1
|
Filardi T, Bleve E, Gorini S, Caprio M, Morano S. Is Breastfeeding an Effective Approach to Reduce Metabolic Risk After GDM in Mothers and Infants? J Clin Med 2025; 14:3065. [PMID: 40364095 PMCID: PMC12072720 DOI: 10.3390/jcm14093065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Gestational diabetes mellitus (GDM) leads to increased lifelong cardiometabolic risk in both mothers and their offspring. The identification of effective strategies to contain the future risk of type 2 diabetes (T2D) and cardiovascular disease (CVD) is of utmost importance to reduce the burden of the disease. Breastfeeding (BF) is effective in reducing short- and long-term child morbidity. In recent years, BF has emerged as a candidate low-cost intervention to prevent future cardiometabolic complications both in mothers and infants exposed to GDM. The aim of this review is to provide an overview of the evidence about the possible metabolic benefits of BF for both mothers with a history of GDM and their offspring. Increasing evidence supports the positive effects of exclusive BF over formula feeding (FF) or mixed feeding on glucose homeostasis and the lipid profile in women with previous GDM in the early postpartum period. Studies with a longer observation suggest clear benefits of intensive and longer BF on the risk of diabetes and prediabetes in mothers after adjustment for confounders. In regards to infants, in most studies, the intensity and duration of BF are positively associated with slower infant growth curves compared with FF, indicating that the positive effect of BF on growth trends might contrast the increased risk of obesity and metabolic diseases observed in infants exposed to GDM. Considering these findings, a global effort should be made to support BF practice to possibly reduce cardiometabolic morbidity after GDM.
Collapse
Affiliation(s)
- Tiziana Filardi
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.G.); (M.C.)
- Department of Experimental Medicine, “Sapienza” University, Viale Regina Elena 324, 00161 Rome, Italy; (E.B.); (S.M.)
| | - Enrico Bleve
- Department of Experimental Medicine, “Sapienza” University, Viale Regina Elena 324, 00161 Rome, Italy; (E.B.); (S.M.)
| | - Stefania Gorini
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.G.); (M.C.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Massimiliano Caprio
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.G.); (M.C.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Susanna Morano
- Department of Experimental Medicine, “Sapienza” University, Viale Regina Elena 324, 00161 Rome, Italy; (E.B.); (S.M.)
| |
Collapse
|
2
|
Shastry A, Wilkinson MS, Miller DM, Kuriakose M, Veeneman JLMH, Smith MR, Hindmarch CCT, Dunham-Snary KJ. Multi-tissue metabolomics reveal mtDNA- and diet-specific metabolite profiles in a mouse model of cardiometabolic disease. Redox Biol 2025; 81:103541. [PMID: 39983345 PMCID: PMC11893332 DOI: 10.1016/j.redox.2025.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/08/2025] [Indexed: 02/23/2025] Open
Abstract
RATIONALE Excess consumption of sugar- and fat-rich foods has heightened the prevalence of cardiometabolic disease, which remains a driver of cardiovascular disease- and type II diabetes-related mortality globally. Skeletal muscle insulin resistance is an early feature of cardiometabolic disease and is a precursor to diabetes. Insulin resistance risk varies with self-reported race, whereby African-Americans have a greater risk of diabetes development relative to their White counterparts. Self-reported race is strongly associated with mitochondrial DNA (mtDNA) haplogroups, and previous reports have noted marked differences in bioenergetic and metabolic parameters in cells belonging to distinct mtDNA haplogroups, but the mechanism of these associations remains unknown. Additionally, distinguishing nuclear DNA (nDNA) and mtDNA contributions to cardiometabolic disease remains challenging in humans. The Mitochondrial-Nuclear eXchange (MNX) mouse model enables in vivo preclinical investigation of the role of mtDNA in cardiometabolic disease development, and has been implemented in studies of insulin resistance, fatty liver disease, and obesity in previous reports. METHODS Six-week-old male C57nDNA:C57mtDNA and C3HnDNA:C3HmtDNA wild-type mice, and C57nDNA:C3HmtDNA and C3HnDNA:C57mtDNA MNX mice, were fed sucrose-matched high-fat (45% kcal fat) or control diet (10% kcal fat) until 12 weeks of age (n = 5/group). Mice were weighed weekly and total body fat was collected at euthanasia. Gastrocnemius skeletal muscle and plasma metabolomes were characterized using untargeted dual-chromatography mass spectrometry; both hydrophilic interaction liquid chromatography (HILIC) and C18 columns were used, in positive- and negative-ion modes, respectively. RESULTS Comparative analyses between nDNA-matched wild-type and MNX strains demonstrated significantly increased body fat percentage in mice possessing C57mtDNA regardless of nDNA background. High-fat diet in mice possessing C57mtDNA was associated with differential abundance of phosphatidylcholines, lysophosphatidylcholines, phosphatidylethanolamines, and glucose. Conversely, high-fat diet in mice possessing C3HmtDNA was associated with differential abundance of phosphatidylcholines, cardiolipins, and alanine. Glycerophospholipid metabolism and beta-alanine signaling pathways were enriched in skeletal muscle and plasma, indicating mtDNA-directed priming of mitochondria towards oxidative stress and increased fatty acid oxidation in C57nDNA:C57mtDNA wild-type and C3HnDNA:C57mtDNA MNX mice, relative to their nDNA-matched counterparts. In mtDNA-matched mice, C57mtDNA was associated with metabolite co-expression related to the pentose phosphate pathway and sugar-related metabolism; C3HmtDNA was associated with branched chain amino acid metabolite co-expression. CONCLUSIONS These results reveal novel nDNA-mtDNA interactions that drive significant changes in metabolite levels. Alterations to key metabolites involved in mitochondrial bioenergetic dysfunction and electron transport chain activity are implicated in elevated beta-oxidation during high-fat diet feeding; abnormally elevated rates of beta-oxidation may be a key driver of insulin resistance. The results reported here support the hypothesis that mtDNA influences cardiometabolic disease-susceptibility by modulating mitochondrial function and metabolic pathways.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Mia S Wilkinson
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Dalia M Miller
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Michelle Kuriakose
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | - Matthew Ryan Smith
- Atlanta Veterans Affairs Health Care System, Decatur, GA, 30033, USA; Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Charles C T Hindmarch
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada; Queen's CardioPulmonary Unit, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
3
|
Zhang Y, Luo K, Peters BA, Mossavar-Rahmani Y, Moon JY, Wang Y, Daviglus ML, Van Horn L, McClain AC, Cordero C, Floyd JS, Yu B, Walker RW, Burk RD, Kaplan RC, Qi Q. Sugar-sweetened beverage intake, gut microbiota, circulating metabolites, and diabetes risk in Hispanic Community Health Study/Study of Latinos. Cell Metab 2025; 37:578-591.e4. [PMID: 39892390 PMCID: PMC11885037 DOI: 10.1016/j.cmet.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/17/2024] [Accepted: 12/12/2024] [Indexed: 02/03/2025]
Abstract
No population-based studies examined gut microbiota and related metabolites associated with sugar-sweetened beverage (SSB) intake among US adults. In this cohort of US Hispanic/Latino adults, higher SSB intake was associated with nine gut bacterial species, including lower abundances of several short-chain-fatty-acid producers, previously shown to be altered by fructose and glucose in animal studies, and higher abundances of fructose- and glucose-utilizing Clostridium bolteae and Anaerostipes caccae. Fifty-six serum metabolites were correlated with SSB intake and a gut microbiota score based on these SSB-related species in consistent directions. These metabolites were clustered into several modules, including a glycerophospholipid module, two modules comprising branched-chain amino acid (BCAA) and aromatic amino acid (AAA) derivatives from microbial metabolism, etc. Higher glycerophospholipid and BCAA derivative levels and lower AAA derivative levels were associated with higher incident diabetes risk during follow-up. These findings suggest a potential role of gut microbiota in the association between SSB intake and diabetes.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C McClain
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| | - Christina Cordero
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - James S Floyd
- Department of Medicine, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Ryan W Walker
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Pediatrics, Microbiology & Immunology, and Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Covert LT, Prinz JA, Swain-Lenz D, Dvergsten J, Truskey GA. Genetic changes from type I interferons and JAK inhibitors: clues to drivers of juvenile dermatomyositis. Rheumatology (Oxford) 2024; 63:SI240-SI248. [PMID: 38317053 PMCID: PMC11381683 DOI: 10.1093/rheumatology/keae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To better understand the pathogenesis of juvenile dermatomyositis (JDM), we examined the effect of the cytokines type I interferons (IFN I) and JAK inhibitor drugs (JAKi) on gene expression in bioengineered pediatric skeletal muscle. METHODS Myoblasts from three healthy pediatric donors were used to create three-dimensional skeletal muscle units termed myobundles. Myobundles were treated with IFN I, either IFNα or IFNβ. A subset of IFNβ-exposed myobundles was treated with JAKi tofacitinib or baricitinib. RNA sequencing analysis was performed on all myobundles. RESULTS Seventy-six myobundles were analysed. Principal component analysis showed donor-specific clusters of gene expression across IFNα and IFNβ-exposed myobundles in a dose-dependent manner. Both cytokines upregulated interferon response and proinflammatory genes; however, IFNβ led to more significant upregulation. Key downregulated pathways involved oxidative phosphorylation, fatty acid metabolism and myogenesis genes. Addition of tofacitinib or baricitinib moderated the gene expression induced by IFNβ, with partial reversal of upregulated inflammatory and downregulated myogenesis pathways. Baricitinib altered genetic profiles more than tofacitinib. CONCLUSION IFNβ leads to more pro-inflammatory gene upregulation than IFNα, correlating to greater decrease in contractile protein gene expression and reduced contractile force. JAK inhibitors, baricitinib more so than tofacitinib, partially reverse IFN I-induced genetic changes. Increased IFN I exposure in healthy bioengineered skeletal muscle leads to IFN-inducible gene expression, inflammatory pathway enrichment, and myogenesis gene downregulation, consistent with what is observed in JDM.
Collapse
Affiliation(s)
- Lauren T Covert
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Joseph A Prinz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
| | - Devjanee Swain-Lenz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Jeffrey Dvergsten
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Hussein M, Mirza I, Morsy M, Mostafa A, Hassan C, Masrur M, Bianco FM, Papasani S, Levitan I, Mahmoud AM. Comparison of Adiposomal Lipids between Obese and Non-Obese Individuals. Metabolites 2024; 14:464. [PMID: 39195560 DOI: 10.3390/metabo14080464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Our recent findings revealed that human adipose tissues (AT)-derived extracellular vesicles (adiposomes) vary in cargo among obese and lean individuals. The main objective of this study was to investigate the adiposomal lipid profiles and their correlation with cardiometabolic risk factors. AT samples were collected from obese subjects and lean controls and analyzed for their characteristics and lipid content. In addition, we measured the correlation between adiposomal lipid profiles and body composition, glucose and lipid metabolic profiles, brachial artery vasoreactivity, AT arteriolar flow-induced dilation, and circulating markers such as IL-6, C-reactive protein, and nitric oxide (NO). Compared to lean controls, adiposomes isolated from obese subjects were higher in number after normalization to AT volume. The two major lipid classes differentially expressed were lysophosphatidylcholine/phosphatidylcholine (LPC/PC) and ceramides (Cer). All lipids in the LPC/PC class were several-fold lower in adiposomes from obese subjects compared to lean controls, on top of which were PC 18:2, PC 18:1, and PC 36:3. Most ceramides were markedly upregulated in the obese group, especially Cer d37:0, Cer d18:0, and Cer d39:0. Regression analyses revealed associations between adiposomal lipid profiles and several cardiometabolic risk factors such as body mass index (BMI), fat percentage, insulin resistance, arteriolar and brachial artery vasoreactivity, NO bioavailability, and high-density lipoproteins (HDL-C). We conclude that the ability of adiposomes from obese subjects to disrupt cardiometabolic function could be partly attributed to the dysregulated lipid cargo.
Collapse
Affiliation(s)
- Mohamed Hussein
- Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | - Imaduddin Mirza
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Mohammed Morsy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Chandra Hassan
- Department of Surgery, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Mario Masrur
- Department of Surgery, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Francesco M Bianco
- Department of Surgery, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Subbaiah Papasani
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Abeer M Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Prete A, Bancos I. Mild autonomous cortisol secretion: pathophysiology, comorbidities and management approaches. Nat Rev Endocrinol 2024; 20:460-473. [PMID: 38649778 DOI: 10.1038/s41574-024-00984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The majority of incidentally discovered adrenal tumours are benign adrenocortical adenomas and the prevalence of adrenocortical adenomas is around 1-7% on cross-sectional abdominal imaging. These can be non-functioning adrenal tumours or they can be associated with autonomous cortisol secretion on a spectrum that ranges from rare clinically overt adrenal Cushing syndrome to the much more prevalent mild autonomous cortisol secretion (MACS) without signs of Cushing syndrome. MACS is diagnosed (based on an abnormal overnight dexamethasone suppression test) in 20-50% of patients with adrenal adenomas. MACS is associated with cardiovascular morbidity, frailty, fragility fractures, decreased quality of life and increased mortality. Management of MACS should be individualized based on patient characteristics and includes adrenalectomy or conservative follow-up with treatment of associated comorbidities. Identifying patients with MACS who are most likely to benefit from adrenalectomy is challenging, as adrenalectomy results in improvement of cardiovascular morbidity in some, but not all, patients with MACS. Of note, diagnosis and management of patients with bilateral MACS is especially challenging. Current gaps in MACS clinical practice include a lack of specific biomarkers diagnostic of MACS-related health outcomes and a paucity of clinical trials demonstrating the efficacy of adrenalectomy on comorbidities associated with MACS. In addition, little evidence exists to demonstrate the efficacy and safety of long-term medical therapy in patients with MACS.
Collapse
Affiliation(s)
- Alessandro Prete
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Bielawiec P, Dziemitko S, Konstantynowicz-Nowicka K, Sztolsztener K, Chabowski A, Harasim-Symbor E. Cannabigerol-A useful agent restoring the muscular phospholipids milieu in obese and insulin-resistant Wistar rats? Front Mol Biosci 2024; 11:1401558. [PMID: 38919749 PMCID: PMC11196617 DOI: 10.3389/fmolb.2024.1401558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Numerous strategies have been proposed to minimize obesity-associated health effects, among which phytocannabinoids appear to be effective and safe compounds. In particular, cannabigerol (CBG) emerges as a potent modulator of the composition of membrane phospholipids (PLs), which plays a critical role in the development of insulin resistance. Therefore, here we consider the role of CBG treatment on the composition of PLs fraction with particular emphasis on phospholipid subclasses (e.g., phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI)) in the red gastrocnemius muscle of Wistar rats fed the standard or high-fat, high-sucrose (HFHS) diet. The intramuscular PLs content was determined by gas-liquid chromatography and based on the composition of individual FAs, we assessed the stearoyl-CoA desaturase 1 (SCD1) index as well as the activity of n-3 and n-6 polyunsaturated fatty acids (PUFAs) pathways. Expression of various proteins engaged in the inflammatory pathway, FAs elongation, and desaturation processes was measured using Western blotting. Our research has demonstrated the important association of obesity with alterations in the composition of muscular PLs, which was significantly improved by CBG supplementation, enriching the lipid pools in n-3 PUFAs and decreasing the content of arachidonic acid (AA), which in turn influenced the activity of PUFAs pathways in various PLs subclasses. CBG also inhibited the local inflammation development and profoundly reduced the SCD1 activity. Collectively, restoring the PLs homeostasis of the myocyte membrane by CBG indicates its new potential medical application in the treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Patrycja Bielawiec
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
8
|
Aisyah R, Ohshima N, Watanabe D, Nakagawa Y, Sakuma T, Nitschke F, Nakamura M, Sato K, Nakahata K, Yokoyama C, Marchioni CR, Kumrungsee T, Shimizu T, Sotomaru Y, Takeo T, Nakagata N, Izumi T, Miura S, Minassian BA, Yamamoto T, Wada M, Yanaka N. GDE5/Gpcpd1 activity determines phosphatidylcholine composition in skeletal muscle and regulates contractile force in mice. Commun Biol 2024; 7:604. [PMID: 38769369 PMCID: PMC11106330 DOI: 10.1038/s42003-024-06298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Glycerophosphocholine (GPC) is an important precursor for intracellular choline supply in phosphatidylcholine (PC) metabolism. GDE5/Gpcpd1 hydrolyzes GPC into choline and glycerol 3-phosphate; this study aimed to elucidate its physiological function in vivo. Heterozygous whole-body GDE5-deficient mice reveal a significant GPC accumulation across tissues, while homozygous whole-body knockout results in embryonic lethality. Skeletal muscle-specific GDE5 deletion (Gde5 skKO) exhibits reduced passive force and improved fatigue resistance in electrically stimulated gastrocnemius muscles in vivo. GDE5 deficiency also results in higher glycolytic metabolites and glycogen levels, and glycerophospholipids alteration, including reduced levels of phospholipids that bind polyunsaturated fatty acids (PUFAs), such as DHA. Interestingly, this PC fatty acid compositional change is similar to that observed in skeletal muscles of denervated and Duchenne muscular dystrophy mouse models. These are accompanied by decrease of GDE5 expression, suggesting a regulatory role of GDE5 activity for glycerophospholipid profiles. Furthermore, a DHA-rich diet enhances contractile force and lowers fatigue resistance, suggesting a functional relationship between PC fatty acid composition and muscle function. Finally, skinned fiber experiments show that GDE5 loss increases the probability of the ryanodine receptor opening and lowers the maximum Ca2+-activated force. Collectively, GDE5 activity plays roles in PC and glucose/glycogen metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Rahmawati Aisyah
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | | | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Yoshiko Nakagawa
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Felix Nitschke
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minako Nakamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Koji Sato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kaori Nakahata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Chihiro Yokoyama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Charlotte R Marchioni
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Toru Takeo
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Takashi Izumi
- Graduate School of Medicine, Gunma University, Gunma, Japan
- Faculty of Health Care, Teikyo Heisei University, Tokyo, Japan
| | - Shinji Miura
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Berge A Minassian
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
9
|
Yan H, Li G, Zhang X, Zhang C, Li M, Qiu Y, Sun W, Dong Y, Li S, Li J. Targeted metabolomics-based understanding of the sleep disturbances in drug-naïve patients with schizophrenia. BMC Psychiatry 2024; 24:355. [PMID: 38741058 PMCID: PMC11089724 DOI: 10.1186/s12888-024-05805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Sleep disturbances are a common occurrence in patients with schizophrenia, yet the underlying pathogenesis remain poorly understood. Here, we performed a targeted metabolomics-based approach to explore the potential biological mechanisms contributing to sleep disturbances in schizophrenia. METHODS Plasma samples from 59 drug-naïve patients with schizophrenia and 36 healthy controls were subjected to liquid chromatography-mass spectrometry (LC-MS) targeted metabolomics analysis, allowing for the quantification and profiling of 271 metabolites. Sleep quality and clinical symptoms were assessed using the Pittsburgh Sleep Quality Index (PSQI) and the Positive and Negative Symptom Scale (PANSS), respectively. Partial correlation analysis and orthogonal partial least squares discriminant analysis (OPLS-DA) model were used to identify metabolites specifically associated with sleep disturbances in drug-naïve schizophrenia. RESULTS 16 characteristic metabolites were observed significantly associated with sleep disturbances in drug-naïve patients with schizophrenia. Furthermore, the glycerophospholipid metabolism (Impact: 0.138, p<0.001), the butanoate metabolism (Impact: 0.032, p=0.008), and the sphingolipid metabolism (Impact: 0.270, p=0.104) were identified as metabolic pathways associated with sleep disturbances in drug-naïve patients with schizophrenia. CONCLUSIONS Our study identified 16 characteristic metabolites (mainly lipids) and 3 metabolic pathways related to sleep disturbances in drug-naïve schizophrenia. The detection of these distinct metabolites provide valuable insights into the underlying biological mechanisms associated with sleep disturbances in schizophrenia.
Collapse
Affiliation(s)
- Huiming Yan
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Gang Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
- Chifeng Anding Hospital, NO.18 Gongger Street, Hongshan District, Chifeng City, 024000, Inner Mongolia Autonomous Region, China
| | - Xue Zhang
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
- Chifeng Anding Hospital, NO.18 Gongger Street, Hongshan District, Chifeng City, 024000, Inner Mongolia Autonomous Region, China
| | - Chuhao Zhang
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Meijuan Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Yuying Qiu
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Wei Sun
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Yeqing Dong
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Shen Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China.
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China.
| |
Collapse
|
10
|
Siripoksup P, Cao G, Cluntun AA, Maschek JA, Pearce Q, Brothwell MJ, Jeong MY, Eshima H, Ferrara PJ, Opurum PC, Mahmassani ZS, Peterlin AD, Watanabe S, Walsh MA, Taylor EB, Cox JE, Drummond MJ, Rutter J, Funai K. Sedentary behavior in mice induces metabolic inflexibility by suppressing skeletal muscle pyruvate metabolism. J Clin Invest 2024; 134:e167371. [PMID: 38652544 PMCID: PMC11142742 DOI: 10.1172/jci167371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.
Collapse
Affiliation(s)
- Piyarat Siripoksup
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
| | - Guoshen Cao
- Diabetes & Metabolism Research Center
- Department of Biochemistry
| | | | - J. Alan Maschek
- Metabolomics Core Research Facility
- Department of Nutrition & Integrative Physiology, and
| | | | - Marisa J. Brothwell
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Mi-Young Jeong
- Diabetes & Metabolism Research Center
- Department of Biochemistry
| | - Hiroaki Eshima
- Diabetes & Metabolism Research Center
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Patrick J. Ferrara
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Precious C. Opurum
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Ziad S. Mahmassani
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Alek D. Peterlin
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Shinya Watanabe
- Diabetes & Metabolism Research Center
- Department of Nutrition & Integrative Physiology, and
| | - Maureen A. Walsh
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - James E. Cox
- Diabetes & Metabolism Research Center
- Department of Biochemistry
- Metabolomics Core Research Facility
| | - Micah J. Drummond
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Jared Rutter
- Diabetes & Metabolism Research Center
- Department of Biochemistry
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center
- Department of Physical Therapy and Athletic Training
- Department of Biochemistry
- Department of Nutrition & Integrative Physiology, and
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Pang SJ, Liu TT, Pan JC, Man QQ, Song S, Zhang J. The Association between the Plasma Phospholipid Profile and Insulin Resistance: A Population-Based Cross-Section Study from the China Adult Chronic Disease and Nutrition Surveillance. Nutrients 2024; 16:1205. [PMID: 38674894 PMCID: PMC11054597 DOI: 10.3390/nu16081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The dysfunction of phospholipid metabolism enzymes and the change in membrane phospholipid composition are associated with insulin resistance, indicating that phospholipids play an important role in the regulation of insulin sensitivity. The reflection of phospholipid changes in blood might provide clues for both mechanism understanding and intervention. Using a targeted phospholipidomic approach, 199 phospholipid molecular species were identified and quantified in the plasma of 1053 middle-aged participants from a national investigation. The associations of the phospholipid matrix, clusters, and molecular species with insulin resistance were investigated. A significant association was confirmed between the phospholipid matrix and the homeostatic-model assessment of insulin resistance (HOMA-IR) by a distance-based linear model. Furthermore, three clustered phospholipid modules and 32 phospholipid molecular species were associated with HOMA-IR with the strict control of demographic and lifestyle parameters, family history of diabetes, BMI, WC, and blood lipid parameters. The overall decline in lysophosphatidylcholines (LPCs), the decrease in saturated lysophosphatidylethanolamines (LPEs), the decrease in polyunsaturated/plasmenyl phosphatidylcholines (PCs), and the increase in polyunsaturated phatidylethanolamines (PEs) were the prominent characters of plasma phospholipid perturbation associated with insulin resistance. This suggested that PC- and PE-related metabolic pathways were widely involved in the process of insulin resistance, especially the disorder of LPC acylation to diacyl-PC.
Collapse
Affiliation(s)
- Shao-Jie Pang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People’s Republic of China, Beijing 100050, China
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Beijing 100015, China;
| | - Ting-Ting Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
| | - Jian-Cun Pan
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Beijing 100015, China;
| | - Qing-Qing Man
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
| | - Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, No. 29 of Nanwei Road, Beijing 100050, China; (S.-J.P.); (T.-T.L.); (Q.-Q.M.)
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People’s Republic of China, Beijing 100050, China
| |
Collapse
|
12
|
Adamson SE, Adak S, Petersen MC, Higgins D, Spears LD, Zhang RM, Cedeno A, McKee A, Kumar A, Singh S, Hsu FF, McGill JB, Semenkovich CF. Decreased sarcoplasmic reticulum phospholipids in human skeletal muscle are associated with metabolic syndrome. J Lipid Res 2024; 65:100519. [PMID: 38354857 PMCID: PMC10937315 DOI: 10.1016/j.jlr.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Metabolic syndrome affects more than one in three adults and is associated with increased risk of diabetes, cardiovascular disease, and all-cause mortality. Muscle insulin resistance is a major contributor to the development of the metabolic syndrome. Studies in mice have linked skeletal muscle sarcoplasmic reticulum (SR) phospholipid composition to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase activity and insulin sensitivity. To determine if the presence of metabolic syndrome alters specific phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species in human SR, we compared SR phospholipid composition in skeletal muscle from sedentary subjects with metabolic syndrome and sedentary control subjects without metabolic syndrome. Both total PC and total PE were significantly decreased in skeletal muscle SR of sedentary metabolic syndrome patients compared with sedentary controls, particularly in female participants, but there was no difference in the PC:PE ratio between groups. Total SR PC levels, but not total SR PE levels or PC:PE ratio, were significantly negatively correlated with BMI, waist circumference, total fat, visceral adipose tissue, triglycerides, fasting insulin, and homeostatic model assessment for insulin resistance. These findings are consistent with the existence of a relationship between skeletal muscle SR PC content and insulin resistance in humans.
Collapse
Affiliation(s)
- Samantha E Adamson
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Max C Petersen
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Dustin Higgins
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Larry D Spears
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Rong Mei Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Andrea Cedeno
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Alexis McKee
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Aswathi Kumar
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Sudhir Singh
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Janet B McGill
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St Louis, MO, USA; Department of Cell Biology & Physiology, Washington University, St Louis, MO, USA.
| |
Collapse
|
13
|
Engin A. Lipid Storage, Lipolysis, and Lipotoxicity in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:97-129. [PMID: 39287850 DOI: 10.1007/978-3-031-63657-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The ratio of free fatty acid (FFA) turnover decreases significantly with the expansion of white adipose tissue. Adipose tissue and dietary saturated fatty acid levels significantly correlate with an increase in fat cell size and number. The G0/G1 switch gene 2 increases lipid content in adipocytes and promotes adipocyte hypertrophy through the restriction of triglyceride (triacylglycerol: TAG) turnover. Hypoxia in obese adipose tissue due to hypertrophic adipocytes results in excess deposition of extracellular matrix (ECM) components. Cluster of differentiation (CD) 44, as the main receptor of the extracellular matrix component regulates cell-cell and cell-matrix interactions including diet-induced insulin resistance. Excess TAGs, sterols, and sterol esters are surrounded by the phospholipid monolayer surface and form lipid droplets (LDs). Once LDs are formed, they grow up because of the excessive amount of intracellular FFA stored and reach a final size. The ratio of FFA turnover/lipolysis decreases significantly with increases in the degree of obesity. Dysfunctional adipose tissue is unable to expand further to store excess dietary lipids, increased fluxes of plasma FFAs lead to ectopic fatty acid deposition and lipotoxicity. Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Obesity-associated adipocyte death exhibits feature of necrosis-like programmed cell death. Adipocyte death is a prerequisite for the transition from hypertrophic to hyperplastic obesity. Increased adipocyte number in obesity has life-long effects on white adipose tissue mass. The positive correlation between the adipose tissue volume and magnetic resonance imaging proton density fat fraction estimation is used for characterization of the obesity phenotype, as well as the risk stratification and selection of appropriate treatment strategies. In obese patients with type 2 diabetes, visceral adipocytes exposed to chronic/intermittent hyperglycemia develop a new microRNAs' (miRNAs') expression pattern. Visceral preadipocytes memorize the effect of hyperglycemia via changes in miRNAs' expression profile and contribute to the progression of diabetic phenotype. Nonsteroidal anti-inflammatory drugs, metformin, and statins can be beneficial in treating the local or systemic consequences of white adipose tissue inflammation. Rapamycin inhibits leptin-induced LD formation. Collectively, in this chapter, the concept of adipose tissue remodeling in response to adipocyte death or adipogenesis, and the complexity of LD interactions with the other cellular organelles are reviewed. Furthermore, clinical perspective of fat cell turnover in obesity is also debated.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
14
|
Ruparelia AA, Salavaty A, Barlow CK, Lu Y, Sonntag C, Hersey L, Eramo MJ, Krug J, Reuter H, Schittenhelm RB, Ramialison M, Cox A, Ryan MT, Creek DJ, Englert C, Currie PD. The African killifish: A short-lived vertebrate model to study the biology of sarcopenia and longevity. Aging Cell 2024; 23:e13862. [PMID: 37183563 PMCID: PMC10776123 DOI: 10.1111/acel.13862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
Sarcopenia, the age-related decline in muscle function, places a considerable burden on health-care systems. While the stereotypic hallmarks of sarcopenia are well characterized, their contribution to muscle wasting remains elusive, which is partly due to the limited availability of animal models. Here, we have performed cellular and molecular characterization of skeletal muscle from the African killifish-an extremely short-lived vertebrate-revealing that while many characteristics deteriorate with increasing age, supporting the use of killifish as a model for sarcopenia research, some features surprisingly reverse to an "early-life" state in the extremely old stages. This suggests that in extremely old animals, there may be mechanisms that prevent further deterioration of skeletal muscle, contributing to an extension of life span. In line with this, we report a reduction in mortality rates in extremely old killifish. To identify mechanisms for this phenomenon, we used a systems metabolomics approach, which revealed that during aging there is a striking depletion of triglycerides, mimicking a state of calorie restriction. This results in the activation of mitohormesis, increasing Sirt1 levels, which improves lipid metabolism and maintains nutrient homeostasis in extremely old animals. Pharmacological induction of Sirt1 in aged animals was sufficient to induce a late life-like metabolic profile, supporting its role in life span extension in vertebrate populations that are naturally long-lived. Collectively, our results demonstrate that killifish are not only a novel model to study the biological processes that govern sarcopenia, but they also provide a unique vertebrate system to dissect the regulation of longevity.
Collapse
Affiliation(s)
- Avnika A. Ruparelia
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health SciencesUniversity of MelbourneMelbourneAustralia
- Centre for Muscle Research, Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneAustralia
| | - Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- Systems Biology Institute Australia, Monash UniversityClaytonAustralia
| | - Christopher K. Barlow
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Proteomics and Metabolomics FacilityMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Yansong Lu
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
| | - Lucy Hersey
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
| | - Matthew J. Eramo
- Department of Biochemistry and Molecular BiologyMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Johannes Krug
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI)JenaGermany
| | - Hanna Reuter
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI)JenaGermany
| | - Ralf B. Schittenhelm
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Proteomics and Metabolomics FacilityMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- Systems Biology Institute Australia, Monash UniversityClaytonAustralia
| | - Andrew Cox
- Peter MacCallum Cancer CentreMelbourneAustralia
- Department of Biochemistry and PharmacologyThe University of MelbourneMelbourneAustralia
| | - Michael T. Ryan
- Department of Biochemistry and Molecular BiologyMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Darren J. Creek
- Monash Proteomics and Metabolomics FacilityMonash Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Christoph Englert
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI)JenaGermany
- Institute of Biochemistry and Biophysics, Friedrich‐Schiller‐University JenaJenaGermany
| | - Peter D. Currie
- Australian Regenerative Medicine Institute, Monash UniversityClaytonAustralia
- EMBL Australia, Victorian NodeMonash UniversityClaytonAustralia
| |
Collapse
|
15
|
Pataky MW, Kumar AP, Gaul DA, Moore SG, Dasari S, Robinson MM, Klaus KA, Kumar AA, Fernandez FM, Nair KS. Divergent Skeletal Muscle Metabolomic Signatures of Different Exercise Training Modes Independently Predict Cardiometabolic Risk Factors. Diabetes 2024; 73:23-37. [PMID: 37862464 PMCID: PMC10784655 DOI: 10.2337/db23-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
We investigated the link between enhancement of SI (by hyperinsulinemic-euglycemic clamp) and muscle metabolites after 12 weeks of aerobic (high-intensity interval training [HIIT]), resistance training (RT), or combined training (CT) exercise in 52 lean healthy individuals. Muscle RNA sequencing revealed a significant association between SI after both HIIT and RT and the branched-chain amino acid (BCAA) metabolic pathway. Concurrently with increased expression and activity of branched-chain ketoacid dehydrogenase enzyme, many muscle amino metabolites, including BCAAs, glutamate, phenylalanine, aspartate, asparagine, methionine, and γ-aminobutyric acid, increased with HIIT, supporting the substantial impact of HIIT on amino acid metabolism. Short-chain C3 and C5 acylcarnitines were reduced in muscle with all three training modes, but unlike RT, both HIIT and CT increased tricarboxylic acid metabolites and cardiolipins, supporting greater mitochondrial activity with aerobic training. Conversely, RT and CT increased more plasma membrane phospholipids than HIIT, suggesting a resistance exercise effect on cellular membrane protection against environmental damage. Sex and age contributed modestly to the exercise-induced changes in metabolites and their association with cardiometabolic parameters. Integrated transcriptomic and metabolomic analyses suggest various clusters of genes and metabolites are involved in distinct effects of HIIT, RT, and CT. These distinct metabolic signatures of different exercise modes independently link each type of exercise training to improved SI and cardiometabolic risk. ARTICLE HIGHLIGHTS We aimed to understand the link between skeletal muscle metabolites and cardiometabolic health after exercise training. Although aerobic, resistance, and combined exercise training each enhance muscle insulin sensitivity as well as other cardiometabolic parameters, they disparately alter amino and citric acid metabolites as well as the lipidome, linking these metabolomic changes independently to the improvement of cardiometabolic risks with each exercise training mode. These findings reveal an important layer of the unique exercise mode-dependent changes in muscle metabolism, which may eventually lead to more informed exercise prescription for improving SI.
Collapse
Affiliation(s)
- Mark W. Pataky
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | | | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Matthew M. Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR
| | | | - A. Aneesh Kumar
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN
| | - Facundo M. Fernandez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | | |
Collapse
|
16
|
Maroto R, Graber TG, Romsdahl TB, Kudlicki A, Russell WK, Rasmussen BB. Metabolomic and Lipidomic Signature of Skeletal Muscle with Constitutively Active Mechanistic Target of Rapamycin Complex 1. J Nutr 2023; 153:3397-3405. [PMID: 37898335 PMCID: PMC10739780 DOI: 10.1016/j.tjnut.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Regulation of mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in aging and nutrition. For example, caloric restriction reduces mTORC1 signaling and extends lifespan, whereas nutrient abundance and obesity increase mTORC1 signaling and reduce lifespan. Skeletal muscle-specific knockout (KO) of DEP domain-containing 5 protein (DEPDC5) results in constitutively active mTORC1 signaling, muscle hypertrophy and an increase in mitochondrial respiratory capacity. The metabolic profile of skeletal muscle, in the setting of hyperactive mTORC1 signaling, is not well known. OBJECTIVES To determine the metabolomic and lipidomic signature in skeletal muscle from female and male wild-type (WT) and DEPDC5 KO mice. METHODS Tibialis anterior (TA) muscles from WT and transgenic (conditional skeletal muscle-specific DEPDC5 KO) were obtained from female and male adult mice. Polar metabolites and lipids were extracted using a Bligh-Dyer extraction from 5 samples per group and identified and quantified by LC-MS/MS. Resulting analyte peak areas were analyzed with t-test, analysis of variance, and Volcano plots for group comparisons (e.g., WT compared with KO) and multivariate statistical analysis for genotype and sex comparisons. RESULTS A total of 162 polar metabolites (organic acids, amino acids, and amines and acyl carnitines) and 1141 lipid metabolites were detected in TA samples by LC-MS/MS. Few polar metabolites showed significant differences in KO muscles compared with WT within the same sex group. P-aminobenzoic acid, β-alanine, and dopamine were significantly higher in KO male muscle whereas erythrose-4-phosphate and oxoglutaric acid were significantly reduced in KO females. The lipidomic profile of the KO groups revealed an increase of muscle phospholipids and reduced triacylglycerol and diacylglycerol compared with the WT groups. CONCLUSIONS Sex differences were detected in polar metabolome and lipids were dependent on genotype. The metabolomic profile of mice with hyperactive skeletal muscle mTORC1 is consistent with an upregulation of mitochondrial function and amino acid utilization for protein synthesis.
Collapse
Affiliation(s)
- Rosario Maroto
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| | - Ted G Graber
- Department of Physical Therapy, East Carolina University, Greenville, NC, United States
| | - Trevor B Romsdahl
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrzej Kudlicki
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - William K Russell
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Blake B Rasmussen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States; Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
17
|
Tan L, Martinez SA, Lorenzi PL, Karlstaedt A. Quantitative Analysis of Acetyl-CoA, Malonyl-CoA, and Succinyl-CoA in Myocytes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2567-2574. [PMID: 37812744 DOI: 10.1021/jasms.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Several analytical challenges make it difficult to accurately measure coenzyme A (CoA) metaboforms, including insufficient stability and a lack of available metabolite standards. Consequently, our understanding of CoA biology and the modulation of human diseases may be nascent. CoA's serve as lipid precursors, energy intermediates, and mediators of post-translational modifications of proteins. Here, we present a liquid chromatography-mass spectrometry (LC-MS) approach to measure malonyl-CoA, acetyl-CoA, and succinyl-CoA in complex biological samples. Additionally, we evaluated workflows to increase sample stability. We used reference standards to optimize CoA assay sensitivity and test CoA metabolite stability as a function of the reconstitution solvent. We show that using glass instead of plastic sample vials decreases CoA signal loss and improves the sample stability. We identify additives that improve CoA stability and facilitate accurate analysis of CoA species across large sample sets. We apply our optimized workflow to biological samples of skeletal muscle cells cultured under hypoxic and normoxia conditions. Together, our workflow improves the detection and identification of CoA species through targeted analysis in complex biological samples.
Collapse
Affiliation(s)
- Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sara A Martinez
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Los Angeles, California 90048, United States
| |
Collapse
|
18
|
Zhao Q, Hu Q, Meng S, Zhang Q, Wang T, Liu C, Liu D, Jiang Z, Hong X. Metabolic profiling of patients with different idiopathic inflammatory myopathy subtypes reveals potential biomarkers in plasma. Clin Exp Med 2023; 23:3417-3429. [PMID: 37103652 PMCID: PMC10618316 DOI: 10.1007/s10238-023-01073-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Idiopathic inflammatory myopathy (IIM) are heterogeneous autoimmune diseases that primarily affect the proximal muscles. IIM subtypes include dermatomyositis (DM), polymyositis (PM), and anti-synthetase syndrome (ASS). Metabolic disturbances may cause irreversible structural damage to muscle fibers in patients with IIM. However, the metabolite profile of patients with different IIM subtypes remains elusive. To investigate metabolic alterations and identify patients with different IIM subtypes, we comprehensively profiled plasma metabolomics of 46 DM, 13 PM, 12 ASS patients, and 30 healthy controls (HCs) using UHPLC-Q Exactive HF mass spectrometer. Multiple statistical analyses and random forest were used to discover differential metabolites and potential biomarkers. We found that tryptophan metabolism, phenylalanine and tyrosine metabolism, fatty acid biosynthesis, beta-oxidation of very long chain fatty acids, alpha-linolenic acid and linoleic acid metabolism, steroidogenesis, bile acid biosynthesis, purine metabolism, and caffeine metabolism are all enriched in the DM, PM, and ASS groups. We also found that different subtypes of IIM have their unique metabolic pathways. We constructed three models (five metabolites) to identify DM, PM, ASS from HC in the discovery and validation sets. Five to seven metabolites can distinguish DM from PM, DM from ASS, and PM from ASS. A panel of seven metabolites can identify anti-melanoma differentiation-associated gene 5 positive (MDA5 +) DM with high accuracy in the discovery and validation sets. Our results provide potential biomarkers for diagnosing different subtypes of IIM and a better understanding of the underlying mechanisms of IIM.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Qiu Hu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Shuhui Meng
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Qinguo Zhang
- The Office of Healthcare Committee of Shenzhen Municipal, Shenzhen, 518020, China
| | - Tingting Wang
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Cuilian Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
- Shenzhen People's Hospital, The Frist Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
- Shenzhen People's Hospital, The Frist Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| |
Collapse
|
19
|
Henne SK, Aldisi R, Sivalingam S, Hochfeld LM, Borisov O, Krawitz PM, Maj C, Nöthen MM, Heilmann-Heimbach S. Analysis of 72,469 UK Biobank exomes links rare variants to male-pattern hair loss. Nat Commun 2023; 14:5492. [PMID: 37737258 PMCID: PMC10517150 DOI: 10.1038/s41467-023-41186-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Male-pattern hair loss (MPHL) is common and highly heritable. While genome-wide association studies (GWAS) have generated insights into the contribution of common variants to MPHL etiology, the relevance of rare variants remains unclear. To determine the contribution of rare variants to MPHL etiology, we perform gene-based and single-variant analyses in exome-sequencing data from 72,469 male UK Biobank participants. While our population-level risk prediction suggests that rare variants make only a minor contribution to general MPHL risk, our rare variant collapsing tests identified a total of five significant gene associations. These findings provide additional evidence for previously implicated genes (EDA2R, WNT10A) and highlight novel risk genes at and beyond GWAS loci (HEPH, CEPT1, EIF3F). Furthermore, MPHL-associated genes are enriched for genes considered causal for monogenic trichoses. Together, our findings broaden the MPHL-associated allelic spectrum and provide insights into MPHL pathobiology and a shared basis with monogenic hair loss disorders.
Collapse
Affiliation(s)
- Sabrina Katrin Henne
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Rana Aldisi
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Department of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Lara Maleen Hochfeld
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Peter Michael Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Markus Maria Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
20
|
Gao X, Zhang M, Lin S, Lyu M, Luo X, You W, Ke C. Reproduction strategy of nocturnal marine molluscs: running for love. Integr Zool 2023; 18:906-923. [PMID: 36609825 DOI: 10.1111/1749-4877.12706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cost of reproduction is the core driver of life history evolution in animals. This paper demonstrates that the cumulative distance moved and the duration of movement of sexually immature abalones, Haliotis discus hannai, kept in various male and female groups, were significantly higher than those of sexually mature individuals, except when kept in mixed cultures of mature males and females. After mixed-culture, sexually mature males moved significantly further and for a longer duration than mature female abalones, and even more so than mature male abalones of any other group. Examination of the LC-MS metabolomics of mature males cultured with sexually mature females (AM) and those cultured with sexually immature females (JM) showed that cyclic adenosine monophosphate (cAMP) acted as a differential metabolic biomarker. After 24-h uninterrupted sampling, the concentration of 5-HT and the expression levels of the 5-HT2 and 5-HT6 receptors in AM were significantly higher than those in JM. After further injection of 5-HT2 and 5-HT6 receptor antagonists, the concentrations of cAMP and PKA rose again, but the cumulative movement duration and distance of male abalones decreased significantly, showing that 5-HT was involved in the regulation of movement behavior of male abalones through the 5-HT2 and 5-HT6 receptor-activated cAMP-PKA pathways. The results demonstrated a significant increase in the movement endurance of mature male abalones cultured with mature females, providing a theoretical basis for understanding the adaptive life history strategies of abalones and suggesting ways to protect diverse benthic resources for abalones during the reproductive stage.
Collapse
Affiliation(s)
- Xiaolong Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mo Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Shihui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
22
|
Grapentine S, Singh RK, Bakovic M. Skeletal Muscle Consequences of Phosphatidylethanolamine Synthesis Deficiency. FUNCTION 2023; 4:zqad020. [PMID: 37342414 PMCID: PMC10278983 DOI: 10.1093/function/zqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/22/2023] Open
Abstract
The maintenance of phospholipid homeostasis is increasingly being implicated in metabolic health. Phosphatidylethanolamine (PE) is the most abundant phospholipid on the inner leaflet of cellular membranes, and we have previously shown that mice with a heterozygous ablation of the PE synthesizing enzyme, Pcyt2 (Pcyt2+/-), develop obesity, insulin resistance, and NASH. Skeletal muscle is a major determinant of systemic energy metabolism, making it a key player in metabolic disease development. Both the total PE levels and the ratio of PE to other membrane lipids in skeletal muscle are implicated in insulin resistance; however, the underlying mechanisms and the role of Pcyt2 regulation in this association remain unclear. Here, we show how reduced phospholipid synthesis due to Pcyt2 deficiency causes Pcyt2+/- skeletal muscle dysfunction and metabolic abnormalities. Pcyt2+/- skeletal muscle exhibits damage and degeneration, with skeletal muscle cell vacuolization, disordered sarcomeres, mitochondria ultrastructure irregularities and paucity, inflammation, and fibrosis. There is intramuscular adipose tissue accumulation, and major disturbances in lipid metabolism with impaired FA mobilization and oxidation, elevated lipogenesis, and long-chain fatty acyl-CoA, diacylglycerol, and triacylglycerol accumulation. Pcyt2+/- skeletal muscle exhibits perturbed glucose metabolism with elevated glycogen content, impaired insulin signaling, and reduced glucose uptake. Together, this study lends insight into the critical role of PE homeostasis in skeletal muscle metabolism and health with broad implications on metabolic disease development.
Collapse
Affiliation(s)
- Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Rathnesh K Singh
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
23
|
Calvani R, Picca A, Rodriguez-Mañas L, Tosato M, Coelho-Júnior HJ, Biancolillo A, Laosa O, Gervasoni J, Primiano A, Santucci L, Giampaoli O, Bourdel-Marchasson I, Regueme SC, Sinclair AJ, Urbani A, Landi F, Gambassi G, Marini F, Marzetti E. Amino Acid Profiles in Older Adults with Frailty: Secondary Analysis from MetaboFrail and BIOSPHERE Studies. Metabolites 2023; 13:metabo13040542. [PMID: 37110200 PMCID: PMC10147014 DOI: 10.3390/metabo13040542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
An altered amino acid metabolism has been described in frail older adults which may contribute to muscle loss and functional decline associated with frailty. In the present investigation, we compared circulating amino acid profiles of older adults with physical frailty and sarcopenia (PF&S, n = 94), frail/pre-frail older adults with type 2 diabetes mellitus (F-T2DM, n = 66), and robust non-diabetic controls (n = 40). Partial least squares discriminant analysis (PLS-DA) models were built to define the amino acid signatures associated with the different frailty phenotypes. PLS-DA allowed correct classification of participants with 78.2 ± 1.9% accuracy. Older adults with F-T2DM showed an amino acid profile characterized by higher levels of 3-methylhistidine, alanine, arginine, ethanolamine, and glutamic acid. PF&S and control participants were discriminated based on serum concentrations of aminoadipic acid, aspartate, citrulline, cystine, taurine, and tryptophan. These findings suggest that different types of frailty may be characterized by distinct metabolic perturbations. Amino acid profiling may therefore serve as a valuable tool for frailty biomarker discovery.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Leocadio Rodriguez-Mañas
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red "Fragilidad y Envejecimiento Saludable" (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Olga Laosa
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
- Geriatric Research Group, Biomedical Research Foundation at Getafe University Hospital, 28905 Getafe, Spain
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Lavinia Santucci
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Ottavia Giampaoli
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Isabelle Bourdel-Marchasson
- Clinical Gerontology Department, Bordeaux University Hospital, 33000 Bordeaux, France
- CRMSB, CNRS UMR 5536, Université de Bordeaux, 33000 Bordeaux, France
| | - Sophie C Regueme
- CHU Bordeaux, Pole Gérontologie Clinique, 33000 Bordeaux, France
| | - Alan J Sinclair
- Foundation for Diabetes Research in Older People (fDROP), King's College, London WC2R 2LS, UK
| | - Andrea Urbani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Gambassi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
24
|
Li LJ, Wang X, Chong YS, Chan JKY, Tan KH, Eriksson JG, Huang Z, Rahman ML, Cui L, Zhang C. Exploring preconception signatures of metabolites in mothers with gestational diabetes mellitus using a non-targeted approach. BMC Med 2023; 21:99. [PMID: 36927416 PMCID: PMC10022116 DOI: 10.1186/s12916-023-02819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Metabolomic changes during pregnancy have been suggested to underlie the etiology of gestational diabetes mellitus (GDM). However, research on metabolites during preconception is lacking. Therefore, this study aimed to investigate distinctive metabolites during the preconception phase between GDM and non-GDM controls in a nested case-control study in Singapore. METHODS Within a Singapore preconception cohort, we included 33 Chinese pregnant women diagnosed with GDM according to the IADPSG criteria between 24 and 28 weeks of gestation. We then matched them with 33 non-GDM Chinese women by age and pre-pregnancy body mass index (ppBMI) within the same cohort. We performed a non-targeted metabolomics approach using fasting serum samples collected within 12 months prior to conception. We used generalized linear mixed model to identify metabolites associated with GDM at preconception after adjusting for maternal age and ppBMI. After annotation and multiple testing, we explored the additional predictive value of novel signatures of preconception metabolites in terms of GDM diagnosis. RESULTS A total of 57 metabolites were significantly associated with GDM, and eight phosphatidylethanolamines were annotated using HMDB. After multiple testing corrections and sensitivity analysis, phosphatidylethanolamines 36:4 (mean difference β: 0.07; 95% CI: 0.02, 0.11) and 38:6 (β: 0.06; 0.004, 0.11) remained significantly higher in GDM subjects, compared with non-GDM controls. With all preconception signals of phosphatidylethanolamines in addition to traditional risk factors (e.g., maternal age and ppBMI), the predictive value measured by area under the curve (AUC) increased from 0.620 to 0.843. CONCLUSIONS Our data identified distinctive signatures of GDM-associated preconception phosphatidylethanolamines, which is of potential value to understand the etiology of GDM as early as in the preconception phase. Future studies with larger sample sizes among alternative populations are warranted to validate the associations of these signatures of metabolites and their predictive value in GDM.
Collapse
Affiliation(s)
- Ling-Jun Li
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Ximeng Wang
- Global Health Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yap Seng Chong
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Duke-NUS Medical School, Singapore, Singapore
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Kok Hian Tan
- Duke-NUS Medical School, Singapore, Singapore
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Johan G Eriksson
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences (SICS), Singapore, Singapore
| | - Zhongwei Huang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency of Science, Technology and Research, Singapore, Singapore
| | - Mohammad L Rahman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Cuilin Zhang
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Dorighello G, McPhee M, Halliday K, Dellaire G, Ridgway N. Differential contributions of phosphotransferases CEPT1 and CHPT1 to phosphatidylcholine homeostasis and lipid droplet biogenesis. J Biol Chem 2023; 299:104578. [PMID: 36871755 PMCID: PMC10166788 DOI: 10.1016/j.jbc.2023.104578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The CDP-choline (Kennedy) pathway culminates with the synthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by choline/ethanolamine phosphotransferase 1 (CEPT1) in the endoplasmic reticulum (ER), and PC synthesis by choline phosphotransferase 1 (CHPT1) in the Golgi apparatus. Whether the PC and PE synthesized by CEPT1 and CHPT1 in the ER and Golgi apparatus has different cellular functions has not been formally addressed. Here we used CRISPR editing to generate CEPT1-and CHPT1-knockout (KO) U2OS cells to assess the differential contribution of the enzymes to feed-back regulation of nuclear CTP:phosphocholine cytidylyltransferase (CCT)α, the rate-limiting enzyme in PC synthesis, and lipid droplet (LD) biogenesis. We found that CEPT1-KO cells had a 50% and 80% reduction in PC and PE synthesis, respectively, while PC synthesis in CHPT1-KO cells was also reduced by 50%. CEPT1 knockout caused the post-transcriptional induction of CCTα protein expression as well as its dephosphorylation and constitutive localization on the inner nuclear membrane and nucleoplasmic reticulum. This activated CCTα phenotype was prevented by incubating CEPT1-KO cells with PC liposomes to restore end-product inhibition. Additionally, we determined that CEPT1 was in close proximity to cytoplasmic LDs, and CEPT1 knockout resulted in the accumulation of small cytoplasmic LDs, as well as increased nuclear LDs enriched in CCTα. In contrast, CHPT1 knockout had no effect on CCTα regulation or LD biogenesis. Thus, CEPT1 and CHPT1 contribute equally to PC synthesis; however, only PC synthesized by CEPT1 in the ER regulates CCTα and the biogenesis of cytoplasmic and nuclear LDs.
Collapse
Affiliation(s)
- Gabriel Dorighello
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Michael McPhee
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Katie Halliday
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - Graham Dellaire
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2; Depts of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2
| | - NealeD Ridgway
- Depts of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia Canada B3H4R2.
| |
Collapse
|
26
|
Guo X, Zhang L, Xiao K. Effect of Kisspeptin-Type Neuropeptide on Locomotor Behavior and Muscle Physiology in the Sea Cucumber Apostichopus japonicus. Animals (Basel) 2023; 13:ani13040705. [PMID: 36830492 PMCID: PMC9951865 DOI: 10.3390/ani13040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 02/19/2023] Open
Abstract
Kisspeptins are neuropeptides encoded by the kiss1 gene, and little is known about them outside the vertebrate lineage. Two kisspeptin-type neuropeptides (KPs) have been discovered in Apostichopus japonicus (AjK1 and AjK2), an edible sea cucumber, and have been linked to reproductive and metabolic regulation. In this study, we evaluated how KPs affected locomotor behavior in one control group and two treatment groups (AjK1 and AjK2). We discovered that AjK1 had a significant dose effect, primarily by shortening the stride length and duration of movement to reduce the sea cucumber movement distance, whereas AjK2 had little inhibitory effect at the same dose. The levels of phosphatidylethanolamine (PE), phosphatidylcholine (PC), uridine, glycine, and L-serine in the longitudinal muscle of A. japonicus treated with AjK1 differed significantly from those of the control, which may explain the observed changes in locomotor behavior. Treatment with AjK2 induced changes in aspartate levels. Our results imply that AjK1 is more likely than AjK2 to have a role in the regulation of A. japonicus locomotion.
Collapse
Affiliation(s)
- Xueying Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
27
|
Sánchez-Vinces S, Garcia PHD, Silva AAR, Fernandes AMADP, Barreto JA, Duarte GHB, Antonio MA, Birbrair A, Porcari AM, Carvalho PDO. Mass-Spectrometry-Based Lipidomics Discriminates Specific Changes in Lipid Classes in Healthy and Dyslipidemic Adults. Metabolites 2023; 13:metabo13020222. [PMID: 36837840 PMCID: PMC9964724 DOI: 10.3390/metabo13020222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Triacylglycerols (TAGs) and cholesterol lipoprotein levels are widely used to predict cardiovascular risk and metabolic disorders. The aim of this study is to determine how the comprehensive lipidome (individual molecular lipid species) determined by mass spectrometry is correlated to the serum whole-lipidic profile of adults with different lipidemic conditions. The study included samples from 128 adults of both sexes, and they were separated into four groups according to their lipid profile: Group I-normolipidemic (TAG < 150 mg/dL, LDL-C < 160 mg/dL and HDL-c > 40 mg/dL); Group II-isolated hypertriglyceridemia (TAG ≥ 150 mg/dL); Group III-isolated hypercholesterolemia (LDL-C ≥ 160 mg/dL) and Group IV-mixed dyslipidemia. An untargeted mass spectrometry (MS)-based approach was applied to determine the lipidomic signature of 32 healthy and 96 dyslipidemic adults. Limma linear regression was used to predict the correlation of serum TAGs and cholesterol lipoprotein levels with the abundance of the identified MS-annotated lipids found in the subgroups of subjects. Serum TAG levels of dyslipidemic adults have a positive correlation with some of the MS-annotated specific TAGs and ceramides (Cer) and a negative correlation with sphingomyelins (SMs). High-density lipoprotein-cholesterol (HDL-C) levels are positively correlated with some groups of glycerophosphocholine, while low-density lipoprotein-cholesterol (LDL-C) has a positive correlation with SMs.
Collapse
Affiliation(s)
- Salvador Sánchez-Vinces
- Health Sciences Postgraduate Program, São Francisco University–USF, Bragança Paulista 12900-000, SP, Brazil
| | - Pedro Henrique Dias Garcia
- Health Sciences Postgraduate Program, São Francisco University–USF, Bragança Paulista 12900-000, SP, Brazil
| | - Alex Ap. Rosini Silva
- Health Sciences Postgraduate Program, São Francisco University–USF, Bragança Paulista 12900-000, SP, Brazil
| | | | - Joyce Aparecida Barreto
- Integrated Unit of Pharmacology and Gastroenterology (UNIFAG), São Francisco University–USF, Bragança Paulista 12900-000, SP, Brazil
| | | | - Marcia Aparecida Antonio
- Integrated Unit of Pharmacology and Gastroenterology (UNIFAG), São Francisco University–USF, Bragança Paulista 12900-000, SP, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53715-1149, USA
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Andreia M. Porcari
- Health Sciences Postgraduate Program, São Francisco University–USF, Bragança Paulista 12900-000, SP, Brazil
| | - Patricia de Oliveira Carvalho
- Health Sciences Postgraduate Program, São Francisco University–USF, Bragança Paulista 12900-000, SP, Brazil
- Correspondence: ; Tel.: +55-11-24548298
| |
Collapse
|
28
|
Miranda ER, Shahtout JL, Funai K. Chicken or Egg? Mitochondrial Phospholipids and Oxidative Stress in Disuse-Induced Skeletal Muscle Atrophy. Antioxid Redox Signal 2023; 38:338-351. [PMID: 36301935 PMCID: PMC9986029 DOI: 10.1089/ars.2022.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
Abstract
Significance: Accumulation of reactive oxygen species (ROS) is known to promote cellular damage in multiple cell types. In skeletal muscle, ROS has been implicated in disuse-induced muscle atrophy. However, the molecular origin and mechanism of how disuse promotes ROS and muscle dysfunction remains unclear. Recent Advances: Recently, we implicated membrane lipids of mitochondria to be a potential source of ROS to promote muscle atrophy. Critical Issues: In this review, we discuss evidence that changes in mitochondrial lipids represent a physiologically relevant process by which disuse promotes mitochondrial electron leak and oxidative stress. Future Directions: We further discuss lipid hydroperoxides as a potential downstream mediator of ROS to induce muscle atrophy. Antioxid. Redox Signal. 38, 338-351.
Collapse
Affiliation(s)
- Edwin R. Miranda
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Justin L. Shahtout
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
29
|
Hamstra SI, Roy BD, Tiidus P, MacNeil AJ, Klentrou P, MacPherson RE, Fajardo VA. Beyond its Psychiatric Use: The Benefits of Low-dose Lithium Supplementation. Curr Neuropharmacol 2023; 21:891-910. [PMID: 35236261 PMCID: PMC10227915 DOI: 10.2174/1570159x20666220302151224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is most well-known for its mood-stabilizing effects in the treatment of bipolar disorder. Due to its narrow therapeutic window (0.5-1.2 mM serum concentration), there is a stigma associated with lithium treatment and the adverse effects that can occur at therapeutic doses. However, several studies have indicated that doses of lithium under the predetermined therapeutic dose used in bipolar disorder treatment may have beneficial effects not only in the brain but across the body. Currently, literature shows that low-dose lithium (≤0.5 mM) may be beneficial for cardiovascular, musculoskeletal, metabolic, and cognitive function, as well as inflammatory and antioxidant processes of the aging body. There is also some evidence of low-dose lithium exerting a similar and sometimes synergistic effect on these systems. This review summarizes these findings with a focus on low-dose lithium's potential benefits on the aging process and age-related diseases of these systems, such as cardiovascular disease, osteoporosis, sarcopenia, obesity and type 2 diabetes, Alzheimer's disease, and the chronic low-grade inflammatory state known as inflammaging. Although lithium's actions have been widely studied in the brain, the study of the potential benefits of lithium, particularly at a low dose, is still relatively novel. Therefore, this review aims to provide possible mechanistic insights for future research in this field.
Collapse
Affiliation(s)
- Sophie I. Hamstra
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Brian D. Roy
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Peter Tiidus
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Adam J. MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Rebecca E.K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, Ontario, Canada
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
- Centre for Neurosciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
30
|
Liang X, Tang X, Xi B, Qu P, Ren Y, Hao G. Abdominal obesity-related lipid metabolites may mediate the association between obesity and glucose dysregulation. Pediatr Res 2023; 93:183-188. [PMID: 35437306 DOI: 10.1038/s41390-022-02074-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Children with obesity is associated with a higher risk of cardiovascular disease (CV) risk in adulthood. This study is to explore the obesity-related lipid metabolites and identify the associations of lipid metabolites with selected CV risk in children and adolescents. METHODS A case-control study was designed to include a total of 197 children (aged 9-13 years, male 56.34%, 99 children in the obesity group). The lipidomics profiling was measured by ultra-high-performance liquid tandem chromatography quadrupole time-of-flight mass spectrometry. RESULTS Four FDR-significant abdominal obesity-related lipid metabolites were identified. Compared to the lean group, decreased phosphatidylcholine O-21:2 level (q = 0.010) and sphingomyelins d21:1 (q = 0.029) were found and two lipid metabolites levels were higher in the obese group, including phosphatidylglycerol 43:6 and one did not match with any candidate compounds in databases. After adjusting for covariates, PC3 (O-21:2) and SM (d21:1) were significantly associated with blood glucose. Mediation analysis showed that all three lipid metabolites may mediate the association between abdominal obesity and glucose regulation. CONCLUSIONS This study identified several novel central obesity-related lipid metabolites, and we found that PC3 (O-21:2) and SM (d21:1) were significantly associated with blood glucose, and all these lipid metabolites can mediate the association between abdominal obesity and glucose dysregulation. IMPACT Serum lipidomic profiles in children with abdominal obesity and their associations with selected CV risk factors were examined. Our study identified 4 lipid metabolites associated with abdominal obesity, including PC3 (O-21:2), SM (d21:1), PG (43:6), and one did not match with any candidate compounds in the databases. PC3 (O-21:2) and SM (d21:1) were significantly associated with blood glucose. Mediation analysis showed that all three lipid metabolites [PC3 (O-21:2), SM (d21:1), PG (43:6)] may mediate the association between abdominal obesity and abnormal glucose regulation. This study identified several novel obesity-related lipid metabolites.
Collapse
Affiliation(s)
- Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| | - Xian Tang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ping Qu
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yanling Ren
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guang Hao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
31
|
Reed D, Kumar D, Kumar S, Raina K, Punia R, Kant R, Saba L, Cruickshank-Quinn C, Tabakoff B, Reisdorph N, Edwards MG, Wempe M, Agarwal C, Agarwal R. Transcriptome and metabolome changes induced by bitter melon ( Momordica charantia)- intake in a high-fat diet induced obesity model. J Tradit Complement Med 2022; 12:287-301. [PMID: 35493312 PMCID: PMC9039170 DOI: 10.1016/j.jtcme.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background and aim Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon (Momordica charantia L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors. Experimental procedure Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat]. Changes in a) serum levels of biochemical parameters, b) gene expression in the hepatic transcriptome (microarray analysis using Affymetrix Mouse Exon 1.0 ST arrays), and c) metabolite abundance levels in lipid-phase plasma [liquid chromatography mass spectrometry (LC-MS)-based metabolomics] after BMJ intervention were assessed. Results and conclusion BMJ-mediated changes showed a positive trend towards enhanced glucose homeostasis, vitamin D metabolism and suppression of glycerophospholipid metabolism. In the liver, nuclear peroxisome proliferator-activated receptor (PPAR) and circadian rhythm signaling, as well as bile acid biosynthesis and glycogen metabolism targets were modulated by BMJ (p < 0.05). Thus, our in-depth transcriptomics and metabolomics analysis suggests that BMJ-intake lowers susceptibility to the onset of high-fat diet associated MetS risk factors partly through modulation of PPAR signaling and its downstream targets in circadian rhythm processes to prevent excessive lipogenesis, maintain glucose homeostasis and modify immune responses signaling.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- BMJ, bitter melon juice
- Bitter melon
- DIO, diet-induced obese
- Diet intervention
- HDL, high density lipoprotein (cholesterol)
- HFD, high fat diet
- HMDB, Human Metabolome Database
- High fat diet-induced obesity
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LC-MS, liquid-chromatography mass spectrometry
- LDL, low density lipoprotein (cholesterol)
- MetS, Metabolic syndrome
- Metabolic syndrome
- Momordica charantia
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PPARs, Peroxisome proliferator-activated receptors
Collapse
Affiliation(s)
- Dominique Reed
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sushil Kumar
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Reenu Punia
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charmion Cruickshank-Quinn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Michael Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
32
|
Salamone IM, Quattrocelli M, Barefield DY, Page PG, Tahtah I, Hadhazy M, Tomar G, McNally EM. Intermittent glucocorticoid treatment enhances skeletal muscle performance through sexually dimorphic mechanisms. J Clin Invest 2022; 132:149828. [PMID: 35143417 PMCID: PMC8920338 DOI: 10.1172/jci149828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid steroids are commonly prescribed for many inflammatory conditions, but chronic daily use produces adverse effects, including muscle wasting and weakness. In contrast, shorter glucocorticoid pulses may improve athletic performance, although the mechanisms remain unclear. Muscle is sexually dimorphic and comparatively little is known about how male and female muscles respond to glucocorticoids. We investigated the impact of once-weekly glucocorticoid exposure on skeletal muscle performance comparing male and female mice. One month of once-weekly glucocorticoid dosing improved muscle specific force in both males and females. Transcriptomic profiling of isolated myofibers identified a striking sexually dimorphic response to weekly glucocorticoids. Male myofibers had increased expression of genes in the IGF1/PI3K pathway and calcium handling, while female myofibers had profound upregulation of lipid metabolism genes. Muscles from weekly prednisone–treated males had improved calcium handling, while comparably treated female muscles had reduced intramuscular triglycerides. Consistent with altered lipid metabolism, weekly prednisone–treated female mice had greater endurance relative to controls. Using chromatin immunoprecipitation, we defined a sexually dimorphic chromatin landscape after weekly prednisone. These results demonstrate that weekly glucocorticoid exposure elicits distinct pathways in males versus females, resulting in enhanced performance.
Collapse
Affiliation(s)
- Isabella M Salamone
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Mattia Quattrocelli
- Department of Pediatrics, Cinicinnati Children's Hospital, Cincinnati, United States of America
| | - David Y Barefield
- Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, United States of America
| | - Patrick G Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Ibrahim Tahtah
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Garima Tomar
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| |
Collapse
|
33
|
Kunz HE, Port JD, Kaufman KR, Jatoi A, Hart CR, Gries KJ, Lanza IR, Kumar R. Skeletal muscle mitochondrial dysfunction and muscle and whole body functional deficits in cancer patients with weight loss. J Appl Physiol (1985) 2022; 132:388-401. [PMID: 34941442 PMCID: PMC8791841 DOI: 10.1152/japplphysiol.00746.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reductions in skeletal muscle mass and function are often reported in patients with cancer-associated weight loss and are associated with reduced quality of life, impaired treatment tolerance, and increased mortality. Although cellular changes, including altered mitochondrial function, have been reported in animals, such changes have been incompletely characterized in humans with cancer. Whole body and skeletal muscle physical function, skeletal muscle mitochondrial function, and whole body protein turnover were assessed in eight patients with cancer-associated weight loss (10.1 ± 4.2% body weight over 6-12 mo) and 19 age-, sex-, and body mass index (BMI)-matched healthy controls to characterize skeletal muscle changes at the whole body, muscle, and cellular level. Potential pathways involved in cancer-induced alterations in metabolism and mitochondrial function were explored by interrogating skeletal muscle and plasma metabolomes. Despite similar lean mass compared with control participants, patients with cancer exhibited reduced habitual physical activity (57% fewer daily steps), cardiorespiratory fitness [22% lower V̇o2peak (mL/kg/min)] and leg strength (35% lower isokinetic knee extensor strength), and greater leg neuromuscular fatigue (36% greater decline in knee extensor torque). Concomitant with these functional declines, patients with cancer had lower mitochondrial oxidative capacity [25% lower State 3 O2 flux (pmol/s/mg tissue)] and ATP production [23% lower State 3 ATP production (pmol/s/mg tissue)] and alterations in phospholipid metabolite profiles indicative of mitochondrial abnormalities. Whole body protein turnover was unchanged. These findings demonstrate mitochondrial abnormalities concomitant with whole body and skeletal muscle functional derangements associated with human cancer, supporting future work studying the role of mitochondria in the muscle deficits associated with cancer.NEW & NOTEWORTHY To our knowledge, this is the first study to suggest that skeletal muscle mitochondrial deficits are associated with cancer-associated weight loss in humans. Mitochondrial deficits were concurrent with reductions in whole body and skeletal muscle functional capacity. Whether mitochondrial deficits are causal or secondary to cancer-associated weight loss and functional deficits remains to be determined, but this study supports further exploration of mitochondria as a driver of cancer-associated losses in muscle mass and function.
Collapse
Affiliation(s)
- Hawley E. Kunz
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - John D. Port
- 2Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Kenton R. Kaufman
- 3Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Aminah Jatoi
- 4Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Corey R. Hart
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin J. Gries
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ian R. Lanza
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Kumar
- 5Nephrology and Hypertension Research Unit, Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota,6Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Frisby DM, Tu H, Qian J, Zhang D, Barksdale AN, Wadman MC, Cooper JS, Li YL. Hyperbaric oxygen therapy does not alleviate tourniquet-induced acute ischemia-reperfusion injury in mouse skeletal muscles. Injury 2022; 53:368-375. [PMID: 34876256 DOI: 10.1016/j.injury.2021.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/20/2021] [Indexed: 02/02/2023]
Abstract
During tourniquet application, blood flow is restricted to a limb to stop excessive limb hemorrhage in a trauma setting and to create a bloodless operating field in the surgical setting. During tourniquet-related ischemia, aerobic respiration stops, and ATP is depleted, and during subsequent reperfusion, there is an increase in reactive oxygen species (ROS) production and other endogenous substances, which leads to acute ischemia-reperfusion (IR) injuries, including tissue necrosis and skeletal muscle contractile dysfunction. Hyperbaric oxygen (HBO) therapy can increase the arterial oxygen tension in the tissues of patients with general hypoxia/anoxia, including carbon monoxide poisoning, circulatory arrest, and cerebral and myocardial ischemia. Here, we studied the protective effects of HBO pretreatment with 100% oxygen at 2.5 ATA against tourniquet/IR injury in mice. After one hour of HBO therapy with 100% oxygen at 2.5 ATA was administered to C57/BL6 mice, a rubber band was placed at the hip joint of the unilateral hindlimb to induce 3 h of ischemia and then released for 48 h of reperfusion. We analyzed gastrocnemius muscle morphology and contractile function and measured the levels of ATP and ROS accumulation in the muscles. HBO pretreatment did not improve tourniquet/IR-injured gastrocnemius muscle morphology and muscle contraction. Tourniquet/IR mice with HBO pretreatment showed no increase in ATP levels in IR tissues, but they did have a decreased amount of ROS accumulation in the muscles, compared to IR mice with no HBO pretreatment. These data suggest that one hour of HBO pretreatment with 100% oxygen at 2.5 ATA increases the antioxidant response to lower ROS accumulation but does not increase ATP levels in IR muscles and improve tourniquet/IR-injured muscle morphology and contractile function.
Collapse
Affiliation(s)
- Devin M Frisby
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Junliang Qian
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aaron N Barksdale
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael C Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeffrey S Cooper
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
35
|
Supplementation of Enriched Polyunsaturated Fatty Acids and CLA Cheese on High Fat Diet: Effects on Lipid Metabolism and Fat Profile. Foods 2022; 11:foods11030398. [PMID: 35159548 PMCID: PMC8834222 DOI: 10.3390/foods11030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies have demonstrated a positive relationship between dietary fat intake and the onset of several metabolic diseases. This association is particularly evident in a diet rich in saturated fatty acids, typical of animal foods, such as dairy products. However, these foods are the main source of fatty acids with a proven nutraceutical effect, such as the ω-3 fatty acid α-linolenic acid (ALA) and the conjugated linoleic acid (CLA), which have demonstrated important roles in the prevention of various diseases. In the present study, the effect of a supplementation with cheese enriched with ω-3 fatty acids and CLA on the metabolism and lipid profiles of C57bl/6 mice was evaluated. In particular, the analyses were conducted on different tissues, such as liver, muscle, adipose tissue and brain, known for their susceptibility to the effects of dietary fats. Supplementing cheese enriched in CLA and ω-3 fats reduced the level of saturated fat and increased the content of CLA and ALA in all tissues considered, except for the brain. Furthermore, the consumption of this cheese resulted in a tissue-specific response in the expression levels of genes involved in lipid and mitochondrial metabolism. As regards genes involved in the inflammatory response, the consumption of enriched cheese resulted in a reduction in the expression of inflammatory genes in all tissues analyzed. Considering the effects that chronic inflammation associated with a high-calorie and high-fat diet (meta-inflammation) or aging (inflammaging) has on the onset of chronic degenerative diseases, these data could be of great interest as they indicate the feasibility of modulating inflammation (thus avoiding/delaying these pathologies) with a nutritional and non-pharmacological intervention.
Collapse
|
36
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
37
|
Miao G, Zhang Y, Huo Z, Zeng W, Zhu J, Umans JG, Wohlgemuth G, Pedrosa D, DeFelice B, Cole SA, Fretts AM, Lee ET, Howard BV, Fiehn O, Zhao J. Longitudinal Plasma Lipidome and Risk of Type 2 Diabetes in a Large Sample of American Indians With Normal Fasting Glucose: The Strong Heart Family Study. Diabetes Care 2021; 44:2664-2672. [PMID: 34702783 PMCID: PMC8669540 DOI: 10.2337/dc21-0451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Comprehensive assessment of alterations in lipid species preceding type 2 diabetes (T2D) is largely unknown. We aimed to identify plasma molecular lipids associated with risk of T2D in American Indians. RESEARCH DESIGN AND METHODS Using untargeted liquid chromatography-mass spectrometry, we repeatedly measured 3,907 fasting plasma samples from 1,958 participants who attended two examinations (∼5.5 years apart) and were followed up to 16 years in the Strong Heart Family Study. Mixed-effects logistic regression was used to identify lipids associated with risk of T2D, adjusting for traditional risk factors. Repeated measurement analysis was performed to examine the association between change in lipidome and change in continuous measures of T2D, adjusting for baseline lipids. Multiple testing was controlled by false discovery rate at 0.05. RESULTS Higher baseline level of 33 lipid species, including triacylglycerols, diacylglycerols, phosphoethanolamines, and phosphocholines, was significantly associated with increased risk of T2D (odds ratio [OR] per SD increase in log2-transformed baseline lipids 1.50-2.85) at 5-year follow-up. Of these, 21 lipids were also associated with risk of T2D at 16-year follow-up. Aberrant lipid profiles were also observed in prediabetes (OR per SD increase in log2-transformed baseline lipids 1.30-2.19 for risk lipids and 0.70-0.78 for protective lipids). Longitudinal changes in 568 lipids were significantly associated with changes in continuous measures of T2D. Multivariate analysis identified distinct lipidomic signatures differentiating high- from low-risk groups. CONCLUSIONS Lipid dysregulation occurs many years preceding T2D, and novel molecular lipids (both baseline level and longitudinal change over time) are significantly associated with risk of T2D beyond traditional risk factors. Our findings shed light on the mechanisms linking dyslipidemia to T2D and may yield novel therapeutic targets for early intervention tailored to American Indians.
Collapse
Affiliation(s)
- Guanhong Miao
- Department of Epidemiology, Colleges of Public Health and Health Professions and Medicine, University of Florida, Gainesville, FL
| | - Ying Zhang
- West Coast Metabolomics Center, University of California Davis, Davis, CA
| | - Zhiguang Huo
- Department of Biostatistics, Colleges of Public Health and Health Professions and Medicine, University of Florida, Gainesville, FL
| | - Wenjie Zeng
- Department of Epidemiology, Colleges of Public Health and Health Professions and Medicine, University of Florida, Gainesville, FL
| | - Jianhui Zhu
- MedStar Health Research Institute, Hyattsville, MD
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | - Gert Wohlgemuth
- West Coast Metabolomics Center, University of California Davis, Davis, CA
| | - Diego Pedrosa
- West Coast Metabolomics Center, University of California Davis, Davis, CA
| | - Brian DeFelice
- West Coast Metabolomics Center, University of California Davis, Davis, CA
| | | | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Elisa T Lee
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA
| | - Jinying Zhao
- Department of Epidemiology, Colleges of Public Health and Health Professions and Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
38
|
Eshima H. Influence of Obesity and Type 2 Diabetes on Calcium Handling by Skeletal Muscle: Spotlight on the Sarcoplasmic Reticulum and Mitochondria. Front Physiol 2021; 12:758316. [PMID: 34795598 PMCID: PMC8592904 DOI: 10.3389/fphys.2021.758316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity and diabetes have been shown to interfere with energy metabolism and cause peripheral insulin resistance in skeletal muscle. However, recent studies have focused on the effect metabolic insult has on the loss of muscle size, strength, and physical function. Contractile dysfunction has been linked to impaired intracellular Ca2+ concentration ([Ca2+]i) regulation. In skeletal muscle, [Ca2+]i homeostasis is highly regulated by Ca2+ transport across the sarcolemma/plasma membrane, the golgi apparatus, sarcoplasmic reticulum (SR), and mitochondria. Particularly, the SR and or mitochondria play an important role in the fine-tuning of this metabolic process. Recent studies showed that obesity and insulin resistance are associated with interactions between the SR and mitochondrial networks (the dynamic tubular reticulum formed by mitochondria), suggesting that metabolic disorders alter Ca2+ handling by these organelles. These interactions are facilitated by specific membrane proteins, including ion channels. This review considers the impact of metabolic disorders, such as obesity and type 2 diabetes, on the regulation of [Ca2+]i in skeletal muscle. It also discusses the mechanisms by which this occurs, focusing chiefly on the SR and mitochondria networks. A deeper understanding of the effect of metabolic disorders on calcium handling might be useful for therapeutic strategies.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of International Tourism, Nagasaki International University, Nagasaki, Japan
| |
Collapse
|
39
|
Zhang Z, Lai M, Piro AL, Alexeeff SE, Allalou A, Röst HL, Dai FF, Wheeler MB, Gunderson EP. Intensive lactation among women with recent gestational diabetes significantly alters the early postpartum circulating lipid profile: the SWIFT study. BMC Med 2021; 19:241. [PMID: 34620173 PMCID: PMC8499506 DOI: 10.1186/s12916-021-02095-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk of developing type 2 diabetes (T2D). It is estimated that 20-50% of women with GDM history will progress to T2D within 10 years after delivery. Intensive lactation could be negatively associated with this risk, but the mechanisms behind a protective effect remain unknown. METHODS In this study, we utilized a prospective GDM cohort of 1010 women without T2D at 6-9 weeks postpartum (study baseline) and tested for T2D onset up to 8 years post-baseline (n=980). Targeted metabolic profiling was performed on fasting plasma samples collected at both baseline and follow-up (1-2 years post-baseline) during research exams in a subset of 350 women (216 intensive breastfeeding, IBF vs. 134 intensive formula feeding or mixed feeding, IFF/Mixed). The relationship between lactation intensity and circulating metabolites at both baseline and follow-up were evaluated to discover underlying metabolic responses of lactation and to explore the link between these metabolites and T2D risk. RESULTS We observed that lactation intensity was strongly associated with decreased glycerolipids (TAGs/DAGs) and increased phospholipids/sphingolipids at baseline. This lipid profile suggested decreased lipogenesis caused by a shift away from the glycerolipid metabolism pathway towards the phospholipid/sphingolipid metabolism pathway as a component of the mechanism underlying the benefits of lactation. Longitudinal analysis demonstrated that this favorable lipid profile was transient and diminished at 1-2 years postpartum, coinciding with the cessation of lactation. Importantly, when stratifying these 350 women by future T2D status during the follow-up (171 future T2D vs. 179 no T2D), we discovered that lactation induced robust lipid changes only in women who did not develop incident T2D. Subsequently, we identified a cluster of metabolites that strongly associated with future T2D risk from which we developed a predictive metabolic signature with a discriminating power (AUC) of 0.78, superior to common clinical variables (i.e., fasting glucose, AUC 0.56 or 2-h glucose, AUC 0.62). CONCLUSIONS In this study, we show that intensive lactation significantly alters the circulating lipid profile at early postpartum and that women who do not respond metabolically to lactation are more likely to develop T2D. We also discovered a 10-analyte metabolic signature capable of predicting future onset of T2D in IBF women. Our findings provide novel insight into how lactation affects maternal metabolism and its link to future diabetes onset. TRIAL REGISTRATION ClinicalTrials.gov NCT01967030 .
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, Hangzhou, China
| | - Mi Lai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony L Piro
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Amina Allalou
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hannes L Röst
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Feihan F Dai
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Michael B Wheeler
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Metabolism Research Group, Division of Advanced Diagnostics, Toronto General Research Institute, Toronto, Ontario, Canada.
| | - Erica P Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA.
- Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, USA.
| |
Collapse
|
40
|
Lee KS, Rim JH, Lee YH, Lee SG, Lim JB, Kim JH. Association of circulating metabolites with incident type 2 diabetes in an obese population from a national cohort. Diabetes Res Clin Pract 2021; 180:109077. [PMID: 34599972 DOI: 10.1016/j.diabres.2021.109077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
AIMS Obesity is the most common risk factor for type 2 diabetes. However, not all obese individuals develop diabetes. In the era of precision medicine, metabolomics may reveal the fundamental metabolic status of an individual. Our aim was to assess the association of metabolites with incident type 2 diabetes in obese individuals using Korean Genome and Epidemiology Cohort Study. METHODS Using 12 years of metabolomic data from 2,580 individuals, we performed a metabolomic study to define metabolically healthy obesity in an obese population (n = 704) with incident type 2 diabetes. Cox proportional hazards regression model and survival analysis were performed adjusted for the traditional risk factors of type 2 diabetes. RESULTS Our study revealed that spermine, acyl-alkyl phosphatidylcholines (C34:3, C36:3, C42:1), hydroxy sphingomyelin (C22:2, C14:1), and sphingomyelin (C16:0) were associated with incident type 2 diabetes in obese individuals after the adjustment for risk factors and correction of multiple comparisons by Bonferroni method. Five metabolites (except hydroxy sphingomyelin C14:1 and sphingomyelin C16:0) were also significantly associated with incident type 2 diabetes in lean individuals. CONCLUSIONS This study highlights the need for defining metabolically healthy obesity based on serum metabolites and elucidates potential biomarkers for type 2 diabetes in an obese population.
Collapse
Affiliation(s)
- Kwang Seob Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jong-Baeck Lim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Ho Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
Ding K, Zhang L, Fan X, Zhuo P, Feng Q, Zhang S, Guo X, Liu X. Influence of an L-type SALMFamide neuropeptide on locomotory performance and muscle physiology in the sea cucumber Apostichopus japonicus. J Exp Biol 2021; 224:272337. [PMID: 34477872 DOI: 10.1242/jeb.242566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
Neuropeptides in the SALMFamide family serve as muscle relaxants in echinoderms and may affect locomotion, as the motor behavior in sea cucumbers involves alternating contraction and extension of the body wall, which is under the control of longitudinal muscle. We evaluated the effect of an L-type SALMFamide neuropeptide (LSA) on locomotory performance of Apostichopus japonicus. We also investigated the metabolites of longitudinal muscle tissue using ultra performance liquid chromatography and quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to assess the potential physiological mechanisms underlying the effect of LSA. The hourly distance, cumulative duration and number of steps moved significantly increased in sea cucumbers in the fourth hour after injection with LSA. Also, the treatment enhanced the mean and maximum velocity by 9.8% and 17.8%, respectively, and increased the average stride by 12.4%. Levels of 27 metabolites in longitudinal muscle changed after LSA administration, and the increased concentration of pantothenic acid, arachidonic acid and lysophosphatidylethanolamine, and the altered phosphatidylethanolamine/phosphatidylcholine ratio are potential physiological mechanisms that could explain the observed effect of LSA on locomotor behavior in A. japonicus.
Collapse
Affiliation(s)
- Kui Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China.,Shandong Province Key Laboratory of Experimental Marine Biology, 266071 Qingdao, China
| | - Xinhao Fan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Pengji Zhuo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qiming Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shuangyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xueying Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Xiang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 266237 Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China.,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China
| |
Collapse
|
42
|
Ferrara PJ, Verkerke ARP, Maschek JA, Shahtout JL, Siripoksup P, Eshima H, Johnson JM, Petrocelli JJ, Mahmassani ZS, Green TD, McClung JM, Cox JE, Drummond MJ, Funai K. Low lysophosphatidylcholine induces skeletal muscle myopathy that is aggravated by high-fat diet feeding. FASEB J 2021; 35:e21867. [PMID: 34499764 DOI: 10.1096/fj.202101104r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Obesity alters skeletal muscle lipidome and promotes myopathy, but it is unknown whether aberrant muscle lipidome contributes to the reduction in skeletal muscle contractile force-generating capacity. Comprehensive lipidomic analyses of mouse skeletal muscle revealed a very strong positive correlation between the abundance of lysophosphatidylcholine (lyso-PC), a class of lipids that is known to be downregulated with obesity, with maximal tetanic force production. The level of lyso-PC is regulated primarily by lyso-PC acyltransferase 3 (LPCAT3), which acylates lyso-PC to form phosphatidylcholine. Tamoxifen-inducible skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) was sufficient to reduce muscle lyso-PC content in both standard chow diet- and high-fat diet (HFD)-fed conditions. Strikingly, the assessment of skeletal muscle force-generating capacity ex vivo revealed that muscles from LPCAT3-MKI mice were weaker regardless of diet. Defects in force production were more apparent in HFD-fed condition, where tetanic force production was 40% lower in muscles from LPCAT3-MKI compared to that of control mice. These observations were partly explained by reductions in the cross-sectional area in type IIa and IIx fibers, and signs of muscle edema in the absence of fibrosis. Future studies will pursue the mechanism by which LPCAT3 may alter protein turnover to promote myopathy.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Anthony R P Verkerke
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - J Alan Maschek
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, Utah, USA
| | - Justin L Shahtout
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Hiroaki Eshima
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of International Tourism, Nagasaki International University, Sasebo, Japan
| | - Jordan M Johnson
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Jonathan J Petrocelli
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Ziad S Mahmassani
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Thomas D Green
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Joseph M McClung
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - James E Cox
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, Utah, USA.,Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Micah J Drummond
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
43
|
Cogswell D, Bisesi P, Markwald RR, Cruickshank-Quinn C, Quinn K, McHill A, Melanson EL, Reisdorph N, Wright KP, Depner CM. Identification of a Preliminary Plasma Metabolome-based Biomarker for Circadian Phase in Humans. J Biol Rhythms 2021; 36:369-383. [PMID: 34182829 PMCID: PMC9134127 DOI: 10.1177/07487304211025402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Measuring individual circadian phase is important to diagnose and treat circadian rhythm sleep-wake disorders and circadian misalignment, inform chronotherapy, and advance circadian science. Initial findings using blood transcriptomics to predict the circadian phase marker dim-light melatonin onset (DLMO) show promise. Alternatively, there are limited attempts using metabolomics to predict DLMO and no known omics-based biomarkers predict dim-light melatonin offset (DLMOff). We analyzed the human plasma metabolome during adequate and insufficient sleep to predict DLMO and DLMOff using one blood sample. Sixteen (8 male/8 female) healthy participants aged 22.4 ± 4.8 years (mean ± SD) completed an in-laboratory study with 3 baseline days (9 h sleep opportunity/night), followed by a randomized cross-over protocol with 9-h adequate sleep and 5-h insufficient sleep conditions, each lasting 5 days. Blood was collected hourly during the final 24 h of each condition to independently determine DLMO and DLMOff. Blood samples collected every 4 h were analyzed by untargeted metabolomics and were randomly split into training (68%) and test (32%) sets for biomarker analyses. DLMO and DLMOff biomarker models were developed using partial least squares regression in the training set followed by performance assessments using the test set. At baseline, the DLMOff model showed the highest performance (0.91 R2 and 1.1 ± 1.1 h median absolute error ± interquartile range [MdAE ± IQR]), with significantly (p < 0.01) lower prediction error versus the DLMO model. When all conditions (baseline, 9 h, and 5 h) were included in performance analyses, the DLMO (0.60 R2; 2.2 ± 2.8 h MdAE; 44% of the samples with an error under 2 h) and DLMOff (0.62 R2; 1.8 ± 2.6 h MdAE; 51% of the samples with an error under 2 h) models were not statistically different. These findings show promise for metabolomics-based biomarkers of circadian phase and highlight the need to test biomarkers that predict multiple circadian phase markers under different physiological conditions.
Collapse
Affiliation(s)
- D Cogswell
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
| | - P Bisesi
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
| | - R R Markwald
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
| | - C Cruickshank-Quinn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - K Quinn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - A McHill
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - E L Melanson
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, Colorado
| | - N Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - K P Wright
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - C M Depner
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
- Department of Health and Kinesiology, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
44
|
Horibata Y, Sugimoto H. Differential contributions of choline phosphotransferases CPT1 and CEPT1 to the biosynthesis of choline phospholipid. J Lipid Res 2021; 62:100100. [PMID: 34331935 PMCID: PMC8387743 DOI: 10.1016/j.jlr.2021.100100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
Choline phospholipids (PLs) such as phosphatidylcholine (PC) and 1-alkyl-2-acyl-sn-glycerophosphocholine are important components for cell membranes and also serve as a source of several lipid mediators. These lipids are biosynthesized in mammals in the final step of the CDP-choline pathway by the choline phosphotransferases choline phosphotransferase 1 (CPT1) and choline/ethanolamine phosphotransferase 1 (CEPT1). However, the contributions of these enzymes to the de novo biosynthesis of lipids remain unknown. Here, we established and characterized CPT1- and CEPT1-deficient human embryonic kidney 293 cells. Immunohistochemical analyses revealed that CPT1 localizes to the trans-Golgi network and CEPT1 to the endoplasmic reticulum. Enzyme assays and metabolic labeling with radiolabeled choline demonstrated that loss of CEPT1 dramatically decreases choline PL biosynthesis. Quantitative PCR and reintroduction of CPT1 and CEPT1 revealed that the specific activity of CEPT1 was much higher than that of CPT1. LC-MS/MS analysis of newly synthesized lipid molecular species from deuterium-labeled choline also showed that these enzymes have similar preference for the synthesis of PC molecular species, but that CPT1 had higher preference for 1-alkyl-2-acyl-sn-glycerophosphocholine with PUFA than did CEPT1. The endogenous level of PC was not reduced by the loss of these enzymes. However, several 1-alkyl-2-acyl-sn-glycerophosphocholine molecular species were reduced in CPT1-deficient cells and increased in CEPT1-deficient cells when cultured in 0.1% FBS medium. These results suggest that CEPT1 accounts for most choline PL biosynthesis activity, and that both enzymes are responsible for the production of different lipid molecular species in distinct organelles.
Collapse
Affiliation(s)
- Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| |
Collapse
|
45
|
Mendham AE, Goedecke JH, Zeng Y, Larsen S, George C, Hauksson J, Fortuin-de Smidt MC, Chibalin AV, Olsson T, Chorell E. Exercise training improves mitochondrial respiration and is associated with an altered intramuscular phospholipid signature in women with obesity. Diabetologia 2021; 64:1642-1659. [PMID: 33770195 PMCID: PMC8187207 DOI: 10.1007/s00125-021-05430-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/14/2021] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS We sought to determine putative relationships among improved mitochondrial respiration, insulin sensitivity and altered skeletal muscle lipids and metabolite signature in response to combined aerobic and resistance training in women with obesity. METHODS This study reports a secondary analysis of a randomised controlled trial including additional measures of mitochondrial respiration, skeletal muscle lipidomics, metabolomics and protein content. Women with obesity were randomised into 12 weeks of combined aerobic and resistance exercise training (n = 20) or control (n = 15) groups. Pre- and post-intervention testing included peak oxygen consumption, whole-body insulin sensitivity (intravenous glucose tolerance test), skeletal muscle mitochondrial respiration (high-resolution respirometry), lipidomics and metabolomics (mass spectrometry) and lipid content (magnetic resonance imaging and spectroscopy). Proteins involved in glucose transport (i.e. GLUT4) and lipid turnover (i.e. sphingomyelin synthase 1 and 2) were assessed by western blotting. RESULTS The original randomised controlled trial showed that exercise training increased insulin sensitivity (median [IQR]; 3.4 [2.0-4.6] to 3.6 [2.4-6.2] x10-5 pmol l-1 min-1), peak oxygen consumption (mean ± SD; 24.9 ± 2.4 to 27.6 ± 3.4 ml kg-1 min-1), and decreased body weight (84.1 ± 8.7 to 83.3 ± 9.7 kg), with an increase in weight (pre intervention, 87.8± 10.9 to post intervention 88.8 ± 11.0 kg) in the control group (interaction p < 0.05). The current study shows an increase in mitochondrial respiration and content in response to exercise training (interaction p < 0.05). The metabolite and lipid signature at baseline were significantly associated with mitochondrial respiratory capacity (p < 0.05) but were not associated with whole-body insulin sensitivity or GLUT4 protein content. Exercise training significantly altered the skeletal muscle lipid profile, increasing specific diacylglycerol(32:2) and ceramide(d18:1/24:0) levels, without changes in other intermediates or total content of diacylglycerol and ceramide. The total content of cardiolipin, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) increased with exercise training with a decrease in the PC:PE ratios containing 22:5 and 20:4 fatty acids. These changes were associated with content-driven increases in mitochondrial respiration (p < 0.05), but not with the increase in whole-body insulin sensitivity or GLUT4 protein content. Exercise training increased sphingomyelin synthase 1 (p < 0.05), with no change in plasma-membrane-located sphingomyelin synthase 2. CONCLUSIONS/INTERPRETATION The major findings of our study were that exercise training altered specific intramuscular lipid intermediates, associated with content-driven increases in mitochondrial respiration but not whole-body insulin sensitivity. This highlights the benefits of exercise training and presents putative target pathways for preventing lipotoxicity in skeletal muscle, which is typically associated with the development of type 2 diabetes.
Collapse
Affiliation(s)
- Amy E Mendham
- MRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | - Julia H Goedecke
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Yingxu Zeng
- Hainan Tropical Ocean University, Sanya, Hainan, China
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Steen Larsen
- Center for Healthy Aging, Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Cindy George
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Jon Hauksson
- Department of Radiation Sciences, Radiation Physics and Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Melony C Fortuin-de Smidt
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
46
|
Different Lipid Signature in Fibroblasts of Long-Chain Fatty Acid Oxidation Disorders. Cells 2021; 10:cells10051239. [PMID: 34069977 PMCID: PMC8157847 DOI: 10.3390/cells10051239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Long-chain fatty acid oxidation disorders (lc-FAOD) are a group of diseases affecting the degradation of long-chain fatty acids. In order to investigate the disease specific alterations of the cellular lipidome, we performed undirected lipidomics in fibroblasts from patients with carnitine palmitoyltransferase II, very long-chain acyl-CoA dehydrogenase, and long-chain 3-hydroxyacyl-CoA dehydrogenase. We demonstrate a deep remodeling of mitochondrial cardiolipins. The aberrant phosphatidylcholine/phosphatidylethanolamine ratio and the increased content of plasmalogens and of lysophospholipids support the theory of an inflammatory phenotype in lc-FAOD. Moreover, we describe increased ratios of sphingomyelin/ceramide and sphingomyelin/hexosylceramide in LCHAD deficiency which may contribute to the neuropathic phenotype of LCHADD/mitochondrial trifunctional protein deficiency.
Collapse
|
47
|
Ferrara PJ, Rong X, Maschek JA, Verkerke AR, Siripoksup P, Song H, Green TD, Krishnan KC, Johnson JM, Turk J, Houmard JA, Lusis AJ, Drummond MJ, McClung JM, Cox JE, Shaikh SR, Tontonoz P, Holland WL, Funai K. Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. J Clin Invest 2021; 131:135963. [PMID: 33591957 DOI: 10.1172/jci135963] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
Aberrant lipid metabolism promotes the development of skeletal muscle insulin resistance, but the exact identity of lipid-mediated mechanisms relevant to human obesity remains unclear. A comprehensive lipidomic analysis of primary myocytes from individuals who were insulin-sensitive and lean (LN) or insulin-resistant with obesity (OB) revealed several species of lysophospholipids (lyso-PLs) that were differentially abundant. These changes coincided with greater expression of lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme involved in phospholipid transacylation (Lands cycle). Strikingly, mice with skeletal muscle-specific knockout of LPCAT3 (LPCAT3-MKO) exhibited greater muscle lysophosphatidylcholine/phosphatidylcholine, concomitant with improved skeletal muscle insulin sensitivity. Conversely, skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) promoted glucose intolerance. The absence of LPCAT3 reduced phospholipid packing of cellular membranes and increased plasma membrane lipid clustering, suggesting that LPCAT3 affects insulin receptor phosphorylation by modulating plasma membrane lipid organization. In conclusion, obesity accelerates the skeletal muscle Lands cycle, whose consequence might induce the disruption of plasma membrane organization that suppresses muscle insulin action.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - J Alan Maschek
- Diabetes and Metabolism Research Center and.,Metabolomics, Mass Spectrometry, and Proteomics Core and
| | - Anthony Rp Verkerke
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center and.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Haowei Song
- Division of Endocrinology Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Jordan M Johnson
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - John Turk
- Division of Endocrinology Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph A Houmard
- East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Aldons J Lusis
- Cardiology Division, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Micah J Drummond
- Diabetes and Metabolism Research Center and.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | | | - James E Cox
- Diabetes and Metabolism Research Center and.,Metabolomics, Mass Spectrometry, and Proteomics Core and.,Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Saame Raza Shaikh
- East Carolina Diabetes and Obesity Institute and.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - William L Holland
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
48
|
Calvani R, Picca A, Marini F, Biancolillo A, Gervasoni J, Persichilli S, Primiano A, Coelho-Junior HJ, Cesari M, Bossola M, Urbani A, Onder G, Landi F, Bernabei R, Marzetti E. Identification of biomarkers for physical frailty and sarcopenia through a new multi-marker approach: results from the BIOSPHERE study. GeroScience 2021; 43:727-740. [PMID: 32488674 PMCID: PMC8110636 DOI: 10.1007/s11357-020-00197-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
Physical frailty and sarcopenia (PF&S) is a prototypical geriatric condition characterized by reduced physical function and low muscle mass. The aim of the present study was to provide an initial selection of biomarkers for PF&S using a novel multivariate analytic strategy. Two-hundred community-dwellers, 100 with PF&S and 100 non-physically frail, non-sarcopenic (nonPF&S) controls aged 70 and older were enrolled as part of the BIOmarkers associated with Sarcopenia and Physical frailty in EldeRly pErsons (BIOSPHERE) study. A panel of 74 serum analytes involved in inflammation, muscle growth and remodeling, neuromuscular junction damage, and amino acid metabolism was assayed. Biomarker selection was accomplished through sequential and orthogonalized covariance selection (SO-CovSel) analysis. Separate SO-CovSel models were constructed for the whole study population and for the two genders. The model with the best prediction ability obtained with the smallest number of variables was built using seven biomolecules. This model allowed correct classification of 80.6 ± 5.3% PF&S participants and 79.9 ± 5.1% nonPF&S controls. The PF&S biomarker profile was characterized by higher serum levels of asparagine, aspartic acid, and citrulline. Higher serum concentrations of platelet-derived growth factor BB, heat shock protein 72 (Hsp72), myeloperoxidase, and α-aminobutyric acid defined the profile of nonPF&S participants. Gender-specific SO-CovSel models identified a "core" biomarker profile of PF&S, characterized by higher serum levels of aspartic acid and Hsp72 and lower concentrations of macrophage inflammatory protein 1β, with peculiar signatures in men and women.SO-CovSel analysis allowed identifying a set of potential biomarkers for PF&S. The adoption of such an innovative multivariate approach could help address the complex pathophysiology of PF&S, translate biomarker discovery from bench to bedside, and unveil novel targets for interventions.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy.
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy.
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | | | - Jacopo Gervasoni
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Silvia Persichilli
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Aniello Primiano
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Hélio J Coelho-Junior
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
- Applied Kinesiology Laboratory-LCA, School of Physical Education, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, Università di Milano, Milan, Italy
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Bossola
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Andrea Urbani
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Graziano Onder
- Department of Cardiovascular, Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| | - Roberto Bernabei
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy.
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, L.go F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy
| |
Collapse
|
49
|
Zhang E, Chai JC, Deik AA, Hua S, Sharma A, Schneider MF, Gustafson D, Hanna DB, Lake JE, Rubin LH, Post WS, Anastos K, Brown T, Clish CB, Kaplan RC, Qi Q. Plasma Lipidomic Profiles and Risk of Diabetes: 2 Prospective Cohorts of HIV-Infected and HIV-Uninfected Individuals. J Clin Endocrinol Metab 2021; 106:999-1010. [PMID: 33420793 PMCID: PMC7993589 DOI: 10.1210/clinem/dgab011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Antiretroviral therapy (ART) use is associated with disrupted lipid and glucose metabolism in people with HIV infection. We aimed to identify plasma lipid species associated with risk of diabetes in the context of HIV infection. RESEARCH DESIGN AND METHODS We profiled 211 plasma lipid species in 491 HIV-infected and 203 HIV-uninfected participants aged 35 to 55 years from the Women's Interagency HIV Study and the Multicenter AIDS Cohort Study. Cox proportional hazards model was used to examine associations between baseline lipid species and incident diabetes (166 diabetes cases were identified during a median follow-up of 12.6 years). RESULTS We identified 11 lipid species, representing independent signals for 8 lipid classes/subclasses, associated with risk of diabetes (P < 0.05 after FDR correction). After adjustment for multiple covariates, cholesteryl ester (CE) (22:4), lysophosphatidylcholine (LPC) (18:2), phosphatidylcholine (PC) (36:4), phosphatidylcholine plasmalogen (34:3), and phosphatidylethanolamine (PE) (38:2) were associated with decreased risk of diabetes (HRs = 0.70 to 0.82 per SD increment), while diacylglycerol (32:0), LPC (14:0), PC (38:3), PE (36:1), and triacylglycerol (50:1) were associated with increased risk of diabetes (HRs = 1.26 to 1.56 per SD increment). HIV serostatus did not modify any lipid-diabetes associations; however, most of these lipid species were positively associated with HIV and/or ART use, including 3 diabetes-decreased ( CE [22:4], LPC [18:2], PE [38:2]) and all 5 diabetes-increased lipid species. CONCLUSIONS This study identified multiple plasma lipid species associated with incident diabetes. Regardless of the directions of their associations with diabetes, most diabetes-associated lipid species were elevated in ART-treated people with HIV infection. This suggests a complex role of lipids in the link between ART and diabetes in HIV infection.
Collapse
Affiliation(s)
- Eric Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jin Choul Chai
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amy A Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Simin Hua
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anjali Sharma
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael F Schneider
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Deborah Gustafson
- Department of Neurology, State University of New York-Downstate Medical Center, Brooklyn, NY, USA
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Leah H Rubin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Neurology and Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wendy S Post
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Todd Brown
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
50
|
Prunonosa Cervera I, Gabriel BM, Aldiss P, Morton NM. The phospholipase A2 family's role in metabolic diseases: Focus on skeletal muscle. Physiol Rep 2021; 9:e14662. [PMID: 33433056 PMCID: PMC7802192 DOI: 10.14814/phy2.14662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity and type 2 diabetes has increased substantially in recent years creating a global health burden. In obesity, skeletal muscle, the main tissue responsible for insulin-mediated glucose uptake, exhibits dysregulation of insulin signaling, glucose uptake, lipid metabolism, and mitochondrial function, thus, promoting type 2 diabetes. The phospholipase A2 (PLA2) enzyme family mediates lipid signaling and membrane remodeling and may play an important role in metabolic disorders such as obesity, diabetes, hyperlipidemia, and fatty liver disease. The PLA2 family consists of 16 members clustered in four groups. PLA2s hydrolyze the sn-2 ester bond of phospholipids generating free fatty acids and lysophospholipids. Differential tissue and subcellular PLA2 expression patterns and the abundance of distinct fatty acyl groups in the target phospholipid determine the impact of individual family members on metabolic functions and, potentially, diseases. Here, we update the current knowledge of the role of the PLA2 family in skeletal muscle, with a view to their potential for therapeutic targeting in metabolic diseases.
Collapse
Affiliation(s)
- Iris Prunonosa Cervera
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Brendan M. Gabriel
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
- Department of Physiology and PharmacologyIntegrative PhysiologyKarolinska InstituteStockholmSweden
- Aberdeen Cardiovascular & Diabetes CentreThe Rowett InstituteUniversity of AberdeenAberdeenUK
| | - Peter Aldiss
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Nicholas M. Morton
- Molecular Metabolism GroupCentre for Cardiovascular SciencesQueens Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|