1
|
Plascencia AG, Jakobsson M, Sánchez-Quinto F. Ancient DNA HLA typing reveals significant shifts in frequency in Europe since the Neolithic. Sci Rep 2025; 15:6161. [PMID: 39979344 PMCID: PMC11842861 DOI: 10.1038/s41598-024-82449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/05/2024] [Indexed: 02/22/2025] Open
Abstract
Computational HLA typing has surged as a cost-effective strategy to uncover questions regarding the evolution of the HLA system, enabling immunogenic characterization from ancient DNA (aDNA) data. Nevertheless, it remains to be seen whether these methods are suitable for analyzing aDNA generated without target-enrichment. To investigate this, we evaluated the performance of five HLA typing tools using present-day data with simulated profiles typical of aDNA, as well as from high-coverage aDNA genomes downsampled at different read depths. We found that characterization of Class I genes at the first field resolution is feasible at read depths as low as 2x, where it retains an accuracy of ≈ 80%. Next, we used this insight to characterize HLA evolution in Europe from 154 ancient genomes by detecting allele frequency changes throughout distinct prehistoric European populations. We observed important shifts in alleles associated with infectious and autoimmune diseases, most of which are found by contrasting the HLA landscape of Neolithic Farmers to that of present-day. Interestingly, several of these observations are in line with findings that have been previously reported by target-enrichment-based studies. Our results highlight the feasibility of applying HLA typing on shotgun aDNA data to examine the evolution of this loci during important transitions.
Collapse
Affiliation(s)
- Alan Godínez Plascencia
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Federico Sánchez-Quinto
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México.
| |
Collapse
|
2
|
Noble JA. Fifty years of HLA-associated type 1 diabetes risk: history, current knowledge, and future directions. Front Immunol 2024; 15:1457213. [PMID: 39328411 PMCID: PMC11424550 DOI: 10.3389/fimmu.2024.1457213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
More than 50 years have elapsed since the association of human leukocyte antigens (HLA) with type 1 diabetes (T1D) was first reported. Since then, methods for identification of HLA have progressed from cell based to DNA based, and the number of recognized HLA variants has grown from a few to tens of thousands. Current genotyping methodology allows for exact identification of all HLA-encoding genes in an individual's genome, with statistical analysis methods evolving to digest the enormous amount of data that can be produced at an astonishing rate. The HLA region of the genome has been repeatedly shown to be the most important genetic risk factor for T1D, and the original reported associations have been replicated, refined, and expanded. Even with the remarkable progress through 50 years and over 5,000 reports, a comprehensive understanding of all effects of HLA on T1D remains elusive. This report represents a summary of the field as it evolved and as it stands now, enumerating many past and present challenges, and suggests possible paradigm shifts for moving forward with future studies in hopes of finally understanding all the ways in which HLA influences the pathophysiology of T1D.
Collapse
Affiliation(s)
- Janelle A. Noble
- Children’s Hospital Oakland Research Institute,
Oakland, CA, United States
- University of California San Francisco, Oakland,
CA, United States
| |
Collapse
|
3
|
Kaur N, Singh J, Minz RW, Anand S, Saikia B, Bhadada SK, Dayal D, Kumar M, Dhanda SK. Shared and distinct genetics of pure type 1 diabetes and type 1 diabetes with celiac disease, homology in their auto-antigens and immune dysregulation states: a study from North India. Acta Diabetol 2024; 61:791-805. [PMID: 38483572 DOI: 10.1007/s00592-024-02258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/11/2024] [Indexed: 05/18/2024]
Abstract
AIM This study was undertaken to explicate the shared and distinctive genetic susceptibility and immune dysfunction in patients with T1D alone and T1D with CD (T1D + CD). METHODS A total of 100 T1D, 50 T1D + CD and 150 healthy controls were recruited. HLA-DRB1/DQB1 alleles were determined by PCR-sequence-specific primer method, SNP genotyping for CTLA-4 and PTPN22 was done by simple probe-based SNP-array and genotyping for INS-23 Hph1 A/T was done by RFLP. Autoantibodies and cytokine estimation was done by ELISA. Immune-regulation was analysed by flow-cytometry. Clustering of autoantigen epitopes was done by epitope cluster analytical tool. RESULTS Both T1D alone and T1D + CD had a shared association of DRB1*03:01, DRB1*04, DRB3*01:07/15 and DQB1*02. DRB3*01:07/15 confers the highest risk for T1D with relative risk of 11.32 (5.74-22.31). Non-HLA gene polymorphisms PTPN22 and INS could discriminate between T1D and T1D + CD. T1D + CD have significantly higher titers of autoantibodies, expression of costimulatory molecules on CD4 and CD8 cells, and cytokine IL-17A and TGF-β1 levels compared to T1D patients. Epitopes from immunodominant regions of autoantigens of T1D and CD clustered together with 40% homology. CONCLUSION Same HLA genes provide susceptibility for both T1D and CD. Non-HLA genes CTLA4, PTPN22 and INS provide further susceptibility while different polymorphisms in PTPN22 and INS can discriminate between T1D and T1D + CD. Epitope homology between autoantigens of two diseases further encourages the two diseases to occur together. The T1D + CD being more common in females along with co-existence of thyroid autoimmunity, and have more immune dysregulated state than T1D alone.
Collapse
Affiliation(s)
- Navchetan Kaur
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jagdeep Singh
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ranjana W Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Shashi Anand
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjay K Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Devi Dayal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Kumar
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sandeep K Dhanda
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, San Diego, CA, USA
- Now at Department of Oncology, Saint Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Dashti M, Malik MZ, Nizam R, Jacob S, Al-Mulla F, Thanaraj TA. Evaluation of HLA typing content of next-generation sequencing datasets from family trios and individuals of arab ethnicity. Front Genet 2024; 15:1407285. [PMID: 38859936 PMCID: PMC11163123 DOI: 10.3389/fgene.2024.1407285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction: HLA typing is a critical tool in both clinical and research applications at the individual and population levels. Benchmarking studies have indicated HLA-HD as the preferred tool for accurate and comprehensive HLA allele calling. The advent of next-generation sequencing (NGS) has revolutionized genetic analysis by providing high-throughput sequencing data. This study aims to evaluate, using the HLA-HD tool, the HLA typing content of whole exome, whole genome, and HLA-targeted panel sequence data from the consanguineous population of Arab ethnicity, which has been underrepresented in prior benchmarking studies. Methods: We utilized sequence data from family trios and individuals, sequenced on one or more of the whole exome, whole genome, and HLA-targeted panel sequencing technologies. The performance and resolution across various HLA genes were evaluated. We incorporated a comparative quality control analysis, assessing the results obtained from HLA-HD by comparing them with those from the HLA-Twin tool to authenticate the accuracy of the findings. Results: Our analysis found that alleles across 29 HLA loci can be successfully and consistently typed from NGS datasets. Clinical-grade whole exome sequencing datasets achieved the highest consistency rate at three-field resolution, followed by targeted HLA panel, research-grade whole exome, and whole genome datasets. Discussion: The study catalogues HLA typing consistency across NGS datasets for a large array of HLA genes and highlights assessments regarding the feasibility of utilizing available NGS datasets in HLA allele studies. These findings underscore the reliability of HLA-HD for HLA typing in underrepresented populations and demonstrate the utility of various NGS technologies in achieving accurate HLA allele calling.
Collapse
Affiliation(s)
| | | | | | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | |
Collapse
|
5
|
Zhao LP, Papadopoulos GK, Skyler JS, Pugliese A, Parikh HM, Kwok WW, Lybrand TP, Bondinas GP, Moustakas AK, Wang R, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. HLA Class II (DR, DQ, DP) Genes Were Separately Associated With the Progression From Seroconversion to Onset of Type 1 Diabetes Among Participants in Two Diabetes Prevention Trials (DPT-1 and TN07). Diabetes Care 2024; 47:826-834. [PMID: 38498185 PMCID: PMC11043228 DOI: 10.2337/dc23-1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To explore associations of HLA class II genes (HLAII) with the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS Next-generation targeted sequencing was used to genotype eight HLAII genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, DPB1) in 1,216 participants from the Diabetes Prevention Trial-1 and Randomized Diabetes Prevention Trial with Oral Insulin sponsored by TrialNet. By the linkage disequilibrium, DQA1 and DQB1 are haplotyped to form DQ haplotypes; DP and DR haplotypes are similarly constructed. Together with available clinical covariables, we applied the Cox regression model to assess HLAII immunogenic associations with the disease progression. RESULTS First, the current investigation updated the previously reported genetic associations of DQA1*03:01-DQB1*03:02 (hazard ratio [HR] = 1.25, P = 3.50*10-3) and DQA1*03:03-DQB1*03:01 (HR = 0.56, P = 1.16*10-3), and also uncovered a risk association with DQA1*05:01-DQB1*02:01 (HR = 1.19, P = 0.041). Second, after adjusting for DQ, DPA1*02:01-DPB1*11:01 and DPA1*01:03-DPB1*03:01 were found to have opposite associations with progression (HR = 1.98 and 0.70, P = 0.021 and 6.16*10-3, respectively). Third, DRB1*03:01-DRB3*01:01 and DRB1*03:01-DRB3*02:02, sharing the DRB1*03:01, had opposite associations (HR = 0.73 and 1.44, P = 0.04 and 0.019, respectively), indicating a role of DRB3. Meanwhile, DRB1*12:01-DRB3*02:02 and DRB1*01:03 alone were found to associate with progression (HR = 2.6 and 2.32, P = 0.018 and 0.039, respectively). Fourth, through enumerating all heterodimers, it was found that both DQ and DP could exhibit associations with disease progression. CONCLUSIONS These results suggest that HLAII polymorphisms influence progression from islet autoimmunity to T1D among at-risk subjects with islet autoantibodies.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- School of Public Health, University of Washington, Seattle, WA
| | - George K. Papadopoulos
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - Jay S. Skyler
- Diabetes Research Institute and Division of Endocrinology, Diabetes & Metabolism, University of Miami Miler School of Medicine, Miami, FL
| | - Alberto Pugliese
- Department of Diabetes Immunology, City of Hope, South Pasadena, CA
| | - Hemang M. Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | | | | | - George P. Bondinas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli, Cephalonia, Greece
| | - Antonis K. Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli, Cephalonia, Greece
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Wyatt C. Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
6
|
Minniakhmetov I, Yalaev B, Khusainova R, Bondarenko E, Melnichenko G, Dedov I, Mokrysheva N. Genetic and Epigenetic Aspects of Type 1 Diabetes Mellitus: Modern View on the Problem. Biomedicines 2024; 12:399. [PMID: 38398001 PMCID: PMC10886892 DOI: 10.3390/biomedicines12020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Omics technologies accumulated an enormous amount of data that advanced knowledge about the molecular pathogenesis of type 1 diabetes mellitus and identified a number of fundamental problems focused on the transition to personalized diabetology in the future. Among them, the most significant are the following: (1) clinical and genetic heterogeneity of type 1 diabetes mellitus; (2) the prognostic significance of DNA markers beyond the HLA genes; (3) assessment of the contribution of a large number of DNA markers to the polygenic risk of disease progress; (4) the existence of ethnic population differences in the distribution of frequencies of risk alleles and genotypes; (5) the infancy of epigenetic research into type 1 diabetes mellitus. Disclosure of these issues is one of the priorities of fundamental diabetology and practical healthcare. The purpose of this review is the systemization of the results of modern molecular genetic, transcriptomic, and epigenetic investigations of type 1 diabetes mellitus in general, as well as its individual forms. The paper summarizes data on the role of risk HLA haplotypes and a number of other candidate genes and loci, identified through genome-wide association studies, in the development of this disease and in alterations in T cell signaling. In addition, this review assesses the contribution of differential DNA methylation and the role of microRNAs in the formation of the molecular pathogenesis of type 1 diabetes mellitus, as well as discusses the most currently central trends in the context of early diagnosis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Ildar Minniakhmetov
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | - Bulat Yalaev
- Endocrinology Research Centre, Dmitry Ulyanov Street, 11, 117292 Moscow, Russia; (R.K.); (E.B.); (G.M.); (I.D.); (N.M.)
| | | | | | | | | | | |
Collapse
|
7
|
Bawatneh A, Darwish A, Eideh H, Darwish HM. Identification of gene mutations associated with type 1 diabetes by next-generation sequencing in affected Palestinian families. Front Genet 2024; 14:1292073. [PMID: 38274107 PMCID: PMC10808782 DOI: 10.3389/fgene.2023.1292073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Diabetes Mellitus is a group of metabolic disorders characterized by hyperglycemia secondary to insulin resistance or deficiency. It is considered a major health problem worldwide. T1DM is a result of a combination of genetics, epigenetics, and environmental factors. Several genes have been associated with T1DM, including HLA, INS, CTLA4, and PTPN22. However, none of these findings have been based on linkage analysis because it is rare to find families with several diabetic individuals. Two Palestinian families with several afflicted members with variations in the mode of inheritance were identified and selected for this study. This study aimed to identify the putative causative gene(s) responsible for T1DM development in these families to improve our understanding of the molecular genetics of the disease. Methods: One afflicted member from each family was selected for Whole-Exome Sequencing. Data were mapped to the reference of the human genome, and the resulting VCF file data were filtered. The variants with the highest phenotype correlation score were checked by Sanger sequencing for all family members. The confirmed variants were analyzed in silico by bioinformatics tools. Results: In one family, the IGF1R p.V579F variant, which follows autosomal dominant inheritance, was confirmed and segregated in the family. In another family, the NEUROD1 p.P197H variant, which follows autosomal recessive inheritance, was positively confirmed and segregated. Conclusion: IGF1R p.V579F and NEUROD1 p.P197H variants were associated with T1DM development in the two inflicted families. Further analysis and functional assays will be performed, including the generation of mutant model cell systems, to unravel their specific molecular mechanism in the disease development.
Collapse
Affiliation(s)
- Abrar Bawatneh
- Molecular Genetics and Genetics Toxicology Program, Faculty of Graduate Studies, Arab American University, Jenin, Palestine
| | - Alaa Darwish
- Faculty of Health Professions, AlQuds University, Jerusalem, Palestine
| | | | - Hisham M. Darwish
- Molecular Genetics and Genetics Toxicology Program, Faculty of Graduate Studies, Arab American University, Jenin, Palestine
- Faculty of Allied Medical Sciences, Arab American University, Jenin, Palestine
| |
Collapse
|
8
|
Bender RHF, O’Donnell BT, Shergill B, Pham BQ, Tahmouresie S, Sanchez CN, Juat DJ, Hatch MMS, Shirure VS, Wortham M, Nguyen-Ngoc KV, Jun Y, Gaetani R, Christman KL, Teyton L, George SC, Sander M, Hughes CCW. A vascularized 3D model of the human pancreatic islet for ex vivostudy of immune cell-islet interaction. Biofabrication 2024; 16:025001. [PMID: 38128127 PMCID: PMC10782895 DOI: 10.1088/1758-5090/ad17d0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Insulin is an essential regulator of blood glucose homeostasis that is produced exclusively byβcells within the pancreatic islets of healthy individuals. In those affected by diabetes, immune inflammation, damage, and destruction of isletβcells leads to insulin deficiency and hyperglycemia. Current efforts to understand the mechanisms underlyingβcell damage in diabetes rely onin vitro-cultured cadaveric islets. However, isolation of these islets involves removal of crucial matrix and vasculature that supports islets in the intact pancreas. Unsurprisingly, these islets demonstrate reduced functionality over time in standard culture conditions, thereby limiting their value for understanding native islet biology. Leveraging a novel, vascularized micro-organ (VMO) approach, we have recapitulated elements of the native pancreas by incorporating isolated human islets within a three-dimensional matrix nourished by living, perfusable blood vessels. Importantly, these islets show long-term viability and maintain robust glucose-stimulated insulin responses. Furthermore, vessel-mediated delivery of immune cells to these tissues provides a model to assess islet-immune cell interactions and subsequent islet killing-key steps in type 1 diabetes pathogenesis. Together, these results establish the islet-VMO as a novel,ex vivoplatform for studying human islet biology in both health and disease.
Collapse
Affiliation(s)
- R Hugh F Bender
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Benjamen T O’Donnell
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Bhupinder Shergill
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Brittany Q Pham
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Sima Tahmouresie
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Celeste N Sanchez
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Damie J Juat
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Michaela M S Hatch
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
| | - Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Matthew Wortham
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, CA, United States of America
| | - Kim-Vy Nguyen-Ngoc
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, CA, United States of America
| | - Yesl Jun
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, CA, United States of America
| | - Roberto Gaetani
- Department of Bioengineering, University of California, San Diego, CA, United States of America
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Karen L Christman
- Department of Cellular & Molecular Medicine, University of California, San Diego, CA, United States of America
- Department of Bioengineering, University of California, San Diego, CA, United States of America
| | - Luc Teyton
- Department of Immunology & Microbiology, The Scripps Research Institute, San Diego, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, CA, United States of America
| | - Maike Sander
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California, San Diego, CA, United States of America
- Department of Cellular & Molecular Medicine, University of California, San Diego, CA, United States of America
| | - Christopher C W Hughes
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California, Irvine, CA, United States of America
| |
Collapse
|
9
|
Yang L, Zhang X, Liu Q, Wen Y, Wang Q. Update on the ZNT8 epitope and its role in the pathogenesis of type 1 diabetes. Minerva Endocrinol (Torino) 2023; 48:447-458. [PMID: 38099391 DOI: 10.23736/s2724-6507.22.03723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Type 1 diabetes (T1D) is an organ-specific chronic autoimmune disease mediated by autoreactive T cells. ZnT8 is a pancreatic islet-specific zinc transporter that is mainly located in β cells. It not only participates in the synthesis, storage and secretion of insulin but also maintains the structural integrity of insulin. ZnT8 is the main autoantigen recognized by autoreactive CD8+ T cells in children and adults with T1D. This article summarizes the latest research results on the T lymphocyte epitope and B lymphocyte epitope of ZnT8 in the current literature. The structure and expression of ZnT8, the role of ZnT8 in insulin synthesis and its role in autoimmunity are reviewed. ZnT8 is the primary autoantigen of T1D and is specifically expressed in pancreatic islets. Thus, it is one of biomarkers for the diagnosis of T1D. It has broad prospects for further research on immunomodulators for the treatment of T1D.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Wen
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China -
| |
Collapse
|
10
|
Kumar S, Gupta MK, Gupta SK, Katara P. Investigation of molecular interaction and conformational stability of disease concomitant to HLA-DRβ3. J Biomol Struct Dyn 2023; 41:8417-8431. [PMID: 36245311 DOI: 10.1080/07391102.2022.2134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
Human leucocyte antigen DRβ3 is associated with specific autoimmune thyroid disease and plays a vital role in the progression of Grave's disease. The available crystallographic structure of the HLA DRA, DRβ3*0101, was selected and used to generate mutation at position 57 from valine amino acid to Aspartic acid (D), Glutamic acid (E), Alanine (A), and Serine (S) amino acids by computational modeling approach. Mutant models were minimized, and stable conformation was chosen based on the lowest root mean square deviation value. Molecular docking assessed the best binding affinity of ligands C1, C2, C3, and C4 with wild-type and mutant HLA-DRβ3 models. Molecular dynamics simulation studies were executed to evaluate the stability of selected hits with wild-type and mutant dock complexes. The C3 has shown good binding affinity with wild-type and selected mutants; V57A, V57E, and V57D. Structural and molecular dynamics insights reveal the differences between wild-type and mutant-type HLA-DRβ3, which could help design novel antagonist molecules against autoimmune thyroid disorder.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Bioinformatics, University Institute of Engineering and Technology, Chhatrapati Shahu Ji Maharaj University Kanpur, Kanpur, Uttar Pradesh, India
| | - Manish Kumar Gupta
- Department of Biotechnology, Faculty of Science, Veer Bahadur Singh Purvanchal University Jaunpur, Jaunpur, Uttar Pradesh, India
| | - Sunil Kumar Gupta
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Pramod Katara
- Centre of Bioinformatics, IIDS, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
11
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
12
|
Li DC, Zhong YP, Quan ZR, Chen H, Gao SQ. Identification of the novel HLA-DRB3*02:02:19 allele. HLA 2021; 98:488-490. [PMID: 34390544 DOI: 10.1111/tan.14404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023]
Abstract
The HLA-DRB3*02:02:19 allele differs from DRB3*02:02:01:02 by a single nucleotide change in exon 2.
Collapse
Affiliation(s)
- Da-Cheng Li
- HLA-DRB3, Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Yan-Ping Zhong
- HLA-DRB3, Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Zhan-Rou Quan
- HLA-DRB3, Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Hao Chen
- HLA-DRB3, Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Su-Qing Gao
- HLA-DRB3, Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Franca R, Zudeh G, Lucafò M, Rabusin M, Decorti G, Stocco G. Genome wide association studies for treatment-related adverse effects of pediatric acute lymphoblastic leukemia. WIREs Mech Dis 2021; 13:e1509. [PMID: 33016644 DOI: 10.1002/wsbm.1509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/01/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric hematological malignancy; notwithstanding the success of ALL therapy, severe adverse drugs effects represent a serious issue in pediatric oncology, because they could be both an additional life threatening condition for ALL patients per se and a reason to therapy delay or discontinuation with important fallouts on final outcome. Cancer treatment-related toxicities have generated a significant need of finding predictive pharmacogenomic markers for the a priori identification of at risk patients. In the era of precision medicine, high throughput genomic screening such as genome wide association studies (GWAS) might provide useful markers to tailor therapy intensity on patients' genetic profile. Furthermore, these findings could be useful in basic research for better understanding the mechanistic and regulatory pathways of the biological functions associated with ALL treatment toxicities. The purpose of this review is to give an overview of high throughput genomic screening of the last 10 years that had investigated the landscape of ALL treatment-associated toxicities. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Zudeh
- University of Trieste, PhD Course in Reproductive and Developmental Sciences, Trieste, Italy
| | - Marianna Lucafò
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Marco Rabusin
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Giuliana Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health I.R.C.C.S Burlo Garofolo, Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
14
|
Alshiekh S, Maziarz M, Geraghty DE, Larsson HE, Agardh D. High-resolution genotyping indicates that children with type 1 diabetes and celiac disease share three HLA class II loci in DRB3, DRB4 and DRB5 genes. HLA 2020; 97:44-51. [PMID: 33043613 PMCID: PMC7756432 DOI: 10.1111/tan.14105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) and celiac disease (CD) share common genetic loci, mainly within the human leukocyte antigen (HLA) class II complex. Extended genotyping of HLA class II alleles and their potential risk for developing both diseases remains to be studied. The present study compared extended HLA-class II gene polymorphisms in children with T1D, CD, and a subgroup diagnosed with both diseases (T1D w/CD). Next-generation targeted sequencing (NGTS) of HLA-DRB3, DRB4, DRB5, DRB1, DQA1, DQB1, DPA1, and DPB1 alleles from DNA collected from 68 T1D, 219 CD, and seven T1D w/CD patients were compared with 636 HLA-genotyped Swedish children from the general population selected as controls. In comparison to controls, the DRB4*01:03:01 allele occurred more frequently in T1D w/CD (odds ratio (OR) = 7.84; 95% confidence interval (95% CI) = (2.24, 34.5), P = 0.0002) and T1D (OR = 3.86; 95% CI, (2.69, 5.55), P = 1.07 × 10-14 ), respectively. The DRB3*01:01:02 allele occurred more frequently in CD as compared to controls (OR = 7.87; 95% CI, (6.17, 10.03), P = 4.24 × 10-71 ), but less frequently in T1D (OR = 2.59; 95% CI, (1.76, 3.81), P = 7.29 × 10-07 ) and T1D w/CD (OR = 0.87; 95% CI, (0.09, 3.96), P ≤ 0.999). The frequency of the DRB4*01:03:01-DRB1*04:01:01-DQA1*03:01:01-DQB1*03:02:01 (DR4-DQ8) haplotype was higher in T1D w/CD (OR = 12.88; 95% CI (4.35, 38.14) P = 3.75 × 10-9 ), and moderately higher in T1D (OR = 2.13; 95% CI (1.18, 3.83) P = 0.01) compared with controls, but comparable in CD (OR = 1.45; 95% CI (0.94, 2.21), P = 0.08) and controls. Children with T1D and CD are associated with DRB4*01:03:01, DRB3*01:01:02, and DRB3*02:02:01 of which DRB4*01:03:01 confers the strongest risk allele for developing T1D w/CD.
Collapse
Affiliation(s)
- Shehab Alshiekh
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden.,Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marlena Maziarz
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Helena E Larsson
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| |
Collapse
|
15
|
Al‐Yafei Z, Goeury T, Alvares M, Al Seiari M, Sanchez‐Mazas A, Elghazali G. United Arab Emirates: Unusual departure from neutrality towards excess of homozygotes at the HLA‐B locus. HLA 2020; 95:470-473. [DOI: 10.1111/tan.13774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Zain Al‐Yafei
- Department of ImmunologyPLMS Abu Dhabi United Arab Emirates
| | - Thomas Goeury
- Department of Genetics and Evolution ‐ Anthropology Unit, AGP LaboratoryUniversity of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3) Geneva Switzerland
| | - Marion Alvares
- Department of ImmunologyPLMS Abu Dhabi United Arab Emirates
| | | | - Alicia Sanchez‐Mazas
- Department of Genetics and Evolution ‐ Anthropology Unit, AGP LaboratoryUniversity of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3) Geneva Switzerland
| | | |
Collapse
|
16
|
Genome-wide analyses disclose the distinctive HLA architecture and the pharmacogenetic landscape of the Somali population. Sci Rep 2020; 10:5652. [PMID: 32221414 PMCID: PMC7101338 DOI: 10.1038/s41598-020-62645-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
African populations are underrepresented in medical genomics studies. For the Somali population, there is virtually no information on genomic markers with significance to precision medicine. Here, we analyzed nearly 900,000 genomic markers in samples collected from 95 unrelated individuals in the North Eastern Somalia. ADMIXTURE program for estimation of individual ancestries revealed a homogenous Somali population. Principal component analysis with PLINK software showed approximately 60% East African and 40% West Eurasian genes in the Somali population, with a close relation to the Cushitic and Semitic speaking Ethiopian populations. We report the unique features of human leukocyte antigens (HLA) in the Somali population, which seem to differentiate from all other neighboring regions compared. Current study identified high prevalence of the diabetes type 1 (T1D) predisposing HLA DR-DQ haplotypes in Somalia. This finding may explain the increased T1D risk observed among Somali children. In addition, ethnic Somalis were found to host the highest frequencies observed thus far for several pharmacogenetic variants, including UGT1A4*2. In conclusion, we report that the Somali population displays genetic traits of significance to health and disease. The Somali dataset is publicly available and will add more information to the few genomic datasets available for African populations.
Collapse
|
17
|
Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc Natl Acad Sci U S A 2019; 116:16955-16960. [PMID: 31375628 DOI: 10.1073/pnas.1902623116] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, likely autoimmune disease of the central nervous system with a combination of genetic and environmental risk factors, among which Epstein-Barr virus (EBV) infection is a strong suspect. We have previously identified increased autoantibody levels toward the chloride-channel protein Anoctamin 2 (ANO2) in MS. Here, IgG antibody reactivity toward ANO2 and EBV nuclear antigen 1 (EBNA1) was measured using bead-based multiplex serology in plasma samples from 8,746 MS cases and 7,228 controls. We detected increased anti-ANO2 antibody levels in MS (P = 3.5 × 10-36) with 14.6% of cases and 7.8% of controls being ANO2 seropositive (odds ratio [OR] = 1.6; 95% confidence intervals [95%CI]: 1.5 to 1.8). The MS risk increase in ANO2-seropositive individuals was dramatic when also exposed to 3 known risk factors for MS: HLA-DRB1*15:01 carriage, absence of HLA-A*02:01, and high anti-EBNA1 antibody levels (OR = 24.9; 95%CI: 17.9 to 34.8). Reciprocal blocking experiments with ANO2 and EBNA1 peptides demonstrated antibody cross-reactivity, mapping to ANO2 [aa 140 to 149] and EBNA1 [aa 431 to 440]. HLA gene region was associated with anti-ANO2 antibody levels and HLA-DRB1*04:01 haplotype was negatively associated with ANO2 seropositivity (OR = 0.6; 95%CI: 0.5 to 0.7). Anti-ANO2 antibody levels were not increased in patients from 3 other inflammatory disease cohorts. The HLA influence and the fact that specific IgG production usually needs T cell help provides indirect evidence for a T cell ANO2 autoreactivity in MS. We propose a hypothesis where immune reactivity toward EBNA1 through molecular mimicry with ANO2 contributes to the etiopathogenesis of MS.
Collapse
|
18
|
Mack SJ, Udell J, Cohen F, Osoegawa K, Hawbecker SK, Noonan DA, Ladner MB, Goodridge D, Trachtenberg EA, Oksenberg JR, Erlich HA. High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis. Genes Immun 2019; 20:308-326. [PMID: 29307888 PMCID: PMC6035897 DOI: 10.1038/s41435-017-0006-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/31/2017] [Accepted: 08/11/2017] [Indexed: 11/24/2022]
Abstract
We investigated association between HLA class I and class II alleles and haplotypes, and KIR loci and their HLA class I ligands, with multiple sclerosis (MS) in 412 European American MS patients and 419 ethnically matched controls, using next-generation sequencing. The DRB1*15:01~DQB1*06:02 haplotype was highly predisposing (odds ratio (OR) = 3.98; 95% confidence interval (CI) = 3-5.31; p-value (p) = 2.22E-16), as was DRB1*03:01~DQB1*02:01 (OR = 1.63; CI = 1.19-2.24; p = 1.41E-03). Hardy-Weinberg (HW) analysis in MS patients revealed a significant DRB1*03:01~DQB1*02:01 homozyote excess (15 observed; 8.6 expected; p = 0.016). The OR for this genotype (5.27; CI = 1.47-28.52; p = 0.0036) suggests a recessive MS risk model. Controls displayed no HW deviations. The C*03:04~B*40:01 haplotype (OR = 0.27; CI = 0.14-0.51; p = 6.76E-06) was highly protective for MS, especially in haplotypes with A*02:01 (OR = 0.15; CI = 0.04-0.45; p = 6.51E-05). By itself, A*02:01 is moderately protective, (OR = 0.69; CI = 0.54-0.87; p = 1.46E-03), and haplotypes of A*02:01 with the HLA-B Thr80 Bw4 variant (Bw4T) more so (OR = 0.53; CI = 0.35-0.78; p = 7.55E-04). Protective associations with the Bw4 KIR ligand resulted from linkage disequilibrium (LD) with DRB1*15:01, but the Bw4T variant was protective (OR = 0.64; CI = 0.49-0.82; p = 3.37-04) independent of LD with DRB1*15:01. The Bw4I variant was not associated with MS. Overall, we find specific class I HLA polymorphisms to be protective for MS, independent of the strong predisposition conferred by DRB1*15:01.
Collapse
Affiliation(s)
- Steven J Mack
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA.
| | - Julia Udell
- University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Franziska Cohen
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Kazutoyo Osoegawa
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Sharon K Hawbecker
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - David A Noonan
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Martha B Ladner
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | | | - Jorge R Oksenberg
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Henry A Erlich
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| |
Collapse
|
19
|
Haider MZ, Rasoul MA, Al-Mahdi M, Al-Kandari H, Dhaunsi GS. Association of protein tyrosine phosphatase non-receptor type 22 gene functional variant C1858T, HLA-DQ/DR genotypes and autoantibodies with susceptibility to type-1 diabetes mellitus in Kuwaiti Arabs. PLoS One 2018; 13:e0198652. [PMID: 29924845 PMCID: PMC6010291 DOI: 10.1371/journal.pone.0198652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/11/2018] [Indexed: 12/18/2022] Open
Abstract
The incidence of type-1 Diabetes Mellitus (T1DM) has increased steadily in Kuwait during recent years and it is now considered amongst the high-incidence countries. An interaction between susceptibility genes, immune system mediators and environmental factors predispose susceptible individuals to T1DM. We have determined the prevalence of protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene functional variant (C1858T; R620W, rs2476601), HLA-DQ and DR alleles and three autoantibodies in Kuwaiti children with T1DM to evaluate their impact on genetic predisposition of the disease. This study included 253 Kuwaiti children with T1DM and 214 ethnically matched controls. The genotypes of PTPN22 gene functional variant C1858T (R620W; rs2476601) were detected by PCR-RFLP method and confirmed by DNA sequencing. HLA-DQ and DR alleles were determined by sequence-specific PCR. Three autoantibodies were detected in the T1DM patients using radio-immunoassays. A significant association was detected between the variant genotype of the PTPN22 gene (C1858T, rs2476601) and T1DM in Kuwaiti Arabs. HLA-DQ2 and DQ8 alleles showed a strong association with T1DM. In T1DM patients which carried the variant TT-genotype of the PTPN22 gene, 93% had at least one DQ2 allele and 60% carried either a DQ2 or a DQ8 allele. Amongst the DR alleles, the DR3-DRB5, DR3-3, DR3-4 and DR4-4 showed a strong association with T1DM. Majority of T1DM patients who carried homozygous variant (TT) genotype of the PTPN22 gene had either DR3-DRB5 or DRB3-DRB4 genotypes. In T1DM patients who co-inherited the high risk HLA DQ, DR alleles with the variant genotype of PTPN22 gene, the majority were positive for three autoantibodies. Our data demonstrate that the variant T-allele of the PTPN22 gene along with HLA-DQ2 and DQ8 alleles constitute significant determinants of genetic predisposition of T1DM in Kuwaiti children.
Collapse
Affiliation(s)
- Mohammad Z. Haider
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Majedah A. Rasoul
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | - Maria Al-Mahdi
- Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | | | - Gursev S. Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Medical Laboratories, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
20
|
Redondo MJ, Steck AK, Pugliese A. Genetics of type 1 diabetes. Pediatr Diabetes 2018; 19:346-353. [PMID: 29094512 PMCID: PMC5918237 DOI: 10.1111/pedi.12597] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/23/2022] Open
Abstract
Type 1 diabetes (T1D) results from immune-mediated loss of pancreatic beta cells leading to insulin deficiency. It is the most common form of diabetes in children, and its incidence is on the rise. This article reviews the current knowledge on the genetics of T1D. In particular, we discuss the influence of HLA and non-HLA genes on T1D risk and disease progression through the preclinical stages of the disease, and the development of genetic scores that can be applied to disease prediction. Racial/ethnic differences, challenges and future directions in the genetics of T1D are also discussed.
Collapse
Affiliation(s)
- Maria J. Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Andrea K. Steck
- University of Colorado School of Medicine, Barbara Davis Center for Childhood Diabetes, Aurora, CO, 80045
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology and Metabolism, Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
21
|
Abstract
Underlying type 1 diabetes is a genetic aetiology dominated by the influence of specific HLA haplotypes involving primarily the class II DR-DQ region. In genetically predisposed children with the DR4-DQ8 haplotype, exogenous factors, yet to be identified, are thought to trigger an autoimmune reaction against insulin, signalled by insulin autoantibodies as the first autoantibody to appear. In children with the DR3-DQ2 haplotype, the triggering reaction is primarily against GAD signalled by GAD autoantibodies (GADA) as the first-appearing autoantibody. The incidence rate of insulin autoantibodies as the first-appearing autoantibody peaks during the first years of life and declines thereafter. The incidence rate of GADA as the first-appearing autoantibody peaks later but does not decline. The first autoantibody may variably be followed, in an apparently non-HLA-associated pathogenesis, by a second, third or fourth autoantibody. Although not all persons with a single type of autoantibody progress to diabetes, the presence of multiple autoantibodies seems invariably to be followed by loss of functional beta cell mass and eventually by dysglycaemia and symptoms. Infiltration of mononuclear cells in and around the islets appears to be a late phenomenon appearing in the multiple-autoantibody-positive with dysglycaemia. As our understanding of the aetiology and pathogenesis of type 1 diabetes advances, the improved capability for early prediction should guide new strategies for the prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Simon E Regnell
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Jan Waldenströms gata 35, SE-20502, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Jan Waldenströms gata 35, SE-20502, Malmö, Sweden.
| |
Collapse
|
22
|
Yan FH, Wang M, Yao JF, Jiang EL, Han MZ. Impact of Human Leukocyte Antigen Loci and Haplotypes on Intestinal Acute Graft-versus-host Disease after Human Leukocyte Antigen-matched Sibling Peripheral Blood Stem Cell Transplantation. Chin Med J (Engl) 2017; 130:1290-1295. [PMID: 28524827 PMCID: PMC5455037 DOI: 10.4103/0366-6999.206356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Acute graft-versus-host disease (aGVHD) is a common and severe complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Some studies have found that the presence of certain specific human leukocyte antigen (HLA) loci could affect the occurrence of aGVHD. Meanwhile, the impact of HLA haplotypes on aGVHD has been rarely studied. This study aimed to investigate the effects of HLA loci and haplotypes on intestinal aGVHD. Methods: Totally, 345 consecutive patients undergoing first HLA-matched sibling peripheral blood stem cell transplantation (PBSCT) from February 2004 to June 2013 at Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, were enrolled in this study. HLA loci and haplotypes of recipients with frequency over 5% were searched and their effects on intestinal aGVHD were investigated. Other important factors including donor age, recipient age, donor-recipient sex combinations, and conditioning regimens were also evaluated using logistic regression. Pure upper gastrointestinal tract aGVHD without diarrhea was excluded because the histological proof was unavailable. The follow-up end-point was 6 months after HSCT. Results: The cumulative incidence of intestinal aGVHD was 19.4%, with 18.0% of the patients classified as classic aGVHD and 1.4% as persistent, recurrent, or late aGVHD. Multivariate analysis showed that HLA-A31 locus (odds ratio [OR] 2.893, 95% confidence interval [CI] [1.054, 7.935], P = 0.039), HLA B40-DR15 (OR 3.133, 95% CI [1.250, 7.857], P = 0.015), and HLA B46-DR9 haplotypes (OR 2.580, 95% CI [1.070, 6.220], P = 0.035), female donor for male recipient (OR 2.434, 95% CI [1.319, 4.493], P = 0.004) were risk factors for intestinal aGVHD. Conclusion: The presence of certain HLA loci and haplotypes may influence the occurrence of intestinal aGVHD in PBSCT with HLA-identical sibling donors.
Collapse
Affiliation(s)
- Fa-Hong Yan
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020; Department of Hematology, Weifang People's Hospital, Weifang, Shandong 261041, China
| | - Mei Wang
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jian-Feng Yao
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Er-Lie Jiang
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Ming-Zhe Han
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
23
|
Alshiekh S, Zhao LP, Lernmark Å, Geraghty DE, Naluai ÅT, Agardh D. Different DRB1*03:01-DQB1*02:01 haplotypes confer different risk for celiac disease. HLA 2017; 90:95-101. [PMID: 28585303 DOI: 10.1111/tan.13065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022]
Abstract
Celiac disease is associated with the HLA-DR3-DQA1*05:01-DQB1*02:01 and DR4-DQA1*03:01-DQB1*03:02 haplotypes. In addition, there are currently over 40 non-HLA loci associated with celiac disease. This study extends previous analyses on different HLA haplotypes in celiac disease using next generation targeted sequencing. Included were 143 patients with celiac disease and 135 non-celiac disease controls investigated at median 9.8 years (1.4-18.3 years). PCR-based amplification of HLA and sequencing with Illumina MiSeq technology were used for extended sequencing of the HLA class II haplotypes HLA-DRB1, DRB3, DRB4, DRB5, DQA1 and DQB1, respectively. Odds ratios were computed marginally for every allele and haplotype as the ratio of allelic frequency in patients and controls as ratio of exposure rates (RR), when comparing a null reference with equal exposure rates in cases and controls. Among the extended HLA haplotypes, the strongest risk haplotype for celiac disease was shown for DRB3*01:01:02 in linkage with DQA1*05:01-DQB1*02:01 (RR = 6.34; P-value < .0001). In a subpopulation analysis, DRB3*01:01:02-DQA1*05:01-DQB1*02:01 remained the most significant in patients with Scandinavian ethnicity (RR = 4.63; P < .0001) whereas DRB1*07:01:01-DRB4*01:03:01-DQA1*02:01-DQB1*02:02:01 presented the highest risk of celiac disease among non-Scandinavians (RR = 7.94; P = .011). The data also revealed 2 distinct celiac disease risk DR3-DQA1*05:01-DQB*02:01 haplotypes distinguished by either the DRB3*01:01:02 or DRB3*02:02:01 alleles, indicating that different DRB1*03:01-DQB1*02:01 haplotypes confer different risk for celiac disease. The associated risk of celiac disease for DR3-DRB3*01:01:02-DQA1*05:01-DQB1*02:01 is predominant among patients of Scandinavian ethnicity.
Collapse
Affiliation(s)
- S Alshiekh
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Malmö, Sweden.,Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - L P Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Waltham
| | - Å Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Malmö, Sweden
| | - D E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Waltham
| | - Å T Naluai
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - D Agardh
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
24
|
Abstract
Type 1 diabetes mellitus (T1DM), also known as autoimmune diabetes, is a chronic disease characterized by insulin deficiency due to pancreatic β-cell loss and leads to hyperglycaemia. Although the age of symptomatic onset is usually during childhood or adolescence, symptoms can sometimes develop much later. Although the aetiology of T1DM is not completely understood, the pathogenesis of the disease is thought to involve T cell-mediated destruction of β-cells. Islet-targeting autoantibodies that target insulin, 65 kDa glutamic acid decarboxylase, insulinoma-associated protein 2 and zinc transporter 8 - all of which are proteins associated with secretory granules in β-cells - are biomarkers of T1DM-associated autoimmunity that are found months to years before symptom onset, and can be used to identify and study individuals who are at risk of developing T1DM. The type of autoantibody that appears first depends on the environmental trigger and on genetic factors. The pathogenesis of T1DM can be divided into three stages depending on the absence or presence of hyperglycaemia and hyperglycaemia-associated symptoms (such as polyuria and thirst). A cure is not available, and patients depend on lifelong insulin injections; novel approaches to insulin treatment, such as insulin pumps, continuous glucose monitoring and hybrid closed-loop systems, are in development. Although intensive glycaemic control has reduced the incidence of microvascular and macrovascular complications, the majority of patients with T1DM are still developing these complications. Major research efforts are needed to achieve early diagnosis, prevent β-cell loss and develop better treatment options to improve the quality of life and prognosis of those affected.
Collapse
|
25
|
Sunni M, Noble JA, Yu L, Mahamed Z, Lane JA, Dhunkal AM, Bellin MD, Nathan B, Kyllo J, Abuzzahab MJ, Gottlieb PA, Babu S, Armstrong T, Moran A. Predominance of DR3 in Somali children with type 1 diabetes in the twin cities, Minnesota. Pediatr Diabetes 2017; 18:136-142. [PMID: 26854192 DOI: 10.1111/pedi.12369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Minnesota is home to the largest Somali population in USA, and pediatric diabetes teams are seeing increasing numbers of Somali children with diabetes. OBJECTIVE To assess the immune basis of diabetes in Somali children in the Twin Cities, Minnesota. METHODS A total of 31 Somali children ≤19 yr were treated for type 1 diabetes (T1D) at the University of Minnesota Masonic Children's Hospital and Children's Hospitals and Clinics of Minnesota underwent analysis of human leukocyte antigen (HLA) alleles (n = 30) and diabetes autoantibodies [glutamic acid decarboxylase (GAD65), islet antigen 2 (IA-2), zinc transporter 8 (ZnT8); n = 31]. HLA alleles were analyzed in 49 Somalis without diabetes (controls). Anti-transglutaminase autoantibodies (TGA) for celiac disease were also measured. RESULTS In Somali children with T1D aged 13.5 ± 5 yr (35% female, disease duration 6.5 ± 3.6 yr), the most common HLA allele was DRB1*03:01 (93%, compared with 45% of Somali controls), followed by DRB1*13:02 (27%). There was a relatively low frequency of DR4 (13%). Controls showed a similar pattern. All 31 participants were positive for at least one diabetes autoantibody. Insulin antibodies were positive in 84% (all were on insulin). Excluding insulin antibodies, 23 (74%) subjects tested positive for at least one other diabetes autoantibody; 32% had 1 autoantibody, 32% had 2 autoantibodies, and 10% had 3 autoantibodies. GAD65 autoantibodies were found in 56% of subjects, IA-2 in 29%, and ZnT8 in 26%. Four (13%) were TGA positive. CONCLUSION The autoantibody and HLA profiles of Somali children with diabetes are consistent with autoimmune diabetes. Their HLA profile is unique with an exceptionally high prevalence of DRB1*03:01 allele and relative paucity of DR4 alleles compared with African Americans with T1D.
Collapse
Affiliation(s)
- Muna Sunni
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Janelle A Noble
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Liping Yu
- The Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, USA
| | - Zahra Mahamed
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Julie A Lane
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Abdirahman M Dhunkal
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Melena D Bellin
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Brandon Nathan
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Jennifer Kyllo
- Pediatric Endocrinology and McNeely Diabetes Center, Children's Hospitals and Clinics of Minnesota, St. Paul, MN, USA
| | - M Jennifer Abuzzahab
- Pediatric Endocrinology and McNeely Diabetes Center, Children's Hospitals and Clinics of Minnesota, St. Paul, MN, USA
| | - Peter A Gottlieb
- The Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, USA
| | - Sunanda Babu
- The Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, USA
| | - Taylor Armstrong
- The Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, USA
| | - Antoinette Moran
- Department of Pediatric Endocrinology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| |
Collapse
|
26
|
Jia X, Yu H, Zhang H, Si Y, Tian D, Zhao X, Luan J, Jia H. Integrated analysis of different microarray studies to identify candidate genes in type 1 diabetes. J Diabetes 2017; 9:149-157. [PMID: 26930153 DOI: 10.1111/1753-0407.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D), an autoimmune disease, occurs most commonly in children. Identifying altered gene expression in peripheral blood mononuclear cells (PBMCs) of T1D may lead to new strategies for preserving or improving β-ell function in patients with T1D. METHODS The Gene Expression Omnibus database was searched for microarray studies in PBMCs of T1D. Subsequently, gene expression datasets from multiple microarray studies were integrated to obtain differentially expressed genes (DEGs) between T1D and normal controls (NC). Gene function analysis was performed to determine the functions of the DEGs identified. RESULTS Four microarray studies were available for analysis, including 199 T1D samples and 74 NC samples. Analysis revealed 695 genes that were significantly differentially expressed in PBMCs from T1D compared with NC samples, with 450 upregulated and 245 downregulated. Signal transduction (gene ontology [GO]: 0007165; false discovery rate [FDR] = 1.54 × 10-7 ) and protein binding (GO: 0005515; FDR = 2.93 × 10-24 ) were significantly enriched for the GO categories of biological processes and molecular functions, respectively. The most significant pathway in the Kyoto Encyclopedia of Genes and Genomes analysis was arachidonic acid metabolism (FDR = 1.44 × 10-3 ). Protein-protein interaction network analysis showed that the significant hub proteins contained immature colon carcinoma transcript 1 (ICT1; degree = 214; clustering coefficient [C] = 4.39 × 10-5 ), zinc finger and BTB domain containing 16 (ZBTB16; degree = 112; C = 8.04 × 10-4 ), and SERTA domain containing 1 (SERTAD1; degree = 38; C = 0.0014). CONCLUSIONS This integrated analysis will help develop improved therapies and interventions for T1D by identifying novel drug targets.
Collapse
Affiliation(s)
- Xiaowei Jia
- Department of Endocrinology, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Haotian Yu
- Department of Medicine, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Hui Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yanfang Si
- Department of Ophthalmology, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Dengmei Tian
- Department of Hematology, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xin Zhao
- Department of Endocrinology, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Jin Luan
- Department of Disease Control, Center for Disease Control and Prevention of the Chinese Armed Police Force (CAPF), Beijing, China
| | - Hetang Jia
- Department of Endocrinology, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
27
|
Zhang Y, Song Y, Cao H, Mo X, Yang H, Wang J, Lu Z, Zhang T. Typing and copy number determination for HLA-DRB3, -DRB4 and -DRB5 from next-generation sequencing data. HLA 2017; 89:150-157. [DOI: 10.1111/tan.12966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Zhang
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing China
- Shenzen Key Laboratory of Neurogenomics; BGI-Shenzhen; Shenzhen China
- China National GeneBank-Shenzhen; BGI-Shenzhen; Shenzhen China
| | - Y. Song
- Shenzen Key Laboratory of Neurogenomics; BGI-Shenzhen; Shenzhen China
- China National GeneBank-Shenzhen; BGI-Shenzhen; Shenzhen China
| | - H. Cao
- Shenzen Key Laboratory of Neurogenomics; BGI-Shenzhen; Shenzhen China
- China National GeneBank-Shenzhen; BGI-Shenzhen; Shenzhen China
| | - X. Mo
- Shenzen Key Laboratory of Neurogenomics; BGI-Shenzhen; Shenzhen China
- China National GeneBank-Shenzhen; BGI-Shenzhen; Shenzhen China
- BGI Education Center; University of Chinese Academy of Sciences; Shenzhen China
| | - H. Yang
- Shenzen Key Laboratory of Neurogenomics; BGI-Shenzhen; Shenzhen China
- James D. Watson Institute of Genome Sciences; Hangzhou China
| | - J. Wang
- Shenzen Key Laboratory of Neurogenomics; BGI-Shenzhen; Shenzhen China
- James D. Watson Institute of Genome Sciences; Hangzhou China
| | - Z. Lu
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; Nanjing China
| | - T. Zhang
- Shenzen Key Laboratory of Neurogenomics; BGI-Shenzhen; Shenzhen China
- China National GeneBank-Shenzhen; BGI-Shenzhen; Shenzhen China
| |
Collapse
|
28
|
Abstract
Type 1 diabetes is diagnosed at the end of a prodrome of β-cell autoimmunity. The disease is most likely triggered at an early age by autoantibodies primarily directed against insulin or glutamic acid decarboxylase, or both, but rarely against islet antigen-2. After the initial appearance of one of these autoantibody biomarkers, a second, third, or fourth autoantibody against either islet antigen-2 or the ZnT8 transporter might also appear. The larger the number of β-cell autoantibody types, the greater the risk of rapid progression to clinical onset of diabetes. This association does not necessarily mean that the β-cell autoantibodies are pathogenic, but rather that they represent reproducible biomarkers of the pathogenesis. The primary risk factor for β-cell autoimmunity is genetic, mainly occurring in individuals with either HLA-DR3-DQ2 or HLA-DR4-DQ8 haplotypes, or both, but a trigger from the environment is generally needed. The pathogenesis can be divided into three stages: 1, appearance of β-cell autoimmunity, normoglycaemia, and no symptoms; 2, β-cell autoimmunity, dysglycaemia, and no symptoms; and 3, β-cell autoimmunity, dysglycaemia, and symptoms of diabetes. The genetic association with each one of the three stages can differ. Type 1 diabetes could serve as a disease model for organ-specific autoimmune disorders such as coeliac disease, thyroiditis, and Addison's disease, which show similar early markers of a prolonged disease process before clinical diagnosis.
Collapse
Affiliation(s)
- Flemming Pociot
- Department of Pediatrics, Herlev and Gentofte Hospital, DK-2730 Herlev, Denmark
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University, Skåne University Hospital, SE-20502 Malmö, Sweden.
| |
Collapse
|
29
|
Zhou F, Cao H, Zuo X, Zhang T, Zhang X, Liu X, Xu R, Chen G, Zhang Y, Zheng X, Jin X, Gao J, Mei J, Sheng Y, Li Q, Liang B, Shen J, Shen C, Jiang H, Zhu C, Fan X, Xu F, Yue M, Yin X, Ye C, Zhang C, Liu X, Yu L, Wu J, Chen M, Zhuang X, Tang L, Shao H, Wu L, Li J, Xu Y, Zhang Y, Zhao S, Wang Y, Li G, Xu H, Zeng L, Wang J, Bai M, Chen Y, Chen W, Kang T, Wu Y, Xu X, Zhu Z, Cui Y, Wang Z, Yang C, Wang P, Xiang L, Chen X, Zhang A, Gao X, Zhang F, Xu J, Zheng M, Zheng J, Zhang J, Yu X, Li Y, Yang S, Yang H, Wang J, Liu J, Hammarström L, Sun L, Wang J, Zhang X. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. Nat Genet 2016; 48:740-6. [PMID: 27213287 DOI: 10.1038/ng.3576] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
The human major histocompatibility complex (MHC) region has been shown to be associated with numerous diseases. However, it remains a challenge to pinpoint the causal variants for these associations because of the extreme complexity of the region. We thus sequenced the entire 5-Mb MHC region in 20,635 individuals of Han Chinese ancestry (10,689 controls and 9,946 patients with psoriasis) and constructed a Han-MHC database that includes both variants and HLA gene typing results of high accuracy. We further identified multiple independent new susceptibility loci in HLA-C, HLA-B, HLA-DPB1 and BTNL2 and an intergenic variant, rs118179173, associated with psoriasis and confirmed the well-established risk allele HLA-C*06:02. We anticipate that our Han-MHC reference panel built by deep sequencing of a large number of samples will serve as a useful tool for investigating the role of the MHC region in a variety of diseases and thus advance understanding of the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Fusheng Zhou
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Hongzhi Cao
- BGI-Shenzhen, Shenzhen, China.,iCarbonX, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xianbo Zuo
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Xiaoguang Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Ricong Xu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, Ministry of Health, Guangzhou, China
| | - Gang Chen
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yuanwei Zhang
- BGI-Shenzhen, Shenzhen, China.,School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaodong Zheng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Jinping Gao
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Yujun Sheng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Bo Liang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Changbing Shen
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Caihong Zhu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xing Fan
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Fengping Xu
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Min Yue
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xianyong Yin
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Chen Ye
- BGI-Shenzhen, Shenzhen, China
| | - Cuicui Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liang Yu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Mengyun Chen
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Lili Tang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Longmao Wu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jian Li
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yu Xu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Suli Zhao
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yu Wang
- BGI-Shenzhen, Shenzhen, China
| | - Ge Li
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Lei Zeng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | | | | | | | | | - Yanyan Wu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | - Zhengwei Zhu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Zaixing Wang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Chunjun Yang
- Department of Dermatology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Peiguang Wang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Leihong Xiang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Anping Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China
| | - Furen Zhang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital and Collaborative Innovation Center of Complex and Severe Skin Disease, Fudan University, Shanghai, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zheng
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, Ministry of Health, Guangzhou, China
| | - Yingrui Li
- BGI-Shenzhen, Shenzhen, China.,iCarbonX, Shenzhen, China.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Sen Yang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jianjun Liu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lennart Hammarström
- BGI-Shenzhen, Shenzhen, China.,Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Liangdan Sun
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, China.,iCarbonX, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Princess Al-Jawhara Albrahim Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.,Department of Medicine, University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Xuejun Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China.,Department of Dermatology, China-Japan Friendship Hospital, Beijing, China.,Department of Dermatology, No. 2 Hospital, Anhui Medical University, Hefei, China.,Department of Dermatology, Huashan Hospital and Collaborative Innovation Center of Complex and Severe Skin Disease, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Zhao LP, Alshiekh S, Zhao M, Carlsson A, Larsson HE, Forsander G, Ivarsson SA, Ludvigsson J, Kockum I, Marcus C, Persson M, Samuelsson U, Örtqvist E, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Next-Generation Sequencing Reveals That HLA-DRB3, -DRB4, and -DRB5 May Be Associated With Islet Autoantibodies and Risk for Childhood Type 1 Diabetes. Diabetes 2016; 65:710-8. [PMID: 26740600 PMCID: PMC4764147 DOI: 10.2337/db15-1115] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/08/2015] [Indexed: 11/13/2022]
Abstract
The possible contribution of HLA-DRB3, -DRB4, and -DRB5 alleles to type 1 diabetes risk and to insulin autoantibody (IAA), GAD65 (GAD autoantibody [GADA]), IA-2 antigen (IA-2A), or ZnT8 against either of the three amino acid variants R, W, or Q at position 325 (ZnT8RA, ZnT8WA, and ZnT8QA, respectively) at clinical diagnosis is unclear. Next-generation sequencing (NGS) was used to determine all DRB alleles in consecutively diagnosed patients ages 1-18 years with islet autoantibody-positive type 1 diabetes (n = 970) and control subjects (n = 448). DRB3, DRB4, or DRB5 alleles were tested for an association with the risk of DRB1 for autoantibodies, type 1 diabetes, or both. The association between type 1 diabetes and DRB1*03:01:01 was affected by DRB3*01:01:02 and DRB3*02:02:01. These DRB3 alleles were associated positively with GADA but negatively with ZnT8WA, IA-2A, and IAA. The negative association between type 1 diabetes and DRB1*13:01:01 was affected by DRB3*01:01:02 to increase the risk and by DRB3*02:02:01 to maintain a negative association. DRB4*01:03:01 was strongly associated with type 1 diabetes (P = 10(-36)), yet its association was extensively affected by DRB1 alleles from protective (DRB1*04:03:01) to high (DRB1*04:01:01) risk, but its association with DRB1*04:05:01 decreased the risk. HLA-DRB3, -DRB4, and -DRB5 affect type 1 diabetes risk and islet autoantibodies. HLA typing with NGS should prove useful to select participants for prevention or intervention trials.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Shehab Alshiekh
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Michael Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Gun Forsander
- Department of Pediatrics, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sten A Ivarsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Johnny Ludvigsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Karolinska Institutet, Solna, Sweden
| | - Claude Marcus
- Department of Clinical Science, Karolinska Institutet, Huddinge, Sweden
| | - Martina Persson
- Department of Clinical Science, Karolinska Institutet, Huddinge, Sweden
| | - Ulf Samuelsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Eva Örtqvist
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Wyatt C Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | | |
Collapse
|
31
|
Yamada K, Hattori E, Iwayama Y, Toyota T, Iwata Y, Suzuki K, Kikuchi M, Hashimoto T, Kanahara N, Mori N, Yoshikawa T. Population-dependent contribution of the major histocompatibility complex region to schizophrenia susceptibility. Schizophr Res 2015; 168:444-9. [PMID: 26324334 DOI: 10.1016/j.schres.2015.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022]
Abstract
There is consistent data from European cohorts suggesting a genetic contribution from the major histocompatibility complex (MHC) to the pathogenesis of schizophrenia. However, the genomic complexity and ethnicity-specific diversity found in the MHC cause difficulties in identifying causal variants or genes, and there is a need for studies encompassing the entire MHC region in multiple ethnic populations. Here, we report on association signals in the MHC region, with schizophrenia in the Japanese population. We genotyped and imputed a total of 10,131 single nucleotide polymorphisms (SNPs), spanning the entire MHC interval. The analysis included 3302 participants (1518 schizophrenics and 1784 healthy controls) from the Japanese population. In this study, we present evidence for association at rs494620, located in the SLC44A4 gene. The association survived after correction for multiple testing (unadjusted P=7.78×10(-5), empirical P=0.0357). The imputation results detected the highest association at rs707937 in the MSH5-SAPCD1 gene (imputed P=8.40×10(-5)). In expression analysis using postmortem brains from schizophrenia and control samples, MSH5-SAPCD1 showed marginally significant expression differences in Brodmann's area 46 (P=0.044 by unpaired t test with Welch's correction, P=0.099 by Mann-Whitney U test). Our study further strengthens evidence for the involvement of the MHC in schizophrenia across populations, and provides insight into population-specific mechanisms for the MHC region in schizophrenia susceptibility.
Collapse
Affiliation(s)
- Kazuo Yamada
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Eiji Hattori
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yasuhide Iwata
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8641, Japan
| | - Tasuku Hashimoto
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan.
| |
Collapse
|
32
|
McDevitt SL, Hogan ME, Pappas DJ, Wong LY, Noble JA. DNA storage under high temperature conditions does not affect performance in human leukocyte antigen genotyping via next-generation sequencing (DNA integrity maintained in extreme conditions). Biopreserv Biobank 2015; 12:402-8. [PMID: 25496152 DOI: 10.1089/bio.2014.0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Stable dry-state storage of DNA is desirable to minimize required storage space and to reduce electrical and shipping costs. DNA purified from various commercially available dry-state stabilization matrices has been used successfully in downstream molecular applications (e.g., quantitative polymerase chain reaction [qPCR], microarray, and sequence-based genotyping). However, standard DNA storage conditions still include freezing of DNA eluted in aqueous buffers or nuclease-free water. Broad implementation of dry-state, long-term DNA storage requires enhancement of such dry-state DNA stabilization products to control for temperature fluctuations at specimen collection, transit, and storage. This study tested the integrity of genomic DNA subjected to long-term storage on GenTegra(™) DNA stabilization matrices (GenTegra LLC, Pleasanton, CA) at extreme conditions, as defined by a 4-year storage period at ambient temperature with an initial incubation for 7 months at 37°C, 56°C, or ambient temperature. Subsequently, purified DNA performance and integrity were measured by qPCR and next-generation sequencing (NGS)-based human leokocyte antigen (HLA) genotyping. RESULTS High molecular weight genomic DNA samples were recovered from the GenTegra product matrix and exhibited integrity comparable to a highly characterized commercial standard under assessment by qPCR. Samples were genotyped for classical HLA loci using next generation sequencing-based methodolgy on the Roche 454 GS Junior instrument. Amplification efficiency, sequence coverage, and sequence quality were all comparable with those produced from a cell line DNA sequenced as a control. No significant differences were observed in the mean, median, or mode quality scores between samples and controls (p≥0.4). CONCLUSIONS Next generation HLA genotyping was chosen to test the integrity of GenTegra-treated genomic DNA due to the requirment for long sequence reads to genotype the highly polymorphic classical HLA genes. Experimental results demonstrate the efficacy of the GenTegra product as a suitable genomic DNA preservation tool for collection and long-term biobanking of DNA at fluctuating and high temperatures.
Collapse
Affiliation(s)
- Shana L McDevitt
- 1 Children's Hospital Oakland Research Institute , Oakland, California
| | | | | | | | | |
Collapse
|
33
|
Pappas D, Hollenbach J, Coleman AL, Gorin MB, Yu F, Williams K, Noble J, Tranah GJ. HLA class II genotypes are not associated with age related macular degeneration in a case-control, population-based study. Hum Immunol 2015; 76:142-5. [PMID: 25665771 PMCID: PMC4476503 DOI: 10.1016/j.humimm.2015.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 11/21/2022]
Abstract
Multiple lines of evidence support an immunologic basis and genetic disposition for the development of age-related macular degeneration (AMD). Comprehensive human leukocyte antigens (HLA) class II typing at four loci (DRB1, DQA1, DQB1, and DPB1) was assessed using next generation sequencing methods and tested for association with age-related macular degeneration (AMD) in a case-control study of 456 AMD cases and 499 controls from the population-based Study of Osteoporotic Fractures (SOF) cohort. No statistically significant associations were identified for any of the class II loci and a previously identified association between DRB1*13:01 was not replicated in this dataset. These results reported here suggest that common HLA class II genetic variation does not contribute to AMD disease risk.
Collapse
Affiliation(s)
- Derek Pappas
- Children's Hospital of Oakland Research Institute, Oakland, CA 94609, USA
| | - Jill Hollenbach
- Children's Hospital of Oakland Research Institute, Oakland, CA 94609, USA
| | - Anne L Coleman
- Jules Stein Eye Institute and the UCLA Department of Ophthalmology, Los Angeles, CA 90095, USA
| | - Michael B Gorin
- Jules Stein Eye Institute and the UCLA Department of Ophthalmology, Los Angeles, CA 90095, USA
| | - Fe Yu
- Jules Stein Eye Institute and the UCLA Department of Ophthalmology, Los Angeles, CA 90095, USA
| | | | - Janelle Noble
- Children's Hospital of Oakland Research Institute, Oakland, CA 94609, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA.
| |
Collapse
|
34
|
Precechtelova J, Borsanyiova M, Sarmirova S, Bopegamage S. Type I diabetes mellitus: genetic factors and presumptive enteroviral etiology or protection. J Pathog 2014; 2014:738512. [PMID: 25574400 PMCID: PMC4276674 DOI: 10.1155/2014/738512] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/14/2014] [Accepted: 11/09/2014] [Indexed: 02/06/2023] Open
Abstract
We review type 1 diabetes and host genetic components, as well as epigenetics and viruses associated with type 1 diabetes, with added emphasis on the enteroviruses, which are often associated with triggering the disease. Genus Enterovirus is classified into twelve species of which seven (Enterovirus A, Enterovirus B, Enterovirus C, and Enterovirus D and Rhinovirus A, Rhinovirus B, and Rhinovirus C) are human pathogens. These viruses are transmitted mainly by the fecal-oral route; they may also spread via the nasopharyngeal route. Enterovirus infections are highly prevalent, but these infections are usually subclinical or cause a mild flu-like illness. However, infections caused by enteroviruses can sometimes be serious, with manifestations of meningoencephalitis, paralysis, myocarditis, and in neonates a fulminant sepsis-like syndrome. These viruses are often implicated in chronic (inflammatory) diseases as chronic myocarditis, chronic pancreatitis, and type 1 diabetes. In this review we discuss the currently suggested mechanisms involved in the viral induction of type 1 diabetes. We recapitulate current basic knowledge and definitions.
Collapse
Affiliation(s)
- Jana Precechtelova
- Enterovirus Laboratory, Faculty of Medicine, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovakia
| | - Maria Borsanyiova
- Enterovirus Laboratory, Faculty of Medicine, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovakia
| | - Sona Sarmirova
- Enterovirus Laboratory, Faculty of Medicine, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovakia
| | - Shubhada Bopegamage
- Enterovirus Laboratory, Faculty of Medicine, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovakia
| |
Collapse
|
35
|
Gabriel C, Fürst D, Faé I, Wenda S, Zollikofer C, Mytilineos J, Fischer GF. HLA typing by next-generation sequencing - getting closer to reality. ACTA ACUST UNITED AC 2014; 83:65-75. [PMID: 24447174 DOI: 10.1111/tan.12298] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Next generation sequencing (NGS) denotes novel sequencing technologies that enable the generation of a large number of clonal sequences in a single sequencing run. NGS was initially introduced for whole genome sequencing and for quantitation of viral variants or genetic mutations in tumor tissues; more recently, the potential for high resolution HLA typing and high throughput analyses has been explored. It became clear that the complexity of the HLA system implicates new challenges, especially for bioinformatics. From an economical point of view, NGS is becoming increasingly attractive for HLA typing laboratories currently relying on Sanger based sequencing. Realizing the full potential of NGS will require the development of specifically adapted typing strategies and software algorithms. In the present review, three laboratories that were among the first to perform HLA-typing using different NGS platforms, the Roche 454, the Illumina Miseq and the Ion Torrent system, respectively, give an overview of these applications and point out advantages and limitations.
Collapse
Affiliation(s)
- C Gabriel
- Red Cross Transfusion Service of Upper Austria, Linz, Austria
| | | | | | | | | | | | | |
Collapse
|
36
|
Lima-Martínez MM, Guerra-Alcalá E, Contreras M, Nastasi J, Noble JA, Polychronakos C. One year remission of type 1 diabetes mellitus in a patient treated with sitagliptin. Endocrinol Diabetes Metab Case Rep 2014; 2014:140072. [PMID: 25332771 PMCID: PMC4190822 DOI: 10.1530/edm-14-0072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic disease characterized by the autoimmune destruction of pancreatic β-cells. This paper describes the case of a 19-year-old male patient who presented with glutamic acid decarboxylase (GAD) antibody positive and diabetic ketoacidosis, which mandated intensive insulin treatment. Once the ketoacidosis was controlled, an oral dose of 100 mg of sitagliptin was administered once a day. Ketoacidosis was managed by insulin and insulin daily requirement began to dwindle after one month, until its complete withdrawal at 8 weeks, when partial remission was reached. The patient has now remained on sitagliptin treatment alone for a year, without requiring insulin. The benefit observed with this medication is possibly associated with its immunological effects. Inhibition of dipeptidyl peptidase 4 in animal models deregulates the Th1 immune response, increases secretion of Th2 cytokines, activates CD4+CD25+FoxP3+ regulatory T-cells, and prevents IL17 production.
Collapse
Affiliation(s)
- Marcos M Lima-Martínez
- Departamento de Ciencias Fisiológicas , Universidad de Oriente , Ciudad Bolívar , Venezuela ; Unidad de Endocrinología, Diabetes, Metabolismo y Nutrición , Anexo A. Centro Médico Orinoco , Avenida Siegart, Ciudad Bolívar, 8001 Venezuela
| | | | | | - José Nastasi
- Servicio de Genética Médica , Universidad de Oriente , Ciudad Bolívar , Venezuela
| | - Janelle A Noble
- Children's Hospital Oakland Research Institute , Oakland, California , USA
| | - Constantin Polychronakos
- Departments of Paediatrics and Human Genetics , McGill University Health Centre , Montreal, Quebec , Canada
| |
Collapse
|
37
|
Abstract
Asparaginase is a therapeutic enzyme used to treat leukemia and lymphoma, with immune responses resulting in suboptimal drug exposure and a greater risk of relapse. To elucidate whether there is a genetic component to the mechanism of asparaginase-induced immune responses, we imputed human leukocyte antigen (HLA) alleles in patients of European ancestry enrolled on leukemia trials at St. Jude Children's Research Hospital (n = 541) and the Children's Oncology Group (n = 1329). We identified a higher incidence of hypersensitivity and anti-asparaginase antibodies in patients with HLA-DRB1*07:01 alleles (P = 7.5 × 10(-5), odds ratio [OR] = 1.64; P = 1.4 × 10(-5), OR = 2.92, respectively). Structural analysis revealed that high-risk amino acids were located within the binding pocket of the HLA protein, possibly affecting the interaction between asparaginase epitopes and the HLA-DRB1 protein. Using a sequence-based consensus approach, we predicted the binding affinity of HLA-DRB1 alleles for asparaginase epitopes, and patients whose HLA genetics predicted high-affinity binding had more allergy (P = 3.3 × 10(-4), OR = 1.38). Our results suggest a mechanism of allergy whereby HLA-DRB1 alleles that confer high-affinity binding to asparaginase epitopes lead to a higher frequency of reactions. These trials were registered at www.clinicaltrials.gov as NCT00137111, NCT00549848, NCT00005603, and NCT00075725.
Collapse
|
38
|
Dudley DM, Karl JA, Creager HM, Bohn PS, Wiseman RW, O'Connor DH. Full-length novel MHC class I allele discovery by next-generation sequencing: two platforms are better than one. Immunogenetics 2014; 66:15-24. [PMID: 24241691 PMCID: PMC3910708 DOI: 10.1007/s00251-013-0744-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
Deep sequencing has revolutionized major histocompatibility complex (MHC) class I analysis of nonhuman primates by enabling high-throughput, economical, and comprehensive genotyping. Full-length MHC class I cDNA sequences, which are required to generate reagents such as MHC-peptide tetramers, cannot be directly obtained by short read deep sequencing. We combined data from two next-generation sequencing platforms to discover novel full-length MHC class I mRNA/cDNA transcripts in Chinese rhesus macaques. We first genotyped macaques by Roche/454 pyrosequencing using a 530-bp amplicon spanning the densely polymorphic exons 2 through 4 of the MHC class I loci that encode the peptide-binding region. We then mapped short paired-end 250 bp Illumina sequence reads spanning the full-length transcript to each 530-bp amplicon at high stringency and used paired-end information to reconstruct full-length allele sequences. We characterized 65 full-length sequences from six Chinese rhesus macaques. Overall, approximately 70 % of the alleles distinguished in these six animals contained new sequence information, including 29 novel transcripts. The flexibility of this approach should make full-length MHC class I allele genotyping accessible for any nonhuman primate population of interest. We are currently optimizing this method for full-length characterization of other highly polymorphic, duplicated loci such as the MHC class II DRB and killer immunoglobulin-like receptors. We anticipate that this method will facilitate rapid expansion and near completion of sequence libraries of polymorphic loci, such as MHC class I, within a few years.
Collapse
Affiliation(s)
- Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Hannah M. Creager
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Patrick S. Bohn
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715
| |
Collapse
|
39
|
Vehik K, Ajami NJ, Hadley D, Petrosino JF, Burkhardt BR. The changing landscape of type 1 diabetes: recent developments and future frontiers. Curr Diab Rep 2013; 13:642-50. [PMID: 23912764 PMCID: PMC3827778 DOI: 10.1007/s11892-013-0406-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) research has made great strides over the past decade with advances in understanding the pathogenesis, natural history, candidate environmental exposures, exposure triggering time, disease prediction, and diagnosis. Major monitoring efforts have provided baseline historical measures, leading to better epidemiological studies incorporating longitudinal biosamples (ie, biobanks), which have allowed for new technologies ('omics') to further expose the etiological agents responsible for the initiation, progression, and eventual clinical onset of T1D. These new frontiers have brought forth high-dimensionality data, which have furthered the evidence of the heterogeneous nature of T1D pathogenesis and allowed for a more mechanistic approach in understanding the etiology of T1D. This review will expand on the most recent advances in the quest for T1D determinants, drawing upon novel research tools that epidemiology, genetics, microbiology, and immunology have provided, linking them to the major hypotheses associated with T1D etiology, and discussing the future frontiers.
Collapse
Affiliation(s)
- Kendra Vehik
- Pediatrics Epidemiology Center, Morsani College of Medicine, University of South Florida, 3650 Spectrum Blvd, Ste 100, Tampa, FL, 33612, USA,
| | | | | | | | | |
Collapse
|
40
|
Chung RH, Shih CC. SeqSIMLA: a sequence and phenotype simulation tool for complex disease studies. BMC Bioinformatics 2013; 14:199. [PMID: 23782512 PMCID: PMC3693898 DOI: 10.1186/1471-2105-14-199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/14/2013] [Indexed: 11/22/2022] Open
Abstract
Background Association studies based on next-generation sequencing (NGS) technology have become popular, and statistical association tests for NGS data have been developed rapidly. A flexible tool for simulating sequence data in either unrelated case–control or family samples with different disease and quantitative trait models would be useful for evaluating the statistical power for planning a study design and for comparing power among statistical methods based on NGS data. Results We developed a simulation tool, SeqSIMLA, which can simulate sequence data with user-specified disease and quantitative trait models. We implemented two disease models, in which the user can flexibly specify the number of disease loci, effect sizes or population attributable risk, disease prevalence, and risk or protective loci. We also implemented a quantitative trait model, in which the user can specify the number of quantitative trait loci (QTL), proportions of variance explained by the QTL, and genetic models. We compiled recombination rates from the HapMap project so that genomic structures similar to the real data can be simulated. Conclusions SeqSIMLA can efficiently simulate sequence data with disease or quantitative trait models specified by the user. SeqSIMLA will be very useful for evaluating statistical properties for new study designs and new statistical methods using NGS. SeqSIMLA can be downloaded for free at http://seqsimla.sourceforge.net.
Collapse
Affiliation(s)
- Ren-Hua Chung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan.
| | | |
Collapse
|