1
|
Zhu Y, Guo Y, Guo P, Zhang J, He Y, Xia Y, Wei Z, Dai Y. Estrogen receptor β activation alleviates inflammatory bowel disease by suppressing NLRP3-dependent IL-1β production in macrophages via downregulation of intracellular calcium level. J Adv Res 2025; 71:571-584. [PMID: 38844124 DOI: 10.1016/j.jare.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Although several estrogen receptor β (ERβ) agonists have been reported to alleviate IBD, the pivotal mechanism remains obscure. OBJECTIVES To examine the effects and mechanisms of ERβ activation on cytokine/chemokine networks in colitis mice. METHODS Dextran sulfate sodium salt (DSS) and trinitro-benzene-sulfonic acid (TNBS) were used to induce mouse colitis model. Multiple molecular biological methods were employed to evaluate the severity of mouse colitis and the level of cytokine and/or chemokine. RESULTS Bioinformatics analysis, ELISA and immunofluorescence results showed that the targeted cytokines and/or chemokines associated with ERβ expression and activation is IL-1β, and the anti-colitis effect of ERβ activation was significantly attenuated by the overexpression of AAV9-IL-1β. Immunofluorescence analysis indicated that ERβ activation led to most evident downregulation of IL-1β expression in colonic macrophages as compared to monocytes and neutrophils. Given the pivotal roles of NLRP3, NLRC4, and AIM2 inflammasome activation in the production of IL-1β, we examined the influence of ERβ activation on inflammasome activity. ELISA and WB results showed that ERβ activation selectively blocked the NLRP3 inflammasome assembly-mediated IL-1β secretion. The calcium-sensing receptor (CaSR) and calcium signaling play crucial roles in the assembly of the NLRP3 inflammasome. WB and immunofluorescence results showed that ERβ activation reduced intracellular CaSR expression and calcium signaling in colonic macrophages. Combination with CaSR overexpression plasmid reversed the suppressive effect of ERβ activation on NLRP3 inflammasome assembly, and counteracting the downregulation of IL-1β secretion. CONCLUSION Our research uncovers that the anti-colitis effect of ERβ activation is accomplished through the reduction of IL-1β levels in colonic tissue, achieved by specifically decreasing CaSR expression in macrophages to lower intracellular calcium levels and inhibit NLRP3 inflammasome assembly-mediated IL-1β production.
Collapse
Affiliation(s)
- Yanrong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yilei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Pengxiang Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yue He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China.
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China.
| |
Collapse
|
2
|
Cuesta‐Gomez N, Castro C, Rosko M, Seeberger K, Korbutt GS. Sex Differences in Maturation and Function of Neonatal Porcine Islets Upon Transplantation in Mice. Xenotransplantation 2025; 32:e70039. [PMID: 40243327 PMCID: PMC12005065 DOI: 10.1111/xen.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Neonatal porcine islets (NPIs) can mature into a mixed population of endocrine cells that can restore glucose control in mice, pigs, and non-human primates, representing a potential alternative islet source for clinical beta cell replacement therapy. However, it remains unclear how conditions in the recipient influence the maturation and function of these cells. Here, we investigated the impact of host sex on NPIs implanted under the kidney capsule of male and female B6.129S7-Rag1tm1Mom (B6/Rag-/-) mice. METHODS Diabetic mice were transplanted with 3000 NPIs under the kidney capsule. All mice were monitored for reversal of hyperglycemia and glucose clearance at 8- and 20-weeks post-transplant. Grafts were assessed for cell composition and insulin content. RESULTS Female mice demonstrated improved glucose clearance at 8- and 20-weeks post-transplant compared to their male counterparts. Improved glucose clearance correlated with accelerated diabetes reversal in females (8 weeks vs. 12 weeks in males) and increased rates of euglycemic achievement (17/18 in females vs. 14/19 in males). However, grafts collected from male mice exhibited an increased percentage of insulin-positive cells as well as increased insulin content. CONCLUSION The sex of the host influences the outcomes of NPI transplantation, showcasing the relevance of understanding the role of sex as a biological variable in islet transplantation.
Collapse
Affiliation(s)
- Nerea Cuesta‐Gomez
- Department of SurgeryUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Chelsea Castro
- Department of SurgeryUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Mandy Rosko
- Department of SurgeryUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Karen Seeberger
- Department of SurgeryUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Gregory S. Korbutt
- Department of SurgeryUniversity of AlbertaEdmontonAlbertaCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
3
|
Ruiz-Pino A, Goncalves-Ramírez A, Jiménez-Palomares M, Merino B, Castellano-Muñoz M, Vettorazzi JF, Rafacho A, Marroquí L, Nadal Á, Alonso-Magdalena P, Perdomo G, Cózar-Castellano I, Quesada I. Hyperglucagonemia and glucagon hypersecretion in early type 2 diabetes result from multifaceted dysregulation of pancreatic mouse α-cells. Pflugers Arch 2025; 477:207-221. [PMID: 39601887 DOI: 10.1007/s00424-024-03045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Hyperglucagonemia has been implicated in the pathogenesis of type 2 diabetes (T2D). In contrast to β-cells, studies on the function of the pancreatic α-cell in T2D are scarce. Consequently, the processes underlying hyperglucagonemia and α-cell dysfunction are largely unknown, limiting the appropriate design of specific pharmacological and therapeutic strategies. In the current study, we aimed to analyze the alterations of the pancreatic α-cell and its glucagon responses in diabetic db/db mice at early stages of the disease. In this context of glucose intolerance, hyperinsulinemia, and β-cell dysfunction, hyperglucagonemia was only present at fed conditions and was associated with insulin resistance. Yet, we found that the glucagon-to-insulin ratio in db/db mice did not change with fed or fasted states, further supporting that the metabolic regulation of glucagon release was impaired. Pancreatic β-cell dysfunction in db/db mice was manifested by increased basal secretion from isolated islets along with reduced insulin content. In contrast, α-cells from diabetic animals presented upregulated secretion and islet content of glucagon compared with controls. Electrophysiological analysis of dispersed α-cells revealed that altered secretion was not the result of impaired exocytosis. Instead, we found defective regulation of Ca2+ signaling by glucose. Besides these functional alterations, we also observed augmented α-cell mass in diabetic mice, which was accompanied by disrupted islet cytoarchitecture as well as increased α-cell size and number, without pieces of evidence of upregulated proliferation. Overall, these findings indicate that hyperglucagonemia in early T2D results from multifaceted α-cell deregulation in mice.
Collapse
Affiliation(s)
- Antonia Ruiz-Pino
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández de Elche, San Juan de Alicante, Alicante, Spain
| | - Arianna Goncalves-Ramírez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) y, Universidad de Valladolid (UVa), Valladolid, Spain
| | - Margarita Jiménez-Palomares
- Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11003, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cadiz (INIBICA), 11009, Cádiz, Spain
| | - Beatriz Merino
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) y, Universidad de Valladolid (UVa), Valladolid, Spain
| | - Manuel Castellano-Muñoz
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain
| | - Jean F Vettorazzi
- Latin American Institute of Life and Nature Sciences (ILACVN), Federal University of Latin American Integration (UNILA), Foz Do Iguaçú, Paraná, Brazil
| | - Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángel Nadal
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) y, Universidad de Valladolid (UVa), Valladolid, Spain
| | - Irene Cózar-Castellano
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) y, Universidad de Valladolid (UVa), Valladolid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Fang L, Kong F, Ou K, Hong L, Wang C, Tong X. Induction of insulin resistance in female mice due to prolonged phenanthrene exposure: Unveiling the low-dose effect and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 260:119597. [PMID: 39002631 DOI: 10.1016/j.envres.2024.119597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Phenanthrene (Phe) is a commonly occurring polycyclic aromatic hydrocarbon (PAH) found in various food sources and drinking water. Previous studies have shown that long-term exposure to Phe in male mice leads to insulin resistance in a dose-dependent manner. However, the effect of Phe on glucose homeostasis in female mice remains unknown. To address this knowledge gap, female Kunming mice were exposed to Phe through their drinking water at concentrations of 0.05, 0.5, and 5 ng/mL. After 270 d of exposure, we surprisingly discovered a low-dose effect of Phe on insulin resistance in female mice, which differed from the effect observed in male mice and showed sexual dimorphism. Specifically, insulin resistance was only observed in the 0.05 ng/mL treatment, and this low-dose effect was also reflected in the concentration of Phe in white adipose tissue (WAT). Differences in metabolic enzyme activities in the liver may potentially explain this effect. The observed sexual dimorphism in Phe exposure could be attributed to variations in estrogen (E2) level and estrogen receptor beta (ERβ) expression in WAT. These findings highlight the association between environmental factors and the development of insulin resistance, emphasizing the pathogenic effect of even low doses of Phe. Moreover, sex dependent-effect should be given more attention when studying the toxic effects of environmental pollutants.
Collapse
Affiliation(s)
- Lu Fang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Luning Hong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
5
|
Shan Q, Liu J, Qu F, Chen A, He W. Polychlorinated biphenyls exposure and type 2 diabetes: Molecular mechanism that causes insulin resistance and islet damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2466-2476. [PMID: 38305644 DOI: 10.1002/tox.24094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants that have been associated with type 2 diabetes (T2DM) in cohort studies. This review aims to comprehensively assess the molecular mechanisms of PCBs-induced T2DM. Recent progress has been made in the research of PCBs in liver tissue, adipose tissue, and other tissues. By influencing the function of nuclear receptors, such as the aryl hydrocarbon receptor (AhR), pregnancy X receptor (PXR), and peroxisome proliferator activated receptor γ (PPARγ), as well as the inflammatory response, PCBs disrupt the balance of hepatic glucose and lipid metabolism. This is associated with insulin resistance (IR) in the target organ of insulin. Through androgen receptor (AR), estrogen receptor α/β (ERα/β), and pancreato-duodenal-homeobox gene-1 (PDX-1), PCBs affect the secretion of insulin and increase blood glucose. Thus, this review is a discussion on the relationship between PCBs exposure and the pathogenesis of T2DM. It is hoped to provide basic concepts for diabetes research and disease treatment.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jingyu Liu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Wenxing He
- College of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
6
|
Lin P, Zhang X, Zhu B, Gao J, Yin D, Zeng J, Kang Z. Naringenin protects pancreatic β cells in diabetic rat through activation of estrogen receptor β. Eur J Pharmacol 2023; 960:176115. [PMID: 37866740 DOI: 10.1016/j.ejphar.2023.176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Naringenin is a citrus flavonoid that potently improves metabolic parameters in animal models of metabolic disorders, such as type 2 diabetes. Estrogen receptor (ER) activation promotes β cell function and survival, thereby improving systemic glucose metabolism. In this study, we used a luciferase reporter assay, isolated rat islets and a diabetic rat model to investigate the effects of naringenin on ER signaling and the underlying mechanism of naringenin-mediated improvement of islet function in diabetes. Naringenin specifically activated ERβ without affecting the activity of ERα, G protein-coupled estrogen receptor (GPER) or estrogen-related receptor (ERR) α/β/γ. Additionally, treatment with naringenin enhanced glucose-stimulated insulin secretion in isolated rat islets. This effect was abrogated by PHTPP, an ERβ antagonist. Transcriptomic analysis revealed that naringenin upregulated the expression of genes, such as Pdx1 and Mafa, which are closely linked to improved β-cell function. In consistence, single administration of naringenin to normal rats elevated plasma insulin levels and improved glucose responses. These beneficial effects were blocked by PHTPP. In streptozocin-nicotinamide induced diabetic rats, treatment for 2 weeks with naringenin alone, but not in combination with PHTPP, significantly restored pancreatic β cell mass and improved glucose metabolism. Collectively, these data support that naringenin specifically activate ERβ to improve insulin secretion in the primary rat islets. Furthermore, naringenin administration also protected β cell function and reversed glucose dysregulation in diabetic rats. These beneficial effects are at least partially dependent on the ERβ pathway.
Collapse
Affiliation(s)
- Peibin Lin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaojing Zhang
- Department of Pharmacy, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Baoyi Zhu
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jianwen Zeng
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China.
| | - Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China.
| |
Collapse
|
7
|
Ou K, Song J, Zhang S, Fang L, Lin L, Lan M, Chen M, Wang C. Prenatal exposure to a mixture of PAHs causes the dysfunction of islet cells in adult male mice: Association with type 1 diabetes mellitus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113695. [PMID: 35623150 DOI: 10.1016/j.ecoenv.2022.113695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been detected throughout the human body. Whether exposure to PAHs is associated with the incidence of type 1 diabetes mellitus should be investigated. To this end, pregnant mice were exposed to mixed PAHs (5, 50, or 500 μg/kg) once every other day during gestation. The adult male offspring displayed impaired glucose tolerance and reduced serum levels of glucagon and insulin. Immunohistochemical staining revealed increased numbers of apoptotic β-cells and a reduced β-cell mass in these males. The downregulated expression of pancreatic estrogen receptor α, androgen receptor, and transcription factor PDX1 was responsible for impacting β-cell development. The relatively reduced α-cell area was associated with downregulated ARX expression. The transcription of Isn2 and Gcg in pancreatic tissue was downregulated, which indicated that the function of β-cells and α-cells was impaired. Methylation levels in the Isn2 promotor were significantly elevated in mice prenatally exposed to 500 µg/kg PAHs, which was consistent with the change in its mRNA levels. The number of macrophages infiltrating islets was significantly increased, indicating that prenatal PAH exposure might reduce islet cell numbers in an autoimmune manner. This study shows that prenatal exposure to PAHs may promote the pathogenesis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jialin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Siqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Lesi Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Miaolin Lan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Meng Chen
- College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
8
|
Ahmed F, Kamble PG, Hetty S, Fanni G, Vranic M, Sarsenbayeva A, Kristófi R, Almby K, Svensson MK, Pereira MJ, Eriksson JW. Role of Estrogen and Its Receptors in Adipose Tissue Glucose Metabolism in Pre- and Postmenopausal Women. J Clin Endocrinol Metab 2022; 107:e1879-e1889. [PMID: 35084504 PMCID: PMC9016422 DOI: 10.1210/clinem/dgac042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Reduced estrogen levels in postmenopausal women predispose them to metabolic side effects, including insulin resistance and type 2 diabetes; however, the cellular mechanisms are not well understood. OBJECTIVE This work aimed to study the expression of estrogen receptors in adipose tissue from pre- and postmenopausal women and the effects of estradiol (E2) on glucose uptake of adipocytes. METHODS Subcutaneous (SAT) and visceral adipose tissue (VAT) obtained from pre- and postmenopausal women (19-51 and 46-75 years old, respectively) were used to measure gene expression of ESR1 and ESR2. SAT tissue was incubated with E2, and glucose uptake and estrogen receptor levels were measured. Polymorphisms in ESR1 and ESR2 were addressed in public databases to identify single nucleotide polymorphisms associated with metabolic traits. RESULTS ESR2 expression was lower in pre- vs postmenopausal women, corresponding to lower ESR1:ESR2 gene expression ratio in postmenopausal women. In premenopausal women, the expression of ESR1 was higher in VAT than in SAT. In both pre- and postmenopausal women, ESR2 expression was lower in VAT than in SAT. In late, but not pre- or early postmenopausal women, E2 reduced glucose uptake and GLUT4 protein and increased expression of ESR2. ESR1 polymorphisms were associated with weight, body fat distribution, and total cholesterol, and ESR2 polymorphisms were associated with total cholesterol and triglyceride levels and with body fat percentage. CONCLUSION E2 inhibits glucose utilization in human adipocytes in late postmenopausal women. Changes in glucose utilization over time since menopause may be explained by a lower ESR1:ESR2 ratio. This can have clinical implications on the timing of estrogen treatment in postmenopausal women.
Collapse
Affiliation(s)
- Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Prasad G Kamble
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Milica Vranic
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Kristina Almby
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Renal Medicine, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Lizcano F. Roles of estrogens, estrogen-like compounds, and endocrine disruptors in adipocytes. Front Endocrinol (Lausanne) 2022; 13:921504. [PMID: 36213285 PMCID: PMC9533025 DOI: 10.3389/fendo.2022.921504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Women are subject to constitutional changes after menopause, which increases conditions and diseases prone to cardiovascular risks such as obesity and diabetes mellitus. Both estrogens and androgens influence the individual's metabolic mechanism, which controls the fat distribution and the hypothalamic organization of the regulatory centers of hunger and satiety. While androgens tend to accumulate fat in the splanchnic and the visceral region with an increase in cardiovascular risk, estrogens generate more subcutaneous and extremity distribution of adipose tissue. The absence of estrogen during menopause seems to be the main factor that gives rise to the greater predisposition of women to suffer cardiovascular alterations. However, the mechanisms by which estrogens regulate the energy condition of people are not recognized. Estrogens have several mechanisms of action, which mainly include the modification of specific receptors that belong to the steroid receptor superfamily. The alpha estrogen receptors (ERα) and the beta receptors (ERβ) have a fundamental role in the metabolic control of the individual, with a very characteristic corporal distribution that exerts an influence on the metabolism of lipids and glucose. Despite the significant amount of knowledge in this field, many of the regulatory mechanisms exerted by estrogens and ER continue to be clarified. This review will discuss the role of estrogens and their receptors on the central regulation of caloric expenditure and the influence they exert on the differentiation and function of adipocytes. Furthermore, chemical substances with a hormonal activity that cause endocrine disruption with affectation on estrogen receptors will be considered. Finally, the different medical therapies for the vasomotor manifestations of menopause and their role in reducing obesity, diabetes, and cardiovascular risk will be analyzed.
Collapse
|
10
|
Pretorius M, Huang C. Beta-Cell Adaptation to Pregnancy - Role of Calcium Dynamics. Front Endocrinol (Lausanne) 2022; 13:853876. [PMID: 35399944 PMCID: PMC8990731 DOI: 10.3389/fendo.2022.853876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
During pregnancy, the mother develops insulin resistance to shunt nutrients to the growing fetus. As a result, the maternal islets of Langerhans undergo several changes to increase insulin secretion in order to maintain glucose homeostasis and prevent the development of gestational diabetes. These changes include an increase in β-cell proliferation and β-cell mass, upregulation of insulin synthesis and insulin content, enhanced cell-to-cell communication, and a lowering of the glucose threshold for insulin secretion, all of which resulting in an increase in glucose-stimulated insulin secretion. Emerging data suggests that a change in intracellular calcium dynamics occurs in the β-cell during pregnancy as part of the adaptive process. Influx of calcium into β-cells is crucial in the regulation of glucose-stimulated insulin secretion. Calcium fluxes into and out of the cytosol, endoplasmic reticulum, and mitochondria are also important in controlling β-cell function and survival. Here, we review calcium dynamics in islets in response to pregnancy-induced changes in hormones and signaling molecules, and how these changes may enhance insulin secretion to stave off gestational diabetes.
Collapse
|
11
|
Xiao CW, Wood C, Cunningham LA, Lalande M, Riding M. Effects of dietary active soybean trypsin inhibitors on pancreatic weights, histology and expression of STAT3 and receptors for androgen and estrogen in different tissues of rats. Mol Biol Rep 2021; 48:4591-4600. [PMID: 34125331 DOI: 10.1007/s11033-021-06491-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Our previous study showed that soy milks could contain high levels of active soybean trypsin inhibitors (SBTI) if they were not properly processed. This study investigated the effects of consuming active SBTI on pancreatic weights, histology, trypsinogen production and expression of STAT3, receptors for androgen (AR) and estrogen (ER) in pancreas, liver and uterus of rats. Weanling Sprague-Dawley rats were randomly divided into 3 groups (8 females and 8 males/group) and fed diets containing either 20% casein protein (Casein) or 20% soy protein (SP) in the presence of high (1.42 BAEE unit/µg, SP + SBTI) or low (0.2 BAEE unit/µg, SP-SBTI) levels of active SBTI for 8 weeks. Ingestion of SP + SBTI diet markedly increased pancreatic weights and trypsinogen content (p < 0.01), and caused acinar cell hypertrophy, and reduced pancreatic STAT3, p-STAT3, AR and ERβ content, and increased uterine ERα and ERβ compared to the Casein or SP-SBTI diets (p < 0.05). The two SP-containing diets lowered hepatic STAT3, p-STAT3, and pancreatic ERα, and increased hepatic ERα and ERβ content in the female rats compared to the Casein diet (p < 0.05). This study demonstrated for the first time that consumption of high level of active SBTI not only increased pancreatic weights and acinar cell secretions, but also attenuated the expression of pancreatic STAT3, p-STAT3, AR, and ERβ proteins in both sexes and increased uterine ERα and ERβ content, and that dietary soy protein affected hepatic STAT3, p-STAT3, ERα and ERβ in a gender-dependent manner.
Collapse
Affiliation(s)
- Chao-Wu Xiao
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
- Food and Nutrition Science, Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| | - Carla Wood
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Lee Anne Cunningham
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
- Food and Nutrition Science, Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Maryline Lalande
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Melissa Riding
- Nutrition Research Division, Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
- Food and Nutrition Science, Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
12
|
Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33832654 DOI: 10.1016/bs.ircmb.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Diabetes is one of the most prevalent metabolic diseases and its incidence is increasing throughout the world. Data from World Health Organization (WHO) point-out that diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation and estimated 1.6 million deaths were directly caused by it in 2016. Population studies show that the incidence of this disease increases in women after menopause, when the production of estrogen is decreasing in them. Knowing the impact that estrogenic signaling has on insulin-secreting β cells is key to prevention and design of new therapeutic targets. This chapter explores the role of estrogen and their receptors in the regulation of insulin secretion and biosynthesis, proliferation, regeneration and survival in pancreatic β cells. In addition, delves into the genetic animal models developed and its application for the specific study of the different estrogen signaling pathways. Finally, discusses the impact of menopause and hormone replacement therapy on pancreatic β cell function.
Collapse
|
13
|
Bisphenol-A exposure during pregnancy alters pancreatic β-cell division and mass in male mice offspring: A role for ERβ. Food Chem Toxicol 2020; 145:111681. [PMID: 32805339 DOI: 10.1016/j.fct.2020.111681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/19/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Bisphenol-A (BPA) is a widespread endocrine disrupting chemical that constitutes a risk factor for type 2 diabetes mellitus (T2DM). Data from animal and human studies have demonstrated that early exposure to BPA results in adverse metabolic outcomes in adult life. In the present work, we exposed pregnant heterozygous estrogen receptor β (ERβ) knock out (BERKO) mice to 10 μg/kg/day BPA, during days 9-16 of pregnancy, and measured β-cell mass and proliferation in wildtype (WT) and BERKO male offspring at postnatal day 30. We observed increased pancreatic β-cell proliferation and mass in WT, yet no effect was produced in BERKO mice. Dispersed islet cells in primary culture treated with 1 nM BPA showed an enhanced pancreatic β-cell replication rate, which was blunted in pancreatic β-cells from BERKO mice and mimicked by the selective ERβ agonist WAY200070. This increased β-cell proliferation was found in male adult as well as in neonate pancreatic β-cells, suggesting that BPA directly impacts β-cell division at earliest stages of life. These findings strongly indicate that BPA during pregnancy upregulates pancreatic β-cell division and mass in an ERβ-dependent manner. Thus, other natural or artificial chemicals may use this ERβ-mediated pathway to promote similar effects.
Collapse
|
14
|
Oliveira KM, Figueiredo LS, Araujo TR, Freitas IN, Silva JN, Boschero AC, Ribeiro RA. Prolonged bisphenol-A exposure decreases endocrine pancreatic proliferation in response to obesogenic diet in ovariectomized mice. Steroids 2020; 160:108658. [PMID: 32442623 DOI: 10.1016/j.steroids.2020.108658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022]
Abstract
Research on the deleterious actions of bisphenol (BP)-A have focused on its effects on insulin secretion during pre/perinatal periods or adulthood. Estrogens also modulate endocrine pancreas physiology in females during aging; however, the effects of BPA on islet morphophysiology after menopause have not been investigated. We evaluated the effects of BPA exposure on glucose homeostasis and islet morphofunction in ovariectomized (OVX) mice fed on a high-fat diet (HFD). Adult Swiss female mice were underwent to bilateral ovariectomy, and with the confirmation of the establishment of surgical menopause, the females were then submitted, or not,to a normolipidic diet or HFD [control (CTL) and HFD groups, respectively] without or with 1 μg/mL BPA in their drinking water (CBPA and HBPA groups) for 90 days. HFD females displayed obesity, hyperglycemia, hyperinsulinemia, glucose intolerance and insulin resistance. BPA did not modulate HFD-induced obesity or body glucose impairments in HBPA females, and islets isolated from both the HFD and HBPA groups exhibited insulin hypersecretion. The HBPA islets, however, displayed enlarged islet cells and reduced proliferation, in association with the downregulation of mRNAs encoding PDX-1, NGN3 and CCND2 and upregulation of mRNAs encoding ER-β, GPR30, TNF-α and IL-1β in HBPA islets. BPA consumption in OVX mice impaired the islet-cell hyperplasia response to the HFD, partly mediated by increased expression of ER-β and GPR30, which impaired the expression of major genes involved in islet-cell survival and functionality. Together with higher pro-inflammatory cytokines expression in the islet milieu, these alterations may accelerate β-cell failure in postmenopause.
Collapse
Affiliation(s)
- Kênia M Oliveira
- Federal University of Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | | | - Thiago R Araujo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Israelle N Freitas
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Juliana N Silva
- Federal University of Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Rosane A Ribeiro
- Federal University of Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil.
| |
Collapse
|
15
|
De Paoli M, Werstuck GH. Role of Estrogen in Type 1 and Type 2 Diabetes Mellitus: A Review of Clinical and Preclinical Data. Can J Diabetes 2020; 44:448-452. [DOI: 10.1016/j.jcjd.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/17/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
|
16
|
Estrogenization of insulin by catecholestrogen produced high affinity autoantibodies and altered the normal function of insulin in type 1 diabetes. Life Sci 2020; 256:117910. [PMID: 32504753 DOI: 10.1016/j.lfs.2020.117910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 11/20/2022]
Abstract
AIMS Insulin (Ins) covalently modified by catecholestrogens (CEs) was commonly found in diabetic patients who have developed insulin resistance. Estrogenization of insulin altered its molecular function and effect carbohydrates metabolisms in these patients. Insulin resistance is a common phenomenon in diabetes but the exact mechanism remains unknown. In this study, binding specificity and affinity of autoantibodies against estrogenized insulin (4-hydroxyestradiol-insulin; 4-OHE2-Ins) were assayed in the serum of type 1 diabetes (T1D) patients in order to explain the phenomena behind insulin resistance. MATERIALS AND METHODS Specificity and affinity of autoantibodies from the sera of 66 T1D patients and 41 controls were analyzed by direct binding, competition ELISA and quantitative precipitin titration. Insulin was also estimated in the serum of T1D patients by ELISA. KEY FINDING Estrogenized insulin (4-OHE2-Ins) exhibited high affinity and specificity to T1D autoantibodies in comparison to Ins (p < .05) or 4-OHE2 (p < .001). Estrogenization of insulin alters its interaction with the insulin receptor (IR). The affinity constant of 4-OHE2-Ins with the T1D autoantibodies was found to be 1.41 × 10-7 M. SIGNIFICANCE Estrogenization of insulin by catecholestrogen makes these molecules highly antigenic and produced high-affinity autoantibodies in T1D patients. As a result, patients develop insulin resistance and presented this molecule as a potential biomarker for T1D.
Collapse
|
17
|
Savva C, Korach-André M. Estrogen Receptor beta (ERβ) Regulation of Lipid Homeostasis-Does Sex Matter? Metabolites 2020; 10:metabo10030116. [PMID: 32244965 PMCID: PMC7143602 DOI: 10.3390/metabo10030116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/18/2020] [Indexed: 01/11/2023] Open
Abstract
In this communication, we aim to summarize the role of estrogen receptor beta (ERβ) in lipid metabolism in the main metabolic organs with a special focus on sex differences. The action of ERβ is tissue-specific and acts in a sex-dependent manner, emphasizing the necessity of developing sex- and tissue-selective targeting drugs in the future.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Metabolism Unit and KI/AZ Integrated Cardio Metabolic Center (ICMC), Metabolism and Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
- Clinical Department of Endocrinology Diabetes, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Metabolism Unit and KI/AZ Integrated Cardio Metabolic Center (ICMC), Metabolism and Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
- Clinical Department of Endocrinology Diabetes, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
18
|
Fang L, Zhang S, Ou K, Zuo Z, Yu A, Wang C. Exposure to Aroclor 1254 differentially affects the survival of pancreatic β-cells and α-cells in the male mice and the potential reason. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109875. [PMID: 31706244 DOI: 10.1016/j.ecoenv.2019.109875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Previous works showed that chronic exposure to Aroclor 1254 disrupted glucose homeostasis and induced insulin resistance in male mice. To further observe the different effects of Aroclor 1254 exposure on the pancreatic α-cells and β-cells, male mice were exposed to Aroclor 1254 (0, 0.5, 5, 50, 500 μg/kg) for 60 days, the pancreas was performed a histological examination. The results showed that the percentage of apoptosis cell (indicated by TUNEL assay) was increased in both α-cells and β-cells, as the Aroclor 1254 dose was increased; the proliferation (indicated by PCNA expression) rate of β-cells was elevated while that of α-cells was not affected, resulting in an increased β-cell mass and a decreased α-cell mass in a dose-depend manner. The number of Pdx-1 positive β-cells was significantly increased whereas that of Arx positive α-cells was markedly decreased, indicating an enhanced β-cell neogenesis and a weakened α-cell neogenesis. The drastically reduction of serum testosterone levels in all the treatments suggested an anti-androgenic potency of Aroclor 1254. The up-regulation of estrogen receptors (ERα and ERβ) and androgen receptor in β-cells might be responsible for the increased β-cell mass and neogenesis.
Collapse
Affiliation(s)
- Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Shiqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ang Yu
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen, PR China.
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
19
|
Quesada-Candela C, Tudurí E, Marroquí L, Alonso-Magdalena P, Quesada I, Nadal Á. Morphological and functional adaptations of pancreatic alpha-cells during late pregnancy in the mouse. Metabolism 2020; 102:153963. [PMID: 31593706 DOI: 10.1016/j.metabol.2019.153963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Pregnancy represents a major metabolic challenge for the mother, and involves a compensatory response of the pancreatic beta-cell to maintain normoglycemia. However, although pancreatic alpha-cells play a key role in glucose homeostasis and seem to be involved in gestational diabetes, there is no information about their potential adaptations or changes during pregnancy. MATERIAL AND METHODS Non-pregnant (controls) and pregnant C57BL/6 mice at gestational day 18.5 (G18.5) and their isolated pancreatic islets were used for in vivo and ex vivo studies, respectively. The effect of pregnancy hormones was tested in glucagon-secreting α-TC1.9 cells. Immunohistochemical analysis was performed in pancreatic slices. Glucagon gene expression was monitored by RT-qPCR. Glucagon secretion and plasma hormones were measured by ELISA. RESULTS Pregnant mice on G18.5 exhibited alpha-cell hypertrophy as well as augmented alpha-cell area and mass. This alpha-cell mass expansion was mainly due to increased proliferation. No changes in alpha-cell apoptosis, ductal neogenesis, or alpha-to-beta transdifferentiation were found compared with controls. Pregnant mice on G18.5 exhibited hypoglucagonemia. Additionally, in vitro glucagon secretion at low glucose levels was decreased in isolated islets from pregnant animals. Glucagon content was also reduced. Experiments in α-TC1.9 cells indicated that, unlike estradiol and progesterone, placental lactogens and prolactin stimulated alpha-cell proliferation. Placental lactogens, prolactin and estradiol also inhibited glucagon release from α-TC1.9 cells at low glucose levels. CONCLUSIONS The pancreatic alpha-cell in mice undergoes several morphofunctional changes during late pregnancy, which may contribute to proper glucose homeostasis. Gestational hormones are likely involved in these processes.
Collapse
Affiliation(s)
- Cristina Quesada-Candela
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Eva Tudurí
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Laura Marroquí
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Paloma Alonso-Magdalena
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Ivan Quesada
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain.
| | - Ángel Nadal
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain.
| |
Collapse
|
20
|
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University of Malang, Batu, Indonesia
| |
Collapse
|
21
|
Handgraaf S, Philippe J. The Role of Sexual Hormones on the Enteroinsular Axis. Endocr Rev 2019; 40:1152-1162. [PMID: 31074764 DOI: 10.1210/er.2019-00004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Sex steroid estrogens, androgens, and progesterone, produced by the gonads, which have long been considered as endocrine glands, are implicated in sexual differentiation, puberty, and reproduction. However, the impact of sex hormones goes beyond these effects through their role on energy metabolism. Indeed, sex hormones are important physiological regulators of glucose homeostasis and, in particular, of the enteroinsular axis. In this review, we describe the roles of estrogens, androgens, and progesterone on glucose homeostasis through their effects on pancreatic α- and β-cells, as well as on enteroendocrine L-cells, and their implications in hormonal biosynthesis and secretion. The analysis of their mechanisms of action with the dissection of the receptors implicated in the several protective effects could provide some new aspects of the fine-tuning of hormonal secretion under the influence of the sex. This knowledge paves the way to the understanding of transgender physiology and new potential therapeutics in the field of type 2 diabetes.
Collapse
Affiliation(s)
- Sandra Handgraaf
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Jacques Philippe
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
22
|
Ofosu WA, Mohamed D, Corcoran O, Ojo OO. The Role of Oestrogen Receptor Beta (ERβ) in the Aetiology and Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2019; 15:100-104. [PMID: 29357808 DOI: 10.2174/1573399814666180119141836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Challenges facing the treatment of type 2 diabetes necessitate the search for agents which act via alternative pathways to provide better therapeutic outcomes. Recently, an increasing body of evidence implicates the activation of oestrogen receptors (ERα and ERβ) in the development and treatment of underlying conditions in type 2 diabetes. This article summarizes available evidence for the involvement of oestrogen receptors in insulin secretion, insulin resistance as well as glucose uptake and highlights the potential of ERβ as a therapeutic target. BACKGROUND Recent studies indicate an association between the activation of each of the isoforms of ER and recent findings indicate that ERβ shows promise as a potential target for antidiabetic drugs. In vitro and in vivo studies in receptor knockout mice indicate beneficial actions of selective agonists of ERβ receptor and underscore its therapeutic potential. CONCLUSION Studies are needed to further elucidate the exact mechanism underlying the role of ERβ activation as a therapeutic approach in the management of type 2 diabetes.
Collapse
Affiliation(s)
- Wendy Amy Ofosu
- School of Health, Sport and Biosciences, College of Health and Communities, University of East London, Stratford, E15 4LZ, United Kingdom
| | - Dahir Mohamed
- School of Health, Sport and Biosciences, College of Health and Communities, University of East London, Stratford, E15 4LZ, United Kingdom
| | - Olivia Corcoran
- School of Health, Sport and Biosciences, College of Health and Communities, University of East London, Stratford, E15 4LZ, United Kingdom
| | - Opeolu Oyejide Ojo
- School of Health, Sport and Biosciences, College of Health and Communities, University of East London, Stratford, E15 4LZ, United Kingdom
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
23
|
Ma W, Chen X, Cerne R, Syed SK, Ficorilli JV, Cabrera O, Obukhov AG, Efanov AM. Catechol estrogens stimulate insulin secretion in pancreatic β-cells via activation of the transient receptor potential A1 (TRPA1) channel. J Biol Chem 2018; 294:2935-2946. [PMID: 30587572 DOI: 10.1074/jbc.ra118.005504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Estrogen hormones play an important role in controlling glucose homeostasis and pancreatic β-cell function. Despite the significance of estrogen hormones for regulation of glucose metabolism, little is known about the roles of endogenous estrogen metabolites in modulating pancreatic β-cell function. In this study, we evaluated the effects of major natural estrogen metabolites, catechol estrogens, on insulin secretion in pancreatic β-cells. We show that catechol estrogens, hydroxylated at positions C2 and C4 of the steroid A ring, rapidly potentiated glucose-induced insulin secretion via a nongenomic mechanism. 2-Hydroxyestrone, the most abundant endogenous estrogen metabolite, was more efficacious in stimulating insulin secretion than any other tested catechol estrogens. In insulin-secreting cells, catechol estrogens produced rapid activation of calcium influx and elevation in cytosolic free calcium. Catechol estrogens also generated sustained elevations in cytosolic free calcium and evoked inward ion current in HEK293 cells expressing the transient receptor potential A1 (TRPA1) cation channel. Calcium influx and insulin secretion stimulated by estrogen metabolites were dependent on the TRPA1 activity and inhibited with the channel-specific pharmacological antagonists or the siRNA. Our results suggest the role of estrogen metabolism in a direct regulation of TRPA1 activity with potential implications for metabolic diseases.
Collapse
Affiliation(s)
- Wenzhen Ma
- From the Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285 and
| | - Xingjuan Chen
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Rok Cerne
- From the Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285 and
| | - Samreen K Syed
- From the Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285 and
| | - James V Ficorilli
- From the Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285 and
| | - Over Cabrera
- From the Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285 and
| | - Alexander G Obukhov
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Alexander M Efanov
- From the Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285 and
| |
Collapse
|
24
|
Tu CF, Hsu CY, Lee MH, Jiang BH, Guo SF, Lin CC, Yang TS. Growing pigs developed different types of diabetes induced by streptozotocin depending on their transcription factor 7-like 2 gene polymorphisms. Lab Anim Res 2018; 34:185-194. [PMID: 30671104 PMCID: PMC6333605 DOI: 10.5625/lar.2018.34.4.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/25/2022] Open
Abstract
The different polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene promote variances in diabetes susceptibility in humans. We investigated whether these genotypes also promote differences in diabetic susceptibility in commercial pigs. Growing pigs (Landrace, both sex, 50-60 kg) with the C/C (n=4) and T/T (n=5) TCF7L2 genotypes were identified and intravenously injected with streptozotocin (STZ, 40 mg/kg) twice in weekly intervals, then a high-energy diet was offered. Oral glucose tolerance tests, blood analyses and the homeostasis model assessment-insulin resistance (HOMA-IR) index calculations were performed. The animals were sacrificed at the end of 12 weeks of treatment to reveal the pancreas histomorphometry. The results showed that all of the treated pigs grew normally despite exhibiting hyperglycemia at two weeks after the induction. The glycemic level of the fasting or postprandial pigs gradually returned to normal. The fasting insulin concentration was significantly decreased for the T/T carriers but not for the C/C carriers, and the resulting HOMA-IR index was significantly increased for the C/C genotype, indicating that the models of insulin dependence and resistance were respectively developed by T/T and C/C carriers. The histopathological results illustrated a significant reduction in the pancreas mass and insulin active sites, which suggested increased damage. The results obtained here could not be compared with previous studies because the TCF7L2 background has not been reported. Growing pigs may be an excellent model for diabetic in children if the animals are genetically pre-selected.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
| | - Chi-Yun Hsu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Yilan County, Taiwan, R.O.C
| | - Meng-Hwan Lee
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
| | - Bo-Hui Jiang
- Division of Animal Industry, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
| | - Shyh-Forng Guo
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
| | - Chai-Ching Lin
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Yilan County, Taiwan, R.O.C
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan District, Hsinchu City, Taiwan, R.O.C
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Yilan County, Taiwan, R.O.C
| |
Collapse
|
25
|
Herrera-Lopez EE, Castelan-Martinez OD, Suarez-Sanchez F, Gomez-Zamudio JH, Peralta-Romero JJ, Cruz M, Valladares-Salgado A. The rs1256031 of estrogen receptor β gene is associated with type 2 diabetes. Diabetes Metab Syndr 2018; 12:631-633. [PMID: 29666032 DOI: 10.1016/j.dsx.2018.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
AIM To determine the association between the rs1256031 polymorphism and risk of developing type 2 diabetes. MATERIALS AND METHODS Cases and controls study. 597 individuals with type 2 diabetes and 605 without it participated. Genotyping of the rs1256031 polymorphism of the ERβ gene was performed by real-time PCR using TaqMan assay. For the multivariate analysis, a multiple logistic regression was performed that included the main confounding variables. RESULTS AND CONCLUSION A multiple logistic regression analysis was performed, adjusting for age, WHR, BMI and gender. The dominant model showed a protective effect compared to the TT genotype (OR = 0.596, IC95% [0.458-0.776]). DISCUSSION The proportions of native American, European and African ancestry were characterized and no difference was found in the study groups. The protective effect obtained in the dominant model could to be due a regulatory function in the transcription or the processing of the primary transcript. Our result are the first to report an association between the polymorphism rs1256031 and the reduction of the risk of T2D in the Mexican population. The rs1256031 polymorphism show reduced risk of developing T2D and is potential markers for predicting T2D.
Collapse
Affiliation(s)
- Ema E Herrera-Lopez
- Unidad de Investigacion Medica en Bioquimica, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Fernando Suarez-Sanchez
- Unidad de Investigacion Medica en Bioquimica, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jaime H Gomez-Zamudio
- Unidad de Investigacion Medica en Bioquimica, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jose J Peralta-Romero
- Unidad de Investigacion Medica en Bioquimica, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Adan Valladares-Salgado
- Unidad de Investigacion Medica en Bioquimica, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
26
|
The effect of estrogen on diabetic wound healing is mediated through increasing the function of various bone marrow-derived progenitor cells. J Vasc Surg 2018; 68:127S-135S. [PMID: 30064832 DOI: 10.1016/j.jvs.2018.04.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/18/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Endothelial progenitor cells (EPCs) are the key cells of postnatal neovascularization, and mesenchymal stem cells (MSCs) possess pluripotent differentiation capacity and contribute to tissue regeneration and wound healing. Both EPCs and MSCs are critical to the wound repair process, which is hindered in diabetes mellitus. Diabetes has been shown to decrease the function of these progenitor cells, whereas estrogen has beneficial wound healing effects. However, the role of estrogen in modulating EPC and MSC biology in diabetes is unknown. We investigated the effect of estrogen on improving bone marrow (BM)-derived EPC and MSC function using a murine diabetic wound healing model. METHODS Female diabetic db+/db+ and nondiabetic control mice were wounded cutaneously and treated with topical estrogen or placebo cream. On day 5 after wounding, BM cells were harvested to quantify EPC number and colony-forming units of EPCs and MSCs. Wound healing rate was concurrently studied. Vessel density and scar density were then quantified using whole body perfusion and laser confocal microscopy. EPC recruitment was documented by immunohistochemistry to identify CD34- and vascular endothelial growth factor receptor 2-positive cells in the vessel wall. Data were analyzed by analysis of variance. RESULTS Topical estrogen significantly increased colony-forming units of both EPCs and MSCs compared with placebo treatment, indicating improved viability and proliferative ability of these cells. Consistently, increased recruitment of EPCs to diabetic wounds and higher vessel density were observed in estrogen-treated compared with placebo-treated mice. Consequently, topical estrogen significantly accelerated wound healing as early as day 6 after wounding. In addition, scar density resulting from collagen deposition was increased in the estrogen-treated group, reflecting increased MSC activity and differentiation. CONCLUSIONS Estrogen treatment increases wound healing and wound neovascularization in diabetic mice. Our data implicate that these beneficial effects may be mediated through improving the function of BM-derived EPCs and MSCs.
Collapse
|
27
|
Mauvais-Jarvis F, Le May C, Tiano JP, Liu S, Kilic-Berkmen G, Kim JH. The Role of Estrogens in Pancreatic Islet Physiopathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1043:385-399. [PMID: 29224104 DOI: 10.1007/978-3-319-70178-3_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In rodent models of insulin-deficient diabetes, 17β-estradiol (E2) protects pancreatic insulin-producing β-cells against oxidative stress, amyloid polypeptide toxicity, gluco-lipotoxicity, and apoptosis. Three estrogen receptors (ERs)-ERα, ERβ, and the G protein-coupled ER (GPER)-have been identified in rodent and human β-cells. This chapter describes recent advances in our understanding of the role of ERs in islet β-cell function, nutrient homeostasis, survival from pro-apoptotic stimuli, and proliferation. We discuss why and how ERs represent potential therapeutic targets for the maintenance of functional β-cell mass.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA.
| | - Cedric Le May
- L'institut du Thorax, INSERM-CNRS, University of Nantes, Nantes, France
| | - Joseph P Tiano
- Diabetes, Endocrinology, and Obesity Branch, NIDDK, Bethesda, MD, USA
| | - Suhuan Liu
- Xiamen Diabetes Institute, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Gamze Kilic-Berkmen
- Department of Pediatric, Emory University School of Medicine, Atlanta, GA, USA
| | - Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong, South Korea
| |
Collapse
|
28
|
Gourdy P, Guillaume M, Fontaine C, Adlanmerini M, Montagner A, Laurell H, Lenfant F, Arnal JF. Estrogen receptor subcellular localization and cardiometabolism. Mol Metab 2018; 15:56-69. [PMID: 29807870 PMCID: PMC6066739 DOI: 10.1016/j.molmet.2018.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In addition to their crucial role in reproduction, estrogens are key regulators of energy and glucose homeostasis and they also exert several cardiovascular protective effects. These beneficial actions are mainly mediated by estrogen receptor alpha (ERα), which is widely expressed in metabolic and vascular tissues. As a member of the nuclear receptor superfamily, ERα was primarily considered as a transcription factor that controls gene expression through the activation of its two activation functions (ERαAF-1 and ERαAF-2). However, besides these nuclear actions, a pool of ERα is localized in the vicinity of the plasma membrane, where it mediates rapid signaling effects called membrane-initiated steroid signals (MISS) that have been well described in vitro, especially in endothelial cells. SCOPE OF THE REVIEW This review aims to summarize our current knowledge of the mechanisms of nuclear vs membrane ERα activation that contribute to the cardiometabolic protection conferred by estrogens. Indeed, new transgenic mouse models (affecting either DNA binding, activation functions or membrane localization), together with the use of novel pharmacological tools that electively activate membrane ERα effects recently allowed to begin to unravel the different modes of ERα signaling in vivo. CONCLUSION Altogether, available data demonstrate the prominent role of ERα nuclear effects, and, more specifically, of ERαAF-2, in the preventive effects of estrogens against obesity, diabetes, and atheroma. However, membrane ERα signaling selectively mediates some of the estrogen endothelial/vascular effects (NO release, reendothelialization) and could also contribute to the regulation of energy balance, insulin sensitivity, and glucose metabolism. Such a dissection of ERα biological functions related to its subcellular localization will help to understand the mechanism of action of "old" ER modulators and to design new ones with an optimized benefit/risk profile.
Collapse
Affiliation(s)
- Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France.
| | - Maeva Guillaume
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service d'Hépatologie et Gastro-Entérologie, CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Marine Adlanmerini
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| |
Collapse
|
29
|
Boonyaratanakornkit V, Hamilton N, Márquez-Garbán DC, Pateetin P, McGowan EM, Pietras RJ. Extranuclear signaling by sex steroid receptors and clinical implications in breast cancer. Mol Cell Endocrinol 2018; 466:51-72. [PMID: 29146555 PMCID: PMC5878997 DOI: 10.1016/j.mce.2017.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Estrogen and progesterone play essential roles in the development and progression of breast cancer. Over 70% of breast cancers express estrogen receptors (ER) and progesterone receptors (PR), emphasizing the need for better understanding of ER and PR signaling. ER and PR are traditionally viewed as transcription factors that directly bind DNA to regulate gene networks. In addition to nuclear signaling, ER and PR mediate hormone-induced, rapid extranuclear signaling at the cell membrane or in the cytoplasm which triggers downstream signaling to regulate rapid or extended cellular responses. Specialized membrane and cytoplasmic proteins may also initiate hormone-induced extranuclear signaling. Rapid extranuclear signaling converges with its nuclear counterpart to amplify ER/PR transcription and specify gene regulatory networks. This review summarizes current understanding and updates on ER and PR extranuclear signaling. Further investigation of ER/PR extranuclear signaling may lead to development of novel targeted therapeutics for breast cancer management.
Collapse
Affiliation(s)
- Viroj Boonyaratanakornkit
- Department of Clinical Chemistry Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Diana C Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Prangwan Pateetin
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eileen M McGowan
- Chronic Disease Solutions Team, School of Life Sciences, University of Technology Sydney, Ultimo, 2007, Sydney, Australia
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer Center, Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Liquiritigenin prevents palmitate-induced beta-cell apoptosis via estrogen receptor-mediated AKT activation. Biomed Pharmacother 2018; 101:348-354. [DOI: 10.1016/j.biopha.2018.02.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
|
31
|
Handgraaf S, Dusaulcy R, Visentin F, Philippe J, Gosmain Y. 17-β Estradiol regulates proglucagon-derived peptide secretion in mouse and human α- and L cells. JCI Insight 2018; 3:98569. [PMID: 29618657 DOI: 10.1172/jci.insight.98569] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/28/2018] [Indexed: 01/11/2023] Open
Abstract
Clinical and experimental data indicate a beneficial effect of estrogens on energy and glucose homeostasis associated with improved insulin sensitivity and positive effects on insulin secretion. The aim of the study was to investigate the impact of estrogens on proglucagon-producing cells, pancreatic α cells, and enteroendocrine L cells. The consequences of sexual hormone deprivation were evaluated in ovariectomized mice (ovx). Ovx mice exhibited impaired glucose tolerance during oral glucose tolerance tests (OGTT), which was associated with decreased GLP-1 intestinal and pancreatic secretion and content, an effect that was reversed by estradiol (E2) treatment. Indeed, E2 increased oral glucose-induced GLP-1 secretion in vivo and GLP-1 secretion from primary culture of mouse and human α cells through the activation of all 3 estrogen receptors (ERs), whereas E2-induced GLP-1 secretion from mouse and human intestinal explants occurred only by ERβ activation. Underlying the implication of ERβ, its selective agonist WAY20070 was able to restore glucose tolerance in ovx mice at least partly through plasma GLP-1 increase. We conclude that E2 directly controls both α- and L cells to increase GLP-1 secretion, in addition to its effects on insulin and glucagon secretion, highlighting the potential beneficial role of the estrogenic pathway and, more particularly, of ERβ agonists to prevent type 2 diabetes.
Collapse
|
32
|
Saber N, Bruin JE, O'Dwyer S, Schuster H, Rezania A, Kieffer TJ. Sex Differences in Maturation of Human Embryonic Stem Cell-Derived β Cells in Mice. Endocrinology 2018; 159:1827-1841. [PMID: 29420708 DOI: 10.1210/en.2018-00048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
Pancreatic progenitors derived from human embryonic stem cells (hESCs) are now in clinical trials for insulin replacement in patients with type 1 diabetes. Animal studies indicate that pancreatic progenitor cells can mature into a mixed population of endocrine cells, including glucose-responsive β cells several months after implantion. However, it remains unclear how conditions in the recipient may influence the maturation and ultimately the function of these hESC-derived cells. Here, we investigated the effects of (1) pregnancy on the maturation of human stage 4 (S4) pancreatic progenitor cells and (2) the impact of host sex on both S4 cells and more mature stage 7 (S7) pancreatic endocrine cells implanted under the kidney capsule of immunodeficient SCID-beige mice. Pregnancy led to increased proliferation of endogenous pancreatic β cells, but did not appear to affect proliferation or maturation of S4 cells at midgestation. Interestingly, S4 and S7 cells both acquired glucose-stimulated C-peptide secretion in females before males. Moreover, S4 cells lowered fasting blood glucose levels in females sooner than in males, whereas the responses with S7 cells were similar. These data indicate that the host sex may impact the maturation of hESC-derived cells in vivo and that this effect can be minimized by more advanced differentiation of the cells before implantation.
Collapse
Affiliation(s)
- Nelly Saber
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer E Bruin
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon O'Dwyer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hellen Schuster
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Uesato T, Ogihara T, Hara A, Iida H, Miyatsuka T, Fujitani Y, Takeda S, Watada H. Enhanced Expression of the Key Mitosis Regulator Cyclin B1 Is Mediated by PDZ-Binding Kinase in Islets of Pregnant Mice. J Endocr Soc 2018; 2:207-219. [PMID: 29594255 PMCID: PMC5841183 DOI: 10.1210/js.2017-00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
The proliferation of pancreatic β cells is enhanced to enable an increase in β-cell mass and to compensate for insulin resistance during pregnancy. To elucidate the mechanisms involved, we previously investigated islets from pregnant and nonpregnant mice by gene expression profiling and found that the expression of postsynaptic density-95/Discs large/zonula occludens-1 (PDZ)–binding kinase (Pbk), a member of the mitogen-activated protein kinase kinase family, is increased in pregnant mouse islets compared with control mouse islets. Among the pregnancy hormones, treatment with estradiol upregulated Pbk expression. Inhibition of Pbk expression using a small interfering RNA for Pbk reduced bromodeoxyuridine incorporation in mouse insulinoma 6 cells, which was accompanied by a decreased expression of Ccnb1, a regulatory gene involved in mitosis. Ccnb1 expression was augmented in mouse islets during pregnancy. The forced expression of Pbk using an adenovirus system in isolated mouse islets increased Ccnb1 expression, and the Pbk inhibitor HI-TOPK-032 suppressed Ccnb1 expression in islets isolated from pregnant mice. Our results suggest that Pbk contributes to the expansion of islets during pregnancy and that Ccnb1 may assist Pbk in its role in β-cell proliferation.
Collapse
Affiliation(s)
- Tadayoshi Uesato
- Department of Obstetrics and Gynecology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takeshi Ogihara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Akemi Hara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hitoshi Iida
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takeshi Miyatsuka
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yoshio Fujitani
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan.,AMED-JST-CREST Program, Tokyo 100-0004, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
34
|
Moudi M, Montazer Zohour M. SNP in microRNA sequences or binding sites of miRNAs: association with type 2 diabetes mellitus susceptibility and in silico analysis. Int J Diabetes Dev Ctries 2017. [DOI: 10.1007/s13410-017-0587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
35
|
Rabadiya S, Bhadada S, Dudhrejiya A, Vaishnav D, Patel B. Magnesium valproate ameliorates type 1 diabetes and cardiomyopathy in diabetic rats through estrogen receptors. Biomed Pharmacother 2017; 97:919-927. [PMID: 29136770 DOI: 10.1016/j.biopha.2017.10.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 01/14/2023] Open
Abstract
Estrogen is known to exhibit cardioprotective and antihyperlipidemic action. Valproic acid has been shown to upregulate estrogen receptors (ERs) in breast and prostate cancer tissues. No pharmacological evaluations for magnesium valproate (MgV) so far have been done for diabetic cadio-lipidemic complications. Based on the above context, current study was undertaken to evaluate the therapeutic effectiveness of MgV in cardiac complications associated with type-1 diabetes mellitus in rats wherein diabetes was induced by single tail vein injection of streptozotocin (STZ, 45mg/kg, IV) in female Sprague Dawley rats and treatment of MgV (210mg/kg, PO) was given for eight weeks to diabetic animals, after which, various biochemical and cardiac biomarkers, hypertrophic, hemodynamic and histological parameters along with immunohistochemistry of ERs in the left ventricle (LV) were estimated. MgV treatment significantly controlled hyperglycemia and dyslipidemia, reduced elevated cardiac biomarkers and C-reactive protein(CRP), significantly improved hemodynamic functions and increased the rate of pressure development and decay. MgV also significantly reduced left ventricular hypertrophy index and cardiac hypertrophy index, LV wall thickness, LV collagen, cardiomyocyte diameter and prevented the oxidative stress with significant increase in Na+-K+-ATPase activity in LV. Moreover, MgV reversed STZ-induced histological alterations and decreased glycogen content in LV and increased the ERβ expressions in LV as evidenced by immunohistochemistry. The result indicated that MgV prevented disease progression in the early stage of diabetic cardiomyopathy which seems to be mediated by upregulation of estrogen receptors in LV tissue.
Collapse
Affiliation(s)
- Samir Rabadiya
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Shradhha Bhadada
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Ashvin Dudhrejiya
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Devendra Vaishnav
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Bhoomika Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India.
| |
Collapse
|
36
|
Mauvais-Jarvis F, Manson JE, Stevenson JC, Fonseca VA. Menopausal Hormone Therapy and Type 2 Diabetes Prevention: Evidence, Mechanisms, and Clinical Implications. Endocr Rev 2017; 38:173-188. [PMID: 28323934 PMCID: PMC5460681 DOI: 10.1210/er.2016-1146] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes has reached epidemic proportions in the United States. Large, randomized controlled trials suggest that menopausal hormone therapy (MHT) delays the onset of type 2 diabetes in women. However, the mechanisms and clinical implications of this association are still a matter of controversy. This review provides an up-to-date analysis and integration of epidemiological, clinical, and basic studies, and proposes a mechanistic explanation for the effect of menopause and MHT on type 2 diabetes development and prevention. We discuss the beneficial effects of endogenous estradiol with respect to insulin secretion, insulin sensitivity, and glucose effectiveness; we also discuss energy expenditure and adipose distribution, both of which are affected by menopause and improved by MHT, which thereby decreases the incidence of type 2 diabetes. We reconcile differences among studies that investigated the effect of menopause and MHT formulations on type 2 diabetes. We argue that discrepancies arise from physiological differences in methods used to assess glucose homeostasis, ranging from clinical indices of insulin sensitivity to steady-state methods to assess insulin action. We also discuss the influence of the route of estrogen administration and the addition of progestogens. We conclude that, although MHT is neither approved nor appropriate for the prevention of type 2 diabetes due to its complex balance of risks and benefits, it should not be withheld from women with increased risk of type 2 diabetes who seek treatment for menopausal symptoms.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - John C Stevenson
- National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London SW3 6NP, United Kingdom
| | - Vivian A Fonseca
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
37
|
Mauvais-Jarvis F. Role of Sex Steroids in β Cell Function, Growth, and Survival. Trends Endocrinol Metab 2016; 27:844-855. [PMID: 27640750 PMCID: PMC5116277 DOI: 10.1016/j.tem.2016.08.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 01/08/2023]
Abstract
The gonads have long been considered endocrine glands, producing sex steroids such as estrogens, androgens, and progesterone (P4) for the sole purpose of sexual differentiation, puberty, and reproduction. Reproduction and energy metabolism are tightly linked, however, and gonadal steroids play an important role in sex-specific aspects of energy metabolism in various physiological conditions. In that respect, gonadal steroids also influence the secretion of insulin in a sex-specific manner. This review presents a perspective on the physiological roles of estrogens, androgens, and P4 via their receptors in pancreatic β cells in the gender-specific tuning of insulin secretion. I also discuss potential gender-specific therapeutic avenues that this knowledge may open in the future.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Diabetes Discovery and Gender Medicine Laboratory, Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
38
|
Crimmins S, Smiley R, Preston K, Yau A, Mccallum R, Ali MS. Increased Expression of Pyloric ERβ Is Associated With Diabetic Gastroparesis in Streptozotocin-Induced Male Diabetic Rats. Gastroenterology Res 2016; 9:39-46. [PMID: 27785323 PMCID: PMC5040542 DOI: 10.14740/gr701w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gastroparesis is a significant co-morbidity affecting up to 50% of patients with diabetes and is disproportionately found in women. Prior studies have suggested that loss of interstitial cells of Cajal, hyperglycemia, and nitric oxide dysfunction are potential causes of gastroparesis. Since diabetic gastroparesis affects more women than men, we performed an exploratory study with a diabetic rat model to determine if sex hormone signaling is altered in those where gastroparesis develops. METHODS We injected male rats with streptozotocin (STZ) to model type I diabetes, as confirmed by blood glucose levels. Gastroparesis was determined by acetaminophen gavage and serum acetaminophen levels. Rats were grouped based on acetaminophen and blood glucose data: diabetic (DM), diabetic and gastroparetic (DM + GP), and control (CM). Serum levels of testosterone, estrogen, and insulin were determined as well as aromatase expression in pyloric tissue and serum. Androgen receptor and estrogen receptor α (ERα) and β (ERβ) were also measured in the pylorus. RESULTS Compared to CM, estrogen increased and testosterone decreased in both DM and DM + GP rats. Sex hormone levels were not different between DM and DM + GP. Serum aromatase was increased in DM and DM + GP rats; however, pyloric tissue levels were not significantly different from controls. ERα was unchanged and androgen receptor decreased in DM and DM + GP. ERβ was increased only in DM + GP animals. CONCLUSION Our study implicates increased pyloric ERβ in the development of gastroparesis in STZ-induced male diabetic rats. Increased serum aromatase is likely responsible for altered sex hormone levels. Our study supports the implication of sex hormone signaling in diabetic development and demonstrates a potential unique role for pyloric ERβ in male diabetic gastroparesis.
Collapse
Affiliation(s)
- Stephen Crimmins
- Department of Clinical Investigation, William Beaumont Army Medical Center, 5005 N. Piedras Street, El Paso, TX 79920-5001, USA
- These authors contributed equally to first authorship of this manuscript
| | - Rebecca Smiley
- Department of Clinical Investigation, William Beaumont Army Medical Center, 5005 N. Piedras Street, El Paso, TX 79920-5001, USA
- These authors contributed equally to first authorship of this manuscript
| | - Kerry Preston
- Department of Clinical Investigation, William Beaumont Army Medical Center, 5005 N. Piedras Street, El Paso, TX 79920-5001, USA
| | - Amy Yau
- Internal Medicine Clinic, San Antonio Military Medical Center, 3551 Roger Brooke Dr., San Antonio, TX 78219, USA
| | - Richard Mccallum
- Department of Internal Medicine, Texas Tech Health Science Center Paul L. Foster School of Medicine, 4800 Alberta Ave, El Paso, TX 79905-2709, USA
| | - Mohammed Showkat Ali
- Department of Clinical Investigation, William Beaumont Army Medical Center, 5005 N. Piedras Street, El Paso, TX 79920-5001, USA
| |
Collapse
|
39
|
Mikosha AS, Kovzun EI, Tronko ND. Biochemical effects of estrogens in non-reproductive organs. UKRAINIAN BIOCHEMICAL JOURNAL 2015; 87:10-23. [DOI: 10.15407/ubj87.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
40
|
Abstract
Steroid hormones are produced throughout the phylogenetic tree, from plants to mammals. In the past 40 years, steroid receptors localized to the nucleus have been recognized as being important to mediating steroid action in many organs. This action mainly arises from the regulation of key genes that are important for organ development and function. These include but are not limited to genes influencing the reproductive tract, mammary glands, bone, brain, fat differentiation, pituitary hormone regulation, and metabolic effects in many organs. Unfortunately, steroids also promote the development of hormone-responsive cancers, including breast, uterus, and prostate cancer. It has also been shown that steroid receptors exist outside the nucleus in many organs and cells, with unclear impact for normal development, health, and disease. This review describes the evidence from many laboratories that these receptors exist and function with nuclear receptors to provide the full impact of all steroid hormones.
Collapse
Affiliation(s)
- Ellis R Levin
- Departments of Medicine and Biochemistry, University of California, Irvine and the Long Beach VA Medical Center;
| |
Collapse
|
41
|
Yuchi Y, Cai Y, Legein B, De Groef S, Leuckx G, Coppens V, Van Overmeire E, Staels W, De Leu N, Martens G, Van Ginderachter JA, Heimberg H, Van de Casteele M. Estrogen Receptor α Regulates β-Cell Formation During Pancreas Development and Following Injury. Diabetes 2015; 64:3218-28. [PMID: 26015547 DOI: 10.2337/db14-1798] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/16/2015] [Indexed: 11/13/2022]
Abstract
Identifying pathways for β-cell generation is essential for cell therapy in diabetes. We investigated the potential of 17β-estradiol (E2) and estrogen receptor (ER) signaling for stimulating β-cell generation during embryonic development and in the severely injured adult pancreas. E2 concentration, ER activity, and number of ERα transcripts were enhanced in the pancreas injured by partial duct ligation (PDL) along with nuclear localization of ERα in β-cells. PDL-induced proliferation of β-cells depended on aromatase activity. The activation of Neurogenin3 (Ngn3) gene expression and β-cell growth in PDL pancreas were impaired when ERα was turned off chemically or genetically (ERα(-/-)), whereas in situ delivery of E2 promoted β-cell formation. In the embryonic pancreas, β-cell replication, number of Ngn3(+) progenitor cells, and expression of key transcription factors of the endocrine lineage were decreased by ERα inactivation. The current study reveals that E2 and ERα signaling can drive β-cell replication and formation in mouse pancreas.
Collapse
Affiliation(s)
- Yixing Yuchi
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ying Cai
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Legein
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofie De Groef
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gunter Leuckx
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Violette Coppens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Van Overmeire
- Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie, Brussels, Belgium Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Willem Staels
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University Hospital, and Department of Pediatrics and Medical Genetics, Ghent University, Ghent, Belgium
| | - Nico De Leu
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Geert Martens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie, Brussels, Belgium Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
42
|
Pancreatic alpha-cells from female mice undergo morphofunctional changes during compensatory adaptations of the endocrine pancreas to diet-induced obesity. Sci Rep 2015; 5:11622. [PMID: 26108563 PMCID: PMC4650619 DOI: 10.1038/srep11622] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/02/2015] [Indexed: 01/28/2023] Open
Abstract
Obesity is frequently associated with insulin resistance. To compensate for this situation and maintain normoglycaemia, pancreatic beta-cells undergo several morphofunctional adaptations, which result in insulin hypersecretion and hyperinsulinaemia. However, no information exists about pancreatic alpha-cells during this compensatory stage of obesity. Here, we studied alpha-cells in mice fed a high-fat diet (HFD) for 12 weeks. These animals exhibited hyperinsulinaemia and normoglycaemia compared with control animals in addition to hypoglucagonaemia. While the in vivo response of glucagon to hypoglycaemia was preserved in the obese mice, the suppression of glucagon secretion during hyperglycaemia was impaired. Additionally, in vitro glucagon release at low glucose levels and glucagon content in isolated islets were decreased, while alpha-cell exocytosis remained unchanged. Assessment of morphological parameters revealed that alpha-cell area was reduced in the pancreas of the obese mice in association with alpha-cell hypotrophy, increased apoptosis and decreased proliferation. HFD feeding for 24 weeks led to significant deterioration in beta-cell function and glucose homeostasis. Under these conditions, the majority of alpha-cell changes were reversed and became comparable to controls. These findings indicate that pancreatic compensatory adaptations during obesity may also involve pancreatic alpha-cells. Additionally, defects in alpha-cell function during obesity may be implicated in progression to diabetes.
Collapse
|
43
|
Wu YX, Sun RQ, Yin GS, Xu DC, Wang P, Lin K, Lin CJ, Lin SD. Different effect of handle region peptide on β-cell function in different sexes of rats neonatally treated with sodium L-glutamate. Med Sci Monit Basic Res 2015; 21:33-40. [PMID: 25783768 PMCID: PMC4428315 DOI: 10.12659/msmbr.893183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/02/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The (pro)renin receptor ((P)RR) was reported to be expressed in various tissues including the pancreas, and handle region peptide (HRP) is believed to block the function of (P)RR. This study aimed to investigate the effect of HRP on the glucose tolerance status and β-cell function of female rats, neonatally treated with sodium L-glutamate (MSG) and to compare with the previously reported HRP effect on male rats. MATERIAL AND METHODS Female MSG rats aged 8 weeks were divided into MSG control group and HRP treated group and the normal SD rats served as control. The MSG rats were treated with HRP by osmotic minipumps with dose of 1 mg/kg per day for total 28 days. Glucose tolerance status was evaluated at the end of the study. Islets α-cell and β-cell were marked with insulin antibody and glucagon antibody respectively. The proliferation of islet cells and expression of subunit of NADPH oxidase P22phox were marked by PCNA and P22phox antibody. Picrosirius red staining was performed for evaluating fibrosis of islets. RESULTS HRP improved the glucose status tolerance with decreasing α-cell mass, islets PCNA-positive cells, expression of P22phox and picrosirius red stained areas, and increasing β-cell mass in female MSG rats. The indexes with obviously interacted effect of sexes and HRP for the MSG rats were the AUC of blood glucose concentration (P<0.01), α-cell mass (P<0.05), proliferation of islet cells (P<0.01) and area of picrosirius red staining (P<0.01). CONCLUSIONS HRP improved the glucose tolerance status in the females although it was previously reported to worsen the glucose tolerance in male MSG rats. Different levels of sex hormones may partly account for the disparate effects observed for HRP in different sexes.
Collapse
Affiliation(s)
- Yi-xi Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ru-qiong Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Endocrinology and Metabolism, Tongxiang First People Hospital, Tongxiang, Zhejiang, China
| | - Guo-shu Yin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Dong-chuan Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ping Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kun Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chu-jia Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shao-da Lin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
44
|
ter Horst KW, Gilijamse PW, de Weijer BA, Kilicarslan M, Ackermans MT, Nederveen AJ, Nieuwdorp M, Romijn JA, Serlie MJ. Sexual Dimorphism in Hepatic, Adipose Tissue, and Peripheral Tissue Insulin Sensitivity in Obese Humans. Front Endocrinol (Lausanne) 2015; 6:182. [PMID: 26635731 PMCID: PMC4659894 DOI: 10.3389/fendo.2015.00182] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/12/2015] [Indexed: 11/29/2022] Open
Abstract
Glucose and lipid metabolism differ between men and women, and women tend to have better whole-body or muscle insulin sensitivity. This may be explained, in part, by differences in sex hormones and adipose tissue distribution. Few studies have investigated gender differences in hepatic, adipose tissue, and whole-body insulin sensitivity between severely obese men and women. In this study, we aimed to determine the differences in glucose metabolism between severely obese men and women using tissue-specific measurements of insulin sensitivity. Insulin sensitivity was compared between age and body mass index (BMI)-matched obese men and women by a two-step euglycemic hyperinsulinemic clamp with infusion of [6,6-(2)H2]glucose. Basal endogenous glucose production (EGP) and insulin sensitivity of the liver, adipose tissue, and peripheral tissues were assessed. Liver fat content was assessed by proton magnetic resonance spectroscopy in a subset of included subjects. We included 46 obese men and women (age, 48 ± 2 vs. 46 ± 2 years, p = 0.591; BMI, 41 ± 1 vs. 41 ± 1 kg/m(2), p = 0.832). There was no difference in basal EGP (14.4 ± 1.0 vs. 15.3 ± 0.5 μmol · kg fat-free mass(-1) · min(-1), p = 0.410), adipose tissue insulin sensitivity (insulin-mediated suppression of free fatty acids, 71.6 ± 3.6 vs. 76.1 ± 2.6%, p = 0.314), or peripheral insulin sensitivity (insulin-stimulated rate of disappearance of glucose, 26.2 ± 2.1 vs. 22.7 ± 1.7 μmol · kg(-1) · min(-1), p = 0.211). Obese men were characterized by lower hepatic insulin sensitivity (insulin-mediated suppression of EGP, 61.7 ± 4.1 vs. 72.8 ± 2.5% in men vs. women, respectively, p = 0.028). Finally, these observations could not be explained by differences in liver fat content (men vs. women, 16.5 ± 3.1 vs. 16.0 ± 2.5%, p = 0.913, n = 27). We conclude that obese men have lower hepatic, but comparable adipose tissue and peripheral tissue, insulin sensitivity compared to similarly obese women. Hepatic insulin resistance may contribute to the higher prevalence of diabetes in obese men. Further insight into the mechanisms underlying this gender difference may reveal novel targets for diabetes prevention and/or therapy.
Collapse
Affiliation(s)
- Kasper W. ter Horst
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Pim W. Gilijamse
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Barbara A. de Weijer
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Murat Kilicarslan
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Mariette T. Ackermans
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, Netherlands
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
| | | | - Mireille J. Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
- *Correspondence: Mireille J. Serlie,
| |
Collapse
|
45
|
Kohara Y, Kawaguchi S, Kuwahara R, Uchida Y, Oku Y, Yamashita K. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation. Physiol Behav 2014; 140:15-22. [PMID: 25481356 DOI: 10.1016/j.physbeh.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation.
Collapse
Affiliation(s)
- Yumi Kohara
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Shinichiro Kawaguchi
- Graduate School of Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Rika Kuwahara
- Division of Environmental Chemistry and Ecotoxicology, Institute of Environmental Studies, Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yutaro Uchida
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yushi Oku
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kimihiro Yamashita
- Division of Environmental Chemistry and Ecotoxicology, Institute of Environmental Studies, Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan.
| |
Collapse
|
46
|
Ahad A, Mujeeb M, Ahsan H, Siddiqui WA. Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats. Biochimie 2014; 106:101-10. [DOI: 10.1016/j.biochi.2014.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
|
47
|
Expression of estrogen-induced genes and estrogen receptor β in pancreatic neuroendocrine tumors: implications for targeted therapy. Pancreas 2014; 43:996-1002. [PMID: 25058880 PMCID: PMC4628823 DOI: 10.1097/mpa.0000000000000203] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The indolent nature and expression of progesterone receptor (PR), a well-known estrogen-induced gene, in a subset of pancreatic neuroendocrine tumors (PanNETs), raise the possibility of hormonal regulation in these tumors. METHODS Immunohistochemical expression of estrogen receptors (ERs) α and β as well as messenger RNA expression of estrogen-induced genes (PR, EIG121, IGF-1, IGF-1R, sFRP1, and sFRP4) by quantitative reverse transcription-polymerase chain reaction were examined in 131 World Health Organization grade G1 and G2 PanNETs and correlated their expression with clinicopathological features. RESULTS Thirty-nine PanNETs (30%) showed high positive ERβ staining, and 87 cases (66%) had low positive ERβ staining; only 5 cases (4%) had no nuclear staining. Pancreatic neuroendocrine tumors with small size (P = 0.02), low World Health Organization grade (P = 0.02), and low American Joint Committee on Cancer stage (P = 0.006) more frequently showed high positive ERβ staining. Among the estrogen-induced genes studied, PanNETs had significantly higher expression of PR, EIG121, IGF-1, sFRP1, and sFRP4 compared with normal pancreas, independent of age or sex. High positive ERβ staining was associated with an increased expression of PR (P < 0.001) and EIG121 (P = 0.02). CONCLUSIONS Our study showed that PanNETs with favorable prognostic features have higher ERβ expression, which is associated with up-regulated PR and EIG121 messenger RNA expression. Estrogen regulation in PanNETs could potentially help in risk stratification and provide a rational target for novel treatment strategies.
Collapse
|
48
|
Levin ER. Extranuclear estrogen receptor's roles in physiology: lessons from mouse models. Am J Physiol Endocrinol Metab 2014; 307:E133-40. [PMID: 24895281 PMCID: PMC4101634 DOI: 10.1152/ajpendo.00626.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/10/2014] [Indexed: 12/22/2022]
Abstract
Steroid receptors exist and function in multiple compartments of cells in most organs. Although the functions and nature of some of these receptors is being defined, important aspects of receptor localization and signaling to physiology and pathophysiology have been identified. In particular, extranuclear sex steroid receptors have been found in many normal cells and in epithelial tumors, where they enact signal transduction that impacts both nongenomic and genomic functions. Here, I focus on the progress made in understanding the roles of extranuclear estrogen receptors (ER) in physiology and pathophysiology. Extranuclear ER serve as a model to selectively intervene with novel receptor reagents to prevent or limit disease progression. Recent novel mouse models and membrane ER-selective agonists also provide a better understanding of receptor pool cross-talk that results in the overall integrative actions of sex steroids.
Collapse
Affiliation(s)
- Ellis R Levin
- Departments of Medicine and Biochemistry, University of California-Irvine and Long Beach Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
49
|
Abstract
BACKGROUND Dysglycemia and dyslipidemia are important metabolic complications of organ transplantation. Statins are widely used to control dyslipidemia; however, long-term use of statins is related to diabetes mellitus (DM) and impaired fasting glucose (IFG). The aim of this study was to evaluate the influence of statins on the development of dysglycemia (IFG and/or DM) in renal allograft recipients. METHODS A total of 394 patients without previously known DM or IFG who underwent kidney transplantation were enrolled. Patients were grouped into the two groups according to the use of statin (control, n=149; statin, n=245). The major statins used were fluvastatin (80 mg/d, n=134) and atorvastatin (20 mg/d, n=111). We compared the incidence of IFG or DM during the follow-up period. RESULTS The incidence of IFG was higher in the statin group than that in the control group (28.6% vs. 8.7%, P<0.001). The incidence of dysglycemia was significantly higher in the statin group (40.0% vs. 15.4%, P=0.001). Time to development of dysglycemia after transplantation was shorter in the statin group than in the control group (38.8±29.7 vs. 47.2±23.3 months, P=0.002). Statin use was associated with an increased risk for dysglycemia after adjustment for age, sex, body mass index, hypertension, cholesterol levels, hepatitis C infection, and type of immunosuppressant (hazard ratio=3.08, 95% confidence interval=1.91-4.98). The dysglycemic effect was more profound in the patients who used atorvastatin than in those who used fluvastatin (hazard ratio=2.21, 95% confidence interval=1.02-4.76). CONCLUSION Statin treatment is associated with an elevation in fasting plasma glucose and in the development of dysglycemia in renal allograft recipients.
Collapse
|
50
|
Mamounis KJ, Yang JA, Yasrebi A, Roepke TA. Estrogen response element-independent signaling partially restores post-ovariectomy body weight gain but is not sufficient for 17β-estradiol's control of energy homeostasis. Steroids 2014; 81:88-98. [PMID: 24252383 PMCID: PMC3947695 DOI: 10.1016/j.steroids.2013.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The steroid 17β-estradiol (E2) modulates energy homeostasis by reducing feeding behavior and increasing energy expenditure primarily through estrogen receptor α (ERα)-mediated mechanisms. Intact ERαKO female mice develop obesity as adults exhibiting decreased energy expenditure and increased fat deposition. However, intact transgenic female mice expressing a DNA-binding-deficient ERα (KIKO) are not obese and have similar energy expenditure, activity and fat deposition as to wild type (WT) females, suggesting that non-estrogen response element (ERE)-mediated signaling is important in E2 regulation of energy homeostasis. Initial reports did not examine the effects of ovariectomy on energy homeostasis or E2's attenuation of post-ovariectomy body weight gain. Therefore, we sought to determine if low physiological doses of E2 (250 ng QOD) known to suppress post-ovariectomy body weight gain in WT females would suppress body weight gain in ovariectomized KIKO females. We observed that the post-ovariectomy increase in body weight was significantly greater in WT females than in KIKO females. Furthermore, E2 did not significantly attenuate the body weight gain in KIKO females as it did in WT females. E2 replacement suppressed food intake and fat accumulation while increasing nighttime oxygen consumption and activity only in WT females. E2 replacement also increased arcuate POMC gene expression in WT females only. These data suggest that in the intact female, ERE-independent mechanisms are sufficient to maintain normal energy homeostasis and to partially restore the normal response to ovariectomy. However, they are not sufficient for E2's suppression of post-ovariectomy body weight gain and its effects on metabolism and activity.
Collapse
Affiliation(s)
- Kyle J Mamounis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jennifer A Yang
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|