of decellularized matrix and its role in new applications.
Collapse
Affiliation(s)
- Ryan A. Behmer Hansen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Gitanjali Kaw
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Valinteshley Pierre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
18
|
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2020; 82:100903. [PMID: 32950677 DOI: 10.1016/j.preteyeres.2020.100903] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular basement membrane (BM) thickening has been hailed over half a century as the most prominent histological lesion in diabetic microangiopathy, and represents an early ultrastructural change in diabetic retinopathy (DR). Although vascular complications of DR have been clinically well established, specific cellular and molecular mechanisms underlying dysfunction of small vessels are not well understood. In DR, small vessels develop insidiously as BM thickening occurs. Studies examining high resolution imaging data have established BM thickening as one of the foremost structural abnormalities of retinal capillaries. This fundamental structural change develops, at least in part, from excess accumulation of BM components. Although BM thickening is closely associated with the development of DR, its contributory role in the pathogenesis of DR is coming to light recently. DR develops over several years before clinical manifestations appear, and it is during this clinically silent period that hyperglycemia induces excess synthesis of BM components, contributes to vascular BM thickening, and promotes structural and functional lesions including cell death and vascular leakage in the diabetic retina. Studies using animal models show promising results in preventing BM thickening with subsequent beneficial effects. Several gene regulatory approaches are being developed to prevent excess synthesis of vascular BM components in an effort to reduce BM thickening. This review highlights current understanding of capillary BM thickening development, role of BM thickening in retinal vascular lesions, and strategies for preventing vascular BM thickening as a potential therapeutic strategy in alleviating characteristic lesions associated with DR.
Collapse
Affiliation(s)
- Sayon Roy
- Boston University School of Medicine, Boston, MA, USA.
| | - Dongjoon Kim
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
19
|
Nguyen NH, Kim D, Roy S. High Glucose Increases Binding of Lysyl Oxidase to Extracellular Matrix Proteins: Implications for Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2020; 61:40. [PMID: 32340032 PMCID: PMC7401919 DOI: 10.1167/iovs.61.4.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To determine whether high glucose (HG) compromises internalization of lysyl oxidase (LOX) through excess binding of LOX with extracellular matrix (ECM) proteins. Methods To determine whether HG promotes binding of LOX with ECM proteins, fibronectin (FN) and collagen IV (Coll IV), total or ECM-only proteins from rat retinal endothelial cells grown in normal (N; 5 mM) or HG (30 mM) medium were analyzed by coimmunoprecipitation and Western blot (WB). In parallel, coimmunostaining was performed to determine changes in LOX binding to FN or Coll IV. To determine the effect of HG on extracellular LOX levels, medium in which cells were grown for 1, 3, 5, and 7 days were assessed for LOX levels. Results WB analysis using total protein showed LOX overexpression and elevated levels of LOX bound to Coll IV or FN in HG condition. Similarly, a significant increase in LOX bound to FN or Coll IV was observed in ECM-only protein. These data were supported by Z-stack confocal microscopy images from coimmunostaining. Furthermore, immunostaining performed on ECM layer revealed increased presence of LOX bound to Coll IV or FN. Additionally, when media from cells grown in HG was monitored, a maximal increase in LOX level was observed by day 3, which declined by day 7. Conclusions Findings indicate that HG promotes binding of LOX to FN and Coll IV extracellularly that results in reduced LOX internalization, attenuation of negative feedback, and upregulation of LOX expression associated with diabetic retinopathy.
Collapse
Affiliation(s)
| | | | - Sayon Roy
- , , Massachusetts.,, , Massachusetts
| |
Collapse
|
20
|
Wei S, Gao L, Wu C, Qin F, Yuan J. Role of the lysyl oxidase family in organ development (Review). Exp Ther Med 2020; 20:163-172. [PMID: 32536990 PMCID: PMC7282176 DOI: 10.3892/etm.2020.8731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 02/05/2023] Open
Abstract
Lysyl oxidase proteins (LOXs) are amine oxidases, which are mainly located in smooth muscle cells and fibroblasts and serve an important role in the formation of the extracellular matrix (ECM) in a copper-dependent manner. Owing to the ability of LOX proteins to modulate crosslinking between collagens and to promote the deposition of other fibers, they serve crucially in organogenesis and the subsequent organ development, as well as disease initiation and progression. In addition, ECM formation significantly influences organ morphological formation in both cancer- and non-tumor-related diseases, in addition to cellular epigenetic transformation and migration, under the influence of LOXs. A number of different signaling pathways regulate the LOXs expression and their enzymatic activation. The tissue remodeling and transformation process shares some resemblance between oncogenesis and embryogenesis. Additionally the roles that LOXs serve appeared to be stressed during oncogenesis and tumor metastasis. It has also been indicated LOXs have a noteworthy role in non-tumor diseases. Nonetheless, the role of LOXs in systemic or local organ development and disease control remains unknown. In the present study, the essential roles that LOXs play in embryogenesis were unveiled partially, whereas the role of LOXs in organ or systematic development requires further investigations. The present review aimed to discuss the roles of members of the LOX family in the context of the remodeling of organogenesis and organ development. In addition, the consequences of the malfunction of these proteins related to the development of abnormalities and resulting diseases is discussed.
Collapse
Affiliation(s)
- Shanzun Wei
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liang Gao
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
21
|
Luo Q, Xiao Y, Alex A, Cummins TR, Bhatwadekar AD. The Diurnal Rhythm of Insulin Receptor Substrate-1 (IRS-1) and Kir4.1 in Diabetes: Implications for a Clock Gene Bmal1. Invest Ophthalmol Vis Sci 2019; 60:1928-1936. [PMID: 31042800 PMCID: PMC6735779 DOI: 10.1167/iovs.18-26045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Diabetes leads to the downregulation of the retinal Kir4.1 channels and Müller cell dysfunction. The insulin receptor substrate-1 (IRS-1) is a critical regulator of insulin signaling in Müller cells. Circadian rhythms play an integral role in normal physiology; however, diabetes leads to a circadian dysrhythmia. We hypothesize that diabetes will result in a circadian dysrhythmia of IRS-1 and Kir4.1 and disturbed clock gene function will have a critical role in regulating Kir4.1 channels. Methods We assessed a diurnal rhythm of retinal IRS-1 and Kir4.1 in db/db mice. The Kir4.1 function was evaluated using a whole-cell recording of Müller cells. The rat Müller cells (rMC-1) were used to undertake in vitro studies using a siRNA. Results The IRS-1 exhibited a diurnal rhythm in control mice; however, with diabetes, this natural rhythm was lost. The Kir4.1 levels peaked and troughed at times similar to the IRS-1 rhythm. The IRS-1 silencing in the rMC-1 led to a decrease in Kir4.1 and BMAL1. The insulin treatment of retinal explants upregulated Kir4.1 possibly via upregulation of BMAL1 and phosphorylation of IRS-1 and Akt-1. Conclusions Our studies highlight that IRS-1, by regulating BMAL1, is an important regulator of Kir4.1 in Müller cells and the dysfunctional signaling mediated by IRS-1 may be detrimental to Kir4.1.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yucheng Xiao
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, United States
| | - Alpha Alex
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Theodore R Cummins
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, United States
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
22
|
Kim D, Lee D, Trackman PC, Roy S. Effects of High Glucose-Induced Lysyl Oxidase Propeptide on Retinal Endothelial Cell Survival: Implications for Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1945-1952. [PMID: 31537300 PMCID: PMC6880772 DOI: 10.1016/j.ajpath.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 01/19/2023]
Abstract
Diabetic retinopathy (DR) is characterized by apoptotic cell loss in the retinal vasculature. Lysyl oxidase propeptide (LOX-PP), released during LOX processing, has been implicated in promoting apoptosis in various diseased tissues. However, its role in the development and progression of DR is unknown. We investigated whether high glucose (HG) or diabetes alters LOX-PP expression and thereby influences AKT pathway and affects retinal endothelial cell survival. Rat retinal endothelial cells were grown in normal medium, normal medium and exposed to recombinant LOX-PP (rLOX-PP) or HG medium and examined for LOX-PP expression, AKT and caspase-3 activation. Similarly, rats intravitreally injected with rLOX-PP were examined for changes in retinal LOX-PP levels, AKT phosphorylation, and the number of acellular capillaries and pericyte loss compared with those of control diabetic and nondiabetic rats. Results indicate that HG up-regulates LOX-PP expression and reduces AKT activation. In addition, cells exposed to rLOX-PP alone exhibited increased apoptosis concomitant with decreased AKT phosphorylation. In retinas of diabetic rats, increased LOX-PP level, decreased AKT phosphorylation, and increased number of acellular capillaries and pericyte loss compared with those of nondiabetic rats were observed. Of interest, similar changes were noted in the retinas of rats injected with rLOX-PP. Findings from this study suggest that hyperglycemia-induced LOX-PP overexpression may contribute to retinal vascular cell loss associated with DR.
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Dayeun Lee
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Philip C Trackman
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
23
|
Upregulation of Lysyl Oxidase Expression in Vitreous of Diabetic Subjects: Implications for Diabetic Retinopathy. Cells 2019; 8:cells8101122. [PMID: 31546618 PMCID: PMC6829411 DOI: 10.3390/cells8101122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023] Open
Abstract
Animal studies have shown diabetes-induced lysyl oxidase (LOX) upregulation promotes blood-retinal-barrier breakdown and retinal vascular cell loss associated with diabetic retinopathy (DR). However, it is unclear whether changes in LOX expression contribute to the development and progression of DR. To determine if vitreous LOX levels are altered in patients with DR, 31 vitreous specimens from subjects with advanced proliferative DR (PDR), and 27 from non-diabetics were examined. The two groups were age- and gender-matched (57 ± 12 yrs vs. 53 ± 18 yrs; 19 males and 12 females vs. 17 males and 10 females). Vitreous samples obtained during vitrectomy were assessed for LOX levels using ELISA. LOX was detected in a larger number of PDR subjects (58%) than in non-diabetic subjects (15%). Additionally, ELISA measurements showed a significant increase in LOX levels in the diabetic subjects with PDR, compared to those of non-diabetic subjects (68.3 ± 112 ng/mL vs. 2.1 ± 8.2 ng/mL; p < 0.01). No gender difference in vitreous LOX levels was observed in either the diabetic or non-diabetic groups. Findings support previous reports of increased LOX levels in retinas of diabetic animals and in retinal vascular cells in high glucose condition, raising the prospect of targeting LOX overexpression as a potential target for PDR treatment.
Collapse
|
24
|
Song B, Kim D, Nguyen NH, Roy S. Inhibition of Diabetes-Induced Lysyl Oxidase Overexpression Prevents Retinal Vascular Lesions Associated With Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 59:5965-5972. [PMID: 30550614 PMCID: PMC6295938 DOI: 10.1167/iovs.18-25543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose The purpose of this study was to investigate the effect of reducing diabetes-induced lysyl oxidase (LOX) overexpression on vascular cell apoptosis and blood-retinal barrier (BRB) characteristics in diabetic rats. Methods Nondiabetic rats, diabetic rats, and diabetic rats intravitreally (IV) injected with LOX siRNA or scrambled (scram) siRNA were used in the study. One month after the onset of diabetes, intravitreal injections were initiated at monthly intervals for up to three times. At the end of study, retinal capillary networks were isolated, stained with periodic acid-Schiff (PAS) and hematoxylin, and assessed for acellular capillaries (AC) and pericyte loss (PL). To assess vascular leakage, extravasation of FITC-dextran was evaluated in retinal capillaries after tail vein injection of FITC-dextran. Western blot analysis was performed to determine retinal LOX level and confirm LOX downregulation via LOX siRNA intravitreal injection. Results LOX expression was significantly upregulated in retinas of diabetic rats compared with that of nondiabetic rats. Diabetic rats injected with LOX siRNA showed a significant decrease in retinal LOX expression compared with those of diabetic rats or scram siRNA-injected rats. In diabetic retinas, AC and PL were significantly increased compared with those of nondiabetic retinas. Importantly, diabetic rats treated with LOX siRNA exhibited a significant decrease in AC and PL counts compared with those of untreated diabetic rats. Furthermore, diabetic rats treated with LOX siRNA showed significant decrease in retinal vascular permeability compared with that of untreated diabetic rats. Conclusions Findings suggest LOX siRNA intravitreal injection may be effective against diabetes-induced LOX overexpression in preventing apoptosis and vascular leakage associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Brian Song
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Ngan-Ha Nguyen
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
25
|
Kim D, Mecham RP, Nguyen NH, Roy S. Decreased lysyl oxidase level protects against development of retinal vascular lesions in diabetic retinopathy. Exp Eye Res 2019; 184:221-226. [PMID: 31022398 DOI: 10.1016/j.exer.2019.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Retinal capillary basement membrane (BM) thickening is closely associated with the development of vascular lesions in diabetic retinopathy. Thickened capillary BM can compromise blood-retinal-barrier characteristics and contribute to retinal vascular permeability, a significant clinical manifestation of diabetic retinopathy. We have previously shown that high glucose increases the expression and activity of lysyl oxidase (LOX), a crosslinking enzyme, in retinal endothelial cells. Additionally, concomitant with overexpression of LOX, increased vascular permeability was observed in diabetic rat retinas. However, it is unknown whether decreasing LOX overexpression may have protective effects against development of retinal vascular lesions in diabetes. To investigate whether reduced LOX level protects against diabetes-induced development of retinal vascular lesions characteristic of diabetic retinopathy, four groups of mice: wild type (WT) control mice, streptozotocin (STZ)-induced diabetic mice, LOX +/- mice, and STZ-induced diabetic LOX +/- mice were used for this study. Diabetes was maintained for 16 weeks; at the end of the study, retinas were assessed for LOX protein level by Western Blot (WB) analysis, and retinal capillary networks were isolated using retinal trypsin digestion and stained with hematoxylin and periodic acid Schiff to identify the number of acellular capillaries (AC) and pericyte loss (PL). In parallel, TUNEL assay was performed on retinal trypsin digests (RTDs) to detect cells undergoing apoptosis in the retinal capillary networks. Retinal vascular permeability was analyzed following FITC-dextran injection in retinal whole mounts. A significant increase in LOX expression was detected in the diabetic retinas compared to those of the WT control retinas, and as expected, a significant decrease in LOX expression in the diabetic LOX +/- retinas was observed compared to those of the diabetic retinas. RTD images showed significantly increased AC and PL counts in the retinas of diabetic mice compared to those of the WT control mice. Importantly, the number of AC and PL was significantly decreased, as was retinal vascular permeability in the retinas of the diabetic LOX +/- mice compared to those of the diabetic mice. Results suggest that decreasing diabetes-induced LOX overexpression may have protective effects against the development of vascular lesions characteristic of diabetic retinopathy. Therefore, LOX overexpression may be a potential target in preventing retinal vascular cell loss and excess permeability associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ngan-Ha Nguyen
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
26
|
Haptoglobin improves acute phase response and endotoxin tolerance in response to bacterial LPS. Immunol Lett 2019; 207:17-27. [PMID: 30625342 DOI: 10.1016/j.imlet.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022]
Abstract
Sepsis is characterized by delayed acute phase response and lowered immune tolerance in patients. Acute phase serum proteins, like Haptoglobin (Hp), have been associated with increased mortality in bacteria mediated acute lung inflammation and sepsis in neonates. However, it's direct role in modulating the immune response by regulating pro-inflammatory mediators leading to immune tolerant state and if gender affects its expression levels during bacterial infection, especially in blood has not been fully explored. To understand its specific role in endotoxin-mediated immune response, we investigated the correlation between the rise in Hp levels on bacterial infection and its influence on the expression of pro-inflammatory mediators in male and female Whole blood (WHB) and PBMCs. Here, we observed pathogen-specific and gender-specific expression of Hp. Gonadal steroid hormones differentially influenced the Hp expression in LPS-induced WHB, where the addition of Estrogen increased Hp expression, with suppression of TNFα, in both genders. Further on evaluating, the influence of Hp on TNFα expression in endotoxin tolerance (ET), we show that increased Hp levels directly reduced TNFα expression in ET models. Interestingly, blockade of secreted Hp significantly reversed the (ET) state, confirmed by a significant rise in TNFα expression in both ex vivo and in vitro ET models, indicating a possible feedback inhibition by Hp on inflammatory mediators like TNFα. We also investigated the role of PKCδ in the regulation of LPS induced secretion of acute phase proteins (Hp) in serum, where inhibition of PKCδ, reduced secretion of anti-microbial proteins in response to LPS shown by restored bacterial growth. These findings clearly highlight the crucial role of Hp in maintaining immune tolerance via suppressing the pro-inflammatory mediators and also in preventing bacterial proliferation in blood during infection.
Collapse
|
27
|
Chen J, Ren J, Loo WTY, Hao L, Wang M. Lysyl oxidases expression and histopathological changes of the diabetic rat nephron. Mol Med Rep 2017; 17:2431-2441. [PMID: 29207131 PMCID: PMC5783488 DOI: 10.3892/mmr.2017.8182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023] Open
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes, the accumulation of extracellular matrix (ECM) is considered an indication of nephropathological changes. Lysyl oxidases (LOXs) are also associated with ECM. However, the majority of studies on LOXs have focused on their potential role in renal fibrogenesis and there has no examination of LOXs expression or the correlation with histopathological changes of DN, including glomerular basement membrane (GBM) thickening and glomerulosclerosis. In this study, the association between histological changes and LOXs was explored using a type 2 diabetes model of male Zucker diabetic fatty rats. The expression of LOX and lysyl oxidase-like 1 to 3 (LOXL1 to 3) levels were evaluated by immunohistochemical staining. The expression levels of LOX and LOXL2 in the kidney tissue in the diabetic group were significantly higher compared with those of the control group, but LOXL1 and LOXL3 expression levels were not significantly different between the two groups. These results indicated that LOXL2 and LOX may be critical factors involved in the progression of DN.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wings T Y Loo
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P.R. China
| | - Liang Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
28
|
Tien T, Zhang J, Muto T, Kim D, Sarthy VP, Roy S. High Glucose Induces Mitochondrial Dysfunction in Retinal Müller Cells: Implications for Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2017; 58:2915-2921. [PMID: 28586916 PMCID: PMC5460955 DOI: 10.1167/iovs.16-21355] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate whether high glucose (HG) induces mitochondrial dysfunction and promotes apoptosis in retinal Müller cells. Methods Rat retinal Müller cells (rMC-1) grown in normal (N) or HG (30 mM glucose) medium for 7 days were subjected to MitoTracker Red staining to identify the mitochondrial network. Digital images of mitochondria were captured in live cells under confocal microscopy and analyzed for mitochondrial morphology changes based on form factor (FF) and aspect ratio (AR) values. Mitochondrial metabolic function was assessed by measuring oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using a bioenergetic analyzer. Cells undergoing apoptosis were identified by differential dye staining and TUNEL assay, and cytochrome c levels were assessed by Western blot analysis. Results Cells grown in HG exhibited significantly increased mitochondrial fragmentation compared to those grown in N medium (FF = 1.7 ± 0.1 vs. 2.3 ± 0.1; AR = 2.1 ± 0.1 vs. 2.5 ± 0.2; P < 0.01). OCR and ECAR were significantly reduced in cells grown in HG medium compared to those grown in N medium (steady state: 75% ± 20% of control, P < 0.02; 64% ± 22% of control, P < 0.02, respectively). These cells also exhibited a significant increase (∼2-fold) in the number of apoptotic cells compared to those grown in N medium (P < 0.01), with a concomitant increase in cytochrome c levels (247% ± 94% of control, P < 0.05). Conclusions Findings indicate that HG-induced mitochondrial morphology changes and subsequent mitochondrial dysfunction may contribute to retinal Müller cell loss associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Thomas Tien
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Joyce Zhang
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Tetsuya Muto
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Dongjoon Kim
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Vijay P Sarthy
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Sayon Roy
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
29
|
Preil SAR, Thorsen ASF, Christiansen AL, Poulsen MK, Karsdal MA, Leeming DJ, Rasmussen LM. Is cardiovascular disease in patients with diabetes associated with serum levels of MMP-2, LOX, and the elastin degradation products ELM and ELM-2? Scandinavian Journal of Clinical and Laboratory Investigation 2017; 77:493-497. [PMID: 28715234 DOI: 10.1080/00365513.2017.1346822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Diabetes mellitus type 2 (T2DM) is a significant risk factor for the development of cardiovascular diseases (CVDs). In a previous microarray study of internal mammary arteries from patients with and without T2DM, we observed several elastin-related genes with altered mRNA-expression in diabetic patients, namely matrix metalloproteinase 2 (MMP-2), lysyl oxidase (LOX) and elastin itself. In this study we investigate whether the serum concentrations of elastin-related proteins correlate to signs of CVD in patients with T2DM. METHODS Blood samples from 302 type 2 diabetic patients were analysed for MMP-2, LOX, and the elastin degradation products ELM and ELM2. The results were investigated for correlations to signs of CVD in different vascular territories, as determined by myocardial perfusion scintigraphy, carotid artery thickness and ankle-brachial blood pressure index. RESULTS T2DM patients with peripheral arterial disease (low ankle-brachial index) (PAD) display higher levels of MMP-2 and ELM compared to patients without PAD. However, none of the proteins or degradation products correlated with myocardial ischemia or a combined measure of CVD-signs, including myocardial ischemia, increased carotid thickness and decreased ankle-brachial blood pressure. CONCLUSIONS Our results suggest that the diabetic environment affects the circulating amounts of MMP-2 and ELM in patients with PAD. However, the same connection could not be seen in diabetic patients with CVD broadly identified in three vascular territories. LOX and ELM-2 did not correlate to any type of CVD. Overall, serum levels of elastin-related molecules are only remotely related to CVD in type 2 diabetes.
Collapse
Affiliation(s)
- Simone Andrea Rørdam Preil
- a Department of Clinical Biochemistry and Pharmacology , Odense University Hospital, University of Southern Denmark , Odense , Denmark.,b Center for Individualised Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark
| | - Anne-Sofie Faarvang Thorsen
- a Department of Clinical Biochemistry and Pharmacology , Odense University Hospital, University of Southern Denmark , Odense , Denmark.,b Center for Individualised Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark
| | - Anne Lindegaard Christiansen
- a Department of Clinical Biochemistry and Pharmacology , Odense University Hospital, University of Southern Denmark , Odense , Denmark
| | | | | | | | - Lars Melholt Rasmussen
- a Department of Clinical Biochemistry and Pharmacology , Odense University Hospital, University of Southern Denmark , Odense , Denmark.,b Center for Individualised Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark
| |
Collapse
|
30
|
Kim D, Mecham RP, Trackman PC, Roy S. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis. Invest Ophthalmol Vis Sci 2017; 58:2725-2731. [PMID: 28538980 PMCID: PMC5444550 DOI: 10.1167/iovs.16-21340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Methods Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. Results WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Conclusions Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States 2Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Philip C Trackman
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, United States
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States 2Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
31
|
Bogush M, Heldt NA, Persidsky Y. Blood Brain Barrier Injury in Diabetes: Unrecognized Effects on Brain and Cognition. J Neuroimmune Pharmacol 2017; 12:593-601. [PMID: 28555373 DOI: 10.1007/s11481-017-9752-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/19/2017] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is a disorder due to the inability properly to metabolize glucose associated with dysregulation of metabolic pathways of lipids and proteins resulting in structural and functional changes of various organ systems. DM has detrimental effects on the vasculature, resulting in the development of various cardiovascular diseases and stemming from microvascular injury. The blood brain barrier (BBB) is a highly specialized structure protecting the unique microenvironment of the brain. Endothelial cells, connected by junctional complexes and expressing numerous transporters, constitute the main cell type in the BBB. Other components, including pericytes, basement membrane, astrocytes and perivascular macrophages, join endothelial cells to form the neurovascular unit (NVU) and contribute to the proper function and integrity of the BBB. The role of the BBB in the pathogenesis of diabetic encephalopathy and other diabetes-related complications in the central nervous system is apparent. However, the mechanisms, timing and consequences of BBB injury in diabetes are not well understood. The importance of further studies related to barrier dysfunction in diabetes is dictated by its potential involvement in the cognitive demise associated with DM. This review summarizes the impact of DM on BBB/NVU integrity and function leading to neurological and cognitive complications.
Collapse
Affiliation(s)
- Marina Bogush
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Nathan A Heldt
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
32
|
Haque R, Iuvone PM, He L, Choi KSC, Ngo A, Gokhale S, Aseem M, Park D. The MicroRNA-21 signaling pathway is involved in prorenin receptor (PRR) -induced VEGF expression in ARPE-19 cells under a hyperglycemic condition. Mol Vis 2017; 23:251-262. [PMID: 28465657 PMCID: PMC5398881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/12/2017] [Indexed: 11/25/2022] Open
Abstract
PURPOSE MicroRNAs (miRNAs/miRs) are involved in a large number of biological functions and diseases, such as cancer, cardiovascular diseases, and diabetes. MiR-21 has been reported to target Sprouty homolog 1 (SPRY1), SMAD7, and PTEN. In this study, we examined the underlying role of miR-21 in the regulation of prorenin receptor (PRR)-mediated induction of vascular endothelial growth factor (VEGF) expression via targeting SMAD7, SPRY1, and PTEN in a hyperglycemic condition. METHODS PRR-mediated induction of VEGF under a hyperglycemic condition (high glucose, 33mM) was studied by treating ARPE-19 cells with perindopril (10 µmol/l), which inhibits angiotensin II-mediated signaling. ARPE-19 cells exposed to normal glucose (NG, 5.5 mM) were considered as the control. To examine the role of miR-21 in the regulation of SPRY1, SMAD7, PTEN, and VEGF, ARPE-19 cells cultured in NG or high glucose were transfected with scramble negative control (Scr), a miR-21 mimic, or a miR-21 antagomir. To investigate the role of PRR and the small GTP-binding protein RAC1 in the regulation of miR-21, the expression of PRR and RAC1 was silenced by transfecting ARPE-19 cells with their corresponding siRNAs. RESULTS Compared with the NG control, high glucose significantly induced the expression of PRR, VEGF, VEGFR2, and miR-21 but significantly suppressed the expression of SPRY1, SMAD7, and PTEN at the transcript and protein levels. In contrast, silencing the expression of PRR significantly abolished the high glucose-induced expression of VEGF, VEGFR2, and miR-21. Knockdown of RAC1 significantly attenuated the high glucose-induced expression of LOX, CTGF, and miR-21, suggesting that PRR and RAC1 are involved in the CTGF/LOX-mediated regulation of miR-21. Furthermore, high glucose dramatically increased the levels of pERK (p44), hypoxia-inducible factor (HIF-1α), and VEGF. However, this effect was antagonized by the miR-21 antagomir, indicative of the involvement of high glucose-induced miR-21 in the regulation of VEGF through ERK signaling. CONCLUSIONS Our findings, for the first time, showed that the pleiotropic action of miR-21 induced the expression of pERK, HIF-1α, and VEGF in the high glucose condition by simultaneously targeting SPRY1, SMAD7, and PTEN in ARPE-19 cells. Therefore, miR-21 may serve as a potential therapeutic target for diabetes-induced retinal pathology.
Collapse
|
33
|
Caceres PS, Benedicto I, Lehmann GL, Rodriguez-Boulan EJ. Directional Fluid Transport across Organ-Blood Barriers: Physiology and Cell Biology. Cold Spring Harb Perspect Biol 2017; 9:a027847. [PMID: 28003183 PMCID: PMC5334253 DOI: 10.1101/cshperspect.a027847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Directional fluid flow is an essential process for embryo development as well as for organ and organism homeostasis. Here, we review the diverse structure of various organ-blood barriers, the driving forces, transporters, and polarity mechanisms that regulate fluid transport across them, focusing on kidney-, eye-, and brain-blood barriers. We end by discussing how cross talk between barrier epithelial and endothelial cells, perivascular cells, and basement membrane signaling contribute to generate and maintain organ-blood barriers.
Collapse
Affiliation(s)
- Paulo S Caceres
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Guillermo L Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Enrique J Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
34
|
Cai L, Xiong X, Kong X, Xie J. The Role of the Lysyl Oxidases in Tissue Repair and Remodeling: A Concise Review. Tissue Eng Regen Med 2017; 14:15-30. [PMID: 30603458 DOI: 10.1007/s13770-016-0007-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/01/2016] [Accepted: 04/17/2016] [Indexed: 02/05/2023] Open
Abstract
Tissue injury provokes a series of events containing inflammation, new tissue formation and tissue remodeling which are regulated by the spatially and temporally coordinated organization. It is an evolutionarily conserved, multi-cellular, multi-molecular process via complex signalling network. Tissue injury disorders present grievous clinical problems and are likely to increase since they are generally associated with the prevailing diseases such as diabetes, hypertension and obesity. Although these dynamic responses vary not only for the different types of trauma but also for the different organs, a balancing act between the tissue degradation and tissue synthesis is the same. In this process, the degradation of old extracellular matrix (ECM) elements and new ones' synthesis and deposition play an essential role, especially collagens. Lysyl oxidase (LOX) and four lysyl oxidase-like proteins are a group of enzymes capable of catalyzing cross-linking reaction of collagen and elastin, thus initiating the formation of covalent cross-links that insolubilize ECM proteins. In this way, LOX facilitates ECM stabilization through ECM formation, development, maturation and remodeling. This ability determines its potential role in tissue repair and regeneration. In this review, based on the current in vitro, animal and human in vivo studies which have shown the significant role of the LOXs in tissue repair, e.g., tendon regeneration, ligament healing, cutaneous wound healing, and cartilage remodeling, we focused on the role of the LOXs in inflammation phase, proliferation phase, and tissue remodeling phase of the repair process. By summarizing its healing role, we hope to shed light on the understanding of its potential in tissue repair and provide up to date therapeutic strategies towards related injuries.
Collapse
Affiliation(s)
- Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People's Republic of China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People's Republic of China
| | - Xiangli Kong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People's Republic of China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People's Republic of China
| |
Collapse
|
35
|
Griner JD, Rogers CJ, Zhu MJ, Du M. Lysyl oxidase propeptide promotes adipogenesis through inhibition of FGF-2 signaling. Adipocyte 2017; 6:12-19. [PMID: 28452589 DOI: 10.1080/21623945.2016.1271511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Lysyl oxidase (LOX) catalyzes the oxidative deamination of lysine residues in collagen and elastin, key components of connective tissue. LOX is synthesized as an inactive 50 kD pre-proenzyme, and secreted to the extracellular matrix where it is cleaved into an active 32 kD LOX, and an 18kD free propeptide (LOX-PP), purportedly an inhibitor of fibroblast growth factor-2 (FGF-2) signaling. Given that adipocytes are distributed inside the connective tissue, it is likely that LOX-PP has an important regulatory role in adipogenesis, which has not been studied. Using NIH 3T3-L1 cells, we observed that FGF-2 inhibited adipogenesis, and LOX-PP promoted adipogenesis of 3T3-L1 cells in the presence of FGF-2; the expression of peroxisome proliferator-activated receptor (PPAR) γ and CCAAT-enhancer binding protein (C/EBP) α, two markers of adipogenesis, were enhanced in the presence of LOX-PP. We further observed that LOX-PP down-regulated AKT and ERK1/2, two proliferative signaling proteins down-stream of FGF-2 signaling. Similarly, inhibition of FGF-2 receptor signaling by canofin, a competitive inhibitor of FGF-2 receptor, promoted adipogenesis albeit less effective compared to LOX-PP. To further explore whether LOX-PP promoted adipogenesis through inhibition of FGF-2 signaling, site directed mutagenesis of LOX-PP, resulting in an Arg158 to Gln158 mutation which abolishes the inhibitory activity of LOX-PP to FGF-2 receptor, attenuated the adipogenic promoting properties of LOX-PP. In summary, for the first time, our data show that LOX-PP enhances adipogenesis at least partially through inhibition of FGF-2 receptor signaling. Our data suggest that LOX-PP may serve as a bona fide therapeutic target for regulating adipogenesis and adipose tissue development.
Collapse
Affiliation(s)
- John D. Griner
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Carl J. Rogers
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
36
|
Das A. Diabetic Retinopathy: Battling the Global Epidemic. Invest Ophthalmol Vis Sci 2016; 57:6669-6682. [PMID: 27936469 PMCID: PMC5152562 DOI: 10.1167/iovs.16-21031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/23/2022] Open
Affiliation(s)
- Arup Das
- Department of Surgery, Division of Ophthalmology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States
| |
Collapse
|
37
|
Adamopoulos C, Piperi C, Gargalionis AN, Dalagiorgou G, Spilioti E, Korkolopoulou P, Diamanti-Kandarakis E, Papavassiliou AG. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling pathways. Cell Mol Life Sci 2016; 73:1685-1698. [PMID: 26646068 PMCID: PMC11108501 DOI: 10.1007/s00018-015-2091-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/26/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
Endothelial dysfunction involves deregulation of the key extracellular matrix (ECM) enzyme lysyl oxidase (LOX) and the vasoconstrictor protein, endothelin-1 (ET-1), whose gene expression can be modulated by the transcriptional activators nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1). Advanced glycation end products (AGEs) present an aggravating factor of endothelial dysfunction which upon engagement to their receptor RAGE induce upregulation of mitogen-activated protein kinases (MAPKs), leading to NF-κB and AP-1 potentiation. We hypothesized that AGEs could induce NF-κΒ- and AP-1-dependent regulation of LOX and ET-1 expression via the AGE/RAGE/MAPK signaling axis. Western blot, real-time qRT-PCR, FACS analysis and electrophoretic mobility-shift assays were employed in human aortic endothelial cells (HAECs) following treatment with AGE-bovine serum albumin (AGE-BSA) to investigate the signaling pathway towards this hypothesis. Furthermore, immunohistochemical analysis of AGEs, RAGE, LOX and ET-1 expression was conducted in aortic endothelium of a rat experimental model exposed to high- or low-AGE content diet. HAECs exposed to AGE-BSA for various time points exhibited upregulation of LOX and ET-1 mRNA levels in a dose- and time-dependent manner. Exposure of HAECs to AGE-BSA also showed specific elevation of phospho(p)-ERK1/2 and p-JNK levels in a dose- and time-dependent fashion. AGE administration significantly increased NF-κΒ- and AP-1-binding activity to both LOX and ET-1 cognate promoter regions. Moreover, LOX and ET-1 overexpression in rat aortic endothelium upon high-AGE content diet confirmed the functional interrelation of these molecules. Our findings demonstrate that AGEs trigger NF-κΒ- and AP-1-mediated upregulation of LOX and ET-1 via the AGE/RAGE/MAPK signaling cascade in human endothelial cells, thus contributing to distorted endothelial homeostasis by impairing endothelial barrier function, altering ECM biomechanical properties and cell proliferation.
Collapse
Affiliation(s)
- Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Georgia Dalagiorgou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Eliana Spilioti
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evanthia Diamanti-Kandarakis
- Third Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 'Sotiria' Hospital, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
38
|
Trackman PC. Lysyl Oxidase Isoforms and Potential Therapeutic Opportunities for Fibrosis and Cancer. Expert Opin Ther Targets 2016; 20:935-45. [PMID: 26848785 DOI: 10.1517/14728222.2016.1151003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The lysyl oxidase family of enzymes is classically known as being required for connective tissue maturation by oxidizing lysine residues in elastin and lysine and hydroxylysine residues in collagen precursors. The resulting aldehydes then participate in cross-link formation, which is required for normal connective tissue integrity. These enzymes have biological functions that extend beyond this fundamental biosynthetic role, with contributions to angiogenesis, cell proliferation, and cell differentiation. Dysregulation of lysyl oxidases occurs in multiple pathologies including fibrosis, primary and metastatic cancers, and complications of diabetes in a variety of tissues. AREAS COVERED This review summarizes the major findings of novel roles for lysyl oxidases in pathologies, and highlights some of the potential therapeutic approaches that are in development and which stem from these new findings. EXPERT OPINION Fundamental questions remain regarding the mechanisms of novel biological functions of this family of proteins, and regarding functions that are independent of their catalytic enzyme activity. However, progress is underway in the development of isoform-specific pharmacologic inhibitors, potential therapeutic antibodies and gaining an increased understanding of both tumor suppressor and metastasis promotion activities. Ultimately, this is likely to lead to novel therapeutic agents.
Collapse
Affiliation(s)
- Philip C Trackman
- a Department of Molecular and Cell Biology , Boston University, Henry M. Goldman School of Dental Medicine , Boston , MA , USA
| |
Collapse
|
39
|
Yang X, Scott HA, Monickaraj F, Xu J, Ardekani S, Nitta CF, Cabrera A, McGuire PG, Mohideen U, Das A, Ghosh K. Basement membrane stiffening promotes retinal endothelial activation associated with diabetes. FASEB J 2016; 30:601-11. [PMID: 26443820 PMCID: PMC6188223 DOI: 10.1096/fj.15-277962] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Endothelial activation is a hallmark of the high-glucose (HG)-induced retinal inflammation associated with diabetic retinopathy (DR). However, precisely how HG induces retinal endothelial activation is not fully understood. We hypothesized that HG-induced up-regulation of lysyl oxidase (LOX), a collagen-cross-linking enzyme, in retinal capillary endothelial cells (ECs) enhances subendothelial basement membrane (BM) stiffness, which, in turn, promotes retinal EC activation. Diabetic C57BL/6 mice exhibiting a 70 and 50% increase in retinal intercellular adhesion molecule (ICAM)-1 expression and leukocyte accumulation, respectively, demonstrated a 2-fold increase in the levels of BM collagen IV and LOX, key determinants of capillary BM stiffness. Using atomic force microscopy, we confirmed that HG significantly enhances LOX-dependent subendothelial matrix stiffness in vitro, which correlated with an ∼2.5-fold increase in endothelial ICAM-1 expression, a 4-fold greater monocyte-EC adhesion, and an ∼2-fold alteration in endothelial NO (decrease) and NF-κB activation (increase). Inhibition of LOX-dependent subendothelial matrix stiffening alone suppressed HG-induced retinal EC activation. Finally, using synthetic matrices of tunable stiffness, we demonstrated that subendothelial matrix stiffening is necessary and sufficient to promote EC activation. These findings implicate BM stiffening as a critical determinant of HG-induced retinal EC activation and provide a rationale for examining BM stiffness and underlying mechanotransduction pathways as therapeutic targets for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiao Yang
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Harry A Scott
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Finny Monickaraj
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Jun Xu
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Soroush Ardekani
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Carolina F Nitta
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Andrea Cabrera
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Paul G McGuire
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Umar Mohideen
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Arup Das
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| | - Kaustabh Ghosh
- *Department of Bioengineering and Department of Physics and Astronomy, University of California, Riverside, Riverside, California, USA; Department of Surgery and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA; and New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, USA
| |
Collapse
|
40
|
Roy S, Bae E, Amin S, Kim D. Extracellular matrix, gap junctions, and retinal vascular homeostasis in diabetic retinopathy. Exp Eye Res 2015; 133:58-68. [PMID: 25819455 DOI: 10.1016/j.exer.2014.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
The vascular basement membrane (BM) contains extracellular matrix (ECM) proteins that assemble in a highly organized manner to form a supportive substratum for cell attachment facilitating myriad functions that are vital to cell survival and overall retinal homeostasis. The BM provides a microenvironment in which bidirectional signaling through integrins regulates cell attachment, turnover, and functionality. In diabetic retinopathy, the BM undergoes profound structural and functional changes, and recent studies have brought to light the implications of such changes. Thickened vascular BM in the retinal capillaries actively participate in the development and progression of characteristic changes associated with diabetic retinopathy. High glucose (HG)-induced compromised cell-cell communication via gap junctions (GJ) in retinal vascular cells may disrupt homeostasis in the retinal microenvironment. In this review, the role of altered ECM synthesis, compromised GJ activity, and disturbed retinal homeostasis in the development of retinal vascular lesions in diabetic retinopathy are discussed.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| | - Edward Bae
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Shruti Amin
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
41
|
Abstract
Diabetic retinopathy (DR) is one of today's main causes of blindness in numerous developed countries worldwide. The underlying pathogenesis of DR is complex and not well understood, thus impeding development of specific, effective treatment modalities. Consequently, the use of animal models of DR is of critical importance for investigating the pathogenesis of and treatment for DR. While rats and mice are the most commonly used animal models of DR, the zebrafish now appears to be a promising model. Nonhuman primates and humans have similar eye structures, and both can develop spontaneous diabetes mellitus (DM). Although various traditionally used animal models of DR undergo a number of pathological changes similar to those of human DR, several human variations, e.g. retinal neovascularization, cannot yet be fully mimicked in any existing animal model of DM. Since both the animal models and the methods chosen for inducing DR have great influence on experimental results, a clear understanding of available animal models is vital for planning an experimental design. In this review, we summarize the mechanisms, methodologies and pros and cons of the most commonly used animal models of DR.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , P.R. China
| | | | | |
Collapse
|
42
|
Sroga GE, Wu PC, Vashishth D. Insulin-like growth factor 1, glycation and bone fragility: implications for fracture resistance of bone. PLoS One 2015; 10:e0117046. [PMID: 25629402 PMCID: PMC4309541 DOI: 10.1371/journal.pone.0117046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/18/2014] [Indexed: 01/22/2023] Open
Abstract
Despite our extensive knowledge of insulin-like growth factor 1 (IGF1) action on the growing skeleton, its role in skeletal homeostasis during aging and age-related development of certain diseases is still unclear. Advanced glycation end products (AGEs) derived from glucose are implicated in osteoporosis and a number of diabetic complications. We hypothesized that because in humans and rodents IGF1 stimulates uptake of glucose (a glycation substrate) from the bloodstream in a dose-dependent manner, the decline of IGF1 could be associated with the accumulation of glycation products and the decreasing resistance of bone to fracture. To test the aforementioned hypotheses, we used human tibial posterior cortex bone samples to perform biochemical (measurement of IGF1, fluorescent AGEs and pentosidine (PEN) contents) and mechanical tests (crack initiation and propagation using compact tension specimens). Our results for the first time show a significant, age-independent association between the levels of IGF1 and AGEs. Furthermore, AGEs (fAGEs, PEN) predict propensity of bone to fracture (initiation and propagation) independently of age in human cortical bone. Based on these results we propose a model of IGF1-based regulation of bone fracture. Because IGF1 level increases postnatally up to the juvenile developmental phase and decreases thereafter with aging, we propose that IGF1 may play a protective role in young skeleton and its age-related decline leads to bone fragility and an increased fracture risk. Our results may also have important implications for current understanding of osteoporosis- and diabetes-related bone fragility as well as in the development of new diagnostic tools to screen for fragile bones.
Collapse
Affiliation(s)
- Grażyna E. Sroga
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Ping-Cheng Wu
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Deepak Vashishth
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Lu QY, Chen W, Lu L, Zheng Z, Xu X. Involvement of RhoA/ROCK1 signaling pathway in hyperglycemia-induced microvascular endothelial dysfunction in diabetic retinopathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7268-7277. [PMID: 25400825 PMCID: PMC4230108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/01/2014] [Indexed: 06/04/2023]
Abstract
Diabetic retinopathy (DR) is a well-known serious complication of diabetes mellitus (DM), and can eventually advance to end-stage blindness. In the early stage of DR, endothelial cell barrier disorganized primarily and tight junction (TJ) protein composition transformed subsequently. The small GTPase RhoA and its downstream effector Rho-associated coiled-coil containing protein kinase 1 (ROCK1) regulate a mass of cellular processes, including cell adherence, proliferation, permeability and apoptosis. Although RhoA inhibitors have provided substantial clinical benefit as hypertonicity therapeutics, their use is limited by complex microenvironment as DR. While ample evidence indicates that TJ can be influenced by the RhoA/ROCK1 signaling, the underlying mechanisms remain incompletely understood. Here, we have uncovered a significant signaling network involved in diabetic retinal microvascular endothelial dysfunction (RMVED). Our results indicated that the activation of RhoA/ROCK1 pathway due to high glucose played a key role in microvascular endothelial cell dysfunction (MVED) by way of directly inducing TJ proteins over-expression during DR. We demonstrated that inhibition of RhoA/ROCK1 may attenuate the hypertonicity of endothelial cell caused by high glucose microenvironment meanwhile. Besides, chemical and pharmacological inhibitors of RhoA/ROCK1 pathway may partly block inflammation due to DR. Simultaneously, the apoptosis aroused by high glucose was also prevented considerably by fasudil, a kind of pharmacological inhibitor of RhoA/ROCK1 pathway. These findings indicate that RhoA/ROCK1 signaling directly modulates MVED, suggesting a novel therapeutic target for DR.
Collapse
Affiliation(s)
- Qian-Yi Lu
- Department of Ophthalmology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200080, China
| | - Wei Chen
- Department of Ophthalmology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200080, China
| | - Li Lu
- Department of Ophthalmology, Bengbu Medical CollegeBengbu 233030, China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200080, China
| |
Collapse
|
44
|
Tien T, Muto T, Barrette K, Challyandra L, Roy S. Downregulation of Connexin 43 promotes vascular cell loss and excess permeability associated with the development of vascular lesions in the diabetic retina. Mol Vis 2014; 20:732-41. [PMID: 24940027 PMCID: PMC4043608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 05/30/2014] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To determine whether downregulation of Connexin 43 (Cx43) expression promotes development of acellular capillaries (ACs), pericyte loss (PL), excess permeability, and retinal thickening in rat retinas. METHODS Control rats, diabetic rats, and rats intravitreally injected with Cx43 siRNA or scrambled siRNA were used in this study to determine if acute downregulation of Cx43 expression contributes to retinal vascular cell death and excess permeability. Western blot (WB) analysis and Cx43 immunostaining were performed to assess Cx43 protein levels and distribution in the retinal vessels. Concurrently, retinal networks were subjected to terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling (TUNEL) assay and counter-stained to assess the number of apoptotic cells, ACs, and PL. Assessment of fluorescein isothiocyanate-dextran (FITC-dex) extravasation from retinal capillaries and optical coherence tomography (OCT) were performed to determine retinal vascular permeability and retinal thickness, respectively. RESULTS WB analysis indicated a significant decrease in the Cx43 protein level in the retinas of the diabetic rats and those intravitreally injected with Cx43 siRNA compared to the retinas of the control rats. Likewise, the retinal vascular cells of the diabetic rats and the Cx43 siRNA-treated rats showed a significant decrease in Cx43 immunostaining. Importantly, the number of apoptotic cells, ACs and PL, FITC-dex extravasation, and thickness increased in the retinas of the diabetic and Cx43 siRNA-treated rats compared to those of the control rats. CONCLUSIONS Results indicate that downregulation of Cx43 expression alone induces vascular cell death and promotes vascular permeability in the retina. These findings suggest that diabetes-induced downregulation of Cx43 participates in promoting retinal vascular lesions associated with diabetic retinopathy (DR).
Collapse
|
45
|
Ward ST, Weston CJ, Hepburn E, Damery S, Hejmadi RK, Morton DG, Middleton G, Ismail T, Adams DH. Evaluation of serum lysyl oxidase as a blood test for colorectal cancer. Eur J Surg Oncol 2013; 40:731-8. [PMID: 24246612 DOI: 10.1016/j.ejso.2013.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 01/03/2023] Open
Abstract
AIMS Lysyl oxidase (LOX) expression is elevated in colorectal cancer (CRC) tissue and associated with disease progression. A blood test may form a more acceptable diagnostic test for CRC although LOX has not previously been measured in the serum. We therefore sought to determine the clinical usefulness of a serum LOX test for CRC in a symptomatic population. METHODS Adult patients referred to a hospital colorectal clinic with bowel symptoms completed a questionnaire and provided a blood sample for serum LOX measurement. Associations between presenting symptoms, serum LOX concentrations and outcomes of investigations were tested by univariate and multivariate analyses to determine if serum LOX was clinically useful in the prediction of CRC. LOX expression in CRC and adjacent colon biopsies was evaluated by ELISA and immunohistochemistry. RESULTS Thirty-one cases of colorectal cancer and 16 high-risk polyps were identified from a total of 962 participants. There was no association between serum LOX concentration and the presence of CRC, high-risk polyps or cancers at any site. LOX expression was significantly increased in CRC tissue compared to adjacent colon. CONCLUSION Despite overexpression of LOX in CRC tissue, elevated serum levels could not be demonstrated. Serum LOX measurement is therefore not a clinically useful test for CRC.
Collapse
Affiliation(s)
- S T Ward
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham B15 2TT, UK; University Hospitals Birmingham, Edgbaston, Birmingham B15 2WB, UK.
| | - C J Weston
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham B15 2TT, UK
| | - E Hepburn
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham B15 2TT, UK; University Hospitals Birmingham, Edgbaston, Birmingham B15 2WB, UK
| | - S Damery
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham B15 2TT, UK
| | - R K Hejmadi
- University Hospitals Birmingham, Edgbaston, Birmingham B15 2WB, UK
| | - D G Morton
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham B15 2TT, UK; University Hospitals Birmingham, Edgbaston, Birmingham B15 2WB, UK
| | - G Middleton
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham B15 2TT, UK; University Hospitals Birmingham, Edgbaston, Birmingham B15 2WB, UK
| | - T Ismail
- University Hospitals Birmingham, Edgbaston, Birmingham B15 2WB, UK
| | - D H Adams
- NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
46
|
Tien T, Barrette KF, Chronopoulos A, Roy S. Effects of high glucose-induced Cx43 downregulation on occludin and ZO-1 expression and tight junction barrier function in retinal endothelial cells. Invest Ophthalmol Vis Sci 2013; 54:6518-25. [PMID: 24008412 DOI: 10.1167/iovs.13-11763] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To investigate whether high glucose (HG)-induced downregulation of connexin 43 (Cx43), a gap junction protein, alters ZO-1 and occludin expression and cell monolayer permeability. METHODS Rat retinal endothelial cells (RRECs) were grown in normal (N; 5 mM) medium, high glucose (HG; 30 mM) medium, N medium transfected with Cx43 siRNA, or N medium transfected with scrambled siRNA. To determine Cx43, occludin, and ZO-1 protein expression, Western blot (WB) analysis and immunostaining were performed. Gap junction intercellular communication (GJIC) was determined using scrape load dye transfer (SLDT) assay. In parallel, cell monolayer permeability was assessed in the four groups of cells, and in cells transfected with Cx43 plasmid or dominant negative Cx43 plasmid. RESULTS Connexin 43 protein expression was significantly reduced in cells grown in HG (67 ± 15% of control), and a significant reduction in Cx43 was achieved when cells grown in N medium were transfected with Cx43 siRNA (76 ± 12% of control), with concomitant decrease in GJIC activity. Cells grown in HG showed significant reduction in occludin (77 ± 9% of control) and ZO-1 (80 ± 11% of control) protein level compared with cells grown in N media. Importantly, cells transfected with Cx43 siRNA and grown in N medium showed significant downregulation in occludin (78 ± 8% of control) and ZO-1 (81 ± 6% of control) expression, and exhibited increased cell monolayer permeability. Furthermore, Cx43 upregulation protected cells against HG-induced excess cell monolayer permeability. CONCLUSIONS Our findings indicate that HG-induced downregulation of Cx43 expression and GJIC may contribute to the breakdown of endothelial barrier tight junctions associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Thomas Tien
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | | | | | | |
Collapse
|
47
|
Lysyl oxidase secreted by tumour endothelial cells promotes angiogenesis and metastasis. Br J Cancer 2013; 109:2237-47. [PMID: 24045659 PMCID: PMC3798951 DOI: 10.1038/bjc.2013.535] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 01/28/2023] Open
Abstract
Background: Molecules that are highly expressed in tumour endothelial cells (TECs) may be candidates for specifically targeting TECs. Using DNA microarray analysis, we found that the lysyl oxidase (LOX) gene was upregulated in TECs compared with its expression in normal endothelial cells (NECs). LOX is an enzyme that enhances invasion and metastasis of tumour cells. However, there are no reports on the function of LOX in isolated TECs. Methods: TECs and NECs were isolated to investigate LOX function in TECs. LOX inhibition of in vivo tumour growth was also assessed using β-aminopropionitrile (BAPN). Results: LOX expression was higher in TECs than in NECs. LOX knockdown inhibited cell migration and tube formation by TECs, which was associated with decreased phosphorylation of focal adhesion kinase (Tyr 397). Immunostaining showed high LOX expression in human tumour vessels in vivo. Tumour angiogenesis and micrometastasis were inhibited by BAPN in an in vivo tumour model. Conclusion: LOX may be a TEC marker and a possible therapeutic target for novel antiangiogenic therapy.
Collapse
|
48
|
El-Remessy AB, Franklin T, Ghaley N, Yang J, Brands MW, Caldwell RB, Behzadian MA. Diabetes-induced superoxide anion and breakdown of the blood-retinal barrier: role of the VEGF/uPAR pathway. PLoS One 2013; 8:e71868. [PMID: 23951261 PMCID: PMC3737203 DOI: 10.1371/journal.pone.0071868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
Diabetes-induced breakdown of the blood-retinal barrier (BRB) has been linked to hyperglycemia-induced expression of vascular endothelial growth factor (VEGF) and is likely mediated by an increase in oxidative stress. We have shown that VEGF increases permeability of retinal endothelial cells (REC) by inducing expression of urokinase plasminogen activator receptor (uPAR). The purpose of this study was to define the role of superoxide anion in VEGF/uPAR expression and BRB breakdown in diabetes. Studies were performed in streptozotocin diabetic rats and mice and high glucose (HG) treated REC. The superoxide dismutase (SOD) mimetic tempol blocked diabetes-induced permeability and uPAR expression in rats and the cell permeable SOD inhibited HG-induced expression of uPAR and VEGF in REC. Inhibiting VEGFR blocked HG-induced expression of VEGF and uPAR and GSK-3β phosphorylation in REC. HG caused β-catenin translocation from the plasma membrane into the cytosol and nucleus. Treatment with HG-conditioned media increased REC paracellular permeability that was blocked by anti-uPA or anti-uPAR antibodies. Moreover, deletion of uPAR blocked diabetes-induced BRB breakdown and activation of MMP-9 in mice. Together, these data indicate that diabetes-induced oxidative stress triggers BRB breakdown by a mechanism involving uPAR expression through VEGF-induced activation of the GSK3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Azza B. El-Remessy
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Culver Vision Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Telina Franklin
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Nagla Ghaley
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Jinling Yang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Culver Vision Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Michael W. Brands
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Ruth B. Caldwell
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Culver Vision Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- * E-mail:
| | - Mohamed Ali Behzadian
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Culver Vision Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
49
|
Yu H, Li T, Zou X, Yuan L, Hu J, Xu Z, Peng L, Zhang C, Zou Y. Effects of Lysyl Oxidase Genetic Variants on the Susceptibility to Rhegmatogenous Retinal Detachment and Proliferative Vitreoretinopathy. Inflammation 2013; 36:839-44. [DOI: 10.1007/s10753-013-9610-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Lai AKW, Lo ACY. Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res 2013; 2013:106594. [PMID: 24286086 PMCID: PMC3826427 DOI: 10.1155/2013/106594] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening.
Collapse
Affiliation(s)
- Angela Ka Wai Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- *Amy C. Y. Lo:
| |
Collapse
|