1
|
Kuang L, You Y, Qi J, Chen J, Zhou X, Ji S, Cheng J, Kwan HY, Jiang P, Sun X, Su M, Wang M, Chen W, Luo R, Zhao X, Zhou L. Qi-dan-dihuang decoction ameliorates renal fibrosis in diabetic rats via p38MAPK/AKT/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3481-3499. [PMID: 38456329 DOI: 10.1002/tox.24179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 03/09/2024]
Abstract
CONTEXT Qi-dan-dihuang decoction (QDD) has been used to treat diabetic kidney disease (DKD), but the underlying mechanisms are poorly understood. OBJECTIVE This study reveals the mechanism by which QDD ameliorates DKD. MATERIALS AND METHODS The compounds in QDD were identified by high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS). Key targets and signaling pathways were screened through bioinformatics. Nondiabetic Lepr db/m mice were used as control group, while Lepr db/db mice were divided into model group, dapagliflozin group, 1% QDD-low (QDD-L), and 2% QDD-high (QDD-H) group. After 12 weeks of administration, 24 h urinary protein, serum creatinine, and blood urea nitrogen levels were detected. Kidney tissues damage and fibrosis were evaluated by pathological staining. In addition, 30 mmol/L glucose-treated HK-2 and NRK-52E cells to induce DKD model. Cell activity and migration capacity as well as protein expression levels were evaluated. RESULTS A total of 46 key target genes were identified. Functional enrichment analyses showed that key target genes were significantly enriched in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. In addition, in vivo and in vitro experiments confirmed that QDD ameliorated renal fibrosis in diabetic mice by resolving inflammation and inhibiting the epithelial-mesenchymal transition (EMT) via the p38MAPK and AKT-mammalian target of rapamycin (mTOR) pathways. DISCUSSION AND CONCLUSION QDD inhibits EMT and the inflammatory response through the p38MAPK and AKT/mTOR signaling pathways, thereby playing a protective role in renal fibrosis in DKD.
Collapse
Affiliation(s)
- Liuyan Kuang
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanting You
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Taishan People's Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Taishan, Guangdong, China
| | - Jieying Qi
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyu Chen
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinghong Zhou
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuai Ji
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingru Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Pingping Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaomin Sun
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengting Su
- Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wenxiao Chen
- Taishan People's Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Taishan, Guangdong, China
| | - Ren Luo
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Norberto S, Assalin HB, Guadagnini D, Tobar N, Boer PA, Kang MC, Saad MJA, Kim YB, Prada PO. CLK2 in GABAergic neurons is critical in regulating energy balance and anxiety-like behavior in a gender-specific fashion. Front Endocrinol (Lausanne) 2023; 14:1172835. [PMID: 37635967 PMCID: PMC10449579 DOI: 10.3389/fendo.2023.1172835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Cdc2-like kinase (CLK2) is a member of CLK kinases expressed in hypothalamic neurons and is activated in response to refeeding, leptin, or insulin. Diet-induced obesity and leptin receptor-deficient db/db mice lack CLK2 signal in the hypothalamic neurons. The neurotransmiter gamma-aminobutyric acid (GABA) is among the most prevalent in the central nervous system (CNS), particularly in the hypothalamus. Given the abundance of GABA-expressing neurons and their potential influence on regulating energy and behavioral homeostasis, we aimed to explore whether the deletion of CLK2 in GABAergic neurons alters energy homeostasis and behavioral and cognitive functions in both genders of mice lacking CLK2 in Vgat-expressing neurons (Vgat-Cre; Clk2loxP/loxP) on chow diet. Methods We generated mice lacking Clk2 in Vgat-expressing neurons (Vgat-Cre; Clk2loxP/loxP) by mating Clk2loxP/loxP mice with Vgat-IRES-Cre transgenic mice and employed behavior, and physiological tests, and molecular approaches to investigate energy metabolism and behavior phenotype of both genders. Results and discussion We showed that deletion of CLK2 in GABAergic neurons increased adiposity and food intake in females. The mechanisms behind these effects were likely due, at least in part, to hypothalamic insulin resistance and upregulation of hypothalamic Npy and Agrp expression. Besides normal insulin and pyruvate sensitivity, Vgat-Cre; Clk2loxP/loxP females were glucose intolerant. Male Vgat-Cre; Clk2loxP/loxP mice showed an increased energy expenditure (EE). Risen EE may account for avoiding weight and fat mass gain in male Vgat-Cre; Clk2loxP/loxP mice. Vgat-Cre; Clk2loxP/loxP mice had no alteration in cognition or memory functions in both genders. Interestingly, deleting CLK2 in GABAergic neurons changed anxiety-like behavior only in females, not males. These findings suggest that CLK2 in GABAergic neurons is critical in regulating energy balance and anxiety-like behavior in a gender-specific fashion and could be a molecular therapeutic target for combating obesity associated with psychological disorders in females.
Collapse
Affiliation(s)
- Sónia Norberto
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Heloisa Balan Assalin
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Natália Tobar
- Department of Radiology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Aline Boer
- Department of Internal Medicine, Fetal Programming Laboratory, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Research Group of Food Processing, Korea Food Research Instute, Jeollabuk-do, Wanju, Republic of Korea
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, University of Campinas (UNICAMP), Campinas, SP, Brazil
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
- Max-Planck Institute for Metabolism Research, Köln, Germany
| |
Collapse
|
3
|
Della Guardia L, Codella R. Exercise Restores Hypothalamic Health in Obesity by Reshaping the Inflammatory Network. Antioxidants (Basel) 2023; 12:antiox12020297. [PMID: 36829858 PMCID: PMC9951965 DOI: 10.3390/antiox12020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Obesity and overnutrition induce inflammation, leptin-, and insulin resistance in the hypothalamus. The mediobasal hypothalamus responds to exercise enabling critical adaptions at molecular and cellular level that positively impact local inflammation. This review discusses the positive effect of exercise on obesity-induced hypothalamic dysfunction, highlighting the mechanistic aspects related to the anti-inflammatory effects of exercise. In HFD-fed animals, both acute and chronic moderate-intensity exercise mitigate microgliosis and lower inflammation in the arcuate nucleus (ARC). Notably, this associates with restored leptin sensitivity and lower food intake. Exercise-induced cytokines IL-6 and IL-10 mediate part of these positive effect on the ARC in obese animals. The reduction of obesity-associated pro-inflammatory mediators (e.g., FFAs, TNFα, resistin, and AGEs), and the improvement in the gut-brain axis represent alternative paths through which regular exercise can mitigate hypothalamic inflammation. These findings suggest that the regular practice of exercise can restore a proper functionality in the hypothalamus in obesity. Further analysis investigating the crosstalk muscle-hypothalamus would help toward a deeper comprehension of the subject.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence: ; Tel.: +39-02-50330356
| |
Collapse
|
4
|
Zordão OP, Campolim CM, Yariwake VY, Castro G, Ferreira CKDO, Santos A, Norberto S, Veras MM, Saad MJA, Saldiva PHN, Kim YB, Prada PO. Maternal exposure to air pollution alters energy balance transiently according to gender and changes gut microbiota. Front Endocrinol (Lausanne) 2023; 14:1069243. [PMID: 37082122 PMCID: PMC10112381 DOI: 10.3389/fendo.2023.1069243] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction The timing of maternal exposure to air pollution is crucial to define metabolic changes in the offspring. Here we aimed to determine the most critical period of maternal exposure to particulate matter (PM2.5) that impairs offspring's energy metabolism and gut microbiota composition. Methods Unexposed female and male C57BL/6J mice were mated. PM2.5 or filtered air (FA) exposure occurred only in gestation (PM2.5/FA) or lactation (FA/PM2.5). We studied the offspring of both genders. Results PM2.5 exposure during gestation increased body weight (BW) at birth and from weaning to young in male adulthood. Leptin levels, food intake, Agrp, and Npy levels in the hypothalamus were also increased in young male offspring. Ikbke, Tnf increased in male PM2.5/FA. Males from FA/PM2.5 group were protected from these phenotypes showing higher O2 consumption and Ucp1 in the brown adipose tissue. In female offspring, we did not see changes in BW at weaning. However, adult females from PM2.5/FA displayed higher BW and leptin levels, despite increased energy expenditure and thermogenesis. This group showed a slight increase in food intake. In female offspring from FA/PM2.5, BW, and leptin levels were elevated. This group displayed higher energy expenditure and a mild increase in food intake. To determine if maternal exposure to PM2.5 could affect the offspring's gut microbiota, we analyzed alpha diversity by Shannon and Simpson indexes and beta diversity by the Linear Discriminant Analysis (LDA) in offspring at 30 weeks. Unlike males, exposure during gestation led to higher adiposity and leptin maintenance in female offspring at this age. Gestation exposure was associated with decreased alpha diversity in the gut microbiota in both genders. Discussion Our data support that exposure to air pollution during gestation is more harmful to metabolism than exposure during lactation. Male offspring had an unfavorable metabolic phenotype at a young age. However, at an older age, only females kept more adiposity. Ultimately, our data highlight the importance of controlling air pollution, especially during gestation.
Collapse
Affiliation(s)
- Olivia Pizetta Zordão
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Clara Machado Campolim
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Victor Yuji Yariwake
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Gisele Castro
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Andrey Santos
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sónia Norberto
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil
- *Correspondence: Patricia Oliveira Prada, ;
| |
Collapse
|
5
|
de Oliveira Micheletti T, Cassia dos Santos A, Rocha GZ, Silva VRR, Quaresma PGF, Assalin HB, Junqueira FS, Ropelle ER, Oliveira AG, Saad MJA, Prada PDO. Acute exercise reduces feeding by activating IL-6/Tubby axis in the mouse hypothalamus. Front Physiol 2022; 13:956116. [PMID: 36452038 PMCID: PMC9702993 DOI: 10.3389/fphys.2022.956116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2025] Open
Abstract
Background: Acute exercise contributes to decreased feeding through leptin and interleukin/Janus kinase 2/signal transducers and activators of transcription 3 (IL-6/JAK2/STAT3) signaling. Considering the pleiotropic use of substrates by JAK2 and that JAK2 can phosphorylate the Tubby protein (TUB) in CHO-IR cells, we speculated that acute exercise can activate the IL-6/JAK2/TUB pathway to decrease food intake. Aims: We investigated whether acute exercise induced tyrosine phosphorylation and the association of TUB and JAK2 in the hypothalamus and if IL-6 is involved in this response, whether acute exercise increases the IL-6/TUB axis to regulate feeding, and if leptin has an additive effect over this mechanism. Methods: We applied a combination of genetic, pharmacological, and molecular approaches. Key findings: The in vivo experiments showed that acute exercise increased the tyrosine phosphorylation and association of JAK2/TUB in the hypothalamus, which reduced feeding. This response was dependent on IL-6. Leptin had no additive effect on this mechanism. Significance: The results of this study suggest a novel hypothalamic pathway by which IL-6 released by exercise regulates feeding and reinforces the beneficial effects of exercise.
Collapse
Affiliation(s)
- Thayana de Oliveira Micheletti
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Andressa Cassia dos Santos
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Zweig Rocha
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Heloisa Balan Assalin
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Felipe Silva Junqueira
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Eduardo Rochete Ropelle
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Gabarra Oliveira
- Department of Physical Education, Biosciences Institute, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia de Oliveira Prada
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, Brazil
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
6
|
Antunes GC, Lima RDD, Vieira RFL, Macêdo APA, Muñoz VR, Zambalde EP, Romeiro CF, Simabuco FM, Prada PO, da Silva ASR, Ropelle ER, Cintra DE, Pauli JR. RESISTANCE EXERCISE ATTENUATES IKKε PHOSPHORYLATION AND HEPATIC FAT ACCUMULATION OF OBESE MICE. Clin Exp Pharmacol Physiol 2022; 49:1072-1081. [PMID: 35690890 DOI: 10.1111/1440-1681.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Obesity is associated with low-grade inflammation and disturbances in hepatic metabolism. This study aimed to investigate the effects of resistance exercise on inflammatory signaling related to IKKepsilon protein (IKKɛ) and on hepatic fat accumulation in obese mice. Male Swiss mice were distributed into three groups: control (CTL) fed with standard chow; obese (OB) mice induced by a high-fat diet (HFD); obese exercised (OB+RE) mice fed with HFD and submitted to a resistance exercise training. The resistance exercise training protocol consisted of 20 sets/3 ladder climbs for eight weeks, three times/week on alternate days. The training overload was equivalent to 70% of the maximum load supported by the rodent. Assays were performed to evaluate weight gain, hepatic fat content, fasting glucose, insulin sensitivity, IKKɛ phosphorylation, and proteins related to insulin signaling and lipogenesis in the liver. Mice that received the high-fat diet showed greater adiposity, impaired insulin sensitivity, increased fasting glucose, and increased hepatic fat accumulation. These results were accompanied by an increase in IKKɛ phosphorylation and lipogenesis-related proteins such as cluster of differentiation 36 (CD36) and fatty acid synthase (FAS) in the liver of obese mice. In contrast, exercised mice showed lower body weight and adiposity evolution throughout the experiment. In addition, resistance exercise suppressed the effects of the high-fat diet by reducing IKKɛ phosphorylation and hepatic fat content. In conclusion, resistance exercise training improves hepatic fat metabolism and glycemic homeostasis, which are, at least in part, linked to the antiinflammatory effect of reduced IKKɛ phosphorylation in the liver of obese mice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gabriel Calheiros Antunes
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Robson Damasceno de Lima
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Paula Azevêdo Macêdo
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Erika Pereira Zambalde
- Multidisciplinary Laboratory of Food and Health, State University of Campinas, Faculty of Applied Sciences, Limeira, São Paulo, Brazil
| | - Caio Felipe Romeiro
- Multidisciplinary Laboratory of Food and Health, State University of Campinas, Faculty of Applied Sciences, Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, State University of Campinas, Faculty of Applied Sciences, Limeira, São Paulo, Brazil
| | - Patricia Oliveira Prada
- Laboratory of Molecular Research in Obesity (Labimo), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dennys Esper Cintra
- OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Laboratory of Nutritional Genomics, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Yang D, Hou X, Yang G, Li M, Zhang J, Han M, Zhang Y, Liu Y. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes Metab Syndr Obes 2022; 15:2939-2950. [PMID: 36186941 PMCID: PMC9521683 DOI: 10.2147/dmso.s380577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothalamus is indispensable in energy regulation and glucose homeostasis. Previous studies have shown that pro-opiomelanocortin neurons receive both central neuronal signals, such as α-melanocyte-stimulating hormone, β-endorphin, and adrenocorticotropic hormone, as well as sense peripheral signals such as leptin, insulin, adiponectin, glucagon-like peptide-1, and glucagon-like peptide-2, affecting glucose metabolism through their corresponding receptors and related signaling pathways. Abnormalities in these processes can lead to obesity, type 2 diabetes, and other metabolic diseases. However, the mechanisms by which these signal molecules fulfill their role remain unclear. Consequently, in this review, we explored the mechanisms of these hormones and signals on obesity and diabetes to suggest potential therapeutic targets for obesity-related metabolic diseases. Multi-drug combination therapy for obesity and diabetes is becoming a trend and requires further research to help patients to better control their blood glucose and improve their prognosis.
Collapse
Affiliation(s)
- Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|
8
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
9
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
10
|
Reilly SM, Abu-Odeh M, Ameka M, DeLuca JH, Naber MC, Dadpey B, Ebadat N, Gomez AV, Peng X, Poirier B, Walk E, Potthoff MJ, Saltiel AR. FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition. J Clin Invest 2021; 131:145546. [PMID: 33822771 DOI: 10.1172/jci145546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.
Collapse
Affiliation(s)
- Shannon M Reilly
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammad Abu-Odeh
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Magdalene Ameka
- Department of Neuroscience and Pharmacology and.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Julia H DeLuca
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Meghan C Naber
- Department of Neuroscience and Pharmacology and.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Benyamin Dadpey
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Nima Ebadat
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Andrew V Gomez
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Xiaoling Peng
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - BreAnne Poirier
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Elyse Walk
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology and.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alan R Saltiel
- Division of Metabolism and Endocrinology, Department of Medicine, UCSD, La Jolla, California, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Gupta P, Taiyab A, Hassan MI. Emerging role of protein kinases in diabetes mellitus: From mechanism to therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:47-85. [PMID: 33632470 DOI: 10.1016/bs.apcsb.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Diabetes mellitus has emerged as a severe burden on the medical health system across the globe. Presently, around 422 million people are suffering from diabetes which is speculated to be expanded to about 600 million by 2035. Patients with type 2 diabetes are at increased risk of developing detrimental metabolic and cardiovascular complications. The scientific understanding of this chronic disease and its underlying root cause is not yet fully unraveled. Protein kinases are well known to regulate almost every cellular process through phosphorylation of target protein in diverse signaling pathways. The important role of several protein kinases including AMP-activated protein kinase, IκB kinase and protein kinase C have been well demonstrated in various animal models. They modulate glucose tolerance, inflammation and insulin resistance in the cells via acting on diverse downstream targets and signaling pathways. Thus, modulating the activity of potential human kinases which are significantly involved in diabetes by targeting with small molecule inhibitors could be an attractive therapeutic strategy to tackle diabetes. In this chapter, we have discussed the potential role of protein kinases in glucose metabolism and insulin sensitivity, and in the pathogenesis of diabetes mellitus. Furthermore, the small molecules reported in the literature that can be potentially used for the treatment of diabetes have been discussed in detail.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
12
|
Zhou Z, Qi J, Lim CW, Kim JW, Kim B. Dual TBK1/IKKε inhibitor amlexanox mitigates palmitic acid-induced hepatotoxicity and lipoapoptosis in vitro. Toxicology 2020; 444:152579. [PMID: 32905826 DOI: 10.1016/j.tox.2020.152579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
The common causes of Non-alcoholic fatty liver disease (NAFLD) are obesity, dyslipidemia, and insulin resistance. Metabolic disorders and lipotoxic hepatocyte damage are hallmarks of NAFLD. Even though amlexanox, a dual inhibitor of TRAF associated nuclear factor κB (NF-κB) activator-binding kinase 1 (TBK1) and IκB kinase epsilon (IKKε), has been reported to effectively improve obesity-related metabolic dysfunctions in mice models, its molecular mechanism has not been fully investigated. This study was designed to investigate the effects of amlexanox on in vitro nonalcoholic steatohepatitis (NASH) model induced by treatment of palmitic acid (PA, 0.4 mM), using a trans-well co-culture system of hepatocytes and Kupffer cells (KCs). Stimulation with PA significantly increased the phosphorylation levels of TBK1 and IKKε in both hepatocytes and KCs, suggesting a potential role of TBK1/IKKε in PA-induced NASH progression. Treatment of amlexanox (50 μM) showed significantly reduced phosphorylation of TBK1 and IKKε and hepatotoxicity as confirmed by decreased levels of lactate dehydrogenase released from hepatocytes. Furthermore, PA-induced inflammation and lipotoxic cell death in hepatocytes were significantly reversed by amlexanox treatment. Intriguingly, amlexanox inhibited the activation of KCs and induced polarization of KCs towards M2 phenotype. Mechanistically, amlexanox treatment decreased the phosphorylation of interferon regulator factor 3 (IRF3) and NF-κB in PA-treated hepatocytes. However, decreased phosphorylation of NF-κB, not IRF3, was found in PA-treated KCs upon amlexanox treatment. Taken together, our findings show that treatment of amlexanox attenuated the severity of PA-induced hepatotoxicity in vitro and lipoapoptosis by the inhibition of TBK1/IKKε-NF-κB and/or IRF3 pathway in hepatocytes and KCs.
Collapse
Affiliation(s)
- Zixiong Zhou
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jing Qi
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
13
|
Zeng G, Lian C, Yang P, Zheng M, Ren H, Wang H. E3-ubiquitin ligase TRIM6 aggravates myocardial ischemia/reperfusion injury via promoting STAT1-dependent cardiomyocyte apoptosis. Aging (Albany NY) 2020; 11:3536-3550. [PMID: 31171760 PMCID: PMC6594808 DOI: 10.18632/aging.101995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
Abstract
Cardiomyocyte apoptosis is a major cause of myocardial ischemia/reperfusion (MI/R) injury, in which the activation of the signal transducer and activator of transcription 1 (STAT1) plays an important role. The E3-ubiquitin ligase TRIM6 has been implicated in regulating STAT1 activity, however, whether it is associated with MI/R injury and the underlying mechanism are not determined. In this study, by investigating a mouse MI/R injury model, we show that TRIM6 expression is induced in mouse heart following MI/R injury. Additionally, TRIM6 depletion reduces and its overexpression increases myocardial infarct size, serum creatine phosphokinase (CPK) level and cardiomyocyte apoptosis in mice subjected to MI/R injury, indicating that TRIM6 functions to aggravate MI/R injury. Mechanistically, TRIM6 promotes IKKε-dependent STAT1 activation, and the inhibition of IKKε or STAT1 with the specific inhibitor, CAY10576 or fludarabine, abolishes TRIM6 effects on cardiomyocyte apoptosis and MI/R injury. Similarly, TRIM6 mutant lacking the ability to ubiquitinate IKKε and induce IKKε/STAT1 activation also fails to promote cardiomyocyte apoptosis and MI/R injury. Thus, these results suggest that TRIM6 aggravates MI/R injury through promoting IKKε/STAT1 activation-dependent cardiomyocyte apoptosis, and that TRIM6 might represent a novel therapeutic target for alleviating MI/R injury.
Collapse
Affiliation(s)
- Guangwei Zeng
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China
| | - Chen Lian
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China
| | - Pei Yang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China.,Jiajiang Oil Storage Warehouse, Xining Joint Service Centre, Xining, China
| | - Mingming Zheng
- Department of Health Economic Managment, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China
| | - He Ren
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China
| | - Haiyan Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China
| |
Collapse
|
14
|
Short-term exposure to air pollution (PM 2.5) induces hypothalamic inflammation, and long-term leads to leptin resistance and obesity via Tlr4/Ikbke in mice. Sci Rep 2020; 10:10160. [PMID: 32576879 PMCID: PMC7311527 DOI: 10.1038/s41598-020-67040-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
A previous study demonstrated that a high-fat diet (HFD), administered for one-three-days, induces hypothalamic inflammation before obesity’s established, and the long term affects leptin signaling/action due to inflammation. We investigate whether exposure to particulate matter of a diameter of ≤2.5 μm (PM2.5) in mice fed with a chow diet leads to similar metabolic effects caused by high-fat feeding. Compared to the filtered air group (FA), one-day-exposure-PM2.5 did not affect adiposity. However, five-days-exposure-PM2.5 increased hypothalamic microglia density, toll-like-receptor-4 (Tlr4), and the inhibitor-NF-kappa-B-kinase-epsilon (Ikbke) expression. Concurrently, fat mass, food intake (FI), and ucp1 expression in brown adipose tissue were also increased. Besides, decreased hypothalamic STAT3-phosphorylation and Pomc expression were found after twelve-weeks-exposure-PM2.5. These were accompanied by increased FI and lower energy expenditure (EE), leading to obesity, along with increased leptin and insulin levels and HOMA. Mechanistically, the deletion of Tlr4 or knockdown of the Ikbke gene in the hypothalamus was sufficient to reverse the metabolic outcomes of twelve-weeks-exposure-PM2.5. These data demonstrated that short-term exposure-PM2.5 increases hypothalamic inflammation, similar to a HFD. Long-term exposure-PM2.5 is even worse, leading to leptin resistance, hyperphagia, and decreased EE. These effects are most likely due to chronic hypothalamic inflammation, which is regulated by Tlr4 and Ikbke signaling.
Collapse
|
15
|
IKK Epsilon Deficiency Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice by Inhibiting Inflammation, Oxidative Stress, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3602824. [PMID: 32064021 PMCID: PMC6998751 DOI: 10.1155/2020/3602824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/06/2019] [Accepted: 11/14/2019] [Indexed: 11/18/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder that is considered a chronic inflammatory disease. However, the precise molecular mechanisms involved in AAA have not been fully elucidated. Recently, significant progress has been made in understanding the function and mechanism of action of inhibitor of kappa B kinase epsilon (IKKε) in inflammatory and metabolic diseases. The angiotensin II- (Ang II-) induced or pharmacological inhibitors were established to test the effects of IKKε on AAA in vivo. After mice were continuously stimulated with Ang II for 28 days, morphologically, we found that knockout of IKKε reduced AAA formation and drastically reduced maximal diameter and severity. We also observed a decrease in elastin degradation and medial destruction, which were independent of systolic blood pressure or plasma cholesterol concentrations. Western blot analyses and immunohistochemical staining were carried out to measure IKKε expression in AAA tissues and cell lines. AAA phenotype of mice was measured by ultrasound and biochemical indexes. In zymography, immunohistology staining, immunofluorescence staining, and reactive oxygen species (ROS) analysis, TUNEL assay was used to examine the effects of IKKε on AAA progression in AAA mice. IKKε deficiency significantly inhibited inflammatory macrophage infiltration, matrix metalloproteinase (MMP) activity, ROS production, and vascular smooth muscle cell (VSMC) apoptosis. We used primary mouse aortic VSMC isolated from apolipoprotein E (Apoe) -/- and Apoe-/-IKKε -/- mice. Mechanistically, IKKε deficiency blunted the activation of the ERK1/2 pathway. The IKKε inhibitor, amlexanox, has the same impact in AAA. Our results demonstrate a critical role of IKKε in AAA formation induced by Ang II in Apoe-/- mice. Targeting IKKε may constitute a novel therapeutic strategy to prevent AAA progression.
Collapse
|
16
|
Collier JJ, Batdorf HM, Mendoza TM, Burk DH, Martin TM, Zhang J, Mynatt RL, Burke SJ. Hepatic IKKε expression is dispensable for high-fat feeding-induced increases in liver lipid content and alterations in glucose tolerance. Am J Physiol Endocrinol Metab 2020; 318:E11-E21. [PMID: 31661298 PMCID: PMC6985790 DOI: 10.1152/ajpendo.00309.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are endocrine and immunological changes that occur during onset and progression of the overweight and obese states. The inhibitor of nuclear factor-κB kinase-ε (IKKε) was originally described as an inducible protein kinase; whole body gene deletion or systemic pharmaceutical targeting of this kinase improved insulin sensitivity and glucose tolerance in mice. To investigate the primary sites of action associated with IKKε during weight gain, we describe the first mouse line with conditional elimination of IKKε in the liver (IKKεAlb-/-). IKKεAlb-/- mice and littermate controls gain weight, show similar changes in body composition, and do not display any improvements in insulin sensitivity or whole body glucose tolerance. These studies were conducted using breeder chow diets and matched low- vs. high-fat diets. While glycogen accumulation in the liver is reduced in IKKεAlb-/- mice, lipid storage in liver is similar in IKKεAlb-/- mice and littermate controls. Our results using IKKεAlb-/- mice suggest that the primary action of this kinase to impact insulin sensitivity during weight gain lies predominantly within extrahepatic tissues.
Collapse
Affiliation(s)
- J Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Heidi M Batdorf
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Tamra M Mendoza
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - David H Burk
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Thomas M Martin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jingying Zhang
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | | | - Susan J Burke
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
17
|
Buie JJ, Watson LS, Smith CJ, Sims-Robinson C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis 2019; 132:104580. [PMID: 31454547 PMCID: PMC6834913 DOI: 10.1016/j.nbd.2019.104580] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/27/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is a global pandemic associated with macro- and microvascular endothelial dysfunction. Microvascular endothelial dysfunction has recently emerged as a significant risk factor for the development of cognitive impairment. In this review, we present evidence from clinical and preclinical studies supporting a role for obesity in cognitive impairment. Next, we discuss how obesity-related hyperinsulinemia/insulin resistance, systemic inflammation, and gut dysbiosis lead to cognitive impairment through induction of endothelial dysfunction and disruption of the blood brain barrier. Finally, we outline the potential clinical utility of dietary interventions, exercise, and bariatric surgery in circumventing the impacts of obesity on cognitive function.
Collapse
Affiliation(s)
- Joy Jones Buie
- WISSDOM Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Luke S Watson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Crystal J Smith
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Catrina Sims-Robinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA; Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
18
|
Abstract
Under conditions leading to aging and metabolic syndrome, the hypothalamus atypically undergoes proinflammatory signaling activation leading to a chronic and stable background inflammation, referred to as "hypothalamic microinflammation." Through the past decade of research, progress has been made to causally link this hypothalamic inflammation to the mechanism of aging as well as metabolic syndrome, promoting the "hypothalamic microinflammation" theory, which helps characterize the consensus of these epidemic health problems. In general, it is consistently appreciated that hypothalamic microinflammation emerges during the early stages of aging and metabolic syndrome and evolves to be multifaceted and advanced alongside disease progression, while inhibition of key inflammatory components in the hypothalamus has a broad range of effects in counteracting these disorders. Herein, focusing on aging and metabolic syndrome, this writing aims to provide an overview of and insights into the mediators, signaling components, cellular impacts, and physiological significance of this hypothalamic microinflammation.
Collapse
|
19
|
Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother 2019; 111:503-516. [DOI: 10.1016/j.biopha.2018.12.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 02/08/2023] Open
|
20
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
21
|
Saad MJ. Obesity, Diabetes, and Endothelium: Molecular Interactions. ENDOTHELIUM AND CARDIOVASCULAR DISEASES 2018:639-652. [DOI: 10.1016/b978-0-12-812348-5.00044-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Abstract
Leptin is an adipocyte-derived hormone, which contributes to the homeostatic regulation of energy balance and metabolism through humoral and neural pathways. Leptin acts on the neurons in certain brain areas such as the hypothalamus, hippocampus, and brain stem to regulate food intake, thermogenesis, energy expenditure, and homeostasis of glucose/lipid metabolism. The pathologically increased circulating leptin is a biomarker of leptin resistance, which is common in obese individuals. Leptin resistance is defined by a reduced sensitivity or a failure in response of the brain to leptin, showing a decrease in the ability of leptin to suppress appetite or enhance energy expenditure, which causes an increased food intake and finally leads to overweight, obesity, cardiovascular diseases, and other metabolic disorders. Leptin resistance is a challenge for clinical treatment or drug discovery of obesity. Until recently, emerging evidence has been showing novel mechanisms of the leptin resistance. Here, we summarized the advances and controversy of leptin resistance and associated diseases, for better understanding the physiology and pathophysiology of leptin as well as the new strategies for treating obesity and metabolic disorders.
Collapse
|
23
|
Sousa RALDE, Torres YS, Figueiredo CP, Passos GF, Clarke JR. Consequences of gestational diabetes to the brain and behavior of the offspring. AN ACAD BRAS CIENC 2017; 90:2279-2291. [PMID: 28813108 DOI: 10.1590/0001-3765201720170264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/30/2017] [Indexed: 01/11/2023] Open
Abstract
Gestational diabetes mellitus (GD) is a form of insulin resistance triggered during the second/third trimesters of pregnancy in previously normoglycemic women. It is currently estimated that 10% of all pregnancies in the United States show this condition. For many years, the transient nature of GD has led researchers and physicians to assume that long-term consequences were absent. However, GD diagnosis leads to a six-fold increase in the risk of developing type 2 diabetes (T2D) in women and incidence of obesity and T2D is also higher among their infants. Recent and concerning evidences point to detrimental effects of GD on the behavior and cognition of the offspring, which often persist until adolescence or adulthood. Considering that the perinatal period is critical for determination of adult behavior, it is expected that the intra-uterine exposure to hyperglycemia, hyperinsulinemia and pro-inflammatory mediators, hallmark features of GD, might affect brain development. Here, we review early clinical and experimental evidence linking GD to consequences on the behavior of the offspring, focusing on memory and mood disorders. We also discuss initial evidence suggesting that downregulation of insulin signaling cascades are seen in the brains of GD offspring and could contribute to the consequences on their behavior.
Collapse
Affiliation(s)
- Ricardo A L DE Sousa
- School of Pharmacy, Carlos Chagas Filho Street, 373, Building A, Underground, Room 024, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Yasmin S Torres
- School of Pharmacy, Carlos Chagas Filho Street, 373, Building A, Underground, Room 024, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Claudia P Figueiredo
- School of Pharmacy, Carlos Chagas Filho Street, 373, Building A, Underground, Room 024, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Giselle F Passos
- School of Pharmacy, Carlos Chagas Filho Street, 373, Building A, Underground, Room 024, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Julia R Clarke
- School of Pharmacy, Carlos Chagas Filho Street, 373, Building A, Underground, Room 024, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Mendes NF, Castro G, Guadagnini D, Tobar N, Cognuck SQ, Elias LLK, Boer PA, Prada PO. Knocking down amygdalar PTP1B in diet-induced obese rats improves insulin signaling/action, decreases adiposity and may alter anxiety behavior. Metabolism 2017; 70:1-11. [PMID: 28403933 DOI: 10.1016/j.metabol.2017.01.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/03/2017] [Accepted: 01/27/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Protein tyrosine phosphatase 1B (PTP1B) has been extensively implicated in the regulation of body weight, food intake, and energy expenditure. The role of PTP1B appears to be cell and brain region dependent. RESULTS Herein, we demonstrated that chronic high-fat feeding enhanced PTP1B expression in the central nucleus of the amygdala (CeA) of rats compared to rats on chow. Knocking down PTP1B with oligonucleotide antisense (ASO) decreased its expression and was sufficient to improve the anorexigenic effect of insulin through IR/Akt signaling in the CeA. ASO treatment reduces body weight, fat mass, serum leptin levels, and food intake and also increases energy expenditure, without altering ambulatory activity. These changes were explained, at least in part, by the improvement of insulin sensitivity in the CeA, decreasing NPY and enhancing oxytocin expression. There was a slight decline in fasting blood glucose and serum insulin levels possibly due to leanness in rats treated with ASO. Surprisingly, the elevated plus maze test revealed an anxiolytic behavior after reduction of PTP1B in the CeA. CONCLUSIONS Thus, the present study highlights the deleterious role that the amygdalar PTP1B has on energy homeostasis in obesity states. The reduction of PTP1B in the CeA may be a strategy for the treatment of obesity, insulin resistance and anxiety disorders.
Collapse
Affiliation(s)
| | - Gisele Castro
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Natalia Tobar
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Susana Quiros Cognuck
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, USP, Brazil
| | | | - Patricia Aline Boer
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Patricia Oliveira Prada
- School of Applied Sciences, State University of Campinas, UNICAMP, Brazil; Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil.
| |
Collapse
|
25
|
Nakata M, Yamamoto S, Okada T, Yada T. AAV-mediated IL-10 gene transfer counteracts inflammation in the hypothalamic arcuate nucleus and obesity induced by high-fat diet. Neuropeptides 2017; 62:87-92. [PMID: 27939689 DOI: 10.1016/j.npep.2016.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/05/2016] [Accepted: 11/27/2016] [Indexed: 12/16/2022]
Abstract
Consumption of high-fat diet (HFD) induces energy imbalance and consequently obesity. In the pathogenesis of obesity, HFD triggers inflammation in the hypothalamus including arcuate nucleus (ARC). Interleukin-10 (IL-10) is a representative anti-inflammatory cytokine, known to ameliorate the adipose tissue inflammation and insulin resistance in obesity. However, the effect of IL-10 on the hypothalamic inflammation remains less defined. We here report the effect of over-expression of murine IL-10 using adeno-associated virus (AAV) vector on the inflammation in ARC and feeding behavior in HFD-induced obese (DIO) mice. DIO mice exhibited reduced POMC expression and elevated IKKs (IκB kinases) and SOCS3 expression in ARC. Overexpression of mIL-10 using AAV vector ameliorated obesity in parallel with restoration of ARC POMC expression in DIO mice. Moreover, IL-10 treatment suppressed IKKs activation and SOCS3 expression in ARC of DIO mice. These results suggest that IL-10 gene transfer provides an effective approach for counteracting HFD-induced inflammation and leptin resistance in ARC to prevent progression of obesity.
Collapse
Affiliation(s)
- Masanori Nakata
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan.
| | - Sawako Yamamoto
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan
| | - Takashi Okada
- Department of Molecular and Medical Genetics, Nippon Medical School, Tokyo 113-8602, Japan
| | - Toshihiko Yada
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
26
|
Le Thuc O, Rovère C. [Hypothalamic inflammation and energy balance deregulations: focus on chemokines.]. Biol Aujourdhui 2017; 210:211-225. [PMID: 28327280 DOI: 10.1051/jbio/2016026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 02/01/2023]
Abstract
The hypothalamus is a key brain region in the regulation of energy balance. It especially controls food intake and both energy storage and expenditure through integration of humoral, neural and nutrient-related signals and cues. Hypothalamic neurons and glial cells act jointly to orchestrate, both spatially and temporally, regulated metabolic functions of the hypothalamus. Thus, the existence of a causal link between hypothalamic inflammation and deregulations of feeding behavior, such as involuntary weight-loss or obesity, has been suggested. Among the inflammatory mediators that could induce deregulations of hypothalamic control of the energy balance, chemokines represent interesting candidates. Indeed, chemokines, primarily known for their chemoattractant role of immune cells to the inflamed site, have also been suggested capable of neuromodulation. Thus, chemokines could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators that are involved in the maintenance of energy balance. Here, we relate, on one hand, recent results showing the primary role of the central chemokinergic signaling CCL2/CCR2 for metabolic and behavioral adaptation to high-grade inflammation, especially loss of appetite and weight, through its activity on hypothalamic neurons producing the orexigenic peptide Melanin-Concentrating Hormone (MCH) and, on the other hand, results that suggest that chemokines could also deregulate hypothalamic neuropeptidergic circuits to induce an opposite phenotype and eventually participate in the onset/development of obesity. In more details, we will emphasize a study recently showing, in a model of high-grade acute inflammation of LPS injection in mice, that central CCL2/CCR2 signaling is of primary importance for several aspects explaining weight loss associated with inflammation: after LPS injection, animals lose weight, reduce their food intake, increase their fat oxidation (thus energy consumption from fat storage)...These inflammation-induced metabolic and behavioral changes are reduced when central CCR2 signaling is disrupted either pharmacologically (by a specific inhibitor of CCR2) or genetically (in mice deficient for CCR2). This underlines the importance of this signaling in inflammation-related weight loss. We further determined that the LPS-induced and CCR2-mediated weight loss depends on the direct effect of CCR2 activation on MCH neurons activity. Indeed, the MCH neurons express CCR2, and the application of CCL2 on brain slices revealed that activation of CCR2 actually depolarizes MCH neurons and induces delays and/or failures of action potential emission. Furthermore, CCL2 is able to reduce KCl-evoked MCH secretion from hypothalamic explants. Taken together, these results demonstrate the role of the central CCL2/CCR2 signaling in metabolic and behavioral adaptation to inflammation. On the other hand, this first description of how the chemokinergic system can actually modulate the activity of the hypothalamic regulation of energy balance, but also some less advanced studies and some unpublished data, suggest that some other chemokines, such as CCL5, could participate in the development of the opposite phenotype, that is to say obesity.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France - Helmholtz Diabetes Center (HDC) & German Center for Diabetes Research (DZD), Helmholtz Zentrum München & Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Carole Rovère
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| |
Collapse
|
27
|
Microglia activation due to obesity programs metabolic failure leading to type two diabetes. Nutr Diabetes 2017; 7:e254. [PMID: 28319103 PMCID: PMC5380893 DOI: 10.1038/nutd.2017.10] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/04/2016] [Accepted: 01/22/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity is an energy metabolism disorder that increases susceptibility to the development of metabolic diseases. Recently, it has been described that obese subjects have a phenotype of chronic inflammation in organs that are metabolically relevant for glucose homeostasis and energy. Altered expression of immune system molecules such as interleukins IL-1, IL-6, IL-18, tumor necrosis factor alpha (TNF-α), serum amyloid A (SAA), and plasminogen activator inhibitor-1 (PAI-1), among others, has been associated with the development of chronic inflammation in obesity. Chronic inflammation modulates the development of metabolic-related comorbidities like metabolic syndrome (insulin resistance, glucose tolerance, hypertension and hyperlipidemia). Recent evidence suggests that microglia activation in the central nervous system (CNS) is a priority in the deregulation of energy homeostasis and promotes increased glucose levels. This review will cover the most significant advances that explore the molecular signals during microglia activation and inflammatory stage in the brain in the context of obesity, and its influence on the development of metabolic syndrome and type two diabetes.
Collapse
|
28
|
Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central Regulation of Glucose Homeostasis. Compr Physiol 2017; 7:741-764. [PMID: 28333388 DOI: 10.1002/cphy.c160015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Inflammation and the Metabolic Syndrome: The Tissue-Specific Functions of NF-κB. Trends Cell Biol 2017; 27:417-429. [PMID: 28237661 DOI: 10.1016/j.tcb.2017.01.006] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
Abstract
Obesity is becoming a major health concern in Western society, and medical conditions associated with obesity are grouped in the metabolic syndrome. Overnutrition activates several proinflammatory signaling pathways, leading to a condition of chronic low-grade inflammation in several metabolic tissues affecting their proper function. Nuclear factor kappa B (NF-κB) signaling is a crucial pathway in this process and has been studied extensively in the context of obesity and the metabolic syndrome. Here we give an overview of the molecular mechanisms behind the inflammatory function of NF-κB in response to overnutrition and the effect this has on several metabolic tissues.
Collapse
|
30
|
Le Thuc O, Stobbe K, Cansell C, Nahon JL, Blondeau N, Rovère C. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines. Front Endocrinol (Lausanne) 2017; 8:197. [PMID: 28855891 PMCID: PMC5557773 DOI: 10.3389/fendo.2017.00197] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
- Helmholtz Diabetes Center (HDC), German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Katharina Stobbe
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Céline Cansell
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Jean-Louis Nahon
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Nicolas Blondeau
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Carole Rovère
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
- *Correspondence: Carole Rovère,
| |
Collapse
|
31
|
Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017; 8:30. [PMID: 28270795 PMCID: PMC5318964 DOI: 10.3389/fendo.2017.00030] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body's nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin-ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels.
Collapse
Affiliation(s)
- Joris Wauman
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lennart Zabeau
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- *Correspondence: Jan Tavernier,
| |
Collapse
|
32
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|
33
|
Quaresma PGF, Weissmann L, Zanotto TM, Santos AC, de Matos AHB, Furigo IC, Simabuco FM, Donato J, Bittencourt JC, Lopes-Cendes I, Prada PO. Cdc2-like kinase 2 in the hypothalamus is necessary to maintain energy homeostasis. Int J Obes (Lond) 2016; 41:268-278. [PMID: 27733761 DOI: 10.1038/ijo.2016.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 08/21/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate whether the Cdc2-like kinase 2 (CLK2) is expressed in hypothalamic neurons and if it is, whether the hypothalamic CLK2 has a role in the regulation of energy balance. SUBJECTS Swiss mice on chow or high-fat diet (HFD) and db/db mice on chow diet were used to address the role of CLK2 in the hypothalamus. RESULTS Hypothalamic CLK2Thr343 phosphorylation, which induces CLK2 activity, is regulated in vivo by refeeding, insulin and leptin, in a PI3K (phosphoinositide 3-kinase)-dependent manner. The reduction of CLK2 expression in the hypothalamus, by chronic pharmacological inhibition with TG003 or by chronic knockdown with small interfering RNA was sufficient to abolish the anorexigenic effect of insulin and leptin, to increase body weight, fat mass, food intake and to decrease energy expenditure in mice on chow. In contrast, CLK2Thr343 phosphorylation in the hypothalamus in response to insulin, leptin or refeeding was impaired in mice on HFD or in db/db mice. Chronic CLK2 inhibition in the hypothalamus was associated with a slight increase in the fasting blood glucose levels, reduction in PEPCK (phosphoenolpyruvate carboxykinase) expression in the liver and enhanced glucose production from pyruvate, suggesting a regulation of hepatic glucose production. Further, overexpressing CLK2 in the mediobasal hypothalami of mice on HFD or in db/db mice by adenovirus partially reversed the obese phenotype. CONCLUSIONS Thus, our results suggest that protein CLK2 integrates some important hypothalamic pathways, and may be a promising molecule for new therapeutic approaches for obesity and diabetes.
Collapse
Affiliation(s)
- P G F Quaresma
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - L Weissmann
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - T M Zanotto
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - A C Santos
- Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - A H B de Matos
- Department of Medical Genetics, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - I C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - F M Simabuco
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - J Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - J C Bittencourt
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - I Lopes-Cendes
- Department of Medical Genetics, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - P O Prada
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Medical Clinics, Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
34
|
Kwon O, Kim KW, Kim MS. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci 2016; 73:1457-77. [PMID: 26786898 PMCID: PMC11108307 DOI: 10.1007/s00018-016-2133-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/20/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Abstract
Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.
Collapse
Affiliation(s)
- Obin Kwon
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Ki Woo Kim
- Department of Pharmacology, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea.
| |
Collapse
|
35
|
Davidson JA. Differential effects of prandial and non-prandial GLP-1 receptor agonists in type 2 diabetes therapy. Postgrad Med 2015; 127:827-41. [DOI: 10.1080/00325481.2015.1096743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Abstract
PURPOSE OF REVIEW Hypothalamic inflammation and gliosis are recently discovered mechanisms that may contribute to obesity pathogenesis. Current research in this area suggests that investigation of these central nervous system responses may provide opportunities to develop new weight loss treatments. RECENT FINDINGS In rodents, hypothalamic inflammation and gliosis occur rapidly with high-fat diet consumption prior to significant weight gain. In addition, sensitivity or resistance to diet-induced obesity in rodents generally correlates with the presence or absence of hypothalamic inflammation and reactive gliosis (brain response to injury). Moreover, functional interventions that increase or decrease inflammation in neurons and glia correspondingly alter diet-associated weight gain. However, some conflicting data have recently emerged that question the contribution of hypothalamic inflammation to obesity pathogenesis. Nevertheless, several studies have detected gliosis and disrupted connectivity in obese humans, highlighting the potential translational importance of this mechanism. SUMMARY There is growing evidence that obesity is associated with brain inflammation in humans, particularly in the hypothalamus where its presence may disrupt body weight control and glucose homeostasis. More work is needed to determine whether this response is common in human obesity and to what extent it can be manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- Diabetes and Obesity Center of Excellence and Department of Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
37
|
Abstract
Low-grade inflammation is an established pathological condition that contributes to the development of obesity, insulin resistance and type 2 diabetes. Metabolic inflammation is dependent on multiple signalling events. In an overnutrition state, canonical inflammatory pathways are induced by inflammatory cytokines and lipid species. They can also be triggered through inflammasome activation as well as through cellular stress provoked by the unfolded protein response at the endoplasmic reticulum as well as by reactive oxygen species. In this chapter, we summarize the current knowledge about signalling events within the cell and describe how they impact on metabolic inflammation and whole-body metabolism. We particularly highlight the interplay between different signalling pathways that link low-grade inflammation responses to the inactivation of the insulin receptor pathway, ultimately leading to insulin resistance, a hallmark of type 2 diabetes.
Collapse
|
38
|
Abstract
Overconsumption of dietary fat contributes to the development of obesity and metabolic syndrome. Recent evidence suggests that high dietary fat may promote these metabolic states not only by providing calories but also by inducing impaired control of energy balance. In normal metabolic states, fat interacts with various organs or receptors to generate signals for the regulation of energy balance. Many of these interactions are impaired by high-fat diets or in obesity, contributing to the development or maintenance of obesity. These impairments may arise largely from fundamental alterations in the hypothalamus where all peripheral signals are integrated to regulate energy balance. This review focuses on various mechanisms by which fat is sensed at different stages of ingestion, circulation, storage, and utilization to regulate food intake, and how these individual mechanisms are altered by high-fat diets or in obesity.
Collapse
Affiliation(s)
- Jang H Youn
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA,
| |
Collapse
|