1
|
Gutierrez-Mariscal FM, Lopez-Moreno A, Torres-Peña JD, Gomez-Luna P, Arenas-de Larriva AP, Romero-Cabrera JL, Luque RM, Uribarri J, Perez-Martinez P, Delgado-Lista J, Yubero-Serrano EM, Lopez-Miranda J. Modulation of circulating levels of advanced glycation end products and its impact on intima-media thickness of both common carotid arteries: CORDIOPREV randomised controlled trial. Cardiovasc Diabetol 2024; 23:361. [PMID: 39402581 PMCID: PMC11475769 DOI: 10.1186/s12933-024-02451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Increasing evidence supports the role of advanced glycation end products (AGEs) in atherosclerosis in both diabetic and non-diabetic patients, suggesting that therapeutic strategies targeting AGEs may offer potential benefits in this population. The Mediterranean diet is associated with improved biomarkers and anthropometric measurements related with atherosclerosis in addition to its ability to modulate AGE metabolism. Our aim was to determine whether the reduction in atherosclerosis progression (measured by changes in intima-media thickness of both common carotid arteries (IMT-CC)), observed after consumption of a Mediterranean diet compared to a low-fat diet, is associated with a modulation of circulating AGE levels in patients with coronary heart disease (CHD). METHODS 1002 CHD patients were divided in: (1) Non-increased IMT-CC patients, whose IMT-CC was reduced or not changed after dietary intervention and (2) Increased IMT-CC patients, whose IMT-CC was increased after dietary intervention. Serum AGE levels (methylglyoxal-MG and Nε-Carboxymethyllysine-CML) and parameters related to AGE metabolism (AGER1 and GloxI mRNA and sRAGE levels) and reduced glutathione (GSH) levels were measured before and after 5-years of dietary intervention. RESULTS The Mediterranean diet did not affect MG levels, whereas the low-fat diet significantly increased them compared to baseline (p = 0.029), leading to lower MG levels following the Mediterranean diet than the low-fat diet (p < 0.001). The Mediterranean diet, but not the low-fat diet, produced an upregulation of AGE metabolism, with increased AGER1 and GloxI gene expression as well as increased GSH and sRAGE levels in Non-increased IMT-CC patients (all p < 0.05). Although the Mediterranean diet increased MG levels in Increased IMT-CC patients, this increment was lower compared to the low-fat diet (all p < 0.05). CONCLUSIONS Our results suggest that an improvement in modulation of AGE metabolism, which facilitates better management of circulating AGE levels, may be one of the mechanisms through which the Mediterranean diet, compared to a low-fat diet, reduces the progression of atherosclerosis in patients with CHD. Trial registration https://clinicaltrials.gov/ct2/show/NCT00924937 , Clinicaltrials.gov number, NCT00924937.
Collapse
Affiliation(s)
- Francisco M Gutierrez-Mariscal
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Alejandro Lopez-Moreno
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Jose D Torres-Peña
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Purificacion Gomez-Luna
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Antonio P Arenas-de Larriva
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Juan Luis Romero-Cabrera
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Raul M Luque
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, University of Córdoba, 14004, Córdoba, Spain
| | - Jaime Uribarri
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Perez-Martinez
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Javier Delgado-Lista
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Elena M Yubero-Serrano
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
- Department of Food and Health, Instituto de la Grasa, Spanish National Research Council (CSIC), Seville, Spain.
| | - Jose Lopez-Miranda
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Apte M, Zambre S, Pisar P, Roy B, Tupe R. Decoding the role of aldosterone in glycation-induced diabetic complications. Biochem Biophys Res Commun 2024; 721:150107. [PMID: 38781658 DOI: 10.1016/j.bbrc.2024.150107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling. Moreover, during hyperglycemia, aldosterone (Aldo) secretion increases, and its interaction with mineralocorticoid receptor (MR) through genomic and non-genomic pathways leads to inflammation and fibrosis. Extensive research on individual involvement of AGEs-RAGE and Aldo-MR pathways in the development of diabetic nephropathy (DN), cardiovascular diseases (CVDs), and impaired immune system has led to the discovery of therapeutic drugs. Despite mutual repercussions, the cross-talk between AGEs-RAGE and Aldo-MR pathways remains unresolved. Hence, this review focuses on the possible interaction of Aldo and glycation in DN and CVDs, considering the clinical significance of mutual molecular targets.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Saee Zambre
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Pratiksha Pisar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
3
|
Kato S, Matsumura T, Sugawa H, Nagai R. Correlation between serum advanced glycation end-products and vascular complications in patient with type 2 diabetes. Sci Rep 2024; 14:18722. [PMID: 39134632 PMCID: PMC11319737 DOI: 10.1038/s41598-024-69822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced glycation end-products (AGEs) formation increases with metabolic disorders, leading to higher serum AGE levels in patients with progressive vascular complications. Measuring AGE levels in biological samples requires multiple pre-analytical processing steps, rendering analysis of multiple samples challenging. This study evaluated the progression of diabetic complications by analyzing AGE levels using a pre-analytical processing strategy based on a fully automated solid phase-extraction system. Serum samples from patients with diabetes, with or without macrovascular complications (Mac or non-Mac) or microvascular complications (Mic or non-Mic), were processed with the established methods. Free and total AGE levels in sera were measured using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In patients with diabetes, both free and total AGE levels were elevated in those with complications compared to those without complications. In Mac and Mic groups, free and total AGE levels and z-scores (the sum of normalized AGE levels) also increased. AGE z-scores were markedly higher than those of single AGE levels in distinguishing each complication. Our study demonstrated that the free AGE z-score, measured using a new analytical method without hydrolysis, correlated with the presence of vascular complications and may serve as a marker of disease complications.
Collapse
Affiliation(s)
- Sayuri Kato
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Department of Food and Life Sciences, School of Agriculture, Tokai University, Sugidoh 871-12, Maschiki-Machi, Kamimashiki-Gun, Kumamoto, 861-2205, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, Japan.
- Laboratory of Food and Regulation Biology, Department of Food and Life Sciences, School of Agriculture, Tokai University, Sugidoh 871-12, Maschiki-Machi, Kamimashiki-Gun, Kumamoto, 861-2205, Japan.
| |
Collapse
|
4
|
Baylan U, Baidoshvili A, Simsek S, Schalkwijk CG, Niessen HWM, Krijnen PAJ. Increased accumulation of the advanced glycation endproduct Ne(carboxymethyl) lysine in the intramyocardial vasculature in patients with epicarditis. Int J Exp Pathol 2024; 105:48-51. [PMID: 38062984 PMCID: PMC10951421 DOI: 10.1111/iep.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 03/21/2024] Open
Abstract
Advanced glycation end-products (AGEs) are implicated in the pathogenesis of vascular disease. In previous studies we have found increased deposition of N(e)-(carboxymethyl)lysine (CML) in intramyocardial vasculature in the heart in acute myocardial infarction and myocarditis. It is known that the process of inflammation plays a role in the formation of AGEs. In this study we have explored the presence of CML (a major AGE) in the heart of patients with epicarditis using a monoclonal anti-CML antibody. Nine patients with epicarditis (n = 9) died and their hearts were used for this study, control were hearts from patients who died from conditions unrelated to heart disease and without signs of myocarditis or epicarditis CML deposition and complement were significantly increased in patients with epicarditis compared to control hearts. Thus epicarditis increases CML depositions in the intramyocardial vasculature.
Collapse
Affiliation(s)
- U Baylan
- Department of PathologyAmsterdam University Medical Centre (AUMC)AmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - A Baidoshvili
- Laboratory for Pathology East NetherlandsHengeloThe Netherlands
| | - S Simsek
- Department of Internal MedicineNorthwest ClinicsAlkmaarThe Netherlands
- Department of Internal MedicineAUMCAmsterdamThe Netherlands
| | - CG Schalkwijk
- Internal MedicineMaastricht University Medical CentreMaastrichtThe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)MaastrichtThe Netherlands
| | - HWM Niessen
- Department of PathologyAmsterdam University Medical Centre (AUMC)AmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - PAJ Krijnen
- Department of PathologyAmsterdam University Medical Centre (AUMC)AmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| |
Collapse
|
5
|
Zhao N, Yu X, Zhu X, Song Y, Gao F, Yu B, Qu A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J Cardiovasc Transl Res 2024; 17:133-152. [PMID: 38091232 DOI: 10.1007/s12265-023-10470-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Yanting Song
- Department of Pathology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
6
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
7
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
8
|
Sutkowska E, Fecka I, Marciniak D, Bednarska K, Sutkowska M, Hap K. Analysis of Methylglyoxal Concentration in a Group of Patients with Newly Diagnosed Prediabetes. Biomedicines 2023; 11:2968. [PMID: 38001968 PMCID: PMC10669086 DOI: 10.3390/biomedicines11112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The abnormal serum concentration of methylglyoxal (MGO) has been presented as an indicator of chronic complications in diabetes (DM). Because such complications are also found in pre-DM, we decided to assess the concentration of this compound in individuals with pre-DM, without cardio-vascular diseases. METHODS Frozen samples from individuals newly diagnosed with pre-DM (N = 31) and healthy subjects (N = 11) were prepared and MGO concentration was determined using UHPLC-ESI-QqTOF-MS. RESULTS Statistical significance was established when the groups were compared for body weight, BMI, fasting glucose level, fatty liver and use of statins but not for the other descriptive parameters. The positive linear correlation showed that the higher HbA1c, the higher MGO concentration (p = 0.01). The values of MGO were within the normal range in both groups (mean value for pre-DM: 135.44 nM (±SD = 32.67) and for the control group: 143.25 nM (±SD = 17.93); p = 0.46 (±95% CI)), with no statistical significance between the groups. CONCLUSIONS We did not confirm the elevated MGO levels in the group of patients with pre-DM. The available data suggests a possible effect of statin intake on MGO levels. This thesis requires confirmation on a larger number of patients with an assessment of MGO levels before and after the introduction of statins.
Collapse
Affiliation(s)
- Edyta Sutkowska
- University Rehabilitation Centre, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.F.); (K.B.)
- The Committee on Therapeutics and Pharmaceutical Sciences, The Polish Academy of Sciences, pl. Defilad 1, 00-901 Warszawa, Poland
| | - Dominik Marciniak
- Department of Drugs Form Technology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Katarzyna Bednarska
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.F.); (K.B.)
| | - Magdalena Sutkowska
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże Ludwika Pasteura 1, 50-367 Wroclaw, Poland;
| | - Katarzyna Hap
- University Rehabilitation Centre, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
9
|
Hirai T, Fujiyoshi K, Yamada S, Matsumoto T, Kikuchi J, Ishida K, Ishida M, Shigeta K, Tojo T. Association between fingertip-measured advanced glycation end products and cardiovascular events in outpatients with cardiovascular disease. Cardiovasc Diabetol 2023; 22:213. [PMID: 37592261 PMCID: PMC10436644 DOI: 10.1186/s12933-023-01953-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The accumulation of advanced glycation end products (AGEs) is associated with cardiovascular events in patients with cardiovascular disease (CVD). However, the relationship between the AGEs measured by an AGEs sensor noninvasively at the fingertip and prognosis in patients with CVD remains unclear. Therefore, this study aimed to determine the relationship between AGEs score and prognosis among patients with CVD. METHODS A total of 191 outpatients with CVD were included. AGEs score were measured using an AGEs sensor and the patients were classified into groups by the median value of AGEs score. The incidence of major adverse cardiovascular and cerebrovascular events (MACCE) at 30 months was compared between high- and low-AGEs score groups. In addition, receiver operating characteristic (ROC) curve analysis was used to calculate cutoff value for the AGEs score, which discriminates the occurrence of MACCE. Cox regression analysis was performed to identify the factors associated with the presence of MACCE. MACCE included cardiac death, myocardial infarction, percutaneous coronary intervention, heart failure, and stroke. RESULTS AGEs score was normally distributed, with a median value of 0.51. No significant intergroup differences were found in laboratory findings, physical functions, or medications. The high-AGEs score group had a significantly higher incidence of MACCE than the low-AGEs score group (27.1 vs. 10.5%, P = 0.007). A high-AGEs score was a risk factor for MACCE (hazard ratio, 2.638; 95% confidence interval, 1.271-5.471; P = 0.009). After the adjustment for confounders other than 6-min walking distance, the AGEs score remained a factor associated with the occurrence of MACCE. The best cutoff AGEs score for the detection of MACCE was 0.51 (area under the curve, 0.642; P = 0.008; sensitivity, 72.2%; specificity, 54.8%). CONCLUSIONS AGEs score measured at the fingertip in patients with CVD is associated with MACCE. AGEs score, which can be measured noninvasively and easily, may be useful as an assessment for the secondary prevention of CVD in patients with CVD.
Collapse
Affiliation(s)
- Tomoya Hirai
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima, Japan
- Department of Cardiac Rehabilitation, Kitasato University Kitasato Institute Hospital, Minato-Ku, Japan
| | - Kazuhiro Fujiyoshi
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan.
| | - Satoru Yamada
- Diabetes Center, Kitasato University Kitasato Institute Hospital, Minato-ku, Japan
| | - Takuya Matsumoto
- Department of Cardiac Rehabilitation, Kitasato University Kitasato Institute Hospital, Minato-Ku, Japan
| | - Junko Kikuchi
- Department of Cardiac Rehabilitation, Kitasato University Kitasato Institute Hospital, Minato-Ku, Japan
| | - Kohki Ishida
- Department of Cardiovascular Medicine, Kitasato University Kitasato Institute Hospital, Minato-ku, Japan
| | - Miwa Ishida
- Department of Cardiovascular Medicine, Kitasato University Kitasato Institute Hospital, Minato-ku, Japan
| | - Kyo Shigeta
- Department of Cardiac Rehabilitation, Kitasato University Kitasato Institute Hospital, Minato-Ku, Japan
| | - Taiki Tojo
- Department of Cardiovascular Medicine, Kitasato University Kitasato Institute Hospital, Minato-ku, Japan
| |
Collapse
|
10
|
Linkens AMA, Eussen SJMP, Houben AJHM, Mari A, Dagnelie PC, Stehouwer CDA, Schalkwijk CG. Habitual intake of advanced glycation endproducts is not associated with worse insulin sensitivity, worse beta cell function, or presence of prediabetes or type 2 diabetes: The Maastricht Study. Clin Nutr 2023:S0261-5614(23)00163-2. [PMID: 37302878 DOI: 10.1016/j.clnu.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND & AIMS A diet high in advanced glycation endproducts (AGEs) is a potential risk factor for insulin resistance, beta cell dysfunction, and ultimately type 2 diabetes. We investigated associations between habitual intake of dietary AGEs and glucose metabolism in a population-based setting. METHODS In 6275 participants of The Maastricht Study (mean ± SD age: 60 ± 9, 15.1% prediabetes and 23.2% type 2 diabetes), we estimated habitual intake of dietary AGEs Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) by combining a validated food frequency questionnaire (FFQ) with our mass-spectrometry dietary AGE database. We determined insulin sensitivity (Matsuda- and HOMA-IR index), beta cell function (C-peptidogenic index, glucose sensitivity, potentiation factor, and rate sensitivity), glucose metabolism status, fasting glucose, HbA1c, post-OGTT glucose, and OGTT glucose incremental area under the curve. Cross-sectional associations between habitual AGE intake and these outcomes were investigated using a combination of multiple linear regression and multinomial logistic regression adjusting for several potential confounders (demographic, cardiovascular, and lifestyle factors). RESULTS Generally, higher habitual intake of AGEs was not associated with worse indices of glucose metabolism, nor with increased presence of prediabetes or type 2 diabetes. Higher dietary MG-H1 was associated with better beta cell glucose sensitivity. CONCLUSIONS The present study does not support an association of dietary AGEs with impaired glucose metabolism. Whether higher intake of dietary AGEs translates to increased incidence of prediabetes or type 2 diabetes on the long term should be investigated in large prospective cohort studies.
Collapse
Affiliation(s)
- Armand M A Linkens
- Department of Internal Medicine, Maastricht University Medical Center, 6229ER, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, 6229ER, Maastricht, the Netherlands
| | - Simone J M P Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University, 6229ER, Maastricht, the Netherlands; Department of Epidemiology, Maastricht University, 6229HA, Maastricht, the Netherlands; CAPHRI School for Care and Public Health Research Unit, Maastricht University, 6229ER, Maastricht the Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine, Maastricht University Medical Center, 6229ER, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, 6229ER, Maastricht, the Netherlands
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, 35131, Padova, PD, Padua, Italy
| | - Pieter C Dagnelie
- Department of Epidemiology, Maastricht University, 6229HA, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, 6229ER, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, 6229ER, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center, 6229ER, Maastricht, the Netherlands; CARIM School for Cardiovascular Diseases, Maastricht University, 6229ER, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Li J, Qiu Y, Zhang C, Wang H, Bi R, Wei Y, Li Y, Hu B. The role of protein glycosylation in the occurrence and outcome of acute ischemic stroke. Pharmacol Res 2023; 191:106726. [PMID: 36907285 DOI: 10.1016/j.phrs.2023.106726] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Acute ischemic stroke (AIS) is a serious and life-threatening disease worldwide. Despite thrombolysis or endovascular thrombectomy, a sizeable fraction of patients with AIS have adverse clinical outcomes. In addition, existing secondary prevention strategies with antiplatelet and anticoagulant drugs therapy are not able to adequately decrease the risk of ischemic stroke recurrence. Thus, exploring novel mechanisms for doing so represents an urgent need for the prevention and treatment of AIS. Recent studies have discovered that protein glycosylation plays a critical role in the occurrence and outcome of AIS. As a common co- and post-translational modification, protein glycosylation participates in a wide variety of physiological and pathological processes by regulating the activity and function of proteins or enzymes. Protein glycosylation is involved in two causes of cerebral emboli in ischemic stroke: atherosclerosis and atrial fibrillation. Following ischemic stroke, the level of brain protein glycosylation becomes dynamically regulated, which significantly affects stroke outcome through influencing inflammatory response, excitotoxicity, neuronal apoptosis, and blood-brain barrier disruption. Drugs targeting glycosylation in the occurrence and progression of stroke may represent a novel therapeutic idea. In this review, we focus on possible perspectives about how glycosylation affects the occurrence and outcome of AIS. We then propose the potential of glycosylation as a therapeutic drug target and prognostic marker for AIS patients in the future.
Collapse
Affiliation(s)
- Jianzhuang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmei Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hailing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhao Wei
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Kim Y. Blood and Tissue Advanced Glycation End Products as Determinants of Cardiometabolic Disorders Focusing on Human Studies. Nutrients 2023; 15:nu15082002. [PMID: 37111220 PMCID: PMC10144557 DOI: 10.3390/nu15082002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiometabolic disorders are characterised by a cluster of interactive risk determinants such as increases in blood glucose, lipids and body weight, as well as elevated inflammation and oxidative stress and gut microbiome changes. These disorders are associated with onset of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). T2DM is strongly associated with CVD. Dietary advanced glycation end products (dAGEs) attributable from modern diets high in sugar and/or fat, highly processed foods and high heat-treated foods can contribute to metabolic etiologies of cardiometabolic disorders. This mini review aims to determine whether blood dAGEs levels and tissue dAGEs levels are determinants of the prevalence of cardiometabolic disorders through recent human studies. ELISA (enzyme-linked immunosorbent assay), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) for blood dAGEs measurement and skin auto fluorescence (SAF) for skin AGEs measurement can be used. Recent human studies support that a diet high in AGEs can negatively influence glucose control, body weight, blood lipid levels and vascular health through the elevated oxidative stress, inflammation, blood pressure and endothelial dysfunction compared with a diet low in AGEs. Limited human studies suggested a diet high in AGEs could negatively alter gut microbiota. SAF could be considered as one of the predictors affecting risks for cardiometabolic disorders. More intervention studies are needed to determine how dAGEs are associated with the prevalence of cardiometabolic disorders through gut microbiota changes. Further human studies are conducted to find the association between CVD events, CVD mortality and total mortality through SAF measurement, and a consensus on whether tissue dAGEs act as a predictor of CVD is required.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
14
|
Schalkwijk CG, Micali LR, Wouters K. Advanced glycation endproducts in diabetes-related macrovascular complications: focus on methylglyoxal. Trends Endocrinol Metab 2023; 34:49-60. [PMID: 36446668 DOI: 10.1016/j.tem.2022.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
Diabetes is associated with vascular injury and the onset of macrovascular complications. Advanced glycation endproducts (AGEs) and the AGE precursor methylglyoxal (MGO) have been identified as key players in establishing the relationship between diabetes and vascular injury. While most research has focused on the link between AGEs and vascular injury, less is known about the effects of MGO on vasculature. In this review, we focus on the mechanisms linking AGEs and MGO to the development of atherosclerosis. AGEs and MGO are involved in many stages of atherosclerosis progression. However, more research is needed to determine the exact mechanisms underlying these effects. Nevertheless, AGEs and MGO could represent valid therapeutic targets for the macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, MUMC+, Maastricht, The Netherlands
| | | | - Kristiaan Wouters
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, MUMC+, Maastricht, The Netherlands.
| |
Collapse
|
15
|
Rabbani N, Adaikalakoteswari A, Larkin JR, Panagiotopoulos S, MacIsaac RJ, Yue DK, Fulcher GR, Roberts MA, Thomas M, Ekinci E, Thornalley PJ. Analysis of Serum Advanced Glycation Endproducts Reveals Methylglyoxal-Derived Advanced Glycation MG-H1 Free Adduct Is a Risk Marker in Non-Diabetic and Diabetic Chronic Kidney Disease. Int J Mol Sci 2022; 24:ijms24010152. [PMID: 36613596 PMCID: PMC9820473 DOI: 10.3390/ijms24010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulation of advanced glycation endproducts (AGEs) is linked to decline in renal function, particularly in patients with diabetes. Major forms of AGEs in serum are protein-bound AGEs and AGE free adducts. In this study, we assessed levels of AGEs in subjects with and without diabetes, with normal renal function and stages 2 to 4 chronic kidney disease (CKD), to identify which AGE has the greatest progressive change with decline in renal function and change in diabetes. We performed a cross-sectional study of patients with stages 2-4 CKD, with and without diabetes, and healthy controls (n = 135). Nine protein-bound and free adduct AGEs were quantified in serum. Most protein-bound AGEs increased moderately through stages 2-4 CKD whereas AGE free adducts increased markedly. Methylglyoxal-derived hydroimidazolone MG-H1 free adduct was the AGE most responsive to CKD status, increasing 8-fold and 30-fold in stage 4 CKD in patients without and with diabetes, respectively. MG-H1 Glomerular filtration flux was increased 5-fold in diabetes, likely reflecting increased methylglyoxal glycation status. We conclude that serum MG-H1 free adduct concentration was strongly related to stage of CKD and increased in diabetes status. Serum MG-H1 free adduct is a candidate AGE risk marker of non-diabetic and diabetic CKD.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Antonysunil Adaikalakoteswari
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - James R. Larkin
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Sianna Panagiotopoulos
- Endocrine Centre, Austin Health, The University of Melbourne, West Heidelberg, VIC 3084, Australia
| | - Richard J. MacIsaac
- Department of Endocrinology & Diabetes, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Australian Centre for Accelerating Diabetes Innovations, School of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| | - Dennis K. Yue
- Diabetes Centre, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Gregory R. Fulcher
- Department of Diabetes, Endocrinology & Metabolism, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Matthew A. Roberts
- Eastern Health Clinical School, Monash University, Box Hill, VIC 3128, Australia
| | - Merlin Thomas
- Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Elif Ekinci
- Endocrine Centre, Austin Health, The University of Melbourne, West Heidelberg, VIC 3084, Australia
- Australian Centre for Accelerating Diabetes Innovations, School of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul J. Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: ; Tel.: +974-7090-1635
| |
Collapse
|
16
|
Csongová M, Scheijen JLJM, van de Waarenburg MPH, Gurecká R, Koborová I, Tábi T, Szökö É, Schalkwijk CG, Šebeková K. Association of α-Dicarbonyls and Advanced Glycation End Products with Insulin Resistance in Non-Diabetic Young Subjects: A Case-Control Study. Nutrients 2022; 14:nu14224929. [PMID: 36432614 PMCID: PMC9695161 DOI: 10.3390/nu14224929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
α-Dicarbonyls and advanced glycation end products (AGEs) may contribute to the pathogenesis of insulin resistance by a variety of mechanisms. To investigate whether young insulin-resistant subjects present markers of increased dicarbonyl stress, we determined serum α-dicarbonyls-methylglyoxal, glyoxal, 3-deoxyglucosone; their derived free- and protein-bound, and urinary AGEs using the UPLC/MS-MS method; soluble receptors for AGEs (sRAGE), and cardiometabolic risk markers in 142 (49% females) insulin resistant (Quantitative Insulin Sensitivity Check Index (QUICKI) ≤ 0.319) and 167 (47% females) age-, and waist-to-height ratio-matched insulin-sensitive controls aged 16-to-22 years. The between-group comparison was performed using the two-factor (sex, presence/absence of insulin resistance) analysis of variance; multiple regression via the orthogonal projection to latent structures model. In comparison with their insulin-sensitive peers, young healthy insulin-resistant individuals without diabetes manifest alterations throughout the α-dicarbonyls-AGEs-sRAGE axis, dominated by higher 3-deoxyglucosone levels. Variables of α-dicarbonyls-AGEs-sRAGE axis were associated with insulin sensitivity independently from cardiometabolic risk markers, and sex-specifically. Cleaved RAGE associates with QUICKI only in males; while multiple α-dicarbonyls and AGEs independently associate with QUICKI particularly in females, who displayed a more advantageous cardiometabolic profile compared with males. Further studies are needed to elucidate whether interventions alleviating dicarbonyl stress ameliorate insulin resistance.
Collapse
Affiliation(s)
- Melinda Csongová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | | | - Radana Gurecká
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Ivana Koborová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary
| | - Éva Szökö
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1089 Budapest, Hungary
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 811 07 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
17
|
Majchrzak C, Cougnard-Gregoire A, Le-Goff M, Féart C, Delcourt C, Reydit M, Helmer C, Rigalleau V. Skin autofluorescence of Advanced Glycation End-products and mortality in older adults: The roles of chronic kidney disease and diabetes. Nutr Metab Cardiovasc Dis 2022; 32:2526-2533. [PMID: 36064683 DOI: 10.1016/j.numecd.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIM Advanced glycation end products are involved in age-related multisystem decline. They accumulate in body tissues with age, diabetes and chronic kidney disease (CKD), and can be measured non-invasively by the skin autofluorescence (SAF). We studied the relation between SAF and later mortality in old adults. METHODS AND RESULTS The SAF was measured using an AGE-Reader in 451 individuals from the general population aged over 75 years, and all-cause mortality was assessed during an average follow-up of 6.4 years. The association between SAF and mortality was analyzed using a multivariate Cox survival model, adjusted for age and gender. Analyses were further adjusted for diabetes and stratified on the presence of CKD due to its interaction with SAF for the risk of mortality. Participants were 82 years old on average (SD 4.1). Their mean SAF was 2.8 AU (SD 0.6). One hundred and forty-four individuals (31.9%) died during the follow-up. Adjusted for age and gender, SAF was associated with an increased risk of all-cause mortality (HR 1.44, 95%CI: 1.14-1.82 for a one-AU increase of SAF). The association was no longer significant after adjustment for diabetes. However, after stratification for the presence of CKD, higher SAF was associated with an increased risk of all-cause mortality in the participants with CKD at baseline (HR 1.68, 95%CI: 1.11-2.55), whereas there was no association among participants without CKD (HR 0.95, 95%CI: 0.63-1.44). CONCLUSION Skin autofluorescence is associated with increased all-cause mortality in older adults already suffering from CKD.
Collapse
Affiliation(s)
- Camille Majchrzak
- Nutrition-Diabetology, CHU of Bordeaux, Haut-Lévêque Hospital, F-33600 Pessac, France
| | - Audrey Cougnard-Gregoire
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Mélanie Le-Goff
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Catherine Féart
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Cécile Delcourt
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Mathilde Reydit
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France
| | - Vincent Rigalleau
- Nutrition-Diabetology, CHU of Bordeaux, Haut-Lévêque Hospital, F-33600 Pessac, France; University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR U1219, F-33000 Bordeaux, France.
| |
Collapse
|
18
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
19
|
Li LY, Chen S, Li FF, Wu ZM, Shen Y, Ding FH, Wang XQ, Shen WF, Chen QJ, Dai Y, Lu L. High serum levels of N-epsilon-carboxymethyllysine are associated with poor coronary collateralization in type 2 diabetic patients with chronic total occlusion of coronary artery. BMC Cardiovasc Disord 2022; 22:282. [PMID: 35733085 PMCID: PMC9215055 DOI: 10.1186/s12872-022-02694-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/30/2022] [Indexed: 11/19/2022] Open
Abstract
Background The formation of advanced glycation end-products (AGEs) is a crucial risk factor for the pathogenesis of cardiovascular diseases in diabetes. We investigated whether N-epsilon-carboxymethyllysine (CML), a major form of AGEs in vivo, was associated with poor coronary collateral vessel (CCV) formation in patients with type 2 diabetes mellitus (T2DM) and chronic total occlusion (CTO) of coronary artery. Methods This study consisted of 242 T2DM patients with coronary angiographically documented CTO. Blood samples were obtained and demographic/clinical characteristics were documented. The coronary collateralization of these patients was defined according to Rentrop or Werner classification. Serum CML levels were evaluated using ELISA assay. Receiver operating characteristic curve and multivariable regression analysis were performed. Results 242 patients were categorized into poor CCV group or good CCV group (107 vs. 135 by the Rentrop classification or 193 vs. 49 by the Werner classification, respectively). Serum CML levels were significantly higher in poor CCV group than in good CCV group (110.0 ± 83.35 vs. 62.95 ± 58.83 ng/ml by the Rentrop classification and 94.75 ± 78.29 ng/ml vs. 40.37 ± 28.69 ng/ml by Werner classification, both P < 0.001). Moreover, these CML levels were also significantly different across the Rentrop and Werner classification subgroups (P < 0.001). In multivariable logistic regression, CML levels (P < 0.001) remained independent determinants of poor CCV according to the Rentrop or Werner classification after adjustment of traditional risk factors. Conclusions This study suggests that higher serum CML level is associated with poor collateralization in T2DM patients with CTO.
Collapse
Affiliation(s)
- Le-Ying Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
| | - Shuai Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
| | - Fei-Fei Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
| | - Zhi-Ming Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
| | - Ying Shen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
| | - Feng-Hua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China
| | - Xiao-Qun Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei-Feng Shen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qiu-Jing Chen
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yang Dai
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China. .,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, 200025, People's Republic of China. .,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
20
|
Methylglyoxal and glyoxalase 1-a metabolic stress pathway-linking hyperglycemia to the unfolded protein response and vascular complications of diabetes. Clin Sci (Lond) 2022; 136:819-824. [PMID: 35635155 PMCID: PMC9152679 DOI: 10.1042/cs20220099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
The study of the glyoxalase system by Thornalley and co-workers in clinical diabetes mellitus and correlation with diabetic complications revealed increased exposure of patients with diabetes to the reactive, dicarbonyl metabolite methylglyoxal (MG). Twenty-eight years later, extended and built on by Thornalley and co-workers and others, the glyoxalase system is an important pathway contributing to the development of insulin resistance and vascular complications of diabetes. Other related advances have been: characterization of a new kind of metabolic stress—‘dicarbonyl stress’; identification of the major physiological advanced glycation endproduct (AGE), MG-H1; physiological substrates of the unfolded protein response (UPR); new therapeutic agents—‘glyoxalase 1 (Glo1) inducers’; and a refined mechanism underlying the link of dysglycemia to the development of insulin resistance and vascular complications of diabetes.
Collapse
|
21
|
Gupta A, Khursheed M, Arif Z, Badar A, Alam K. Methylglyoxal-induces multiple stable changes in human serum albumin before forming nephrotoxic advanced glycation end-products: Injury demonstration in human embryonic kidney cells. Int J Biol Macromol 2022; 214:252-263. [PMID: 35716786 DOI: 10.1016/j.ijbiomac.2022.06.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
The minor fraction of methylglyoxal that is not metabolized in healthy humans reacts with macromolecules to form AGEs. In diabetics, the formation of MG is accelerated; its level may be enhanced multifold. The glyoxalase enzymes responsible for the regular and effective clearance of excess methylglyoxal may become defective in diabetes mellitus leading to its retention in cells and plasma. The methylglyoxal-modified-HSA was prepared, characterised by multiple biophysical techniques and biochemical (s) and its damaging effect was examined on embryonic kidney cell line HEK 293. The UV results showed hyperchromicity in MG-modified-HSA while nitroblue tetrazolium and fluorescence data suggested AGEs formation in comparison to control HSA. Upward shift of negative peaks in CD suggested reduction in α-helicity. Accelerated mobility and diffused broad bands observed in native and SDS polyacrylamide gel, respectively suggest neutralization of some of the positive charges on MG-modified-HSA as well as generation of cross-links. As observed by trypan blue assay, MTT, LDH activity assay, acridine orange, propidium iodide, ethidium bromide, 4',6-diamidino-2-phenylindole (DAPI) staining and ROS measurements, the MG-HSA AGEs caused damage to human embryonic kidney cells. The data suggest that MG-HSA AGEs may trigger powerful inflammatory responses at cellular level which might set the stage for nephrotoxicity in diabetics.
Collapse
Affiliation(s)
- Akankcha Gupta
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Manal Khursheed
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Zarina Arif
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Asim Badar
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India.
| |
Collapse
|
22
|
AGEomics Biomarkers and Machine Learning-Realizing the Potential of Protein Glycation in Clinical Diagnostics. Int J Mol Sci 2022; 23:ijms23094584. [PMID: 35562975 PMCID: PMC9099912 DOI: 10.3390/ijms23094584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Protein damage by glycation, oxidation and nitration is a continuous process in the physiological system caused by reactive metabolites associated with dicarbonyl stress, oxidative stress and nitrative stress, respectively. The term AGEomics is defined as multiplexed quantitation of spontaneous modification of proteins damage and other usually low-level modifications associated with a change of structure and function—for example, citrullination and transglutamination. The method of quantitation is stable isotopic dilution analysis liquid chromatography—tandem mass spectrometry (LC-MS/MS). This provides robust quantitation of normal and damaged or modified amino acids concurrently. AGEomics biomarkers have been used in diagnostic algorithms using machine learning methods. In this review, I describe the utility of AGEomics biomarkers and provide evidence why these are close to the phenotype of a condition or disease compared to other metabolites and metabolomic approaches and how to train and test algorithms for clinical diagnostic and screening applications with high accuracy, sensitivity and specificity using machine learning approaches.
Collapse
|
23
|
Allen CNS, Arjona SP, Santerre M, Sawaya BE. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses 2022; 14:602. [PMID: 35337009 PMCID: PMC8955778 DOI: 10.3390/v14030602] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and has proven to be critical in viral infections. Metabolic reprogramming provides the cell with energy and biomass for large-scale biosynthesis. Based on studies of the cellular changes that contribute to metabolic reprogramming, seven main hallmarks can be identified: (1) increased glycolysis and lactic acid, (2) increased glutaminolysis, (3) increased pentose phosphate pathway, (4) mitochondrial changes, (5) increased lipid metabolism, (6) changes in amino acid metabolism, and (7) changes in other biosynthetic and bioenergetic pathways. Viruses depend on metabolic reprogramming to increase biomass to fuel viral genome replication and production of new virions. Viruses take advantage of the non-metabolic effects of metabolic reprogramming, creating an anti-apoptotic environment and evading the immune system. Other non-metabolic effects can negatively affect cellular function. Understanding the role metabolic reprogramming plays in viral pathogenesis may provide better therapeutic targets for antivirals.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.N.S.A.); (S.P.A.); (M.S.)
- Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
24
|
Linkens AMA, Houben AJ, Niessen PM, Wijckmans N, de Goei E, Van den Eynde MD, Scheijen JLJM, Waarenburg M, Mari A, Berendschot TT, Streese L, Hanssen H, van Dongen MC, van Gool C, Stehouwer CDA, Eussen SJ, Schalkwijk C. A 4-week high-AGE diet does not impair glucose metabolism and vascular function in obese individuals. JCI Insight 2022; 7:156950. [PMID: 35133989 PMCID: PMC8986074 DOI: 10.1172/jci.insight.156950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accumulation of advanced glycation endproducts (AGEs) may contribute to the pathophysiology of type 2 diabetes and its vascular complications. AGEs are widely present in food, but whether restricting AGE intake improves risk factors for type 2 diabetes and vascular dysfunction is controversial. METHODS Abdominally obese but otherwise healthy individuals were randomly assigned to a specifically designed 4-week diet low or high in AGEs in a double-blind, parallel design. Insulin sensitivity, secretion, and clearance were assessed by a combined hyperinsulinemic-euglycemic and hyperglycemic clamp. Micro- and macrovascular function, inflammation, and lipid profiles were assessed by state-of-the-art in vivo measurements and biomarkers. Specific urinary and plasma AGEs Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were assessed by mass spectrometry. RESULTS In 73 individuals (22 males, mean ± SD age and BMI 52 ± 14 years, 30.6 ± 4.0 kg/m2), intake of CML, CEL, and MG-H1 differed 2.7-, 5.3-, and 3.7-fold between the low- and high-AGE diets, leading to corresponding changes of these AGEs in urine and plasma. Despite this, there was no difference in insulin sensitivity, secretion, or clearance; micro- and macrovascular function; overall inflammation; or lipid profile between the low and high dietary AGE groups (for all treatment effects, P > 0.05). CONCLUSION This comprehensive RCT demonstrates very limited biological consequences of a 4-week diet low or high in AGEs in abdominally obese individuals. TRIAL REGISTRATION Clinicaltrials.gov, NCT03866343; trialregister.nl, NTR7594. FUNDING Diabetesfonds and ZonMw.
Collapse
Affiliation(s)
- Armand M A Linkens
- Cardiovascular Research Center, Maastricht (CARIM), Maastricht, Netherlands
| | - Alfons J Houben
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Petra M Niessen
- Department of Internal Medicine, Cardiovascular Research Institute Maastric, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nicole Wijckmans
- Department of Epidemiology, Maastricht University, Maastricht, the Netherla, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands, Maastricht, Netherlands
| | - Erica de Goei
- CARIM School for Cardiovascular Diseases, Maastricht University, the Nether, Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Mathias Dg Van den Eynde
- Department of Internal Medicine, Maastricht University Medical Center, the , CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands, Maastricht, Netherlands
| | - Jean L J M Scheijen
- Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marjo Waarenburg
- Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Andrea Mari
- Institute of Biomedical Engineering, National Research Council, Padova, Italy
| | - Tos Tjm Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center, the Netherlands., Maastricht, Netherlands
| | - Lukas Streese
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Martien Cjm van Dongen
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Christel van Gool
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Coen DA Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastric, Maastricht University Medical Center, Maastricht, Netherlands
| | - Simone Jpm Eussen
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Casper Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastric, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
25
|
Methylglyoxal Scavengers Attenuate Angiogenesis Dysfunction Induced by Methylglyoxal and Oxygen-Glucose Deprivation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8854457. [PMID: 35035668 PMCID: PMC8754597 DOI: 10.1155/2022/8854457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Cerebral endothelial cells play an essential role in brain angiogenesis, and their function has been found to be impaired in diabetes. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite of glucose formed mainly during glycolysis, and its levels can be elevated in hyperglycemic conditions. MG is a potent precursor of AGEs (advanced glycation end-products). In this study, we investigated if MG can induce angiogenesis dysfunction and whether MG scavengers can ameliorate angiogenesis dysfunction induced by MG. Here, we used cultured human brain microvascular endothelial cells (HBMECs) treated with MG and oxygen-glucose deprivation (OGD) to mimic diabetic stroke in vitro. We also used the MG challenged chicken embryo chorioallantoic membrane (CAM) to study angiogenesis in vivo. Interestingly, administration of MG significantly impaired cell proliferation, cell migration, and tube formation and decreased protein expression of angiogenesis-related factors, which was rescued by three different MG scavengers, glyoxalase 1 (GLO1), aminoguanidine (AG), and N-acetyl cysteine (NAC). In cultured CAM, MG exposure significantly reduced angiogenesis and the angiogenesis-related dysfunction could be attenuated by pretreatment with AG or NAC. Treatment of cultured HBMECs with MG plus OGD increased cellular apoptosis significantly, which could be prevented by exposure to GLO1, AG, or NAC. We also noted that administration of MG increased cellular oxidative stress as measured by reactive oxygen species (ROS) generation, enhanced AGE accumulation, and receptor for advanced glycation end-product (RAGE) expression in the cultured HBMECs, which were partially reversed by GLO1, AG, or NAC. Taken together, our findings demonstrated that GLO1, AG, or NAC administration can ameliorate MG-induced angiogenesis dysfunction, and this can be mainly attributed to attenuated ROS production, reduced cellular apoptosis, and increased levels of angiogenic factors. Overall, this study suggested that GLO1, AG, or NAC may be promising candidate compounds for the treatment of angiogenesis dysfunction caused by hyperglycemia in diabetic ischemic stroke.
Collapse
|
26
|
Monnier VM, Sell DR, Gao X, Genuth SM, Lachin JM, Bebu I. Plasma advanced glycation end products and the subsequent risk of microvascular complications in type 1 diabetes in the DCCT/EDIC. BMJ Open Diabetes Res Care 2022; 10:10/1/e002667. [PMID: 35058313 PMCID: PMC8783825 DOI: 10.1136/bmjdrc-2021-002667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION To assess impact of glycemic control on plasma protein-bound advanced glycation end products (pAGEs) and their association with subsequent microvascular disease. RESEARCH DESIGN AND METHODS Eleven pAGEs were measured by liquid chromatography-mass spectrometry in banked plasma from 466 participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study at three time points (TPs): DCCT year 4 (TP1) and year 8 (TP2) and EDIC year 5/6 (TP3). Correlation coefficients assessed cross-sectional associations, and Cox proportional hazards models assessed associations with subsequent risk of microvascular complications through EDIC year 24. RESULTS Glucose-derived glycation products fructose-lysine (FL), glucosepane (GSPN) and carboxymethyl-lysine (CML) decreased with intensive glycemic control at both TP1 and TP2 (p<0.0001) but were similar at TP3, and correlated with hemoglobin A1c (HbA1c). At TP1, the markers were associated with the subsequent risk of several microvascular outcomes. These associations did not remain significant after adjustment for HbA1c, except methionine sulfoxide (MetSOX), which remained associated with diabetic kidney disease. In unadjusted models using all 3 TPs, glucose-derived pAGEs were associated with subsequent risk of proliferative diabetic retinopathy (PDR, p<0.003), clinically significant macular edema (CSME, p<0.015) and confirmed clinical neuropathy (CCN, p<0.018, except CML, not significant (NS)). Adjusted for age, sex, body mass index, diabetes duration and mean updated HbA1c, the associations remained significant for PDR (FL: p<0.002, GSPN: p≤0.02, CML: p<0.003, pentosidine: p<0.02), CMSE (CML: p<0.03), albuminuria (FL: p<0.02, CML: p<0.03) and CCN (FL: p<0.005, GSPN : p<0.003). CONCLUSIONS pAGEs at TP1 are not superior to HbA1c for risk prediction, but glucose-derived pAGEs at three TPs and MetSOX remain robustly associated with progression of microvascular complications in type 1 diabetes even after adjustment for HbA1c and other factors.
Collapse
Affiliation(s)
- Vincent M Monnier
- Pathology and Biochemistry, Case Western Reserve University Department of Pathology, Cleveland, Ohio, USA
| | - David R Sell
- Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoyu Gao
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Saul M Genuth
- Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - John M Lachin
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Ionut Bebu
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| |
Collapse
|
27
|
Turki Jalil A, Alameri AA, Iqbal Doewes R, El-Sehrawy AA, Ahmad I, Ramaiah P, Kadhim MM, Kzar HH, Sivaraman R, Romero-Parra RM, Ansari MJ, Fakri Mustafa Y. Circulating and dietary advanced glycation end products and obesity in an adult population: A paradox of their detrimental effects in obesity. Front Endocrinol (Lausanne) 2022; 13:966590. [PMID: 36531466 PMCID: PMC9752071 DOI: 10.3389/fendo.2022.966590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The detrimental role of advanced glycation end products (AGEs) against cardio-metabolic health has been revealed in several previous reports. However, the results of studies regarding the association between AGEs and obesity measurements are inconsistent. In the current meta-analysis, we aimed to quantitatively summarize the results of studies that evaluated the association between circulating and dietary AGEs with obesity measurements among the adult population. METHODS A systematic search from PubMed, Embase, and Scopus electronic databases until 30 October 2022 retrieved a total of 21,429 observational studies. After duplicate removal, title/abstract screening, and full-text reading by two independent researchers, a final number of 18 manuscripts remained to be included in the meta-analysis. RESULTS Those in the highest category of circulating AGEs had ~1.5 kg/m2 reduced BMI compared with those in the lowest AGEs category [weighted mean difference (WMD): -1.485; CI: -2.459, -0.511; p = 0.003], while a nonsignificant increase in BMI was observed in the highest versus lowest category of dietary AGEs (WMD: 0.864, CI: -0.365, 2.094; p = 0.186). Also, lower amounts of circulating AGEs in individuals with obesity versus individuals without obesity were observed (WMD: -57.220, CI: -84.290, -30.149; p < 0.001). AGE type can be considered as a possible source of heterogeneity. CONCLUSION In the current meta-analysis, we observed an inverse association between circulating AGEs and body mass index among adults. Due to low study numbers, further studies are warranted to better elucidate these results.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
- *Correspondence: Abduladheem Turki Jalil, ; Amr A. El-Sehrawy,
| | | | | | - Amr A. El-Sehrawy
- Department of Internal Medicine, Faculty of Medicine, Mansoura Specialized Medical Hospital, Mansoura University, Mansoura, Egypt
- *Correspondence: Abduladheem Turki Jalil, ; Amr A. El-Sehrawy,
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mustafa M. Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
- Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | - Hamzah H. Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | - R. Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | | | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
28
|
Sabaie H, Gholipour M, Asadi MR, Abed S, Sharifi-Bonab M, Taheri M, Hussen BM, Brand S, Neishabouri SM, Rezazadeh M. Identification of key long non-coding RNA-associated competing endogenous RNA axes in Brodmann Area 10 brain region of schizophrenia patients. Front Psychiatry 2022; 13:1010977. [PMID: 36405929 PMCID: PMC9671706 DOI: 10.3389/fpsyt.2022.1010977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental condition with an unknown cause. According to the reports, Brodmann Area 10 (BA10) is linked to the pathology and cortical dysfunction of SCZ, which demonstrates a number of replicated findings related to research on SCZ and the dysfunction in tasks requiring cognitive control in particular. Genetics' role in the pathophysiology of SCZ is still unclear. Therefore, it may be helpful to understand the effects of these changes on the onset and progression of SCZ to find novel mechanisms involved in the regulation of gene transcription. In order to determine the molecular regulatory mechanisms affecting the SCZ, the long non-coding RNA (lncRNA)-associated competing endogenous RNAs (ceRNAs) axes in the BA10 area were determined using a bioinformatics approach in the present work. A microarray dataset (GSE17612) consisted of brain post-mortem tissues of the BA10 area from SCZ patients and matched healthy subjects was downloaded from the Gene Expression Omnibus (GEO) database. This dataset included probes for both lncRNAs and mRNAs. Using the R software's limma package, the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were also discovered using the DIANA-LncBase and miRTarBase databases. In the ceRNA network, positive correlations between DEmRNAs and DElncRNAs were evaluated using the Pearson correlation coefficient. Finally, lncRNA-associated ceRNA axes were built by using the co-expression and DElncRNA-miRNA-DEmRNA connections. We identified the DElncRNA-miRNA-DEmRNA axes, which included two key lncRNAs (PEG3-AS1, MIR570HG), seven key miRNAs (hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-181a-5p, hsa-miR-191-5p, hsa-miR-26a-5p, hsa-miR-29a-3p, hsa-miR-29b-3p), and eight key mRNAs (EGR1, ETV1, DUSP6, PLOD2, CD93, SERPINB9, ANGPTL4, TGFB2). Furthermore, DEmRNAs were found to be enriched in the "AGE-RAGE signaling pathway in diabetic complications", "Amoebiasis", "Transcriptional misregulation in cancer", "Human T-cell leukemia virus 1 infection", and "MAPK signaling pathway". This study offers research targets for examining significant molecular pathways connected to the pathogenesis of SCZ, even though the function of these ceRNA axes still needs to be investigated.
Collapse
Affiliation(s)
- Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Abed
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics of the University of Basel, Basel, Switzerland
| | | | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Golchinfar Z, Farshi P, Mahmoudzadeh M, Mohammadi M, Tabibiazar M, Smith JS. Last Five Years Development In Food Safety Perception of n-Carboxymethyl Lysine. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahra Golchinfar
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran and Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Parastou Farshi
- Institute of Food Science, Kansas State University, Manhattan, Kansas, USA
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - J. Scott Smith
- Institute of Food Science, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
30
|
Korn A, Baylan U, Simsek S, Schalkwijk CG, Niessen HWM, Krijnen PAJ. Myocardial infarction coincides with increased NOX2 and N ε-(carboxymethyl) lysine expression in the cerebral microvasculature. Open Heart 2021; 8:openhrt-2021-001842. [PMID: 34819349 PMCID: PMC8614153 DOI: 10.1136/openhrt-2021-001842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Myocardial infarction (MI) is associated with mental health disorders, in which neuroinflammation and cerebral microvascular dysfunction may play a role. Previously, we have shown that the proinflammatory factors Nε-(carboxymethyl)lysine (CML) and NADPH oxidase 2 (NOX2) are increased in the human infarcted heart microvasculature. The aim of this study was to analyse the presence of CML and NOX2 in the cerebral microvasculature of patients with MI. Methods Brain tissue was obtained at autopsy from 24 patients with MI and nine control patients. According to their infarct age, patients with MI were divided into three groups: 3–6 hours old (phase I), 6 hours–5 days old (phase II) and 5–14 days old (phase III). CML and NOX2 in the microvasculature were studied through immunohistochemical analysis. Results We observed a 2.5-fold increase in cerebral microvascular CML in patients with phase II and phase III MI (phase II: 21.39±7.91, p=0.004; phase III: 24.21±10.37, p=0.0007) compared with non-MI controls (8.55±2.98). NOX2 was increased in microvessels in patients with phase II MI (p=0.002) and phase III MI (p=0.04) compared with controls. No correlation was found between CML and NOX2 (r=0.58, p=0.13). Conclusions MI coincides with an increased presence of CML and NOX2 in the brain microvasculature. These data point to proinflammatory alterations in the brain microvasculature that may underlie MI-associated mental health disorders.
Collapse
Affiliation(s)
- Amber Korn
- Department of Pathology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands .,Amsterdam Cardiovascular Sciences, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Umit Baylan
- Department of Pathology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Suat Simsek
- Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands.,Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Grahovac M, Kumric M, Vilovic M, Martinovic D, Kreso A, Ticinovic Kurir T, Vrdoljak J, Prizmic K, Božić J. Adherence to Mediterranean diet and advanced glycation endproducts in patients with diabetes. World J Diabetes 2021; 12:1942-1956. [PMID: 34888018 PMCID: PMC8613665 DOI: 10.4239/wjd.v12.i11.1942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, American Diabetes Association started to strongly advocate the Mediterranean diet (MD) over other diets in patients with diabetes mellitus (DM) because of its beneficial effects on glycemic control and cardiovascular (CV) risk factors. Tissue levels of advanced glycation endproducts (AGEs) emerged as an indicator of CV risk in DM. Skin biopsy being invasive, the use of AGE Reader has been shown to reflect tissue AGEs reliably.
AIM To examine the association between adherence to MD and AGEs in patients with DM type II.
METHODS This cross-sectional study was conducted on 273 patients with DM type II. A survey questionnaire was composed of 3 separate sections. The first part of the questionnaire included general data and the habits of the participants. The second part aimed to assess the basic parameters of participants’ diseases and associated conditions. The third part of the questionnaire was the Croatian version of the 14-item MD service score (MDSS). AGEs levels and associated CV risk were measured using AGE Reader (DiagnOptics Technologies BV, Groningen, The Netherlands).
RESULTS A total of 27 (9.9%) patients fulfilled criteria for adherence to MD, with a median score of 8.0 (6.0-10.0). Patients with none/limited CV risk had significantly higher percentage of MD adherence in comparison to patients with increased/definite CV risk (15.2% vs 6.9%, P = 0.028), as well as better adherence to guidelines for nuts (23.2% vs 12.6%, P = 0.023) and legumes (40.4% vs 25.9%, P = 0.013) consumption. Higher number of patients with glycated hemoglobin (HbA1c) < 7% adhered to MD when compared to patients with HbA1c > 7% (14.9% vs 7.3%, P = 0.045). Moreover, those patients followed the MDSS guidelines for eggs (33.0% vs 46.8%, P = 0.025) and wine (15.6% vs 29.8%, P = 0.006) consumption more frequently. MDSS score had significant positive correlation with disease duration (r = 0.179, P = 0.003) and negative correlation with body mass index (BMI) values (r = -0.159, P = 0.008). In the multiple linear regression model, BMI (β ± SE, -0.09 ± 0.04, P = 0.037) and disease duration (β ± SE, 0.07 ± 0.02, P < 0.001) remained significant independent correlates of the MDSS score. Patients with HbA1c > 7% think that educational programs on nutrition would be useful for patients in significantly more cases than patients with HbA1c < 7% (98.9% vs 92.6%, P = 0.009).
CONCLUSION Although adherence to MD was very low among people with diabetes, we demonstrated that adherence to MD is greater in patients with lower CV risk, longer disease duration, and well-controlled glycaemia.
Collapse
Affiliation(s)
- Marko Grahovac
- Department of Pharmacology, University of Split School of Medicine, Split 21000, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Dinko Martinovic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Ante Kreso
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Department of Endocrinology, University Hospital of Split, Split 21000, Croatia
| | - Josip Vrdoljak
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Karlo Prizmic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| |
Collapse
|
32
|
In Vitro Evaluation of the Toxicological Profile and Oxidative Stress of Relevant Diet-Related Advanced Glycation End Products and Related 1,2-Dicarbonyls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912240. [PMID: 34422213 PMCID: PMC8371648 DOI: 10.1155/2021/9912240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
During food processing and storage, and in tissues and fluids under physiological conditions, the Maillard reaction occurs. During this reaction, reactive 1,2-dicarbonyl compounds arise as intermediates that undergo further reactions to form advanced glycation end products (AGEs). Diet is the primary source of exogenous AGEs. Endogenously formed AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, or chronic disease. AGEs may differently contribute to the diet-related exacerbation of oxidative stress, inflammation, and protein modifications. Here, to understand the contribution of each compound, we tested individually, for the first time, the effect of five 1,2-dicarbonyl compounds 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxyglucosone-3-ene (3,4-DGE), glyoxal (GO), and methylglyoxal (MGO) and four different glycated amino acids N-ε-(carboxyethyl)lysine (CEL), N-ε-(carboxymethyl)lysine (CML), methylglyoxal-derived hydroimidazolone-1 (MG-H1), and pyrraline (Pyrr) in a cell line of human keratinocytes (HaCaT). We found that most of the glycated amino acids, i.e., CEL, CML, and MG-H1, did not show any cytotoxicity. At the same time, 1,2-dicarbonyl compounds 3-DGal, 3,4-DGE, GO, and MGO increased the production of reactive oxygen species and induced cell death. MGO induced cell death by apoptosis, whereas 3-DGal and 3,4-DGE induced nuclear translocation of the proinflammatory NF-κB transcription pathway, and the activation of the pyroptosis-related NLRP3 inflammasome cascade. Overall, these results demonstrate the higher toxic impact of 1,2-dicarbonyl compounds on mucosal epithelial cells when compared to glycated amino acids and the selective activation of intracellular signaling pathways involved in the crosstalk mechanisms linking oxidative stress to excessive inflammation.
Collapse
|
33
|
Systemic inflammation down-regulates glyoxalase-1 expression: an experimental study in healthy males. Biosci Rep 2021; 41:229081. [PMID: 34156474 PMCID: PMC8411911 DOI: 10.1042/bsr20210954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/25/2023] Open
Abstract
Background: Hypoxia and inflammation are hallmarks of critical illness, related
to multiple organ failure. A possible mechanism leading to multiple organ
failure is hypoxia- or inflammation-induced down-regulation of the detoxifying
glyoxalase system that clears dicarbonyl stress. The dicarbonyl methylglyoxal
(MGO) is a highly reactive agent produced by metabolic pathways such as
anaerobic glycolysis and gluconeogenesis. MGO leads to protein damage and
ultimately multi-organ failure. Whether detoxification of MGO into D-lactate by
glyoxalase functions appropriately under conditions of hypoxia and inflammation
is largely unknown. We investigated the effect of inflammation and hypoxia on
the MGO pathway in humans in vivo. Methods: After prehydration with glucose 2.5% solution, ten healthy males
were exposed to hypoxia (arterial saturation 80–85%) for 3.5 h
using an air-tight respiratory helmet, ten males to experimental endotoxemia
(LPS 2 ng/kg i.v.), ten males to LPS+hypoxia and ten males to none of these
interventions (control group). Serial blood samples were drawn, and glyoxalase-1
mRNA expression, MGO, methylglyoxal-derived hydroimidazolone-1 (MG-H1),
D-lactate and L-lactate levels, were measured serially. Results: Glyoxalase-1 mRNA expression decreased in the LPS (β
(95%CI); -0.87 (-1.24; -0.50) and the LPS+hypoxia groups; -0.78 (-1.07;
-0.48) (P<0.001). MGO was equal between groups, whereas
MG-H1 increased over time in the control group only
(P=0.003). D-Lactate was increased in all four groups.
L-Lactate was increased in all groups, except in the control group. Conclusion: Systemic inflammation downregulates glyoxalase-1 mRNA expression in
humans. This is a possible mechanism leading to cell damage and multi-organ
failure in critical illness with potential for intervention.
Collapse
|
34
|
Zhuang A, Yap FYT, Borg DJ, McCarthy D, Fotheringham A, Leung S, Penfold SA, Sourris KC, Coughlan MT, Schulz BL, Forbes JM. The AGE receptor, OST48 drives podocyte foot process effacement and basement membrane expansion (alters structural composition). Endocrinol Diabetes Metab 2021; 4:e00278. [PMID: 34277994 PMCID: PMC8279619 DOI: 10.1002/edm2.278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
AIMS The accumulation of advanced glycation end products is implicated in the development and progression of diabetic kidney disease. No study has examined whether stimulating advanced glycation clearance via receptor manipulation is reno-protective in diabetes. Podocytes, which are early contributors to diabetic kidney disease and could be a target for reno-protection. MATERIALS AND METHODS To examine the effects of increased podocyte oligosaccharyltransferase-48 on kidney function, glomerular sclerosis, tubulointerstitial fibrosis and proteome (PXD011434), we generated a mouse with increased oligosaccharyltransferase-48kDa subunit abundance in podocytes driven by the podocin promoter. RESULTS Despite increased urinary clearance of advanced glycation end products, we observed a decline in renal function, significant glomerular damage including glomerulosclerosis, collagen IV deposition, glomerular basement membrane thickening and foot process effacement and tubulointerstitial fibrosis. Analysis of isolated glomeruli identified enrichment in proteins associated with collagen deposition, endoplasmic reticulum stress and oxidative stress. Ultra-resolution microscopy of podocytes revealed denudation of foot processes where there was co-localization of oligosaccharyltransferase-48kDa subunit and advanced glycation end-products. CONCLUSIONS These studies indicate that increased podocyte expression of oligosaccharyltransferase-48 kDa subunit results in glomerular endoplasmic reticulum stress and a decline in kidney function.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
- Faculty of MedicineUniversity of QueenslandSt LuciaQldAustralia
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
| | | | - Danielle J. Borg
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Domenica McCarthy
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Amelia Fotheringham
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Sherman Leung
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | | | - Karly C. Sourris
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVicAustralia
| | - Melinda T. Coughlan
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVicAustralia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQldAustralia
| | - Josephine M. Forbes
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
- Faculty of MedicineUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
35
|
Sharifi-Zahabi E, Sharafabad FH, Abdollahzad H, Malekahmadi M, Rad NB. Circulating Advanced Glycation End Products and Their Soluble Receptors in Relation to All-Cause and Cardiovascular Mortality: A Systematic Review and Meta-analysis of Prospective Observational Studies. Adv Nutr 2021; 12:2157-2171. [PMID: 34139010 PMCID: PMC8634502 DOI: 10.1093/advances/nmab072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
Advanced glycation end products (AGEs) are involved in the development of several age-related complications. The protective role of soluble receptors for AGEs (sRAGE) against deleterious effects of AGEs has been indicated in several studies. However, findings on the association of AGEs or sRAGE with mortality are equivocal. In this meta-analysis we aimed to present a quantitative estimation of the association between circulating AGEs or sRAGE and all-cause or cardiovascular disease (CVD) mortality. A comprehensive literature search was performed to determine relevant publications through the online databases including PubMed, Scopus, and Web of Science up to 29 November 2020. Prospective observational studies assessing the association between circulating AGEs or sRAGE and all-cause or CVD mortality were included. Seven studies with a total of 3718 participants and 733 mortality cases (345 CVD deaths) were included in the meta-analysis for assessing the association between circulating AGEs and mortality. Our results showed that higher circulating AGEs were associated with increased risk of all-cause (pooled effect measure: 1.05; 95% CI: 1.01, 1.09; P = 0.018, I2 = 77.7%) and CVD mortality (pooled effect measure: 1.08; 95% CI: 1.01, 1.14; P = 0.015, I2 = 80.2%), respectively. The association between sRAGE and mortality was assessed in 14 studies with a total of 16,335 participants and 2844 mortality cases (419 CVD deaths). Serum concentrations of sRAGE were not associated with the risk of all-cause mortality (pooled effect measure: 1.01; 95% CI: 1.00, 1.01; P = 0.205, I2 = 75.5%), whereas there was a significant link between sRAGE and the risk of CVD mortality (pooled effect measure: 1.02; 95% CI: 1.00, 1.04; P = 0.02, I2 = 78.9%). Our findings showed that a higher serum AGE concentration was associated with increased risk of all-cause and CVD mortality. In addition, higher circulating sRAGE was related to increased risk of CVD mortality. This review was registered at PROSPERO as CRD42021236559.
Collapse
Affiliation(s)
- Elham Sharifi-Zahabi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Mahsa Malekahmadi
- Research Institute for Gastroenterology and Liver, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nadya Bahari Rad
- School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
36
|
Bora S, Shankarrao Adole P. Carbonyl stress in diabetics with acute coronary syndrome. Clin Chim Acta 2021; 520:78-86. [PMID: 34090879 DOI: 10.1016/j.cca.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 01/17/2023]
Abstract
The prevalence and incidence of diabetes mellitus (DM) are increasing worldwide bringing with it a significantly higher rate of complications. Various mechanisms such as carbonyl stress, polyol pathway, oxidative stress, hexosamine pathways, diacylglycerol/protein kinase-C activation, etc., are responsible for the pathogenesis of DM and its complications. Persistent hyperglycaemia and inhibition of metabolising and detoxifying enzymes lead to the excessive synthesis of carbonyl compounds such as methylglyoxal, glyoxal, and 3-deoxyglucosone, resulting in carbonyl stress. The substrates, metabolizing and detoxifying enzymes of carbonyl compounds are discussed. The mechanistic roles of carbonyl compounds and advanced glycation end products (AGEs) in atherosclerosis, insulin resistance, thrombogenicity, and endothelial dysfunction in animal and cell culture model of DM and patients with DM are summarised. Because of the essential role of carbonyl stress, therapeutics are aimed at scavenging, metabolizing, detoxifying, and inhibiting carbonyl compounds or AGEs so that their harmful effects are minimized. Clinically used drugs, plants extracts and miscellaneous chemical with antiglycation properties are used in an animal model of DM to alleviates the impact of carbonyl compounds. Extensive clinical trials with derivatisation of available antiglycation agents to increase the bioavailability and decrease side effects are warranted further.
Collapse
Affiliation(s)
- Sushmita Bora
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605 006, India
| | - Prashant Shankarrao Adole
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605 006, India.
| |
Collapse
|
37
|
Rabbani N, Thornalley PJ. Protein glycation - biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol 2021; 42:101920. [PMID: 33707127 PMCID: PMC8113047 DOI: 10.1016/j.redox.2021.101920] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Protein glycation provides a biomarker in widespread clinical use, glycated hemoglobin HbA1c (A1C). It is a biomarker for diagnosis of diabetes and prediabetes and of medium-term glycemic control in patients with established diabetes. A1C is an early-stage glycation adduct of hemoglobin with glucose; a fructosamine derivative. Glucose is an amino group-directed glycating agent, modifying N-terminal and lysine sidechain amino groups. A similar fructosamine derivative of serum albumin, glycated albumin (GA), finds use as a biomarker of glycemic control, particularly where there is interference in use of A1C. Later stage adducts, advanced glycation endproducts (AGEs), are formed by the degradation of fructosamines and by the reaction of reactive dicarbonyl metabolites, such as methylglyoxal. Dicarbonyls are arginine-directed glycating agents forming mainly hydroimidazolone AGEs. Glucosepane and pentosidine, an intense fluorophore, are AGE covalent crosslinks. Cellular proteolysis of glycated proteins forms glycated amino acids, which are released into plasma and excreted in urine. Development of diagnostic algorithms by artificial intelligence machine learning is enhancing the applications of glycation biomarkers. Investigational glycation biomarkers are in development for: (i) healthy aging; (ii) risk prediction of vascular complications of diabetes; (iii) diagnosis of autism; and (iv) diagnosis and classification of early-stage arthritis. Protein glycation biomarkers are influenced by heritability, aging, decline in metabolic, vascular, renal and skeletal health, and other factors. They are applicable to populations of differing ethnicities, bridging the gap between genotype and phenotype. They are thereby likely to find continued and expanding clinical use, including in the current era of developing precision medicine, reporting on multiple pathogenic processes and supporting a precision medicine approach.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical & Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
38
|
Kobori A, Miyashita M, Miyano Y, Suzuki K, Toriumi K, Niizato K, Oshima K, Imai A, Nagase Y, Yoshikawa A, Horiuchi Y, Yamasaki S, Nishida A, Usami S, Takizawa S, Itokawa M, Arai H, Arai M. Advanced glycation end products and cognitive impairment in schizophrenia. PLoS One 2021; 16:e0251283. [PMID: 34038433 PMCID: PMC8153415 DOI: 10.1371/journal.pone.0251283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Advanced glycation end products play a key role in the pathophysiology of schizophrenia. Cognitive impairment is one of the central features of schizophrenia; however, the association between advanced glycation end products and cognitive impairment remains unknown. This study investigated whether advanced glycation end products affect the cognitive domain in patients with schizophrenia. A total of 58 patients with chronic schizophrenia were included in this cross-sectional study. Plasma advanced glycation end products were measured using high-performance liquid chromatography (HPLC). Neuropsychological and cognitive functions were assessed using the Wechsler Adult Intelligence Scale, Third Version, and the Wisconsin Card Sorting Test Keio-FS version. Multiple regression analysis adjusted for age, sex, body mass index, educational years, daily dose of antipsychotics, and psychotic symptoms revealed that processing speed was significantly associated with plasma pentosidine, a representative advanced glycation end product (standardized β = -0.425; p = 0.009). Processing speed is the cognitive domain affected by advanced glycation end products. Considering preceding evidence that impaired processing speed is related to poor functional outcome, interventions targeted at reducing advanced glycation end products may contribute to promoting recovery of patients with schizophrenia as well as cognitive function improvement.
Collapse
Affiliation(s)
- Akiko Kobori
- Department of Psychiatry and Behavioral Sciences, Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Department of Psychiatry and Behavioral Sciences, Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, Japan
| | - Yasuhiro Miyano
- Department of Psychiatry and Behavioral Sciences, Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, Japan
| | - Kazuhiro Suzuki
- Department of Psychiatry and Behavioral Sciences, Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, Japan
| | - Kazuya Toriumi
- Department of Psychiatry and Behavioral Sciences, Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Kazuhiro Niizato
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, Japan
| | - Kenichi Oshima
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, Japan
| | - Atsushi Imai
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, Japan
| | - Yukihiro Nagase
- Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, Japan
| | - Akane Yoshikawa
- Department of Psychiatry and Behavioral Sciences, Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Syudo Yamasaki
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Atsushi Nishida
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Satoshi Usami
- Graduate School of Education, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shunya Takizawa
- Division of Neurology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masanari Itokawa
- Department of Psychiatry and Behavioral Sciences, Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, Japan
| | - Heii Arai
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Makoto Arai
- Department of Psychiatry and Behavioral Sciences, Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
39
|
Koike S, Toriumi K, Kasahara S, Kibune Y, Ishida YI, Dan T, Miyata T, Arai M, Ogasawara Y. Accumulation of Carbonyl Proteins in the Brain of Mouse Model for Methylglyoxal Detoxification Deficits. Antioxidants (Basel) 2021; 10:antiox10040574. [PMID: 33917901 PMCID: PMC8068291 DOI: 10.3390/antiox10040574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have shown that carbonyl stress is a causative factor of schizophrenia, categorized as carbonyl stress-related schizophrenia (CS-SCZ). However, the correlation between carbonyl stress and the pathogenesis of this disease is not well established. In this study, glyoxalase 1(Glo1)-knockout and vitamin B6-deficient mice (KO/VB6 (-) mice), which are susceptible to methylglyoxal (MGO)-induced oxidative damages, were used as a CS-SCZ model to analyze MGO-modified protein and the carbonyl stress status in the brain. A comparison between Wild/VB6(+) mice and KO/VB6(−) mice for accumulated carbonyl proteins levels, with several advanced glycation end products (AGEs) in the brain, revealed that carbonyl protein levels with the Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl) ornithine (MG-H1) moiety were significantly increased in the hippocampus, prefrontal cortex, striatum, cerebral cortex, and brainstem regions of the brain in KO/VB6(−) mice. Moreover, two-dimensional electrophoresis and Liquid chromatography-tandem mass spectrometry analysis showed MG-H1-modified arginine residues in mitochondrial creatine kinase, beta-adrenergic receptor kinase 1, and T-complex protein in the hippocampus region of KO/VB6(−) mice, but not in Wild/VB6(+) mice. In particular, MG-H1 modification of mitochondrial creatine kinase was quite notable. These results suggest that further studies focusing on MG-H1-modified and accumulated proteins in the hippocampus may reveal the onset mechanism of CS-SCZ induced by MGO-induced oxidative damages.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan; (S.K.); (S.K.); (Y.K.)
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.T.); (M.A.)
| | - Sakura Kasahara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan; (S.K.); (S.K.); (Y.K.)
| | - Yosuke Kibune
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan; (S.K.); (S.K.); (Y.K.)
| | - Yo-ichi Ishida
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Tokyo 204-8588, Japan;
| | - Takashi Dan
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (T.D.); (T.M.)
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (T.D.); (T.M.)
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.T.); (M.A.)
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan; (S.K.); (S.K.); (Y.K.)
- Correspondence:
| |
Collapse
|
40
|
Karamian M, Moossavi M, Hemmati M. From diabetes to renal aging: the therapeutic potential of adiponectin. J Physiol Biochem 2021; 77:205-214. [PMID: 33555532 DOI: 10.1007/s13105-021-00790-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, the complications related to diabetes, such as nephropathy, cardiovascular problems, and aging, are highly being considered. Renal cell aging is affected by various mechanisms of inflammation, oxidative stress, and basement membrane thickening, which are significant causes of renal dysfunction in diabetes. Due to recent studies, adiponectin plays a key role in diabetes-related kidney diseases as a fat-derived hormone. In diabetes, reduced adiponectin levels are associated to renal cell aging. Oxidative stress and related signaling pathways are the main routes in which adiponectin may be effective to decline diabetes-associated aging. Therefore, adiponectin signaling in target tissues becomes one of the research areas of interest in metabolism and clinical medicine. Studies on adiponectin signaling will increase our understanding of adiponectin role in diabetes-linked diseases as well as shortening life span conditions which may guide the design of antidiabetic and anti-aging drugs.
Collapse
Affiliation(s)
- Mehdi Karamian
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Moossavi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mina Hemmati
- Department of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
41
|
García-Gómez E, Bobadilla-Bravo M, Díaz-Díaz E, Vázquez-Martínez ER, Nava-Salazar S, Torres-Ramos Y, García-Romero CS, Camacho-Arroyo I, Cerbón M. High Plasmatic Levels of Advanced Glycation End Products are Associated with Metabolic Alterations and Insulin Resistance in Preeclamptic Women. Curr Mol Med 2021; 20:751-759. [DOI: 10.2174/1566524020666200220141414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 11/22/2022]
Abstract
Aims:
The purpose of this study was to investigate the association between
plasmatic levels of advanced end glycation products (AGEs) and the metabolic profile in
subjects diagnosed with preeclampsia, due to the known relation of these molecules with
oxidative stress and inflammation, which in turn are related with PE pathogenesis.
Background:
It has been reported that increased levels of AGEs are observed in patients
with preeclampsia as compared with healthy pregnant subjects, which was mainly
associated with oxidative stress and inflammation. Besides, in women with preeclampsia,
there are metabolic changes such as hyperinsulinemia, glucose intolerance, dyslipidemia,
among others, that are associated with an exacerbated insulin resistance. Additionally,
some parameters indicate the alteration of hepatic function, such as increased levels of liver
enzymes. However, the relationship of levels of AGEs with altered lipidic, hepatic, and
glucose metabolism parameters in preeclampsia has not been evaluated.
Objective:
To investigate the association between plasmatic levels of AGEs and hepatic,
lipid, and metabolic profiles in women diagnosed with preeclampsia.
Methods:
Plasma levels of AGEs were determined by a competitive enzyme-linked
immunosorbent assay (ELISA) in 15 patients diagnosed with preeclampsia and 28
normoevolutive pregnant subjects (control group). Hepatic (serum creatinine, gammaglutamyl
transpeptidase, aspartate transaminase, alanine transaminase, uric acid, and
lactate dehydrogenase), lipid (apolipoprotein A, apolipoprotein B, total cholesterol,
triglycerides, low-density lipoproteins, and high-density lipoproteins), and metabolic
variables (glucose, insulin, and insulin resistance) were assessed.
Results:
Plasmatic levels of AGEs were significantly higher in patients with preeclampsia
as compared with the control. A positive correlation between circulating levels of AGEs and
gamma-glutamyl transpeptidase, uric acid, glucose, insulin, and HOMA-IR levels was found
in patients with preeclampsia. In conclusion, circulating levels of AGEs were higher in
patients with preeclampsia than those observed in healthy pregnant subjects. Besides,
variables of hepatic and metabolic profile, particularly those related to insulin resistance,
were higher in preeclampsia as compared with healthy pregnant subjects. Interestingly,
there is a positive correlation between AGEs levels and insulin resistance.
Conclusions:
Circulating levels of AGEs were higher in patients with preeclampsia than
those observed in healthy pregnant subjects. Besides, hepatic and metabolic profiles,
particularly those related to insulin resistance, were higher in preeclampsia as compared
with healthy pregnant subjects. Interestingly, there is a positive correlation between AGEs
levels and insulin resistance, suggesting that excessive glycation and an impaired
metabolic profile contribute to the physiopathology of preeclampsia.
Collapse
Affiliation(s)
- Elizabeth García-Gómez
- Unidad de Investigacion en Reproduccion Humana, Consejo Nacional de Ciencia y Tecnologia (CONACyT)- Instituto Nacional de Perinatologia, Mexico
| | - Mariana Bobadilla-Bravo
- Unidad de Investigacion en Reproduccion Humana, Instituto Nacional de Perinatologia-Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico
| | - Eulises Díaz-Díaz
- Departamento de Biologia de la Reproduccion, Instituto Nacional de Ciencias Medicas y Nutricion “Salvador Zubiran”, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigacion en Reproduccion Humana, Instituto Nacional de Perinatologia-Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico
| | - Sonia Nava-Salazar
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes, Mexico
| | - Yessica Torres-Ramos
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes, Mexico
| | - Carmen Selene García-Romero
- Departamento de Infectologia e Inmunologia, Instituto Nacional de Perinatologia "Isidro Espinosa de los Reyes", Ciudad de Mexico, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigacion en Reproduccion Humana, Instituto Nacional de Perinatologia-Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico
| | - Marco Cerbón
- Unidad de Investigacion en Reproduccion Humana, Instituto Nacional de Perinatologia-Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico
| |
Collapse
|
42
|
Choudhary N, Khatik GL, Suttee A. The Possible Role of Saponin in Type-II Diabetes- A Review. Curr Diabetes Rev 2021; 17:107-121. [PMID: 32416696 DOI: 10.2174/1573399816666200516173829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The possible role of secondary metabolites in the management of diabetes is a great concern and constant discussion. This characteristic seems relevant and should be the subject of thorough discussion with respect to saponin. OBJECTIVE The current data mainly focus on the impact of saponin in the treatment of type-II diabetes. The majority of studies emphasize on other secondary metabolites such as alkaloids and flavonoids, but very few papers are there representing the possible role of saponin as these papers express the narrow perspective of saponin phytoconstituents but lacking in providing the complete information on various saponin plants. The aim of the study was to summarize all available data concerning the saponin containing plant in the management of type-II diabetes. METHODS All relevant papers on saponin were selected. This review summarizes the saponin isolation method, mechanism of action, clinical significance, medicinal plants and phytoconstituents responsible for producing a therapeutic effect in the management of diabetes. RESULTS The saponin is of high potential with structural diversity and inhibits diabetic complications along with reducing the hyperglycemia through different mechanisms thereby providing scope for improving the existing therapy and developing the novel medicinal agents for curing diabetes. CONCLUSION Saponins having potential therapeutic benefits and are theorized as an alternative medication in decreasing serum blood glucose levels in the patient suffering from diabetes.
Collapse
Affiliation(s)
- Neeraj Choudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gopal Lal Khatik
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
43
|
Viktorinova A, Fabryova L, Malickova D, Choudhury S, Krizko M. Clinical Utility of the Logarithmically Transformed Ratio of Triglycerides-to- High-Density Lipoprotein Cholesterol and Its Relationship with Other Atherosclerosis-Related Lipid Factors in Type 2 Diabetes. Metab Syndr Relat Disord 2020; 19:205-212. [PMID: 33373539 DOI: 10.1089/met.2020.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Elevated triglyceride (TG) levels and reduced high-density lipoprotein-cholesterol (HDL-c) levels indicate lipid abnormalities, but their levels alone do not reflect the actual status of plasma atherogenicity and cardiovascular disease risk (CVD). TG and HDL-c levels directly affect the balance between plasma atherogenic and antiatherogenic factors, as well as values of the atherogenic index of plasma [AIP (logarithmically transformed ratio of TG-to-HDL-c)]. The aim of this study was to evaluate the AIP risk categories (an indicator of plasma atherogenicity) and the relationships of AIP with other atherosclerosis-related lipid parameters in patients with type 2 diabetes mellitus (T2DM) and their potential clinical utility. Methods: Standard lipid profile, AIP, and lipid hydroperoxides (LOOH) were investigated in 124 T2DM outpatients (mean age 52.7 ± 5.9 years) and 61 healthy subjects (mean age 50.9 ± 6.8 years). T2DM patients were subclassified according to the AIP risk category and glycemic control. Results: Higher levels of AIP, LOOH, and TG and lower HDL-c (all P < 0.0001) were observed in T2DM patients than in the control group. AIP positively correlated with LOOH, non-HDL-c, and the non-HDL/HDL ratio (all P < 0.0001). The TG level was strongly correlated with the LOOH level among T2DM patients (P < 0.0001). Conclusions: The close association of AIP with other atherosclerosis-related lipid factors reveals an increased plasma atherogenicity. AIP risk categories indicate the actual status of plasma atherogenicity and identify subjects who are at an increased atherogenic risk and the development of CVD. In this respect, AIP has a promising future in routine clinical practice.
Collapse
Affiliation(s)
- Alena Viktorinova
- Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Bratislava, Slovakia
| | - Lubomira Fabryova
- Department of Diabetology and Metabolic Diseases, Metabol Klinik, Lipid Clinic, MED PED Centre, Bratislava, Slovakia
| | - Danica Malickova
- University Hospital-St. Michael's Hospital, Bratislava, Slovakia
| | - Sawkat Choudhury
- National Blood Transfusion Service of Slovak Republic, Bratislava, Slovakia
| | - Marian Krizko
- University Hospital-St. Michael's Hospital, Bratislava, Slovakia
| |
Collapse
|
44
|
Bora S, Adole PS, Motupalli N, Pandit VR, Vinod KV. Association between carbonyl stress markers and the risk of acute coronary syndrome in patients with type 2 diabetes mellitus-A pilot study. Diabetes Metab Syndr 2020; 14:1751-1755. [PMID: 32932181 DOI: 10.1016/j.dsx.2020.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS Carbonyl stress is one of the mechanisms responsible for diabetes and its complications. The study was planned to examine the relationship between carbonyl stress markers and the risk of acute coronary syndrome (ACS) in patients with type 2 diabetes mellitus (T2DM). METHODS Forty T2DM patients with ACS and forty T2DM patients without ACS participated in this cross-sectional pilot study. Routine biochemical investigations, creatine kinase-total (CK-T), and creatine kinase-MB (CK-MB) levels were estimated. Serum carbonyl stress markers were analysed by enzyme-linked immunosorbent assay. Binary logistics regression was done to determine the predictive value of carbonyl stress markers for ACS. RESULTS Fasting plasma glucose, serum total methylglyoxal (MG), methylglyoxal derived hydroimidazolones-1 (MG-H1), and Nε-carboxymethyl-lysine (CML) levels were significantly higher in T2DM patients with ACS than in those without ACS. Serum glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glyoxalase-1 (GLO1) levels were significantly lower in T2DM patients with ACS than in those without ACS. Fasting plasma glucose level was significantly positively correlated with serum MG (r = 0.441, P < 0.001), CML (r = 0.649, P < 0.001), MG-H1 (r = 0.725, P < 0.001), and negatively correlated with serum GAPDH (r = - 0.268, P = 0.012) and GLO1 (r = - 0.634, P = 0.016). Receiver operating characteristic curve analysis showed that serum GAPDH and GLO1 could predict the risk of ACS in T2DM patients. CONCLUSION These findings revealed that high carbonyl stress due to lower levels of GAPDH and GLO1 may predispose patients with T2DM for more risk of ACS.
Collapse
Affiliation(s)
- Sushmita Bora
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605 006, India
| | - Prashant S Adole
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605 006, India.
| | - Nissy Motupalli
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605 006, India
| | - Vinay R Pandit
- Department of Emergency Medicine and Trauma, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605 006, India
| | - Kolar V Vinod
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605 006, India
| |
Collapse
|
45
|
Park M, Nishimura T, Baeza-Garza CD, Caldwell ST, Pun PBL, Prag HA, Young T, Sauchanka O, Logan A, Forkink M, Gruszczyk AV, Prime TA, Arndt S, Naudi A, Pamplona R, Coughlan MT, Tate M, Ritchie RH, Caicci F, Kaludercic N, Di Lisa F, Smith RAJ, Hartley RC, Murphy MP, Krieg T. Confirmation of the Cardioprotective Effect of MitoGamide in the Diabetic Heart. Cardiovasc Drugs Ther 2020; 34:823-834. [PMID: 32979176 PMCID: PMC7674384 DOI: 10.1007/s10557-020-07086-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
Purpose HFpEF (heart failure with preserved ejection fraction) is a major consequence of diabetic cardiomyopathy with no effective treatments. Here, we have characterized Akita mice as a preclinical model of HFpEF and used it to confirm the therapeutic efficacy of the mitochondria-targeted dicarbonyl scavenger, MitoGamide. Methods and Results A longitudinal echocardiographic analysis confirmed that Akita mice develop diastolic dysfunction with reduced E peak velocity, E/A ratio and extended isovolumetric relaxation time (IVRT), while the systolic function remains comparable with wild-type mice. The myocardium of Akita mice had a decreased ATP/ADP ratio, elevated mitochondrial oxidative stress and increased organelle density, compared with that of wild-type mice. MitoGamide, a mitochondria-targeted 1,2-dicarbonyl scavenger, exhibited good stability in vivo, uptake into cells and mitochondria and reactivity with dicarbonyls. Treatment of Akita mice with MitoGamide for 12 weeks significantly improved the E/A ratio compared with the vehicle-treated group. Conclusion Our work confirms that the Akita mouse model of diabetes replicates key clinical features of diabetic HFpEF, including cardiac and mitochondrial dysfunction. Furthermore, in this independent study, MitoGamide treatment improved diastolic function in Akita mice. Electronic supplementary material The online version of this article (10.1007/s10557-020-07086-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Park
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Takanori Nishimura
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.,Takeda Pharmaceutical Ltd, Tokyo, Japan
| | | | | | | | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Tim Young
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Olga Sauchanka
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Marleen Forkink
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anja V Gruszczyk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Tracy A Prime
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Sabine Arndt
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Alba Naudi
- Department Of Experimental Medicine, University of Lleida, Lleida Institute for Biomedical Research, Lleida, Spain
| | - Reinald Pamplona
- Department Of Experimental Medicine, University of Lleida, Lleida Institute for Biomedical Research, Lleida, Spain
| | | | - Mitchel Tate
- Department of Diabetes, Monash University, Melbourne, Australia.,Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Rebecca H Ritchie
- Department of Diabetes, Monash University, Melbourne, Australia.,Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Pisa, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Robin A J Smith
- Department of Chemistry, University of Otago, Otago, New Zealand
| | | | - Michael P Murphy
- Department of Medicine, University of Cambridge, Cambridge, UK.,MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
46
|
Circulating Levels of the Soluble Receptor for AGE (sRAGE) during Escalating Oral Glucose Dosages and Corresponding Isoglycaemic i.v. Glucose Infusions in Individuals with and without Type 2 Diabetes. Nutrients 2020; 12:nu12102928. [PMID: 32987824 PMCID: PMC7598639 DOI: 10.3390/nu12102928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
Postprandial glucose excursions are postulated to increase the risk for diabetes complications via the production of advanced glycation end products (AGEs). The soluble receptor of AGEs (sRAGE) likely acts as a decoy receptor, mopping up AGEs, diminishing their capacity for pro-inflammatory and pro-apoptotic signaling. Recent evidence suggests that AGEs and soluble receptor for AGEs (sRAGE) may be altered under postprandial and fasting conditions. Here, we investigated the effects of increasing oral glucose loads during oral glucose tolerance tests (OGTT) and matched isoglycaemic intravenous (i.v.) glucose infusions (IIGI) on circulating concentrations of sRAGE. Samples from eight individuals with type 2 diabetes and eight age-, gender-, and body mass index (BMI)-matched controls, all of whom underwent three differently dosed OGTTs (25 g, 75 g, and 125 g), and three matched IIGIs were utilised (NCT00529048). Serum concentrations of sRAGE were measured over 240 min during each test. For individuals with diabetes, sRAGE area under the curve (AUC0–240min) declined with increasing i.v. glucose dosages (p < 0.0001 for trend) and was lower during IIGI compared to OGTT at the 125 g dosage (p = 0.004). In control subjects, sRAGE AUC0–240min was only lower during IIGI compared to OGTT at the 25 g dose (p = 0.0015). sRAGE AUC0–240min was negatively correlated to AUC0–240min for the incretin hormone glucagon-like peptide −1 (GLP-1) during the 75 g OGTT and matched IIGI, but only in individuals with type 2 diabetes. These data suggest that gastrointestinal factors may play a role in regulating sRAGE concentrations during postprandial glucose excursions, thus warranting further investigation.
Collapse
|
47
|
Hanssen NMJ, Kraakman MJ, Flynn MC, Nagareddy PR, Schalkwijk CG, Murphy AJ. Postprandial Glucose Spikes, an Important Contributor to Cardiovascular Disease in Diabetes? Front Cardiovasc Med 2020; 7:570553. [PMID: 33195459 PMCID: PMC7530333 DOI: 10.3389/fcvm.2020.570553] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Clinical trials investigating whether glucose lowering treatment reduces the risk of CVD in diabetes have thus far yielded mixed results. However, this doesn't rule out the possibility of hyperglycemia playing a major causal role in promoting CVD or elevating CVD risk. In fact, lowering glucose appears to promote some beneficial long-term effects, and continuous glucose monitoring devices have revealed that postprandial spikes of hyperglycemia occur frequently, and may be an important determinant of CVD risk. It is proposed that these short, intermittent bursts of hyperglycemia may have detrimental effects on several organ systems including the vasculature and the hematopoietic system collectively contributing to the state of elevated CVD risk in diabetes. In this review, we summarize the potential mechanisms through which hyperglycemic spikes may increase atherosclerosis and how new and emerging interventions may combat this.
Collapse
Affiliation(s)
- Nordin M J Hanssen
- Diabetes Centre, Amsterdam University Medical Centre, Amsterdam, Netherlands.,Department of Internal Medicine, CARIM, School of Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Michael J Kraakman
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Michelle C Flynn
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Prabhakara R Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH, United States
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM, School of Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Terasaki M, Yashima H, Mori Y, Saito T, Matsui T, Hiromura M, Kushima H, Osaka N, Ohara M, Fukui T, Hirano T, Yamagishi SI. A Dipeptidyl Peptidase-4 Inhibitor Inhibits Foam Cell Formation of Macrophages in Type 1 Diabetes via Suppression of CD36 and ACAT-1 Expression. Int J Mol Sci 2020; 21:ijms21134811. [PMID: 32646003 PMCID: PMC7369823 DOI: 10.3390/ijms21134811] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors have been reported to play a protective role against atherosclerosis in both animal models and patients with type 2 diabetes (T2D). However, since T2D is associated with dyslipidemia, hypertension and insulin resistance, part of which are ameliorated by DPP-4 inhibitors, it remains unclear whether DPP-4 inhibitors could have anti-atherosclerotic properties directly by attenuating the harmful effects of hyperglycemia. Therefore, we examined whether a DPP-4 inhibitor, teneligliptin, could suppress oxidized low-density lipoprotein (ox-LDL) uptake, foam cell formation, CD36 and acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) gene expression of macrophages isolated from streptozotocin-induced type 1 diabetes (T1D) mice and T1D patients as well as advanced glycation end product (AGE)-exposed mouse peritoneal macrophages and THP-1 cells. Foam cell formation, CD36 and ACAT-1 gene expression of macrophages derived from T1D mice or patients increased compared with those from non-diabetic controls, all of which were inhibited by 10 nmol/L teneligliptin. AGEs mimicked the effects of T1D; teneligliptin attenuated all the deleterious effects of AGEs in mouse macrophages and THP-1 cells. Our present findings suggest that teneligliptin may inhibit foam cell formation of macrophages in T1D via suppression of CD36 and ACAT-1 gene expression partly by attenuating the harmful effects of AGEs.
Collapse
Affiliation(s)
- Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
- Correspondence: ; Tel.: +81-3-3784-8947; Fax: +81-3-3784-8948
| | - Hironori Yashima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Tomomi Saito
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Hideki Kushima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Naoya Osaka
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Tomoyasu Fukui
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| | - Tsutomu Hirano
- Diabetes Center, Ebina General Hospital, Ebina 243-0433, Japan;
| | - Sho-ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan; (H.Y.); (Y.M.); (T.S.); (M.H.); (H.K.); (N.O.); (M.O.); (T.F.); (S.Y.)
| |
Collapse
|
49
|
Sharma A, Weber D, Raupbach J, Dakal TC, Fließbach K, Ramirez A, Grune T, Wüllner U. Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson's and Alzheimer's disease. Redox Biol 2020; 34:101546. [PMID: 32460130 PMCID: PMC7251371 DOI: 10.1016/j.redox.2020.101546] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative diseases (NDD) such as Alzheimer's (AD) and Parkinson's disease (PD) are distinct clinical entities, however, the aggregation of key neuronal proteins, presumably leading to neuronal demise appears to represent a common mechanism. It has become evident, that advanced glycation end products (AGEs) trigger the accumulation of such modified proteins, which eventually contributes to pathological aspect of NDDs. Increased levels of AGEs are found in amyloid plaques in AD brains and in both advanced and early PD (incidental Lewy body disease). The molecular mechanisms by which AGE dependent modifications may modulate the susceptibility towards NDDs, however, remain enigmatic and it is unclear, whether AGEs may serve as biomarker of NDD. In the present study, we examined AGEs (CML: Carboxymethyllysine and CEL: Carboxyethyllysine), markers of oxidative stress and micronutrients in the plasma of PD and AD patients and controls. As compared to healthy controls, AD females displayed lower levels of CEL while higher levels of CML were found in AD and PD patients. A somewhat similar pattern was observed for protein carbonyls (PC), revealing lower values exclusively in AD females, whereas AD males displayed significantly higher values compared to healthy controls and PD. Sex-specific differences were also observed for other relevant markers such as malondialdehyde, 3-nitrotyrosine, γ -tocopherols, retinol, plasma proteins and α-carotene, while α-tocopherols, β-carotene, lutein/zeaxanthin, β-cryptoxanthin and lycopene showed no relevant association. Taken together, our study suggests yet unappreciated differences of the distribution of AGEs among the sexes in NDD. We therefore suggest to make a clear distinction between sexes when analyzing oxidative (AGEs)-related stress and carbonyl-related stress and vitamins.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Neurology, University Clinic Bonn, Bonn, Germany; Department of Ophthalmology, University Clinic Bonn, Bonn, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam, Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam, Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Rajasthan, India
| | - Klaus Fließbach
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alfredo Ramirez
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam, Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Clinic Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
50
|
Physical activity and markers of glycation in older individuals: data from a combined cross-sectional and randomized controlled trial (EXAMIN AGE). Clin Sci (Lond) 2020; 134:1095-1105. [DOI: 10.1042/cs20200255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
AbstractBackground: Advanced glycation end products (AGEs) are protein modifications that are predominantly formed from dicarbonyl compounds that arise from glucose and lipid metabolism. AGEs and sedentary behavior have been identified as a driver of accelerated (vascular) aging. The effect of physical activity on AGE accumulation is unknown. Therefore, we investigated whether plasma AGEs and dicarbonyl levels are different across older individuals that were active or sedentary and whether plasma AGEs are affected by high-intensity interval training (HIIT).Methods: We included healthy older active (HA, n=38, 44.7% female, 60.1 ± 7.7 years old) and healthy older sedentary (HS, n=36, 72.2% female, 60.0 ± 7.3 years old) individuals as well as older sedentary individuals with increased cardiovascular risk (SR, n=84, 50% female, 58.7 ± 6.6 years old). The SR group was randomized into a 12-week walking-based HIIT program or control group. We measured protein-bound and free plasma AGEs and dicarbonyls by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) at baseline and after the HIIT intervention.Results: Protein-bound AGE Nε-(carboxymethyl)lysine (CML) was lower in SR (2.6 ± 0.5 μmol/l) and HS (3.1 ± 0.5 μmol/l) than in HA (3.6 ± 0.6 μmol/l; P<0.05) and remained significantly lower after adjustment for several potential confounders. None of the other glycation markers were different between HS and HA. HIIT did not change plasma AGEs and dicarbonyls in SR.Discussion: Although lifestyle interventions may act as important modulators of cardiovascular risk, HIIT is not a potent short-term intervention to reduce glycation in older individuals, underlining the need for other approaches, such as pharmacological agents, to reduce AGEs and lower cardiovascular risk in this population.
Collapse
|