1
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Sun W, Liu J, Zhao R, Yang T, Zheng Z, Zhang T, Wang G. Knockdown of IFNAR2 reduces the inflammatory response in mouse model of type 1 diabetes. Biochem Biophys Res Commun 2022; 619:9-14. [PMID: 35728283 DOI: 10.1016/j.bbrc.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND and Purpose: To investigate the biological role of interferon α/β receptor 2 (IFNAR2) in type 1 diabetes (T1D). METHODS First, IFNAR2 mRNA and protein expression levels in serum of T1D patients and healthy controls were detected by RT-qPCR and Western blot. For experimental studies, 80 male C57BL/6 mice were randomly divided into 4 groups with 20 mice in each group: the control group, the T1D group, the T1D + ad-con group and the T1D + ad-si-IFNAR2 group. The T1D mouse model was generated by multiple intraperitoneal injections of small doses of streptozotocin (STZ). Body weight and blood glucose levels were measured weekly until 6 weeks. After 6 weeks, all mice were sacrificed and the levels of insulin (Ins), tumor necrosis factor α (TNF-α), interleukin 4 (IL-4), IL-6, and type I interferon γ (IFN-γ), IFNAR2 protein expression, the number of dendritic cells (DCs), and changes in islet β cells were assessed. RESULTS IFNAR2 mRNA and protein expression levels in serum of T1D patients were significantly higher than those in healthy controls (P < 0.05). Furthermore, IFNAR2 protein expression, number of DCs, and IFNAR2 mRNA, blood glucose, TNF-α, and IFN-γ levels were significantly upregulated in T1D mice compared with the control group (P < 0.05), while weight, and Ins, IL-6, and IL-4 levels were decreased (P < 0.05). However, knockdown of IFNAR2 reversed these trends. There was no significant difference in markers between the T1D + ad-con group and the T1D group (P > 0.05). CONCLUSIONS Knockdown of IFNAR2 reduced the inflammatory response and improved islet function of T1D mice.
Collapse
Affiliation(s)
- Wei Sun
- Department of Clinical Laboratory, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, JiangSu, 222061, China
| | - Jing Liu
- Management of Hospital Infection, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, JiangSu, 222061, China
| | - Renhao Zhao
- Department of Endocrinology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, JiangSu, 222061, China
| | - Teng Yang
- Department of Endocrinology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, JiangSu, 222061, China
| | - Zhichen Zheng
- Department of Endocrinology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, JiangSu, 222061, China
| | - Tongyu Zhang
- Department of Endocrinology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, JiangSu, 222061, China
| | - Guofeng Wang
- Department of Endocrinology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, JiangSu, 222061, China.
| |
Collapse
|
3
|
Derakhshankhah H, Sajadimajd S, Jahanshahi F, Samsonchi Z, Karimi H, Hajizadeh-Saffar E, Jafari S, Razmi M, Sadegh Malvajerd S, Bahrami G, Razavi M, Izadi Z. Immunoengineering Biomaterials in Cell-Based Therapy for Type 1 Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1053-1066. [PMID: 34696626 DOI: 10.1089/ten.teb.2021.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes (T1D) is caused by low insulin production and chronic hyperglycemia due to the destruction of pancreatic β-cells. Cell transplantation is an attractive alternative approach compared to insulin injection. However, cell therapy has been limited by major challenges including life-long requirements for immunosuppressive drugs in order to prevent host immune responses. Encapsulation of the transplanted cells can solve the problem of immune rejection, by providing a physical barrier between the transplanted cells and the recipient's immune cells. Despite current disputes in cell encapsulation approaches, thanks to recent advances in the fields of biomaterials and transplantation immunology, extensive effort has been dedicated to immunoengineering strategies in combination with encapsulation technologies to overcome the problem of the host's immune responses. The current review summarizes the most commonly used encapsulation and immunoengineering strategies combined with cell therapy which has been applied as a novel approach to improve cell replacement therapies for the management of T1D. Recent advances in the fields of biomaterial design, nanotechnology, as well as deeper knowledge about immune modulation had significantly improved cell encapsulation strategies. However, further progress requires the combined application of novel immunoengineering approaches and islet/ß-cell transplantation.
Collapse
Affiliation(s)
- Hossein Derakhshankhah
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | | | - Fatemeh Jahanshahi
- Iran University of Medical Sciences, 440827, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Zakieh Samsonchi
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Hassan Karimi
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Ensiyeh Hajizadeh-Saffar
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Samira Jafari
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | - Mahdieh Razmi
- University of Tehran Institute of Biochemistry and Biophysics, 441284, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Soroor Sadegh Malvajerd
- Tehran University of Medical Sciences, 48439, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Gholamreza Bahrami
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | - Mehdi Razavi
- University of Central Florida, 6243, Orlando, Florida, United States;
| | - Zhila Izadi
- Kermanshah University of Medical Sciences, 48464, Kermanshah,Iran, Kermanshah, Iran (the Islamic Republic of), 6715847141;
| |
Collapse
|
4
|
Zhou X, Yang M, Lv Y, Li H, Wu S, Min J, Shen G, He Y, Lei P. Adoptive transfer of GRP78-treated dendritic cells alleviates insulitis in NOD mice. J Leukoc Biol 2021; 110:1023-1031. [PMID: 34643294 DOI: 10.1002/jlb.3ma0921-219rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
The 78-kDa glucose-regulated protein (GRP78) has extracellular, anti-inflammatory properties that can aid resolving inflammation. It has been established previously that GRP78 induced myeloid CD11c+ cell differentiation into distinct tolerogenic cells. This tolerance induction makes GRP78 a potential therapeutic agent for transplanted allogeneic grafts and autoimmune diseases, such as type 1 diabetes. In this research, it is revealed that rmGRP78-treated NOD mice bone marrow-derived CD11c+ cells (GRP78-DCs) highly expressed B7-H4 but down-regulated CD86 and CD40, and retained a tolerogenic signature even after stimulation by LPS. In the assessment of in vivo therapeutic efficacy after the adoptive transfer of GRP78-DCs into NOD mice, fluorescent imaging analyses revealed that the transfer specifically homed in inflamed pancreases, promoting β-cell survival and alleviating insulitis in NOD mice. The adoptive transfer of GRP78-DCs also helped reduce Th1, Th17, and CTL, suppressing inflammatory cytokine production in vivo. The findings suggest that adoptive GRP78-DC transfer is critical to resolving inflammation in NOD mice and may have relevance in a clinical setting.
Collapse
Affiliation(s)
- Xiaoqi Zhou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Muyang Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yibing Lv
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heli Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomics, Guangzhou, China
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Koushki K, Keshavarz Shahbaz S, Keshavarz M, Bezsonov EE, Sathyapalan T, Sahebkar A. Gold Nanoparticles: Multifaceted Roles in the Management of Autoimmune Disorders. Biomolecules 2021; 11:1289. [PMID: 34572503 PMCID: PMC8470500 DOI: 10.3390/biom11091289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Gold nanoparticles (GNPs) have been recently applied for various diagnostic and therapeutic purposes. The unique properties of these nanoparticles (NPs), such as relative ease of synthesis in various sizes, shapes and charges, stability, high drug-loading capacity and relative availability for modification accompanied by non-cytotoxicity and biocompatibility, make them an ideal field of research in bio-nanotechnology. Moreover, their potential to alleviate various inflammatory factors, nitrite species, and reactive oxygen production and the capacity to deliver therapeutic agents has attracted attention for further studies in inflammatory and autoimmune disorders. Furthermore, the characteristics of GNPs and surface modification can modulate their toxicity, biodistribution, biocompatibility, and effects. This review discusses in vitro and in vivo effects of GNPs and their functionalized forms in managing various autoimmune disorders (Ads) such as rheumatoid arthritis, type 1 diabetes, and multiple sclerosis.
Collapse
Affiliation(s)
- Khadijeh Koushki
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran;
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran;
| | - Mohsen Keshavarz
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514763448, Iran;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU32RW, UK;
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
6
|
Mansouri S, Gogoi H, Pipkin M, Machuca TN, Emtiazjoo AM, Sharma AK, Jin L. In vivo reprogramming of pathogenic lung TNFR2 + cDC2s by IFNβ inhibits HDM-induced asthma. Sci Immunol 2021; 6:6/61/eabi8472. [PMID: 34244314 DOI: 10.1126/sciimmunol.abi8472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/21/2021] [Indexed: 01/28/2023]
Abstract
Asthma is a common inflammatory lung disease with no known cure. Previously, we uncovered a lung TNFR2+ conventional DC2 subset (cDC2s) that induces regulatory T cells (Tregs) maintaining lung tolerance at steady state but promotes TH2 response during house dust mite (HDM)-induced asthma. Lung IFNβ is essential for TNFR2+ cDC2s-mediated lung tolerance. Here, we showed that exogenous IFNβ reprogrammed TH2-promoting pathogenic TNFR2+ cDC2s back to tolerogenic DCs, alleviating eosinophilic asthma and preventing asthma exacerbation. Mechanistically, inhaled IFNβ, not IFNα, activated ERK2 signaling in pathogenic lung TNFR2+ cDC2s, leading to enhanced fatty acid oxidation (FAO) and lung Treg induction. Last, human IFNβ reprogrammed pathogenic human lung TNFR2+ cDC2s from patients with emphysema ex vivo. Thus, we identified an IFNβ-specific ERK2-FAO pathway that might be harnessed for DC therapy.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mauricio Pipkin
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Tiago N Machuca
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Amir M Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ashish K Sharma
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
7
|
Hu W, Song X, Yu H, Sun J, Wang H, Zhao Y. Clinical Translational Potentials of Stem Cell-Derived Extracellular Vesicles in Type 1 Diabetes. Front Endocrinol (Lausanne) 2021; 12:682145. [PMID: 35095751 PMCID: PMC8789747 DOI: 10.3389/fendo.2021.682145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific disease characterized by the deficiency of insulin caused by the autoimmune destruction of pancreatic islet β cells. Stem cell-based therapies play essential roles in immunomodulation and tissue regeneration, both of which hold great promise for treating many autoimmune dysfunctions. However, their clinical translational potential has been limited by ethical issues and cell transplant rejections. Exosomes are small extracellular vesicles (EVs) released by almost all types of cells, performing a variety of cell functions through the delivery of their molecular contents such as proteins, DNAs, and RNAs. Increasing evidence suggests that stem cell-derived EVs exhibit similar functions as their parent cells, which may represent novel therapeutic agents for the treatment of autoimmune diseases including T1D. In this review, we summarize the current research progresses of stem cell-derived EVs for the treatment of T1D.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Jingyu Sun
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Hongjun Wang
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Throne Biotechnologies Inc., Paramus, NJ, United States
- *Correspondence: Yong Zhao,
| |
Collapse
|
8
|
Stewart JM, Posgai AL, Leon JJ, Haller MJ, Keselowsky BG. Combination Treatment with Antigen-Specific Dual-Sized Microparticle System Plus Anti-CD3 Immunotherapy Fails to Synergize to Improve Late-Stage Type 1 Diabetes Prevention in Nonobese Diabetic Mice. ACS Biomater Sci Eng 2020; 6:5941-5958. [PMID: 33320581 PMCID: PMC8108782 DOI: 10.1021/acsbiomaterials.0c01075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) pathophysiology, while incompletely understood, has in part been attributed to aberrant presentation of self-antigen plus proinflammatory costimulation by professional antigen-presenting cells (APCs). Therapies targeting dendritic cells (DCs) offer an avenue to restore antigen-specific tolerance by promoting presentation of self-antigen in an anti-inflammatory or suppressive context. Here, we describe a subcutaneously administered, dual-sized biodegradable microparticle (MP) platform that includes phagocytosable (∼1 μm) and nonphagocytosable (∼30 μm) MPs to deliver pro-tolerogenic factors both intra- and extracellularly, as well as the T1D-associated autoantigen, insulin, to DCs for amelioration of autoimmunity. This MP platform resulted in increased recruitment of DCs, suppressive skewing of DC phenotype with diminished expression of CD86 and MHC-II, increased regulatory T cell (Treg) frequency, and upregulated expression of the checkpoint inhibitor programmed cell death protein 1 (PD-1) on T cells. When administered concomitantly with anti-CD3 antibody, which provides transient T cell depletion while preserving Treg populations, in 12-week-old nonobese diabetic (NOD) mice, regulatory immune populations persisted out to 20 weeks of age; however, combination anti-CD3 and dual-sized MP (dMP) therapy failed to synergistically inhibit diabetes onset.
Collapse
Affiliation(s)
- J. M. Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - A. L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32611
| | - J. J. Leon
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - M. J. Haller
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32611
| | - B. G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32611
| |
Collapse
|
9
|
Cleenewerk L, Garssen J, Hogenkamp A. Clinical Use of Schistosoma mansoni Antigens as Novel Immunotherapies for Autoimmune Disorders. Front Immunol 2020; 11:1821. [PMID: 32903582 PMCID: PMC7438586 DOI: 10.3389/fimmu.2020.01821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
The hygiene hypothesis states that improved hygiene and the resulting disappearance of once endemic diseases is at the origin of the enormous increase in immune related disorders such as autoimmune diseases seen in the industrialized world. Helminths, such as Schistosoma mansoni, are thought to provide protection against the development of autoimmune diseases by regulating the host's immune response. This modulation primarily involves induction of regulatory immune responses, such as generation of tolerogenic dendritic cells and alternatively activated macrophages. This points toward the potential of employing helminths or their products/metabolites as therapeutics for autoimmune diseases that are characterized by an excessive inflammatory state, such as multiple sclerosis (MS), type I diabetes (T1D) and inflammatory bowel disease (IBD). In this review, we examine the known mechanisms of immune modulation by S. mansoni, explore preclinical and clinical studies that investigated the use of an array helminthic products in these diseases, and propose that helminthic therapy opens opportunities in the treatment of chronic inflammatory disorders.
Collapse
Affiliation(s)
- L Cleenewerk
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands.,Division of Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Beta Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Loretelli C, Assi E, Seelam AJ, Ben Nasr M, Fiorina P. Cell therapy for type 1 diabetes. Expert Opin Biol Ther 2020; 20:887-897. [PMID: 32299257 DOI: 10.1080/14712598.2020.1748596] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a lifelong condition resulting from autoimmune destruction of insulin-producing β-cells. Islet or whole-pancreas transplantation is limited by the shortage of donors and need for chronic immune suppression. Novel strategies are needed to prevent β-cell loss and to rescue production of endogenous insulin. AREAS COVERED This review covers the latest advances in cell-based therapies for the treatment and prevention of T1D. Topics include adoptive transfer of cells with increased immunoregulatory potential for β-cell protection, and β-cell replacement strategies such as generation of insulin-producing β-like cells from unlimited sources. EXPERT OPINION Cell therapy provides an opportunity to prevent or reverse T1D. Adoptive transfer of autologous cells having enhanced immunomodulatory properties can suppress autoimmunity and preserve β-cells. Such therapies have been made possible by a combination of genome-editing techniques and transplantation of tolerogenic cells. In-vitro modified autologous hematopoietic stem cells and tolerogenic dendritic cells may protect endogenous and newly generated β-cells from a patient's autoimmune response without hampering immune surveillance for infectious agents and malignant cellular transformations. However, methods to generate cells that meet quality and safety standards for clinical applications require further refinement.
Collapse
Affiliation(s)
- Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy
| | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School , Boston, MA, USA
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, Università Degli Studi Di Milano , Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School , Boston, MA, USA.,Division of Endocrinology, ASST Fatebenefratelli-Sacco , Milan, Italy
| |
Collapse
|
11
|
Shtylla B, Gee M, Do A, Shabahang S, Eldevik L, de Pillis L. A Mathematical Model for DC Vaccine Treatment of Type I Diabetes. Front Physiol 2019; 10:1107. [PMID: 31555144 PMCID: PMC6742690 DOI: 10.3389/fphys.2019.01107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/12/2019] [Indexed: 01/28/2023] Open
Abstract
Type I diabetes (T1D) is an autoimmune disease that can be managed, but for which there is currently no cure. Recent discoveries, particularly in mouse models, indicate that targeted modulation of the immune response has the potential to move an individual from a diabetic to a long-term, if not permanent, healthy state. In this paper we develop a single compartment mathematical model that captures the dynamics of dendritic cells (DC and tDC), T cells (effector and regulatory), and macrophages in the development of type I diabetes. The model supports the hypothesis that differences in macrophage clearance rates play a significant role in determining whether or not an individual is likely to become diabetic subsequent to a significant immune challenge. With this model we are able to explore the effects of strengthening the anti-inflammatory component of the immune system in a vulnerable individual. Simulations indicate that there are windows of opportunity in which treatment intervention is more likely to be beneficial in protecting an individual from entering a diabetic state. This model framework can be used as a foundation for modeling future T1D treatments as they are developed.
Collapse
Affiliation(s)
- Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, United States
| | - Marissa Gee
- Mathematics Department, Harvey Mudd College, Claremont, CA, United States
| | - An Do
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA, United States
| | | | - Leif Eldevik
- Aditx Therapeutics, Inc., Loma Linda, CA, United States
| | - Lisette de Pillis
- Mathematics Department, Harvey Mudd College, Claremont, CA, United States
| |
Collapse
|
12
|
Macdougall CE, Wood EG, Solomou A, Scagliotti V, Taketo MM, Gaston-Massuet C, Marelli-Berg FM, Charalambous M, Longhi MP. Constitutive Activation of β-Catenin in Conventional Dendritic Cells Increases the Insulin Reserve to Ameliorate the Development of Type 2 Diabetes in Mice. Diabetes 2019; 68:1473-1484. [PMID: 31048369 DOI: 10.2337/db18-1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/11/2019] [Indexed: 11/13/2022]
Abstract
β-Cell failure is central to the development of type 2 diabetes mellitus (T2DM). Dysregulation of metabolic and inflammatory processes during obesity contributes to the loss of islet function and impaired β-cell insulin secretion. Modulating the immune system, therefore, has the potential to ameliorate diseases. We report that inducing sustained expression of β-catenin in conventional dendritic cells (cDCs) provides a novel mechanism to enhance β-cell insulin secretion. Intriguingly, cDCs with constitutively activated β-catenin induced islet expansion by increasing β-cell proliferation in a model of diet-induced obesity. We further found that inflammation in these islets was reduced. Combined, these effects improved β-cell insulin secretion, suggesting a unique compensatory mechanism driven by cDCs to generate a greater insulin reserve in response to obesity-induced insulin resistance. Our findings highlight the potential of immune modulation to improve β-cell mass and function in T2DM.
Collapse
Affiliation(s)
- Claire E Macdougall
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Elizabeth G Wood
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Antonia Solomou
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, London, U.K
| | - Valeria Scagliotti
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, London, U.K
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Carles Gaston-Massuet
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, King's College London, Guys Hospital, London, U.K
| | - M Paula Longhi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K.
| |
Collapse
|
13
|
Funda DP, Palová-Jelínková L, Goliáš J, Kroulíková Z, Fajstová A, Hudcovic T, Špíšek R. Optimal Tolerogenic Dendritic Cells in Type 1 Diabetes (T1D) Therapy: What Can We Learn From Non-obese Diabetic (NOD) Mouse Models? Front Immunol 2019; 10:967. [PMID: 31139178 PMCID: PMC6527741 DOI: 10.3389/fimmu.2019.00967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are explored as a promising standalone or combination therapy in type 1 diabetes (T1D). The therapeutic application of tolDCs, including in human trials, has been tested also in other autoimmune diseases, however, T1D displays some unique features. In addition, unlike in several disease-induced animal models of autoimmune diseases, the prevalent animal model for T1D, the NOD mouse, develops diabetes spontaneously. This review compares evidence of various tolDCs approaches obtained from animal (mainly NOD) models of T1D with a focus on parameters of this cell-based therapy such as protocols of tolDC preparation, antigen-specific vs. unspecific approaches, doses of tolDCs and/or autoantigens, application schemes, application routes, the migration of tolDCs as well as their preventive, early pre-onset intervention or curative effects. This review also discusses perspectives of tolDC therapy and areas of preclinical research that are in need of better clarification in animal models in a quest for effective and optimal tolDC therapies of T1D in humans.
Collapse
Affiliation(s)
- David P Funda
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| | - Jaroslav Goliáš
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Zuzana Kroulíková
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Alena Fajstová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Radek Špíšek
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| |
Collapse
|
14
|
Lewis JS, Stewart JM, Marshall GP, Carstens MR, Zhang Y, Dolgova NV, Xia C, Brusko TM, Wasserfall CH, Clare-Salzler MJ, Atkinson MA, Keselowsky BG. Dual-Sized Microparticle System for Generating Suppressive Dendritic Cells Prevents and Reverses Type 1 Diabetes in the Nonobese Diabetic Mouse Model. ACS Biomater Sci Eng 2019; 5:2631-2646. [PMID: 31119191 PMCID: PMC6518351 DOI: 10.1021/acsbiomaterials.9b00332] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
![]()
Antigen
specificity is a primary goal in developing curative therapies
for autoimmune disease. Dendritic cells (DCs), as the most effective
antigen presenting cells in the body, represent a key target to mediate
restoration of antigen-specific immune regulation. Here, we describe
an injectable, dual-sized microparticle (MP) approach that employs
phagocytosable ∼1 μm and nonphagocytosable ∼30
μm MPs to deliver tolerance-promoting factors both intracellularly
and extracellularly, as well as the type 1 diabetes autoantigen, insulin,
to DCs for reprogramming of immune responses and remediation of autoimmunity.
This poly(lactic-co-glycolic acid) (PLGA) MP system
prevented diabetes onset in 60% of nonobese diabetic (NOD) mice when
administered subcutaneously in 8 week old mice. Prevention of disease
was dependent upon antigen inclusion and required encapsulation of
factors in MPs. Moreover, administration of this “suppressive-vaccine”
boosted pancreatic lymph node and splenic regulatory T cells (Tregs),
upregulated PD-1 on CD4+ and CD8+ T cells, and
reversed hyperglycemia for up to 100 days in recent-onset NOD mice.
Our results demonstrate that a MP-based platform can reeducate the
immune system in an antigen-specific manner, augment immunomodulation
compared to soluble administration of drugs, and provide a promising
alternative to systemic immunosuppression for autoimmunity.
Collapse
Affiliation(s)
- Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States.,OneVax, LLC, 12085 Research Drive, Alachua, Florida 32615, United States.,Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Joshua M Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States
| | - Gregory P Marshall
- OneVax, LLC, 12085 Research Drive, Alachua, Florida 32615, United States
| | - Matthew R Carstens
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States
| | - Ying Zhang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States
| | - Natalia V Dolgova
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States
| | - Changqing Xia
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| | - Michael J Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States.,Department of Pediatrics, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, Florida 32611, United States.,Department of Pathology, Immunology and Laboratory Medicine, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32611, United States
| |
Collapse
|
15
|
Singh K, Martinell M, Luo Z, Espes D, Stålhammar J, Sandler S, Carlsson PO. Cellular immunological changes in patients with LADA are a mixture of those seen in patients with type 1 and type 2 diabetes. Clin Exp Immunol 2019; 197:64-73. [PMID: 30843600 PMCID: PMC6591143 DOI: 10.1111/cei.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
There is currently scarce knowledge of the immunological profile of patients with latent autoimmune diabetes mellitus in the adult (LADA) when compared with healthy controls (HC) and patients with classical type 1 diabetes (T1D) and type 2 diabetes (T2D). The objective of this study was to investigate the cellular immunological profile of LADA patients and compare to HC and patients with T1D and T2D. All patients and age‐matched HC were recruited from Uppsala County. Peripheral blood mononuclear cells were isolated from freshly collected blood to determine the proportions of immune cells by flow cytometry. Plasma concentrations of the cytokine interleukin (IL)‐35 were measured by enzyme‐linked immunosorbent assay (ELISA). The proportion of CD11c+CD123– antigen‐presenting cells (APCs) was lower, while the proportions of CD11c+CD123+ APCs and IL‐35+ tolerogenic APCs were higher in LADA patients than in T1D patients. The proportion of CD3–CD56highCD16+ natural killer (NK) cells was higher in LADA patients than in both HC and T2D patients. The frequency of IL‐35+ regulatory T cells and plasma IL‐35 concentrations in LADA patients were similar to those in T1D and T2D patients, but lower than in HC. The proportion of regulatory B cells in LADA patients was higher than in healthy controls, T1D and T2D patients, and the frequency of IL‐35+ regulatory B cells was higher than in T1D patients. LADA presents a mixed cellular immunological pattern with features overlapping with both T1D and T2D.
Collapse
Affiliation(s)
- K Singh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - M Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Z Luo
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - D Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J Stålhammar
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - S Sandler
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - P-O Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Xin GLL, Khee YP, Ying TY, Chellian J, Gupta G, Kunnath AP, Nammi S, Collet T, Hansbro PM, Dua K, Chellappan DK. Current Status on Immunological Therapies for Type 1 Diabetes Mellitus. Curr Diab Rep 2019; 19:22. [PMID: 30905013 DOI: 10.1007/s11892-019-1144-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) occurs when there is destruction of beta cells within the islets of Langerhans in the pancreas due to autoimmunity. It is considered a complex disease, and different complications can surface and worsen the condition if T1D is not managed well. Since it is an incurable disease, numerous treatments and therapies have been postulated in order to control T1D by balancing hyperglycemia control while minimizing hypoglycemic episodes. The purpose of this review is to primarily look into the current state of the available immunological therapies and their advantages for the treatment of T1D. RECENT FINDINGS Over the years, immunological therapy has become the center of attraction to treat T1D. Immunomodulatory approaches on non-antigens involving agents such as cyclosporine A, mycophenolate mofetil, anti-CD20, cytotoxic T cells, anti-TNF, anti-CD3, and anti-thymocyte globulin as well as immunomodulative approaches on antigens such as insulin, glutamic acid decarboxylase, and heat shock protein 60 have been studied. Aside from these two approaches, studies and trials have also been conducted on regulatory T cells, dendritic cells, interleukin 2, interleukin 4, M2 macrophages, and rapamycin/interleukin 2 combination therapy to test their effects on patients with T1D. Many of these agents have successfully suppressed T1D in non-obese diabetic (NOD) mice and in human trials. However, some have shown negative results. To date, the insights into the management of the immune system have been increasing rapidly to search for potential therapies and treatments for T1D. Nevertheless, some of the challenges are still inevitable. A lot of work and effort need to be put into the investigation on T1D through immunological therapy, particularly to reduce complications to improve and enhance clinical outcomes.
Collapse
Affiliation(s)
- Griselda Lim Loo Xin
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Yap Pui Khee
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Tan Yoke Ying
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Philip Michael Hansbro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Newcastle, NSW, 2308, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Newcastle, NSW, 2308, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Grohová A, Dáňová K, Špíšek R, Palová-Jelínková L. Cell Based Therapy for Type 1 Diabetes: Should We Take Hyperglycemia Into Account? Front Immunol 2019; 10:79. [PMID: 30804929 PMCID: PMC6370671 DOI: 10.3389/fimmu.2019.00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is characterized by long standing hyperglycemia leading to numerous life-threatening complications. For type 1 diabetes mellitus, resulting from selective destruction of insulin producing cells by exaggerated immune reaction, the only effective therapy remains exogenous insulin administration. Despite accurate compliance to treatment of certain patients, transient episodes of hyperglycemia cannot be completely eliminated by this symptomatic treatment. Novel immunotherapeutic approaches based on tolerogenic dendritic cells, T regulatory cells and mesenchymal stem cells (MSCs) have been tested in clinical trials, endeavoring to directly modulate the autoimmune destruction process in pancreas. However, hyperglycemia itself affects the immune system and the final efficacy of cell-based immunotherapies could be affected by the different glycemic control of enrolled patients. The present review explores the impact of hyperglycemia on immune cells while providing greater insight into the molecular mechanisms of high glucose action and subsequent metabolic reprogramming of different immune cells. Furthermore, over-production of mitochondrial reactive oxygen species, formation of advanced glycation end products as a consequence of hyperglycemia and their downstream signalization in immune cells are also discussed. Since hyperglycemia in patients with type 1 diabetes mellitus might have an impact on immune-interventional treatment, the maintenance of a tight glucose control seems to be beneficial in patients considered for cell-based therapy.
Collapse
Affiliation(s)
- Anna Grohová
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia.,Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine, University Hospital Motol, Prague, Czechia
| | - Klára Dáňová
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Radek Špíšek
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| |
Collapse
|
18
|
Creusot RJ, Postigo-Fernandez J, Teteloshvili N. Altered Function of Antigen-Presenting Cells in Type 1 Diabetes: A Challenge for Antigen-Specific Immunotherapy? Diabetes 2018; 67:1481-1494. [PMID: 30030289 PMCID: PMC6054431 DOI: 10.2337/db17-1564] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) arises from a failure to maintain tolerance to specific β-cell antigens. Antigen-specific immunotherapy (ASIT) aims to reestablish immune tolerance through the supply of pertinent antigens to specific cell types or environments that are suitable for eliciting tolerogenic responses. However, antigen-presenting cells (APCs) in T1D patients and in animal models of T1D are affected by a number of alterations, some due to genetic polymorphism. Combination of these alterations, impacting the number, phenotype, and function of APC subsets, may account for both the underlying tolerance deficiency and for the limited efficacy of ASITs so far. In this comprehensive review, we examine different aspects of APC function that are pertinent to tolerance induction and summarize how they are altered in the context of T1D. We attempt to reconcile 25 years of studies on this topic, highlighting genetic, phenotypic, and functional features that are common or distinct between humans and animal models. Finally, we discuss the implications of these defects and the challenges they might pose for the use of ASITs to treat T1D. Better understanding of these APC alterations will help us design more efficient ways to induce tolerance.
Collapse
Affiliation(s)
- Rémi J Creusot
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| | - Jorge Postigo-Fernandez
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| | - Nato Teteloshvili
- Columbia Center for Translational Immunology, Naomi Berrie Diabetes Center and Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
19
|
Tai Y, Wang Q, Korner H, Zhang L, Wei W. Molecular Mechanisms of T Cells Activation by Dendritic Cells in Autoimmune Diseases. Front Pharmacol 2018; 9:642. [PMID: 29997500 PMCID: PMC6028573 DOI: 10.3389/fphar.2018.00642] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
The interaction between T cell and dendritic cells (DCs) that leads to T cell activation affects the progression of the immune response including autoimmune diseases. Antigen presentation on immune cell surface, formation of an immunological synapse (IS), and specific identification of complex by T cells including two activating signals are necessary steps that lead to T cell activation. The formation of stimulatory IS involves the inclusion of costimulatory molecules, such as ICAM-1/LFA-1 and CD28/B7-1, and so on. Some fusion proteins and monoclonal antibodies targeting costimulatory molecules have been developed and approved to treat autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), type I diabetes (T1D), inflammatory bowel disease (IBD), and psoriasis. These biological agents, including CTLA-4- and LFA-3-Ig, anti-CD3 monoclonal antibody, could prevent the successful engagement of DCs by T cell with significant efficacy and safety profile. In this article, we reviewed the molecular mechanisms of T cell activation during the interaction between T cells and DCs, and summarized some biological agents that target costimulatory molecules involved in the regulation of T cell activation.
Collapse
Affiliation(s)
- Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Heinrich Korner
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,Menzies Institute for Medical Research, Hobart, TAS, Australia
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anti-inflammatory Immune Drugs Collaborative Innovation Center, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
MHC-mismatched mixed chimerism restores peripheral tolerance of noncross-reactive autoreactive T cells in NOD mice. Proc Natl Acad Sci U S A 2018; 115:E2329-E2337. [PMID: 29463744 PMCID: PMC5877958 DOI: 10.1073/pnas.1720169115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mixed chimerism has shown good potential to cure some autoimmune diseases and prevent tissue rejection. It is known that MHC-mismatched but not -matched mixed chimerism effectively tolerizes autoreactive T cells, even those noncross-reactive T cells that do not directly recognize donor-type antigen presenting cells [i.e., dendritic cells (DCs)]. How this is accomplished remains unknown. These studies have shown that tolerizing peripheral residual host-type noncross-reactive autoreactive T cells requires engraftment of donor-type DCs and involves a host-type DC-mediated increase in donor-type Treg cells, which associates with restoration of tolerogenic features of host-type plasmacytoid DCs and expansion of host-type Treg cells. This study suggests a previously unrecognized tolerance network among donor- and host-type DCs and Treg cells in MHC-mismatched mixed chimeras. Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs.
Collapse
|
21
|
Funda DP, Goliáš J, Hudcovic T, Kozáková H, Špíšek R, Palová-Jelínková L. Antigen Loading (e.g., Glutamic Acid Decarboxylase 65) of Tolerogenic DCs (tolDCs) Reduces Their Capacity to Prevent Diabetes in the Non-Obese Diabetes (NOD)-Severe Combined Immunodeficiency Model of Adoptive Cotransfer of Diabetes As Well As in NOD Mice. Front Immunol 2018; 9:290. [PMID: 29503651 PMCID: PMC5820308 DOI: 10.3389/fimmu.2018.00290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic DCs (tolDCs) are being researched as a promising intervention strategy also in autoimmune diseases including type 1 diabetes (T1D). T1D is a T-cell-mediated, organ-specific disease with several well-defined and rather specific autoantigens, i.e., proinsulin, insulin, glutamic acid decarboxylase 65 (GAD65), that have been used in animal as well as human intervention trials in attempts to achieve a more efficient, specific immunotherapy. In this study, we have tested tolerogenic DCs for their effectiveness to prevent adoptive transfer of diabetes by diabetogenic splenocytes into non-obese diabetes (NOD)-severe combined immunodeficiency (NOD-SCID) recipients. While i.p. application of tolDCs prepared from bone marrow of prediabetic NOD mice by vitamin D2 and dexamethasone significantly reduced diabetes transfer into the NOD-SCID females, this effect was completely abolished when tolDCs were loaded with the mouse recombinant GAD65, but also with a control protein—ovalbumin (OVA). The effect was not dependent on the presence of serum in the tolDC culture. Similar results were observed in NOD mice. Removal of possible bystander antigen-presenting cells within the diabetogenic splenocytes by negative magnetic sorting of T cells did not alter this surprising effect. Tolerogenic DCs loaded with an immunodominant mouse GAD65 peptide also displayed diminished diabetes-preventive effect. Tolerogenic DCs were characterized by surface maturation markers (CD40, CD80, CD86, MHC II) and the lipopolysaccharide stability test. Data from alloreactive T cell proliferation and cytokine induction assays (IFN-γ) did not reveal the differences observed in the diabetes incidence. Migration of tolDCs, tolDCs-GAD65 and tolDCs-OVA to spleen, mesenteric- and pancreatic lymph nodes displayed similar, mucosal pattern with highest accumulation in pancreatic lymph nodes present up to 9 days after the i.p. application. These data document that mechanisms by which tolDCs operate in vivo require much better understanding for improving efficacy of this promising cell therapy, especially in the presence of an antigen, e.g., GAD65.
Collapse
Affiliation(s)
- David P Funda
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Jaroslav Goliáš
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Nový Hrádek, Czechia
| | - Hana Kozáková
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Nový Hrádek, Czechia
| | - Radek Špíšek
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| |
Collapse
|
22
|
Sachamitr P, Leishman AJ, Davies TJ, Fairchild PJ. Directed Differentiation of Human Induced Pluripotent Stem Cells into Dendritic Cells Displaying Tolerogenic Properties and Resembling the CD141 + Subset. Front Immunol 2018; 8:1935. [PMID: 29358940 PMCID: PMC5766641 DOI: 10.3389/fimmu.2017.01935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has begun to revolutionize cell therapy by providing a convenient source of rare cell types not normally available from patients in sufficient numbers for therapeutic purposes. In particular, the development of protocols for the differentiation of populations of leukocytes as diverse as naïve T cells, macrophages, and natural killer cells provides opportunities for their scale-up and quality control prior to administration. One population of leukocytes whose therapeutic potential has yet to be explored is the subset of conventional dendritic cells (DCs) defined by their surface expression of CD141. While these cells stimulate cytotoxic T cells in response to inflammation through the cross-presentation of viral and tumor-associated antigens in an MHC class I-restricted manner, under steady-state conditions CD141+ DCs resident in interstitial tissues are focused on the maintenance of homeostasis through the induction of tolerance to local antigens. Here, we describe protocols for the directed differentiation of human iPSCs into a mixed population of CD11c+ DCs through the spontaneous formation of embryoid bodies and exposure to a cocktail of growth factors, the scheduled withdrawal of which serves to guide the process of differentiation. Furthermore, we describe the enrichment of DCs expressing CD141 through depletion of CD1c+ cells, thereby obtaining a population of “untouched” DCs unaffected by cross-linking of surface CD141. The resulting cells display characteristic phagocytic and endocytic capacity and acquire an immunostimulatory phenotype following exposure to inflammatory cytokines and toll-like receptor agonists. Nevertheless, under steady-state conditions, these cells share some of the tolerogenic properties of tissue-resident CD141+ DCs, which may be further reinforced by exposure to a range of pharmacological agents including interleukin-10, rapamycin, dexamethasone, and 1α,25-dihydoxyvitamin D3. Our protocols therefore provide access to a novel source of DCs analogous to the CD141+ subset under steady-state conditions in vivo and may, therefore, find utility in the treatment of a range of disease states requiring the establishment of immunological tolerance.
Collapse
Affiliation(s)
- Patty Sachamitr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alison J Leishman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Sattler S, Fairchild P, Watt FM, Rosenthal N, Harding SE. The adaptive immune response to cardiac injury-the true roadblock to effective regenerative therapies? NPJ Regen Med 2017; 2:19. [PMID: 29302355 PMCID: PMC5677967 DOI: 10.1038/s41536-017-0022-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
The regenerative capacity of adult human tissues and organs is limited, but recent developments have seen the advent of promising new technologies for regenerative therapy. The human heart is of particular interest for regenerative medicine, as cardiac tissue damage is repaired by the formation of rigid scar tissue, which causes inevitable structural changes and progressive functional decline leading to heart failure. Cardiac regenerative medicine aims to prevent scar formation or replace existing scars to halt or reverse adverse remodeling and therapeutic approaches include the use of biomaterials, gene therapies, delivery of growth factors, and (stem) cell therapies. Regenerative therapies, however, face significant obstacles in a hostile microenvironment. While the early immune response to a myocardial infarct is essential to ensure tissue integrity and to avoid fatal cardiac rupture, excessive activation of endogenous repair mechanisms may lead to ongoing inflammation, fibrosis, and sustained autoimmune-mediated tissue damage. Anti-cardiac autoreactivity of the adaptive immune system has been suggested to be involved in structural remodeling, functional decline, and the development of heart failure. It is, therefore, crucial to first understand the endogenous response to cardiac tissue damage and how to restore immune tolerance to cardiac tissue, before additional regenerative therapies can achieve their full potential.
Collapse
Affiliation(s)
- Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, W12 0NN UK
| | - Paul Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, SE1 9RT UK
| | - Nadia Rosenthal
- National Heart and Lung Institute, Imperial College London, London, W12 0NN UK.,The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London, W12 0NN UK
| |
Collapse
|
24
|
Sackett SD, Rodriguez A, Odorico JS. The Nexus of Stem Cell-Derived Beta-Cells and Genome Engineering. Rev Diabet Stud 2017. [PMID: 28632820 DOI: 10.1900/rds.2017.14.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetes, type 1 and type 2 (T1D and T2D), are diseases of epidemic proportions, which are complicated and defined by genetics, epigenetics, environment, and lifestyle choices. Current therapies consist of whole pancreas or islet transplantation. However, these approaches require life-time immunosuppression, and are compounded by the paucity of available donors. Pluripotent stem cells have advanced research in the fields of stem cell biology, drug development, disease modeling, and regenerative medicine, and importantly allows for the interrogation of therapeutic interventions. Recent developments in beta-cell differentiation and genomic modifications are now propelling investigations into the mechanisms behind beta-cell failure and autoimmunity, and offer new strategies for reducing the propensity for immunogenicity. This review discusses the derivation of endocrine lineage cells from human pluripotent stem cells for the treatment of diabetes, and how the editing or manipulation of their genomes can transcend many of the remaining challenges of stem cell technologies, leading to superior transplantation and diabetes drug discovery platforms.
Collapse
Affiliation(s)
- Sara D Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Aida Rodriguez
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Jon S Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| |
Collapse
|
25
|
Baekkeskov S, Hubbell JA, Phelps EA. Bioengineering strategies for inducing tolerance in autoimmune diabetes. Adv Drug Deliv Rev 2017. [PMID: 28625830 DOI: 10.1016/j.addr.2017.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease marked by the destruction of insulin-producing beta cells in the pancreatic islets. Strategies to delay onset or prevent the autoimmune recognition of beta cell antigens or T cell-mediated killing of beta cells have mainly focused on systemic immunomodulation and antigen-specific immunotherapy. To bridge the fields of type 1 diabetes immunology and biomaterials engineering, this article will review recent trends in the etiology of type 1 diabetes immunopathology and will focus on the contributions of emerging bioengineered strategies in the fight against beta cell autoimmunity in type 1 diabetes.
Collapse
Affiliation(s)
- Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Building SV 3826, Station 19, CH-1015 Lausanne, Switzerland; Departments of Medicine and Microbiology/Immunology, Diabetes Center, 513 Parnassus Ave, 20159, Box 0534, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Building SV 3826, Station 19, CH-1015 Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60615, USA
| | - Edward A Phelps
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Building SV 3826, Station 19, CH-1015 Lausanne, Switzerland; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, P.O. Box 116131, Gainesville, FL 32611, USA.
| |
Collapse
|
26
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to destruction of pancreatic β cells, lifelong dependence on insulin, and increased morbidity and mortality from diabetes-related complications. Preservation of residual β cells at diagnosis is a major goal because higher levels of endogenous insulin secretion are associated with better short- and long-term outcomes. For the past 3 decades, a variety of immune interventions have been evaluated in the setting of new-onset T1D, including nonspecific immunosuppression, pathway-specific immune modulation, antigen-specific therapies, and cellular therapies. To date, no single intervention has produced durable remission off therapy in most treated patients, but the field has gained valuable insights into disease mechanisms and potential immunologic correlates of success. In particular, T-cell–directed therapies, including therapies that lead to partial depletion or modulation of effector T cells and preservation or augmentation of regulatory T cells, have shown the most success and will likely form the backbone of future approaches. The next phase will see evaluation of rational combinations, comprising one or more of the following: an effector T-depleting or -modulating drug, a cytokine-based tolerogenic (regulatory T-cells–promoting) agent, and an antigen-specific component. The long term goal is to reestablish immunologic tolerance to β cells, thereby preserving residual β cells early after diagnosis or enabling restoration of β-cell mass from autologous stem cells or induced neogenesis in patients with established T1D.
Collapse
|
27
|
Mittermayer F, Caveney E, De Oliveira C, Fleming GA, Gourgiotis L, Puri M, Tai LJ, Turner JR. Addressing Unmet Medical Needs in Type 1 Diabetes: A Review of Drugs Under Development. Curr Diabetes Rev 2017; 13:300-314. [PMID: 27071617 PMCID: PMC5748875 DOI: 10.2174/1573399812666160413115655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/21/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The incidence of type 1 diabetes (T1D) is increasing worldwide and there is a very large need for effective therapies. Essentially no therapies other than insulin are currently approved for the treatment of T1D. Drugs already in use for type 2 diabetes and many new drugs are under clinical development for T1D, including compounds with both established and new mechanisms of action. Content of the Review: Most of the new compounds in clinical development are currently in Phase 1 and 2. Drug classes discussed in this review include new insulins, SGLT inhibitors, GLP-1 agonists, immunomodulatory drugs including autoantigens and anti-cytokines, agents that regenerate β-cells and others. Regulatory Considerations: In addition, considerations are provided with regard to the regulatory environment for the clinical development of drugs for T1D, with a focus on the United States Food and Drug Administration and the European Medicines Agency. Future opportunities, such as combination treatments of immunomodulatory and beta-cell regenerating therapies, are also discussed.
Collapse
Affiliation(s)
| | - Erica Caveney
- Diabetes Center of Excellence, Quintiles,
Durham, NC, USA
| | | | | | | | - Mala Puri
- Cardiovascular and Metabolic Diseases, Quintiles, Durham, NC, USA
| | | | - J. Rick Turner
- Diabetes Center of Excellence, Quintiles,
Durham, NC, USA
| |
Collapse
|
28
|
Dastagir SR, Postigo-Fernandez J, Xu C, Stoeckle JH, Firdessa-Fite R, Creusot RJ. Efficient Presentation of Multiple Endogenous Epitopes to Both CD4 + and CD8 + Diabetogenic T Cells for Tolerance. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:27-38. [PMID: 28344989 PMCID: PMC5363322 DOI: 10.1016/j.omtm.2016.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/13/2016] [Indexed: 10/28/2022]
Abstract
Antigen-specific immunotherapy of type 1 diabetes, typically via delivery of a single native β cell antigen, has had little clinical benefit to date. With increasing evidence that diabetogenic T cells react against multiple β cell antigens, including previously unappreciated neo-antigens that can be emulated by mimotopes, a shift from protein- to epitope-based therapy is warranted. To this end, we aimed to achieve efficient co-presentation of multiple major epitopes targeting both CD4+ and CD8+ diabetogenic T cells. We have compared native epitopes versus mimotopes as well as various targeting signals in an effort to optimize recognition by both types of T cells in vitro. Optimal engagement of all T cells was achieved with segregation of CD8 and CD4 epitopes, the latter containing mimotopes and driven by endosome-targeting signals, after delivery into either dendritic or stromal cells. The CD4+ T cell responses elicited by the endogenously delivered epitopes were comparable with high concentrations of soluble peptide and included functional regulatory T cells. This work has important implications for the improvement of antigen-specific therapies using an epitope-based approach to restore tolerance in type 1 diabetes and in a variety of other diseases requiring concomitant targeting of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Shamael R Dastagir
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jorge Postigo-Fernandez
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Chunliang Xu
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - James H Stoeckle
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Rebuma Firdessa-Fite
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Rémi J Creusot
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
29
|
Adnan E, Matsumoto T, Ishizaki J, Onishi S, Suemori K, Yasukawa M, Hasegawa H. Human tolerogenic dendritic cells generated with protein kinase C inhibitor are optimal for functional regulatory T cell induction - A comparative study. Clin Immunol 2016; 173:96-108. [PMID: 27658741 DOI: 10.1016/j.clim.2016.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/10/2016] [Accepted: 09/17/2016] [Indexed: 11/24/2022]
Abstract
Tolerogenic dendritic cells (tDCs) are a promising therapeutic tool for specific induction of immunological tolerance. Human tDCs can be generated ex vivo using various compounds. However, the compound(s) most suitable for clinical application remain undefined. We compared the tolerogenic properties of tDCs treated with protein kinase C inhibitor (PKCI), dexamethasone, vitamin D3 (Vit D3), rapamycin (Rapa), interleukin (IL)-10, transforming growth factor (TGF)-β, and a combination of peroxisome proliferator-activated receptor γ agonist and retinoic acid. All tDCs had a semi-mature DC phenotype. PKCI-, TGF-β-, and Rapa-tDCs showed CCR7 expression and migration to CCL19, but other tDCs showed little or none. PKCI- and IL-10-tDCs induced functional regulatory T cells more strongly than other tDCs. The tolerogenic properties of all tDCs were stable against proinflammatory stimuli. Furthermore, PKCI-tDCs were generated from patients with rheumatoid arthritis and primary Sjögren's syndrome. Therefore, PKCI-tDCs showed the characteristics best suited for tolerance-inducing therapy.
Collapse
Affiliation(s)
- Endy Adnan
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Takuya Matsumoto
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Jun Ishizaki
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Sachiko Onishi
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Koichiro Suemori
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Hitoshi Hasegawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan.
| |
Collapse
|
30
|
Lord P, Spiering R, Aguillon JC, Anderson AE, Appel S, Benitez-Ribas D, Ten Brinke A, Broere F, Cools N, Cuturi MC, Diboll J, Geissler EK, Giannoukakis N, Gregori S, van Ham SM, Lattimer S, Marshall L, Harry RA, Hutchinson JA, Isaacs JD, Joosten I, van Kooten C, Lopez Diaz de Cerio A, Nikolic T, Oral HB, Sofronic-Milosavljevic L, Ritter T, Riquelme P, Thomson AW, Trucco M, Vives-Pi M, Martinez-Caceres EM, Hilkens CMU. Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies. PeerJ 2016; 4:e2300. [PMID: 27635311 PMCID: PMC5012269 DOI: 10.7717/peerj.2300] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 11/21/2022] Open
Abstract
Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application.
Collapse
Affiliation(s)
- Phillip Lord
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Spiering
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Juan C Aguillon
- Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Amy E Anderson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Daniel Benitez-Ribas
- Department of Immunology, Hospital Clínic i Provincial and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Femke Broere
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Maria Cristina Cuturi
- Center for Research in Transplantation and Immunology, ITUN, Inserm UMRS 1064, Nantes, France
| | - Julie Diboll
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Edward K Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Staci Lattimer
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lindsay Marshall
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel A Harry
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James A Hutchinson
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany
| | - John D Isaacs
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Irma Joosten
- Department of Laboratory Medicine, Radboud University medical center, Nijmegen, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Tatjana Nikolic
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Haluk Barbaros Oral
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | | | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Paloma Riquelme
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Marta Vives-Pi
- Immunology Division, Germans Trias i Pujol University Hospital and Health Sciences Research Institute, Badalona, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eva M Martinez-Caceres
- Immunology Division, Germans Trias i Pujol University Hospital and Health Sciences Research Institute, Badalona, Spain.,Department of Cell Biology, Physiology, Immunology, Universitat Autònoma, Barcelona
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
31
|
Yeste A, Takenaka MC, Mascanfroni ID, Nadeau M, Kenison JE, Patel B, Tukpah AM, Babon JAB, DeNicola M, Kent SC, Pozo D, Quintana FJ. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci Signal 2016; 9:ra61. [PMID: 27330188 DOI: 10.1126/scisignal.aad0612] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes (T1D) is a T cell-dependent autoimmune disease that is characterized by the destruction of insulin-producing β cells in the pancreas. The administration to patients of ex vivo-differentiated FoxP3(+) regulatory T (Treg) cells or tolerogenic dendritic cells (DCs) that promote Treg cell differentiation is considered a potential therapy for T1D; however, cell-based therapies cannot be easily translated into clinical practice. We engineered nanoparticles (NPs) to deliver both a tolerogenic molecule, the aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and the β cell antigen proinsulin (NPITE+Ins) to induce a tolerogenic phenotype in DCs and promote Treg cell generation in vivo. NPITE+Ins administration to 8-week-old nonobese diabetic mice suppressed autoimmune diabetes. NPITE+Ins induced a tolerogenic phenotype in DCs, which was characterized by a decreased ability to activate inflammatory effector T cells and was concomitant with the increased differentiation of FoxP3(+) Treg cells. The induction of a tolerogenic phenotype in DCs by NPs was mediated by the AhR-dependent induction of Socs2, which resulted in inhibition of nuclear factor κB activation and proinflammatory cytokine production (properties of tolerogenic DCs). Together, these data suggest that NPs constitute a potential tool to reestablish tolerance in T1D and potentially other autoimmune disorders.
Collapse
Affiliation(s)
- Ada Yeste
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maisa C Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ivan D Mascanfroni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Meghan Nadeau
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bonny Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ann-Marcia Tukpah
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jenny Aurielle B Babon
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Megan DeNicola
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sally C Kent
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David Pozo
- CABIMER-Andalusian Center for Molecular Biology and Regenerative Medicine (Consejo Superior de Investigaciones Científicas-University of Seville-Universidad Pablo de Olavide), Seville 41092, Spain. Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, Seville 41009, Spain
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.
| |
Collapse
|
32
|
Mormile R. Type 1 diabetes and susceptibility to multiple sclerosis: What is the truth? Mult Scler Relat Disord 2016; 7:14-15. [DOI: 10.1016/j.msard.2016.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/19/2016] [Accepted: 02/14/2016] [Indexed: 12/17/2022]
|
33
|
Metabolism Is Central to Tolerogenic Dendritic Cell Function. Mediators Inflamm 2016; 2016:2636701. [PMID: 26980944 PMCID: PMC4766347 DOI: 10.1155/2016/2636701] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/31/2015] [Indexed: 12/13/2022] Open
Abstract
Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential.
Collapse
|
34
|
Creusot RJ, Battaglia M, Roncarolo MG, Fathman CG. Concise Review: Cell-Based Therapies and Other Non-Traditional Approaches for Type 1 Diabetes. Stem Cells 2016; 34:809-19. [PMID: 26840009 PMCID: PMC5021120 DOI: 10.1002/stem.2290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023]
Abstract
The evolution of Type 1 diabetes (T1D) therapy has been marked by consecutive shifts, from insulin replacement to immunosuppressive drugs and targeted biologics (following the understanding that T1D is an autoimmune disease), and to more disease‐specific or patient‐oriented approaches such as antigen‐specific and cell‐based therapies, with a goal to provide efficacy, safety, and long‐term protection. At the same time, another important paradigm shift from treatment of new onset T1D patients to prevention in high‐risk individuals has taken place, based on the hypothesis that therapeutic approaches deemed sufficiently safe may show better efficacy if applied early enough to maintain endogenous β cell function, a concept supported by many preclinical studies. This new strategy has been made possible by capitalizing on a variety of biomarkers that can more reliably estimate the risk and rate of progression of the disease. More advanced (“omic”‐based) biomarkers that also shed light on the underlying contributors of disease for each individual will be helpful to guide the choice of the most appropriate therapies, or combinations thereof. In this review, we present current efforts to stratify patients according to biomarkers and current alternatives to conventional drug‐based therapies for T1D, with a special emphasis on cell‐based therapies, their status in the clinic and potential for treatment and/or prevention. Stem Cells2016;34:809–819
Collapse
Affiliation(s)
- Remi J Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, USA
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria-Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine Stanford, CA, USA
| | - C Garrison Fathman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
35
|
Favaro E, Carpanetto A, Caorsi C, Giovarelli M, Angelini C, Cavallo-Perin P, Tetta C, Camussi G, Zanone MM. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients. Diabetologia 2016; 59:325-33. [PMID: 26592240 DOI: 10.1007/s00125-015-3808-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Mesenchymal stem cells (MSCs) can exert an immunosuppressive effect on any component of the immune system, including dendritic cells (DCs), by direct contact, the release of soluble markers and extracellular vesicles (EVs). We evaluated whether MSCs and MSC-derived EVs have an immunomodulatory effect on monocyte-derived DCs in type 1 diabetes. METHODS Bone marrow derived MSCs were characterised and EVs were obtained by ultracentrifugation. DCs were differentiated from CD14(+) cells, obtained from nine type 1 diabetic patients at disease onset, pulsed with antigen GAD65 and cultured with MSCs or EVs. Levels of DC maturation and activation markers were evaluated by flow cytometry. GAD65-pulsed DCs and autologous CD14(-) cell were co-cultured and IFN-γ enzyme-linked immunosorbent spot responses were assayed. Secreted cytokine levels were measured and Th17 and regulatory T cells were analysed. RESULTS MSC- and EV-conditioned DCs acquired an immature phenotype with reduced levels of activation markers and increased IL-10 and IL-6 production. Conditioned DC plus T cell co-cultures showed significantly decreased IFN-γ spots and secretion levels. Moreover, higher levels of TGF-β, IL-10 and IL-6 were detected compared with unconditioned DC plus T cell co-cultures. Conditioned DCs decreased Th17 cell numbers and IL-17 levels, and increased FOXP3(+) regulatory T cell numbers. EVs were internalised by DCs and EV-conditioned DCs exhibited a similar effect. CONCLUSIONS/INTERPRETATION In type 1 diabetes, MSCs induce immature IL-10-secreting DCs in vitro, thus potentially intercepting the priming and amplification of autoreactive T cells in tissue inflammation. These DCs can contribute to the inhibition of inflammatory T cell responses to islet antigens and the promotion of the anti-inflammatory, regulatory responses exerted by MSCs.
Collapse
Affiliation(s)
- Enrica Favaro
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Torino, Italy
| | - Andrea Carpanetto
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Torino, Italy
| | - Cristiana Caorsi
- Immunogenetic and Transplant Biology Laboratory, University of Turin, Turin, Italy
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo Cavallo-Perin
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Torino, Italy
| | - Ciro Tetta
- Translational Centre for Regenerative Medicine, University of Turin, Turin, Italy
- Medical Board, Fresenius Medical Care, Bad Homburg, Germany
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Torino, Italy
| | - Maria M Zanone
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Torino, Italy.
| |
Collapse
|
36
|
Fairchild PJ, Leishman A, Sachamitr P, Telfer C, Hackett S, Davies TJ. Dendritic cells and pluripotency: unlikely allies in the pursuit of immunotherapy. Regen Med 2016; 10:275-86. [PMID: 25933237 DOI: 10.2217/rme.15.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As the fulcrum on which the balance between the opposing forces of tolerance and immunity has been shown to pivot, dendritic cells (DC) hold significant promise for immune intervention in a variety of disease states. Here we discuss how the directed differentiation of human pluripotent stem cells may address many of the current obstacles to the use of monocyte-derived DC in immunotherapy, providing a novel source of previously inaccessible DC subsets and opportunities for their scale-up, quality control and genetic modification. Indeed, given that it is the immunological legacy DC leave behind that is of therapeutic value, rather than their persistence per se, we propose that immunotherapy should serve as an early target for the clinical application of pluripotent stem cells.
Collapse
Affiliation(s)
- Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
37
|
Hotta-Iwamura C, Tarbell KV. Type 1 diabetes genetic susceptibility and dendritic cell function: potential targets for treatment. J Leukoc Biol 2016; 100:65-80. [PMID: 26792821 DOI: 10.1189/jlb.3mr1115-500r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease that results from the defective induction or maintenance of T cell tolerance against islet β cell self-antigens. Under steady-state conditions, dendritic cells with tolerogenic properties are critical for peripheral immune tolerance. Tolerogenic dendritic cells can induce T cell anergy and deletion and, in some contexts, induce or expand regulatory T cells. Dendritic cells contribute to both immunomodulatory effects and triggering of pathogenesis in type 1 diabetes. This immune equilibrium is affected by both genetic and environmental factors that contribute to the development of type 1 diabetes. Genome-wide association studies and disease association studies have identified >50 polymorphic loci that lend susceptibility or resistance to insulin-dependent diabetes mellitus. In parallel, diabetes susceptibility regions known as insulin-dependent diabetes loci have been identified in the nonobese diabetic mouse, a model for human type 1 diabetes, providing a better understanding of potential immunomodulatory factors in type 1 diabetes risk. Most genetic candidates have annotated immune cell functions, but the focus has been on changes to T and B cells. However, it is likely that some of the genomic susceptibility in type 1 diabetes directly interrupts the tolerogenic potential of dendritic cells in the pathogenic context of ongoing autoimmunity. Here, we will review how gene polymorphisms associated with autoimmune diabetes may influence dendritic cell development and maturation processes that could lead to alterations in the tolerogenic function of dendritic cells. These insights into potential tolerogenic and pathogenic roles for dendritic cells have practical implications for the clinical manipulation of dendritic cells toward tolerance to prevent and treat type 1 diabetes.
Collapse
Affiliation(s)
- Chie Hotta-Iwamura
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Garciafigueroa Y, Trucco M, Giannoukakis N. A brief glimpse over the horizon for type 1 diabetes nanotherapeutics. Clin Immunol 2015; 160:36-45. [PMID: 25817545 DOI: 10.1016/j.clim.2015.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/16/2015] [Indexed: 12/11/2022]
Abstract
The pace at which nanotherapeutic technology for human disease is evolving has accelerated exponentially over the past five years. Most of the technology is centered on drug delivery which, in some instances, offers tunable control of drug release. Emerging technologies have resulted in improvements in tissue and cell targeting while others are at the initial stages of pairing drug release and drug release kinetics with microenvironmental stimuli or changes in homeostasis. Nanotherapeutics has only recently been adopted for consideration as a prophylaxis/treatment approach in autoimmunity. Herein, we summarize the current state-of-the art of nanotherapeutics specifically for type 1 diabetes mellitus and offer our view over the horizon of where we envisage this modality evolving towards.
Collapse
Affiliation(s)
- Yesica Garciafigueroa
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA.
| | - Massimo Trucco
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA.
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA 15212, USA.
| |
Collapse
|
39
|
Engman C, Wen Y, Meng WS, Bottino R, Trucco M, Giannoukakis N. Generation of antigen-specific Foxp3+ regulatory T-cells in vivo following administration of diabetes-reversing tolerogenic microspheres does not require provision of antigen in the formulation. Clin Immunol 2015; 160:103-23. [PMID: 25773782 DOI: 10.1016/j.clim.2015.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022]
Abstract
We have developed novel antisense oligonucleotide-formulated microspheres that can reverse hyperglycemia in newly-onset diabetic mice. Dendritic cells taking up the microspheres adopt a restrained co-stimulation ability and migrate to the pancreatic lymph nodes when injected into an abdominal region that is drained by those lymph nodes. Furthermore, we demonstrate that the absolute numbers of antigen-specific Foxp3+ T regulatory cells are increased only in the lymph nodes draining the site of administration and that these T-cells proliferate independently of antigen supply in the microspheres. Taken together, our data add to the emerging model where antigen supply may not be a requirement in "vaccines" for autoimmune disease, but the site of administration - subserved by lymph nodes draining the target organ - is in fact critical to foster the generation of antigen-specific regulatory cells. The implications of these observations on "vaccine" design for autoimmunity are discussed and summarized.
Collapse
MESH Headings
- Animals
- B7-1 Antigen/genetics
- B7-2 Antigen/genetics
- Blood Glucose/drug effects
- CD11c Antigen/metabolism
- CD40 Antigens/genetics
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dendritic Cells/immunology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 1/therapy
- Female
- Forkhead Transcription Factors/analysis
- Gene Knockdown Techniques
- Hyperglycemia/therapy
- Leukocyte Common Antigens/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation/immunology
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred NOD
- Mice, Transgenic
- Microspheres
- Oligonucleotides, Antisense/genetics
- Pancreas/immunology
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes, Regulatory/cytology
- Vaccines/administration & dosage
- Vaccines/immunology
Collapse
Affiliation(s)
- Carl Engman
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Yi Wen
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Mellon 413, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Wilson S Meng
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Mellon 413, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.
| | - Rita Bottino
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Massimo Trucco
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
40
|
Larsen J, Weile C, Antvorskov JC, Engkilde K, Nielsen SMB, Josefsen K, Buschard K. Effect of dietary gluten on dendritic cells and innate immune subsets in BALB/c and NOD mice. PLoS One 2015; 10:e0118618. [PMID: 25738288 PMCID: PMC4349814 DOI: 10.1371/journal.pone.0118618] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/21/2015] [Indexed: 12/13/2022] Open
Abstract
The innate immune system is known to play an important role in oral tolerance to dietary antigens. This is important in development of celiac disease (CD) but may also be important in type 1 diabetes (T1D), and could potentially explain the reduced incidence of T1D in mice receiving a gluten-free (GF) diet. The direct in vivo effect of gluten on innate cells, and particularly dendritic cells (DC) is not sufficiently clarified. Therefore, we wished to investigate the innate cell populations of spontaneous diabetic NOD mice and healthy BALB/c mice kept on a GF or a standard (STD) gluten containing diet. We studied, by flow cytometry and reverse transcription-quantitative polymerase chain reaction (qRT-PCR), if dietary gluten induces changes in the activation of DCs and distribution of selected innate cells in lymphoid, pancreatic and intestinal tissues in BALB/c and NOD mice. We found that a GF diet increased the percentage of macrophages in BALB/c spleen and of CD11c+ DCs in BALB/c and NOD spleen. Strictly gluten-free (SGF) diet increased the percentage of CD103+ DCs in BALB/c mice and decreased percentages of CD11b+ DCs in mesenteric and pancreatic lymph nodes in BALB/c mice. SGF diet in BALB/c mice also decreased DC expression of CD40, CCR7 and MHC-II in pancreatic lymph nodes. In conclusion, GF diet changes the composition of the innate immune system in BALB/c and NOD mice and increases expression of DC activation markers in NOD mice. These results contribute to the explanation of the low diabetes incidence in GF NOD mice. This mechanism may be important in development of type 1 diabetes, celiac disease and non-celiac gluten sensitivity.
Collapse
Affiliation(s)
- Jesper Larsen
- The Bartholin Institute, Rigshospitalet, 2100, Copenhagen, Denmark
- * E-mail:
| | - Christian Weile
- The Bartholin Institute, Rigshospitalet, 2100, Copenhagen, Denmark
| | | | - Kåre Engkilde
- The Bartholin Institute, Rigshospitalet, 2100, Copenhagen, Denmark
| | | | - Knud Josefsen
- The Bartholin Institute, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Karsten Buschard
- The Bartholin Institute, Rigshospitalet, 2100, Copenhagen, Denmark
| |
Collapse
|
41
|
Johannesson B, Sui L, Freytes DO, Creusot RJ, Egli D. Toward beta cell replacement for diabetes. EMBO J 2015; 34:841-55. [PMID: 25733347 DOI: 10.15252/embj.201490685] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell-derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes.
Collapse
Affiliation(s)
| | - Lina Sui
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Donald O Freytes
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Dieter Egli
- The New York Stem Cell Foundation Research Institute, New York, NY, USA Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
42
|
Fox IJ, Daley GQ, Goldman SA, Huard J, Kamp TJ, Trucco M. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science 2014; 345:1247391. [PMID: 25146295 PMCID: PMC4329726 DOI: 10.1126/science.1247391] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pluripotent stem cells (PSCs) directed to various cell fates holds promise as source material for treating numerous disorders. The availability of precisely differentiated PSC-derived cells will dramatically affect blood component and hematopoietic stem cell therapies and should facilitate treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types is needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful cell transplantation will require optimizing the best cell type and site for engraftment, overcoming limitations to cell migration and tissue integration, and occasionally needing to control immunologic reactivity, as well as a number of other challenges. Collaboration among scientists, clinicians, and industry is critical for generating new stem cell-based therapies.
Collapse
Affiliation(s)
- Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - George Q Daley
- Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Broad Institute, Cambridge, MA, USA. Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, The University of Rochester Medical Center, Rochester, NY, USA. Center for Basic and Translational Neuroscience, University of Copenhagen, Denmark
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Timothy J Kamp
- Stem Cell and Regenerative Medicine Center, Cellular and Molecular Arrhythmia Research Program, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Massimo Trucco
- Division of Immunogenetics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|