1
|
Wang J, Zhang Y, Cao C, Hua J, Xing L, Wu C. The anti-atherosclerosis effect and molecular mechanism of AMPKα1 by polarizing monocytes to an M2 phenotype via cell-intrinsic lysosomal lipolysis. Cardiovasc Pathol 2025; 78:107742. [PMID: 40354887 DOI: 10.1016/j.carpath.2025.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025] Open
Abstract
Regulating the differentiation of monocytes into M2 macrophages can promote the regression of Atherosclerosis (AS) plaque. However, the key molecules regulating the differentiation of monocytes to M2 are unknown. In this study, we reported that adenosine-activated protein kinase α1 (AMPKα1) plays an anti-AS role by polarizing monocytes to an M2 phenotype via promoting fatty acid oxidation (FAO). AMPKα1 enhances the decomposition of cholesterol esters by increasing lysosomal acid lipase expression to provide fatty acids for FAO. Furthermore, AMPKα1 can induce lysosomal biogenesis and enhance lipolysis by promoting the transcription factor EB (TFEB) expression and facilitating TFEB nuclear translocation. In conclusion, AMPKα1 enhances the decomposition of cholesterol esters by increasing lysosomal acid lipase expression to produce fatty acids, which may represent a mechanism to promote FAO and inflammatory monocytes differentiation towards M2 phenotype.
Collapse
Affiliation(s)
- Jing Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China.
| | - Yahui Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Caixing Cao
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Jiale Hua
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China.
| |
Collapse
|
2
|
Smith TKT, Ghorbani P, LeBlond ND, Nunes JRC, O'Dwyer C, Ambursley N, Fong-McMaster C, Minarrieta L, Burkovsky LA, El-Hakim R, Trzaskalski NA, Locatelli CAA, Stotts C, Pember C, Rayner KJ, Kemp BE, Loh K, Harper ME, Mulvihill EE, St-Pierre J, Fullerton MD. AMPK-mediated regulation of endogenous cholesterol synthesis does not affect atherosclerosis in a murine Pcsk9-AAV model. Atherosclerosis 2024; 397:117608. [PMID: 38880706 DOI: 10.1016/j.atherosclerosis.2024.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND AND AIMS Dysregulated cholesterol metabolism is a hallmark of atherosclerotic cardiovascular diseases, yet our understanding of how endogenous cholesterol synthesis affects atherosclerosis is not clear. The energy sensor AMP-activated protein kinase (AMPK) phosphorylates and inhibits the rate-limiting enzyme in the mevalonate pathway HMG-CoA reductase (HMGCR). Recent work demonstrated that when AMPK-HMGCR signaling was compromised in an Apoe-/- model of hypercholesterolemia, atherosclerosis was exacerbated due to elevated hematopoietic stem and progenitor cell mobilization and myelopoiesis. We sought to validate the significance of the AMPK-HMGCR signaling axis in atherosclerosis using a non-germline hypercholesterolemia model with functional ApoE. METHODS Male and female HMGCR S871A knock-in (KI) mice and wild-type (WT) littermate controls were made atherosclerotic by intravenous injection of a gain-of-function Pcsk9D374Y-adeno-associated virus followed by high-fat and high-cholesterol atherogenic western diet feeding for 16 weeks. RESULTS AMPK activation suppressed endogenous cholesterol synthesis in primary bone marrow-derived macrophages from WT but not HMGCR KI mice, without changing other parameters of cholesterol regulation. Atherosclerotic plaque area was unchanged between WT and HMGCR KI mice, independent of sex. Correspondingly, there were no phenotypic differences observed in hematopoietic progenitors or differentiated immune cells in the bone marrow, blood, or spleen, and no significant changes in systemic markers of inflammation. When lethally irradiated female mice were transplanted with KI bone marrow, there was similar plaque content relative to WT. CONCLUSIONS Given previous work, our study demonstrates the importance of preclinical atherosclerosis model comparison and brings into question the importance of AMPK-mediated control of cholesterol synthesis in atherosclerosis.
Collapse
Affiliation(s)
- Tyler K T Smith
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Nicholas D LeBlond
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julia R C Nunes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Nia Ambursley
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Lucía Minarrieta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Leah A Burkovsky
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rama El-Hakim
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Natasha A Trzaskalski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Cassandra A A Locatelli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Cameron Stotts
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ciara Pember
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Kim Loh
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Centre for Catalysis Research and Innovation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Teuwen JTJ, van der Vorst EPC, Maas SL. Navigating the Maze of Kinases: CaMK-like Family Protein Kinases and Their Role in Atherosclerosis. Int J Mol Sci 2024; 25:6213. [PMID: 38892400 PMCID: PMC11172518 DOI: 10.3390/ijms25116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Circulating low-density lipoprotein (LDL) levels are a major risk factor for cardiovascular diseases (CVD), and even though current treatment strategies focusing on lowering lipid levels are effective, CVD remains the primary cause of death worldwide. Atherosclerosis is the major cause of CVD and is a chronic inflammatory condition in which various cell types and protein kinases play a crucial role. However, the underlying mechanisms of atherosclerosis are not entirely understood yet. Notably, protein kinases are highly druggable targets and represent, therefore, a novel way to target atherosclerosis. In this review, the potential role of the calcium/calmodulin-dependent protein kinase-like (CaMKL) family and its role in atherosclerosis will be discussed. This family consists of 12 subfamilies, among which are the well-described and conserved liver kinase B1 (LKB1) and 5' adenosine monophosphate-activated protein kinase (AMPK) subfamilies. Interestingly, LKB1 plays a key role and is considered a master kinase within the CaMKL family. It has been shown that LKB1 signaling leads to atheroprotective effects, while, for example, members of the microtubule affinity-regulating kinase (MARK) subfamily have been described to aggravate atherosclerosis development. These observations highlight the importance of studying kinases and their signaling pathways in atherosclerosis, bringing us a step closer to unraveling the underlying mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Jules T. J. Teuwen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
4
|
Nunes JRC, O'Dwyer C, Ghorbani P, Smith TKT, Chauhan S, Robert-Gostlin V, Girouard MD, Viollet B, Foretz M, Fullerton MD. Myeloid AMPK signaling restricts fibrosis but is not required for metformin improvements during CDAHFD-induced NASH in mice. J Lipid Res 2024; 65:100564. [PMID: 38762124 PMCID: PMC11222943 DOI: 10.1016/j.jlr.2024.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024] Open
Abstract
Metabolic programming underpins inflammation and liver macrophage activation in the setting of chronic liver disease. Here, we sought to identify the role of an important metabolic regulator, AMP-activated protein kinase (AMPK), specifically within myeloid cells during the progression of non-alcoholic steatohepatitis (NASH) and whether treatment with metformin, a firstline therapy for diabetes and activator of AMPK could stem disease progression. Male and female Prkaa1fl/fl/Prkaa2fl/fl (Flox) control and Flox-LysM-Cre+ (MacKO) mice were fed a low-fat control or a choline-deficient, amino acid defined 45% Kcal high-fat diet (CDAHFD) for 8 weeks, where metformin was introduced in the drinking water (50 or 250 mg/kg/day) for the last 4 weeks. Hepatic steatosis and fibrosis were dramatically increased in response to CDAHFD-feeding compared to low-fat control. While myeloid AMPK signaling had no effect on markers of hepatic steatosis or circulating markers, fibrosis as measured by total liver collagen was significantly elevated in livers from MacKO mice, independent of sex. Although treatment with 50 mg/kg/day metformin had no effect on any parameter, intervention with 250 mg/kg/day metformin completely ameliorated hepatic steatosis and fibrosis in both male and female mice. While the protective effect of metformin was associated with lower final body weight, and decreased expression of lipogenic and Col1a1 transcripts, it was independent of myeloid AMPK signaling. These results suggest that endogenous AMPK signaling in myeloid cells, both liver-resident and infiltrating, acts to restrict fibrogenesis during CDAHFD-induced NASH progression but is not the mechanism by which metformin improves markers of NASH.
Collapse
Affiliation(s)
- Julia R C Nunes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tyler K T Smith
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Samarth Chauhan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Victoria Robert-Gostlin
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Madison D Girouard
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Benoit Viollet
- Université Paris cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Marc Foretz
- Université Paris cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada; Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Day EA, Townsend LK, Rehal S, Batchuluun B, Wang D, Morrow MR, Lu R, Lundenberg L, Lu JH, Desjardins EM, Smith TK, Raphenya AR, McArthur AG, Fullerton MD, Steinberg GR. Macrophage AMPK β1 activation by PF-06409577 reduces the inflammatory response, cholesterol synthesis, and atherosclerosis in mice. iScience 2023; 26:108269. [PMID: 38026185 PMCID: PMC10654588 DOI: 10.1016/j.isci.2023.108269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerotic cardiovascular disease is characterized by both chronic low-grade inflammation and dyslipidemia. The AMP-activated protein kinase (AMPK) inhibits cholesterol synthesis and dampens inflammation but whether pharmacological activation reduces atherosclerosis is equivocal. In the current study, we found that the orally bioavailable and highly selective activator of AMPKβ1 complexes, PF-06409577, reduced atherosclerosis in two mouse models in a myeloid-derived AMPKβ1 dependent manner, suggesting a critical role for macrophages. In bone marrow-derived macrophages (BMDMs), PF-06409577 dose dependently activated AMPK as indicated by increased phosphorylation of downstream substrates ULK1 and acetyl-CoA carboxylase (ACC), which are important for autophagy and fatty acid oxidation/de novo lipogenesis, respectively. Treatment of BMDMs with PF-06409577 suppressed fatty acid and cholesterol synthesis and transcripts related to the inflammatory response while increasing transcripts important for autophagy through AMPKβ1. These data indicate that pharmacologically targeting macrophage AMPKβ1 may be a promising strategy for reducing atherosclerosis.
Collapse
Affiliation(s)
- Emily A. Day
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Logan K. Townsend
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Sonia Rehal
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Marisa R. Morrow
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Rachel Lu
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Lucie Lundenberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Jessie H. Lu
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Eric M. Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
| | - Tyler K.T. Smith
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Amogelang R. Raphenya
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew G. McArthur
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Centre for Infection, Immunity and Inflammation, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Kanhai AA, Sánchez-López E, Kuipers TB, van Klinken JB, Dijkstra KL, van der Veen I, Baelde HJ, Song X, Pei Y, Mei H, Leonhard WN, Mayboroda OA, Peters DJ. Short salsalate administration affects cell proliferation, metabolism, and inflammation in polycystic kidney disease. iScience 2023; 26:108278. [PMID: 38026227 PMCID: PMC10665819 DOI: 10.1016/j.isci.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic reprogramming is a driver of autosomal dominant polycystic kidney disease (ADPKD) progression and a potential therapeutic intervention route. We showed before that the AMP-associated protein kinase (AMPK) activator salsalate attenuates cystic disease progression. Here, we aim to study the early, direct effects of short salsalate treatment in adult-onset conditional Pkd1 deletion mice. Cystic mice were treated with salsalate for two weeks, after which NMR metabolomics and RNA sequencing analyses were performed. Pkd1 deletion resulted in clear metabolomic dysregulation. Short salsalate treatment has small, but significant, effects, reverting acetylcarnitine and phosphocholine concentrations back to wildtype levels, and showing associations with altered purine metabolism. RNA sequencing revealed that short salsalate treatment, next to restoring energy metabolism toward wildtype levels, also affects cell proliferation and inflammation, in PKD. We show that salsalate positively affects major dysregulated processes in ADPKD: energy metabolism, cell proliferation, and inflammation, providing more insights into its working mechanisms.
Collapse
Affiliation(s)
- Anish A. Kanhai
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Elena Sánchez-López
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas B. Kuipers
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan B. van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Laboratory Genetic Metabolic Diseases of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kyra L. Dijkstra
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Inge van der Veen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans J. Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter N. Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dorien J.M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
7
|
Phair IR, Nisr RB, Howden AJM, Sovakova M, Alqurashi N, Foretz M, Lamont D, Viollet B, Rena G. AMPK integrates metabolite and kinase-based immunometabolic control in macrophages. Mol Metab 2023; 68:101661. [PMID: 36586434 PMCID: PMC9842865 DOI: 10.1016/j.molmet.2022.101661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Previous mechanistic studies on immunometabolism have focused on metabolite-based paradigms of regulation, such as itaconate. Here, we, demonstrate integration of metabolite and kinase-based immunometabolic control by AMP kinase. METHODS We combined whole cell quantitative proteomics with gene knockout of AMPKα1. RESULTS Comparing macrophages with AMPKα1 catalytic subunit deletion with wild-type, inflammatory markers are largely unchanged in unstimulated cells, but with an LPS stimulus, AMPKα1 knockout leads to a striking M1 hyperpolarisation. Deletion of AMPKα1 also resulted in increased expression of rate-limiting enzymes involved in itaconate synthesis, metabolism of glucose, arginine, prostaglandins and cholesterol. Consistent with this, we observed functional changes in prostaglandin synthesis and arginine metabolism. Selective AMPKα1 activation also unlocks additional regulation of IL-6 and IL-12 in M1 macrophages. CONCLUSIONS Together, our results validate AMPK as a pivotal immunometabolic regulator in macrophages.
Collapse
Affiliation(s)
- Iain R Phair
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Raid B Nisr
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Andrew J M Howden
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Magdalena Sovakova
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Noor Alqurashi
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Marc Foretz
- Université Paris Cité, Institut Cochin, CNRS, INSERM, F-75014 Paris, France.
| | - Douglas Lamont
- Centre for Advanced Scientific Technologies, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Benoit Viollet
- Université Paris Cité, Institut Cochin, CNRS, INSERM, F-75014 Paris, France.
| | - Graham Rena
- Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
8
|
Liu X, Liu Y, Yang RX, Ding XJ, Liang ES. Loss of myeloid Tsc2 predisposes to angiotensin II-induced aortic aneurysm formation in mice. Cell Death Dis 2022; 13:972. [PMID: 36400753 PMCID: PMC9674579 DOI: 10.1038/s41419-022-05423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
RATIONALE Genetic studies have proved the involvement of Tuberous sclerosis complex subunit 2 (Tsc2) in aortic aneurysm. However, the exact role of macrophage Tsc2 in the vascular system remains unclear. Here, we examined the potential function of macrophage Tsc2 in the development of aortic remodeling and aortic aneurysms. METHODS AND RESULTS Conditional gene knockout strategy combined with histology and whole-transcriptomic analysis showed that Tsc2 deficiency in macrophages aggravated the progression of aortic aneurysms along with an upregulation of proinflammatory cytokines and matrix metallopeptidase-9 in the angiotensin II-induced mouse model. G protein-coupled receptor 68 (Gpr68), a proton-sensing receptor for detecting the extracellular acidic pH, was identified as the most up-regulated gene in Tsc2 deficient macrophages compared with control macrophages. Additionally, Tsc2 deficient macrophages displayed higher glycolysis and glycolytic inhibitor 2-deoxy-D-glucose treatment partially attenuated the level of Gpr68. We further demonstrated an Tsc2-Gpr68-CREB network in macrophages that regulates the inflammatory response, proteolytic degradation and vascular homeostasis. Gpr68 inhibition largely abrogated the progression of aortic aneurysms caused by Tsc2 deficiency in macrophages. CONCLUSIONS The findings reveal that Tsc2 deficiency in macrophages contributes to aortic aneurysm formation, at least in part, by upregulating Gpr68 expression, which subsequently drives proinflammatory processes and matrix metallopeptidase activation. The data also provide a novel therapeutic strategy to limit the progression of the aneurysm resulting from Tsc2 mutations.
Collapse
Affiliation(s)
- Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Rui-Xue Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang-Jiu Ding
- Department of Vascular Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Er-Shun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
9
|
Wang S, Cao Q, Cui X, Jing J, Li F, Shi H, Xue B, Shi H. Dnmt3b Deficiency in Myf5 +-Brown Fat Precursor Cells Promotes Obesity in Female Mice. Biomolecules 2021; 11:1087. [PMID: 34439754 PMCID: PMC8393658 DOI: 10.3390/biom11081087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing energy expenditure through activation of brown fat thermogenesis is a promising therapeutic strategy for the treatment of obesity. Epigenetic regulation has emerged as a key player in regulating brown fat development and thermogenic program. Here, we aimed to study the role of DNA methyltransferase 3b (Dnmt3b), a DNA methyltransferase involved in de novo DNA methylation, in the regulation of brown fat function and energy homeostasis. We generated a genetic model with Dnmt3b deletion in brown fat-skeletal lineage precursor cells (3bKO mice) by crossing Dnmt3b-floxed (fl/fl) mice with Myf5-Cre mice. Female 3bKO mice are prone to diet-induced obesity, which is associated with decreased energy expenditure. Dnmt3b deficiency also impairs cold-induced thermogenic program in brown fat. Surprisingly, further RNA-seq analysis reveals a profound up-regulation of myogenic markers in brown fat of 3bKO mice, suggesting a myocyte-like remodeling in brown fat. Further motif enrichment and pyrosequencing analysis suggests myocyte enhancer factor 2C (Mef2c) as a mediator for the myogenic alteration in Dnmt3b-deficient brown fat, as indicated by decreased methylation at its promoter. Our data demonstrate that brown fat Dnmt3b is a key regulator of brown fat development, energy metabolism and obesity in female mice.
Collapse
Affiliation(s)
- Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Fenfen Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.W.); (Q.C.); (X.C.); (J.J.); (F.L.)
| |
Collapse
|
10
|
Palmer TM, Salt IP. Nutrient regulation of inflammatory signalling in obesity and vascular disease. Clin Sci (Lond) 2021; 135:1563-1590. [PMID: 34231841 DOI: 10.1042/cs20190768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Despite obesity and diabetes markedly increasing the risk of developing cardiovascular diseases, the molecular and cellular mechanisms that underlie this association remain poorly characterised. In the last 20 years it has become apparent that chronic, low-grade inflammation in obese adipose tissue may contribute to the risk of developing insulin resistance and type 2 diabetes. Furthermore, increased vascular pro-inflammatory signalling is a key event in the development of cardiovascular diseases. Overnutrition exacerbates pro-inflammatory signalling in vascular and adipose tissues, with several mechanisms proposed to mediate this. In this article, we review the molecular and cellular mechanisms by which nutrients are proposed to regulate pro-inflammatory signalling in adipose and vascular tissues. In addition, we examine the potential therapeutic opportunities that these mechanisms provide for suppression of inappropriate inflammation in obesity and vascular disease.
Collapse
Affiliation(s)
- Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
11
|
Veronesi VB, Pioli MR, de Souza DN, Teixeira CJ, Murata GM, Santos-Silva JC, Hecht FB, Vicente JM, Bordin S, Anhê GF. Agomelatine reduces circulating triacylglycerides and hepatic steatosis in fructose-treated rats. Biomed Pharmacother 2021; 141:111807. [PMID: 34120066 DOI: 10.1016/j.biopha.2021.111807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Agomelatine (AGO) is an antidepressant drug with agonistic activity at melatonin receptor 1 (MT1) and MT2 and with neutral antagonistic activity at serotonin receptor 5-HT2C. Although experimental studies show that melatonin reduces hypertriglyceridemia and hepatic steatosis induced by excessive fructose intake, no studies have tested if AGO exerts similar actions. To address this issue we have treated male Wistar rats with fructose (15% in the drinking water) and/or AGO (40 mg/kg/day) for two weeks. AGO reduced body weight gain, feeding efficiency and hepatic lipid levels without affecting caloric intake in fructose-treated rats. AGO has also decreased very low-density lipoprotein (VLDL) production and circulating TAG levels after an oral load with olive oil. Accordingly, treatment with AGO reduced the hepatic expression of fatty acid synthase (Fasn), a limiting step for hepatic de novo lipogenesis (DNLG). The expression of apolipoprotein B (Apob) and microsomal triglyceride transfer protein (Mttp) in the ileum, two crucial proteins for intestinal lipoprotein production, were also downregulated by treatment with AGO. Altogether, the present data show that AGO mimics the metabolic benefits of melatonin when used in fructose-treated rats. This study also suggests that it is relevant to evaluate the potential of AGO to treat metabolic disorders in future clinical trials.
Collapse
Affiliation(s)
- Vanessa Barbosa Veronesi
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Mariana Rodrigues Pioli
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Dailson Nogueira de Souza
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Caio Jordão Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Zip Code: 05508-000, Sao Paulo, SP, Brazil
| | - Gilson Masahiro Murata
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Zip Code: 05508-000, Sao Paulo, SP, Brazil
| | - Junia Carolina Santos-Silva
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Fernanda Ballerini Hecht
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Julia Modesto Vicente
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Zip Code: 05508-000, Sao Paulo, SP, Brazil
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Flemming St., Zip Code: 13083-881, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Cai D, Liu H, Wang J, Hou Y, Pang T, Lin H, He C. Balasubramide derivative 3C attenuates atherosclerosis in apolipoprotein E-deficient mice: role of AMPK-STAT1-STING signaling pathway. Aging (Albany NY) 2021; 13:12160-12178. [PMID: 33901014 PMCID: PMC8109080 DOI: 10.18632/aging.202929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
We previously reported the neuroprotective effects of (+)-balasubramide derived compound 3C, but its action on atherosclerosis in vivo remains unknown. The study was designed to investigate the potential effects of 3C on atherogenesis and explore the possible underlying mechanisms. 3C ameliorated high-fat diet-induced body weight gain, hyperlipidemia, and atherosclerotic plaque burden in apolipoprotein E-deficient (ApoE-/-) mice after 10 weeks of treatment. 3C suppressed the expression of genes involved in triglyceride synthesis in liver. 3C prevented aortic inflammation as evidenced by reduction of adhesive molecule levels and macrophage infiltration. Mechanistic studies revealed that activation of AMP-activated protein kinase (AMPK) is central to the athero-protective effects of 3C. Increased AMPK activity by 3C resulted in suppressing interferon-γ (IFN-γ) induced activation of signal transducer and activator of transcription-1 (STAT1) and stimulator of interferon genes (STING) signaling pathways and downstream pro-inflammatory markers. Moreover, 3C inhibited ox-LDL triggered lipid accumulation and IFN-γ induced phenotypic switch toward M1 macrophage in RAW 264.7 cells. Our present data suggest that 3C prevents atherosclerosis via pleiotropic effects, including amelioration of lipid profiles, vascular inflammation and macrophage pro-inflammatory phenotype. 3C has the potential to be developed as a promising drug for atherosclerosis and related cardiovascular disease.
Collapse
Affiliation(s)
- Dongcheng Cai
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Hongxia Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Jing Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yuanlong Hou
- Jiangsu Province Key Laboratory of Drug Metabolism, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hansen Lin
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
13
|
Marino A, Hausenloy DJ, Andreadou I, Horman S, Bertrand L, Beauloye C. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic Biol Med 2021; 166:238-254. [PMID: 33675956 DOI: 10.1016/j.freeradbiomed.2021.02.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Heart failure is one of the leading causes of death and disability worldwide. Left ventricle remodeling, fibrosis, and ischemia/reperfusion injury all contribute to the deterioration of cardiac function and predispose to the onset of heart failure. Adenosine monophosphate-activated protein kinase (AMPK) is the universally recognized energy sensor which responds to low ATP levels and restores cellular metabolism. AMPK activation controls numerous cellular processes and, in the heart, it plays a pivotal role in preventing onset and progression of disease. Excessive reactive oxygen species (ROS) generation, known as oxidative stress, can activate AMPK, conferring an additional role of AMPK as a redox-sensor. In this review, we discuss recent insights into the crosstalk between ROS and AMPK. We describe the molecular mechanisms by which ROS activate AMPK and how AMPK signaling can further prevent heart failure progression. Ultimately, we review the potential therapeutic approaches to target AMPK for the treatment of cardiovascular disease and prevention of heart failure.
Collapse
Affiliation(s)
- Alice Marino
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Division of Cardiology, Cliniques universitaires Saint Luc, Brussels, Belgium.
| |
Collapse
|
14
|
Signal transduction in primary cilia - analyzing and manipulating GPCR and second messenger signaling. Pharmacol Ther 2021; 224:107836. [PMID: 33744260 DOI: 10.1016/j.pharmthera.2021.107836] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The primary cilium projects from the surface of most vertebrate cells, where it senses extracellular signals to regulate diverse cellular processes during tissue development and homeostasis. Dysfunction of primary cilia underlies the pathogenesis of severe diseases, commonly referred to as ciliopathies. Primary cilia contain a unique protein repertoire that is distinct from the cell body and the plasma membrane, enabling the spatially controlled transduction of extracellular cues. G-protein coupled receptors (GPCRs) are key in sensing environmental stimuli that are transmitted via second messenger signaling into a cellular response. Here, we will give an overview of the role of GPCR signaling in primary cilia, and how ciliary GPCR signaling can be targeted by pharmacology, chemogenetics, and optogenetics.
Collapse
|
15
|
Yang Q, Ma Q, Xu J, Liu Z, Zou J, Shen J, Zhou Y, Da Q, Mao X, Lu S, Fulton DJ, Weintraub NL, Bagi Z, Hong M, Huo Y. Prkaa1 Metabolically Regulates Monocyte/Macrophage Recruitment and Viability in Diet-Induced Murine Metabolic Disorders. Front Cell Dev Biol 2021; 8:611354. [PMID: 33511118 PMCID: PMC7835533 DOI: 10.3389/fcell.2020.611354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Myeloid cells, including monocytes/macrophages, primarily rely on glucose and lipid metabolism to provide the energy and metabolites needed for their functions and survival. AMP-activated protein kinase (AMPK, its gene is PRKA for human, Prka for rodent) is a key metabolic sensor that regulates many metabolic pathways. We studied recruitment and viability of Prkaa1-deficient myeloid cells in mice and the phenotype of these mice in the context of cardio-metabolic diseases. We found that the deficiency of Prkaa1 in myeloid cells downregulated genes for glucose and lipid metabolism, compromised glucose and lipid metabolism of macrophages, and suppressed their recruitment to adipose, liver and arterial vessel walls. The viability of macrophages in the above tissues/organs was also decreased. These cellular alterations resulted in decreases in body weight, insulin resistance, and lipid accumulation in liver of mice fed with a high fat diet, and reduced the size of atherosclerotic lesions of mice fed with a Western diet. Our results indicate that AMPKα1/PRKAA1-regulated metabolism supports monocyte recruitment and macrophage viability, contributing to the development of diet-induced metabolic disorders including diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Qiuhua Yang
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qian Ma
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jiean Xu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiping Liu
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jianqiu Zou
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jian Shen
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yaqi Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaoxiao Mao
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sarah Lu
- Trinity College of Arts & Sciences, Duke University, Durham, NC, United States
| | - David J. Fulton
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Neal L. Weintraub
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
16
|
The SGLT2 inhibitor canagliflozin suppresses lipid synthesis and interleukin-1 beta in ApoE deficient mice. Biochem J 2020; 477:2347-2361. [PMID: 32510137 DOI: 10.1042/bcj20200278] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors such as canagliflozin lower blood glucose and reduce cardiovascular events in people with type 2 diabetes through mechanisms that are not fully understood. Canagliflozin has been shown to increase the activity of the AMP-activated protein kinase (AMPK), a metabolic energy sensor important for increasing fatty acid oxidation and energy expenditure and suppressing lipogenesis and inflammation, but whether AMPK activation is important for mediating some of the beneficial metabolic effects of canagliflozin has not been determined. We, therefore, evaluated the effects of canagliflozin in female ApoE-/- and ApoE-/-AMPK β1-/- mice fed a western diet. Canagliflozin increased fatty acid oxidation and energy expenditure and lowered adiposity, blood glucose and the respiratory exchange ratio independently of AMPK β1. Canagliflozin also suppressed liver lipid synthesis and the expression of ATP-citrate lyase, acetyl-CoA carboxylase and sterol response element-binding protein 1c independently of AMPK β1. Canagliflozin lowered circulating IL-1β and studies in bone marrow-derived macrophages indicated that in contrast with the metabolic adaptations, this effect required AMPK β1. Canagliflozin had no effect on the size of atherosclerotic plaques in either ApoE-/- and ApoE-/-AMPK β1-/- mice. Future studies investigating whether reductions in liver lipid synthesis and macrophage IL-1β are important for the cardioprotective effects of canagliflozin warrant further investigation.
Collapse
|
17
|
LeBlond ND, Ghorbani P, O'Dwyer C, Ambursley N, Nunes JRC, Smith TKT, Trzaskalski NA, Mulvihill EE, Viollet B, Foretz M, Fullerton MD. Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice. J Lipid Res 2020; 61:1697-1706. [PMID: 32978273 PMCID: PMC7707174 DOI: 10.1194/jlr.ra120001040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis. Using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), we aimed to clarify the role of myeloid-specific AMPK signaling in male and female mice made acutely atherosclerotic by injection of AAV vector encoding a gain-of-function mutant PCSK9 (PCSK9-AAV) and WD feeding. After 6 weeks of WD feeding, mice received a daily injection of either the AMPK activator A-769662 or a vehicle control for an additional 6 weeks. Following this (12 weeks total), we assessed myeloid cell populations and differences between genotype or sex were not observed. Similarly, aortic sinus plaque size, lipid staining, and necrotic area did not differ in male and female MacKO mice compared with their littermate floxed controls. Moreover, therapeutic intervention with A-769662 showed no treatment effect. There were also no observable differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area and markers of autophagy showed no effect of either lacking AMPK signaling or AMPK activation. Our data suggest that while defined roles for each catalytic AMPK subunit have been identified, complete deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Additionally, these findings suggest that intervention with the first-generation AMPK activator A-769662 is not able to stem the progression of atherosclerosis.
Collapse
Affiliation(s)
- Nicholas D LeBlond
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Nia Ambursley
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Julia R C Nunes
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Tyler K T Smith
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada
| | - Natasha A Trzaskalski
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, Ontario, Canada; Centre for Catalysis Research and Innovation, Ottawa, Ontario, Canada.
| |
Collapse
|
18
|
Ghanim H, Dhindsa S, Batra M, Green K, Abuaysheh S, Kuhadiya ND, Makdissi A, Chaudhuri A, Sandhu S, Dandona P. Testosterone Increases the Expression and Phosphorylation of AMP Kinase α in Men With Hypogonadism and Type 2 Diabetes. J Clin Endocrinol Metab 2020; 105:5681662. [PMID: 31858126 PMCID: PMC7077952 DOI: 10.1210/clinem/dgz288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/19/2019] [Indexed: 01/24/2023]
Abstract
CONTEXT Adenosine 5'-monophosphate-activated protein kinase-α (AMPKα) is a mediator of exercise-induced glucose uptake in skeletal muscle. OBJECTIVE We evaluated whether AMPKα expression and phosphorylation are reduced in skeletal muscle and adipose tissue of patients with hypogonadotropic hypogonadism (HH), and whether testosterone replacement therapy results in restoration of the expression and phosphorylation of AMPKα. DESIGN This is a secondary analysis of a previously completed trial that showed an insulin-sensitizing effect of testosterone therapy in men with type 2 diabetes and HH. SETTING Clinical research center at university. PATIENTS Thirty-two men with HH and 32 eugonadal men were compared at baseline. INTERVENTIONS Men with HH were treated with intramuscular injections of testosterone or placebo every 2 weeks for 22 weeks. Quadriceps muscle biopsies and subcutaneous abdominal fat biopsies were obtained before and after 4-hour euglycemic hyperinsulinemic clamp, prior to and after testosterone or placebo therapy. OUTCOME MEASURES AND RESULTS mRNA expression of AMPKα in hypogonadal men was lower by 37% in adipose tissue and 29% in skeletal muscle, respectively, compared with levels in eugonadal men, while phosphorylated AMPKα was lower by 22% and 28%, respectively. Following testosterone replacement, the expression of AMPKα did not alter in the fasting state but increased markedly by 41% and 46% in adipose tissue and muscle, respectively, after the clamp. In contrast, phosphorylated AMPKα increased by 69% in muscle after testosterone therapy but did not change following the clamp. CONCLUSIONS Testosterone modulates the expression of AMPKα and phosphorylated AMPKα. These effects may contribute to the improved insulin sensitivity following testosterone therapy.
Collapse
Affiliation(s)
- Husam Ghanim
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York
| | - Sandeep Dhindsa
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York
- Division of Endocrinology, Diabetes and Metabolism, Saint Louis University, St. Louis, Missouri
| | - Manav Batra
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York
| | - Kelly Green
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York
| | - Sanaa Abuaysheh
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York
| | - Nitesh D Kuhadiya
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York
| | - Antoine Makdissi
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York
| | - Ajay Chaudhuri
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York
| | - Sartaj Sandhu
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York
| | - Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York
- Correspondence and Reprint Requests: Paresh Dandona, B.Sc., M.B. B.S., D.Phil., F.R.C.P., Director, Diabetes-Endocrinology Center of Western NY, Chief of Endocrinology, State University of New York at Buffalo, 1000 Youngs Road, Suite 105, Williamsville, New York 14221. E-mail:
| |
Collapse
|
19
|
Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 2020; 18:527-551. [PMID: 30867601 DOI: 10.1038/s41573-019-0019-2] [Citation(s) in RCA: 471] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of AMP-activated protein kinase (AMPK) as a central regulator of energy homeostasis, many exciting insights into its structure, regulation and physiological roles have been revealed. While exercise, caloric restriction, metformin and many natural products increase AMPK activity and exert a multitude of health benefits, developing direct activators of AMPK to elicit beneficial effects has been challenging. However, in recent years, direct AMPK activators have been identified and tested in preclinical models, and a small number have entered clinical trials. Despite these advances, which disease(s) represent the best indications for therapeutic AMPK activation and the long-term safety of such approaches remain to be established.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - David Carling
- Cellular Stress Group, Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
20
|
Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, Yang Q, Jia L, Liang Z, Kang L. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res 2020; 153:104678. [PMID: 32014572 DOI: 10.1016/j.phrs.2020.104678] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023]
Abstract
Diabetic nephropathy (DN), a kind of microvascular complication, is a primary cause of end-stage renal disease worldwide. However, therapeutic drugs for DN treatment are still in lack. The glomerular endothelium is essential to maintain selective permeability of glomerular filtration barrier and glomerular vasculature function. Growing evidences show that endothelial dysfunction or injury is the initial stage of vascular damage in DN, which can be induced by hyperglycemia, lipotoxicity, and inflammation. Therefore, to improve the function of vascular endothelium in kidney is a key point for treatment of DN. As a plant isoflavone, tectorigenin (TEC) has attracted considerable attention due to its anti-proliferative and anti-inflammatory functions. However, whether TEC could inhibit the DN development remains unknown. In this study, we examined the effects of TEC on DN development in db/db mice, a type of genetic defect diabetic mice that can spontaneously develop into severe renal dysfunction. Intriguingly, TEC treatment restored diabetes-induced glucose and lipid metabolic disorder; and improved the deterioration of renal function, particularly the renal endothelium function in db/db mice. Additionally, TEC inhibited the renal inflammation via reducing macrophages infiltration and M1 polarization. Moreover, TEC inhibited lipopolysaccharide (LPS)-induced endothelial injury and M1 polarization in vitro. Mechanistically, TEC partially restored the reduction in expression of adiponectin receptor 1/2 (AdipoR1/2), pi-LKB1, pi-AMPKα, and PPARα in vitro and in vivo. Noteworthy, these beneficial pharmacological activities mediated by TEC were significantly attenuated after AdipoR1/2 knockdown by siRNA, indicating that AdipoR1/2 plays a critical role in protection against DN. Collectively, these results suggested that TEC have a potently effect for retarding type 2 diabetes-associated DN.
Collapse
Affiliation(s)
- Shu Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Han Wu
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Fengyi Yuan
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Guangyan Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Qi Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Lijing Jia
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Zhen Liang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Lin Kang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
21
|
Wang S, Xu J, Zheng J, Zhang X, Shao J, Zhao L, Hao J. Anti-Inflammatory and Antioxidant Effects of Acetyl-L-Carnitine on Atherosclerotic Rats. Med Sci Monit 2020; 26:e920250. [PMID: 31945029 PMCID: PMC6984015 DOI: 10.12659/msm.920250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The purpose of the present study was to evaluate the regulatory effects of acetyl-L-carnitine (ALCAR) on atherosclerosis in Wister rats and to explore its anti-atherosclerotic mechanism. Material/Methods We randomly divided 32 Wister rats into 4 groups: a normal diet group (control group, n=8), a normal diet+ALCAR group (ALCAR group, n=8), an atherosclerosis group (AS group, n=8), and an atherosclerosis+ALCAR group (AS+ALCAR group, n=8). The serum lipid distribution, oxidative stress, inflammatory factors and adiponectin (APN) in the blood, and heart and aortic tissues were determined using the standard assay kits, xanthine oxidase method, and ELISA, respectively. HE staining was performed to observe aortic pathology structure change, and the level of angiotensin II (AngII) in the aorta was assessed using radioimmunoassay. In addition, real-time quantitative PCR and Western blot analysis were applied to detect the expression of iNOS, IL-1β, TNF-α, and CRP in the aortic and heart tissues. Results Compared with the AS group, the levels of serum TC, TG, LDL, and VLDL in rats decreased significantly, while HDL level significantly increased in the AS+ALCAR group. ALCAR administration enhanced the SOD and GSH-Px activities and decreased MDA activity. APN level was significantly elevated in the AS group, but ALCAR had no significant effect on APN. Further, ALCAR reduced the expressions of inflammation factors TNF-α, IL-1β, iNOS, and CRP, and the concentration of AngII in serum, aortic, and heart tissues. Conclusions ALCAR can inhibit the expressions of inflammatory factors and antioxidation to suppress the development of atherosclerosis by adjusting blood lipid in the myocardium of AS rats.
Collapse
Affiliation(s)
- Shixun Wang
- Second Department of Cardiology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Jingtao Xu
- Second Department of Cardiology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Jiahui Zheng
- Second Department of Cardiology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Xincai Zhang
- Second Department of Cardiology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Jingbo Shao
- Second Department of Cardiology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Luyan Zhao
- Department of Emergency Medicine, Weifang Brain Hospital, Weifang, Shandong, China (mainland)
| | - Junqiang Hao
- Department of Emergency Medicine, Weifang Brain Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
22
|
Jansen T, Kröller-Schön S, Schönfelder T, Foretz M, Viollet B, Daiber A, Oelze M, Brandt M, Steven S, Kvandová M, Kalinovic S, Lagrange J, Keaney JF, Münzel T, Wenzel P, Schulz E. α1AMPK deletion in myelomonocytic cells induces a pro-inflammatory phenotype and enhances angiotensin II-induced vascular dysfunction. Cardiovasc Res 2019; 114:1883-1893. [PMID: 29982418 DOI: 10.1093/cvr/cvy172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Aims Immune cell function involves energy-dependent processes including growth, proliferation, and cytokine production. Since the AMP-activated protein kinase (AMPK) is a crucial regulator of intracellular energy homeostasis, its expression and activity may also affect innate and adaptive immune cell responses. Therefore, we aimed to investigate the consequences of α1AMPK deletion in myelomonocytic cells on vascular function, inflammation, and hypertension during chronic angiotensin II (ATII) treatment. Methods and results We generated a mouse strain with α1AMPK deletion in lysozyme M+ myelomonocytic cells. Compared to controls, chronic ATII infusion (1 mg/kg/day for 7 days) lead to increased vascular oxidative stress and aggravated endothelial dysfunction in LysM-Cre+ x α1AMPKfl/fl mice. This was accompanied by an increased aortic infiltration of CD11b+F4/80+ macrophages and enhanced pro-inflammatory cytokine release (tumour necrosis factor-alpha, interferon-gamma, and interleukin-6). Mechanistically, we found that increased expression of C-C chemokine receptor 2 (CCR2) in α1AMPK deficient myelomonocytic cells facilitated their recruitment to the vascular wall. In addition, expression of the ATII receptor type 1a and the oxidative burst was increased in these cells, indicating an increased susceptibility towards pro-oxidant stimuli. Conclusions In summary, α1AMPK deletion in myelomonocytic cells aggravates vascular oxidative stress and dysfunction by enhancing their recruitment to the vascular wall and increasing their susceptibility towards pro-oxidant stimuli. Our observations suggest that metabolic control in myelomonocytic cells has profound implications for their inflammatory phenotype and may trigger the development of vascular disease.
Collapse
Affiliation(s)
- Thomas Jansen
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Tanja Schönfelder
- Center for Thrombosis and Hemostasis (CTH), Universitätsmedizin Mainz, Mainz, Germany
| | - Marc Foretz
- Institut Cochin, INSERM U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris cité, 24 rue du faubourg Saint Jacques, Paris, France
| | - Benoit Viollet
- Institut Cochin, INSERM U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris cité, 24 rue du faubourg Saint Jacques, Paris, France
| | - Andreas Daiber
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Moritz Brandt
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Universitätsmedizin Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Universitätsmedizin Mainz, Mainz, Germany
| | - Miroslava Kvandová
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Sanela Kalinovic
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Jeremy Lagrange
- Center for Thrombosis and Hemostasis (CTH), Universitätsmedizin Mainz, Mainz, Germany
| | - John F Keaney
- Division of Cardiovascular Medicine, UMass Medical School, 55 Lake Avenue North, Worcester, MA, USA
| | - Thomas Münzel
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Universitätsmedizin Mainz, Mainz, Germany
| | - Eberhard Schulz
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| |
Collapse
|
23
|
Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol 2019; 30:511-528. [PMID: 30165385 DOI: 10.1093/intimm/dxy054] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Tissue injury triggers a complex series of cellular responses, starting from inflammation activated by tissue and cell damage and proceeding to healing. By clearing cell debris, activating and resolving inflammation and promoting fibrosis, macrophages play key roles in most, if not all, phases of the response to injury. Recent studies of the mechanisms underlying the initial inflammation and later tissue regeneration and repair revealed that macrophages bridge these processes in part by supporting and activating stem/progenitor cells, clearing damaged tissue, remodeling extracellular matrix to prepare scaffolding for regeneration and promoting angiogenesis. However, macrophages also have a central role in the development of pathology induced by failed resolution (e.g. chronic inflammation) and excessive scarring. In this review, we summarize the activities of macrophages in inflammation and healing in response to acute injury in tissues with differing regenerative capacities. While macrophages lead similar processes in response to tissue injury in these tissues, their priorities and the consequences of their activities differ among tissues. Moreover, the magnitude, nature and duration of injury also greatly affect cellular responses and healing processes. In particular, continuous injury and/or failed resolution of inflammation leads to chronic ailments in which macrophage activities may become detrimental.
Collapse
Affiliation(s)
- Yumiko Oishi
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| |
Collapse
|
24
|
Zhang Q, Hu J, Wu Y, Luo H, Meng W, Xiao B, Xiao X, Zhou Z, Liu F. Rheb (Ras Homolog Enriched in Brain 1) Deficiency in Mature Macrophages Prevents Atherosclerosis by Repressing Macrophage Proliferation, Inflammation, and Lipid Uptake. Arterioscler Thromb Vasc Biol 2019; 39:1787-1801. [DOI: 10.1161/atvbaha.119.312870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective:
Macrophage foam cell formation is an important process in atherosclerotic plaque development. The small GTPase Rheb (Ras homolog enriched in brain 1) regulates endocytic trafficking that is critical for foam cell formation. However, it is unclear whether and how macrophage Rheb regulates atherogenesis, which are the focuses of the current study.
Approach and Results:
Immunofluorescence study confirmed the colocalization of Rheb in F4/80 and Mac-2 (galectin-3)–labeled lesional macrophages. Western blot and fluorescence-activated cell sorting analysis showed that Rheb expression was significantly increased in atherosclerotic lesions of atherosclerosis-prone (apoE
−/−
[apolipoprotein E deficient]) mice fed with Western diet. Increased Rheb expression was also observed in oxidized LDL (low-density lipoprotein)–treated macrophages. To investigate the in vivo role of macrophage Rheb, we established mature Rheb
mKO
(macrophage-specific Rheb knockout) mice by crossing the Rheb floxed mice with
F4/80-cre
mice. Macrophage-specific knockout of Rheb in mice reduced Western diet–induced atherosclerotic lesion by 32%, accompanied with a decrease in macrophage content in plaque. Mechanistically, loss of Rheb in macrophages repressed oxidized LDL–induced lipid uptake, inflammation, and macrophage proliferation. On the contrary, lentivirus-mediated overexpression of Rheb in macrophages increased oxidized LDL–induced lipid uptake and inflammation, and the stimulatory effect of Rheb was suppressed by the mTOR (mammalian target of rapamycin) inhibitor rapamycin or the PKA (protein kinase A) activator forskolin.
Conclusions:
Macrophage Rheb plays important role in Western diet–induced atherosclerosis by promoting macrophage proliferation, inflammation, and lipid uptake. Inhibition of expression and function of Rheb in macrophages is beneficial to prevent diet-induced atherosclerosis.
Collapse
Affiliation(s)
- Qinghai Zhang
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
- Department of Metabolism and Endocrinology, First Affiliated Hospital of University of South China, Hengyang, Hunan (Q.Z.)
| | - Jie Hu
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Yan Wu
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Hairong Luo
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Wen Meng
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Bo Xiao
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
- Department of Biology, Southern University of Science and Technology, Shenzhen, China (B.X.)
| | - Xianzhong Xiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China (X.X.)
| | - Zhiguang Zhou
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| | - Feng Liu
- From the Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China (Q.Z., J.H., Y.W., H.L., W.M., B.X., Z.Z., F.L.)
| |
Collapse
|
25
|
Zhang X, Huang Q, Wang X, Deng Z, Li J, Yan X, Jauhiainen M, Metso J, Libby P, Liu J, Shi GP. Dietary cholesterol is essential to mast cell activation and associated obesity and diabetes in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1690-1700. [PMID: 30978390 DOI: 10.1016/j.bbadis.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mast cell (MC) deficiency in KitW-sh/W-sh mice and inhibition with disodium chromoglycate (DSCG) or ketotifen reduced obesity and diabetes in mice on a high-cholesterol (1.25%) Western diet. Yet, Kit-independent MC-deficient mice and mice treated with DSCG disproved MC function in obesity and diabetes when mice are fed a high-fat diet (HFD) that contains no cholesterol. This study reproduced the obesity and diabetes inhibitory activities of DSCG and ketotifen from mice on a Western diet. Yet, such inhibitory effects were diminished in mice on the HFD. DSCG and ketotifen MC inhibitory activities were recovered from mice on the HFD supplemented with the same amount of cholesterol (1.25%) as that in the Western diet. DSCG and ketotifen effectively blunted the high-cholesterol diet-induced elevations of blood histamine and adipose tissue MC degranulation. Pearson's correlation test demonstrated significant and positive correlations between plasma histamine and total cholesterol or low-density lipoprotein-cholesterol (LDL). In cultured bone marrow-derived MCs, plasma from mice following a Western diet or a cholesterol-supplemented HFD, but not those from HFD-fed mice, induced MC degranulation and the release of β-hexosaminidase, histamine, and serotonin. IgE, LDL, very low-density lipoprotein, and high-density lipoprotein also induced MC activation, which can be inhibited by DSCG and ketotifen depending on the doses and types of MC inhibitors and cholesterol, and also the MC granule molecules of interest. DSCG or ketotifen lost their activities in inhibiting LDL-induced activation of MCs from LDL receptor-deficient mice. These results indicate that dietary cholesterol critically influences the function of mouse MCs.
Collapse
Affiliation(s)
- Xian Zhang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qin Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang Yan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jian Liu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20:247-260. [PMID: 30384259 PMCID: PMC6205410 DOI: 10.1016/j.redox.2018.09.025] [Citation(s) in RCA: 449] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/12/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation interact in the development of diabetic atherosclerosis. Intracellular hyperglycemia promotes production of mitochondrial reactive oxygen species (ROS), increased formation of intracellular advanced glycation end-products, activation of protein kinase C, and increased polyol pathway flux. ROS directly increase the expression of inflammatory and adhesion factors, formation of oxidized-low density lipoprotein, and insulin resistance. They activate the ubiquitin pathway, inhibit the activation of AMP-protein kinase and adiponectin, decrease endothelial nitric oxide synthase activity, all of which accelerate atherosclerosis. Changes in the composition of the gut microbiota and changes in microRNA expression that influence the regulation of target genes that occur in diabetes interact with increased ROS and inflammation to promote atherosclerosis. This review highlights the consequences of the sustained increase of ROS production and inflammation that influence the acceleration of atherosclerosis by diabetes. The potential contributions of changes in the gut microbiota and microRNA expression are discussed.
Collapse
Affiliation(s)
- Ting Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Ting Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Danli Fu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yangyang Hu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Jing Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qing Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hong Yu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Wenfeng Xu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
27
|
Affiliation(s)
- Steven D Crowley
- Division of Nephrology, Department of Medicine at Duke University and Durham VA Medical Centers, DUMC Durham, NC, USA
| |
Collapse
|
28
|
LeBlond ND, Fullerton MD. Methods to Evaluate AMPK Regulation of Macrophage Cholesterol Homeostasis. Methods Mol Biol 2018; 1732:477-493. [PMID: 29480494 DOI: 10.1007/978-1-4939-7598-3_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Macrophages are a driving force in the development and progression of atherosclerosis, a chronic condition that can lead to cardiovascular disease. In this chapter we describe methods that monitor macrophage cholesterol homeostasis such as cholesterol synthesis, uptake, and efflux, all with the use of AMPK activators and potential genetic models that could help shed light on the role of this metabolic regulator in atherosclerosis and other chronic diseases.
Collapse
Affiliation(s)
- Nicholas D LeBlond
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
29
|
Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget 2017; 8:92827-92840. [PMID: 29190959 PMCID: PMC5696225 DOI: 10.18632/oncotarget.21608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background and aims Determine the effect of AMPK activation and inhibition on the development of AAA (abdominal aortic aneurysm). Methods AAA was induced in ApoE−/− mice by Ang II (Angiotensin II)-infusion. AICAR (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside) was used as AMPK activator and Compound C was used as AMPK inhibitor. We further investigate the effect of metformin, a widely used anti-diabetic drug which could activate AMPK signal pathway, on the pathogenesis of aneurysm. Results Phospho-AMPK level was significantly decreased in AAA tissue compared with control aortas. AICAR significantly reduced the incidence, severity and mortality of aneurysm in the Ang II-infusion model. AICAR also alleviated macrophage infiltration and neovascularity in Ang II infusion model at day 28. The expression of pro-inflammatory factors, angiogenic factors and the activity of MMPs were also alleviated by AICAR during AAA induction. On the other hand, Compound C treatment did not exert obvious protective effect. AMPK activation may inhibit the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription-3 (STAT-3) during AAA induction. Administration of metformin also activated AMPK signal pathway and retarded AAA progression in Ang II infusion model. Conclusions Activation of AMPK signaling pathway may inhibit the Ang II-induced AAA in mice. Metformin may be a promising approach to the treatment of AAA.
Collapse
|
30
|
Pharmacological inhibition of protein tyrosine phosphatase 1B protects against atherosclerotic plaque formation in the LDLR -/- mouse model of atherosclerosis. Clin Sci (Lond) 2017; 131:2489-2501. [PMID: 28899902 PMCID: PMC6365594 DOI: 10.1042/cs20171066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 02/03/2023]
Abstract
Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with type 1 or type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance, due to impaired insulin receptor (IR) signalling. Here, we demonstrate that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR prevents and reverses atherosclerotic plaque formation in an LDLR−/− mouse model of atherosclerosis. Acute (single dose) or chronic PTP1B inhibitor (trodusquemine) treatment of LDLR−/− mice decreased weight gain and adiposity, improved glucose homeostasis and attenuated atherosclerotic plaque formation. This was accompanied by a reduction in both, circulating total cholesterol and triglycerides, a decrease in aortic monocyte chemoattractant protein-1 (MCP-1) expression levels and hyperphosphorylation of aortic Akt/PKB and AMPKα. Our findings are the first to demonstrate that PTP1B inhibitors could be used in prevention and reversal of atherosclerosis development and reduction in CVD risk.
Collapse
|
31
|
Abstract
The AMP-activated protein kinase (AMPK) is a central regulator of multiple metabolic pathways and may have therapeutic importance for treating obesity, insulin resistance, type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease (CVD). Given the ubiquitous expression of AMPK, it has been a challenge to evaluate which tissue types may be most beneficially poised for mediating the positive metabolic effects of AMPK-centered treatments. In this review we evaluate the metabolic phenotypes of transgenic mouse models in which AMPK expression and function have been manipulated, and the impact this has on controlling lipid metabolism, glucose homeostasis, and inflammation. This information may be useful for guiding the development of AMPK-targeted therapeutics to treat chronic metabolic diseases.
Collapse
Affiliation(s)
- Emily A Day
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Rebecca J Ford
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada.
| |
Collapse
|
32
|
Thompson D, Morrice N, Grant L, Le Sommer S, Ziegler K, Whitfield P, Mody N, Wilson HM, Delibegović M. Myeloid protein tyrosine phosphatase 1B (PTP1B) deficiency protects against atherosclerotic plaque formation in the ApoE -/- mouse model of atherosclerosis with alterations in IL10/AMPKα pathway. Mol Metab 2017; 6:845-853. [PMID: 28752048 PMCID: PMC5518727 DOI: 10.1016/j.molmet.2017.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Objective Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with Type 1 or Type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance due to impaired insulin receptor (IR) signaling. Moreover, inflammatory cells, in particular macrophages, play a key role in pathogenesis of atherosclerosis and insulin resistance in humans. We hypothesized that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR, specifically in macrophages, would have beneficial anti-inflammatory effects and lead to protection against atherosclerosis and CVD. Methods We generated novel macrophage-specific PTP1B knockout mice on atherogenic background (ApoE−/−/LysM-PTP1B). Mice were fed standard or pro-atherogenic diet, and body weight, adiposity (echoMRI), glucose homeostasis, atherosclerotic plaque development, and molecular, biochemical and targeted lipidomic eicosanoid analyses were performed. Results Myeloid-PTP1B knockout mice on atherogenic background (ApoE−/−/LysM-PTP1B) exhibited a striking improvement in glucose homeostasis, decreased circulating lipids and decreased atherosclerotic plaque lesions, in the absence of body weight/adiposity differences. This was associated with enhanced phosphorylation of aortic Akt, AMPKα and increased secretion of circulating anti-inflammatory cytokine interleukin-10 (IL-10) and prostaglandin E2 (PGE2), without measurable alterations in IR phosphorylation, suggesting a direct beneficial effect of myeloid-PTP1B targeting. Conclusions Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE−/− mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk. PTP1B inhibition as therapy for atherosclerosis/cardiovascular disease is proposed. Myeloid-PTP1B mice on ApoE−/− background (ApoE−/−/LysM-PTP1B) were generated. ApoE−/−/LysM-PTP1B had improved glucose homeostasis with no body weight differences. ApoE−/−/LysM-PTP1B had lower lipids and protection against atherosclerotic plaques. Protection was via a PGE2/IL-10/AMPKα mechanism.
Collapse
Affiliation(s)
- D Thompson
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - N Morrice
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - L Grant
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - S Le Sommer
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - K Ziegler
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, UK
| | - P Whitfield
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, UK
| | - N Mody
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - H M Wilson
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - M Delibegović
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
33
|
Fuller KNZ, Summers CM, Valentine RJ. Effect of a single bout of aerobic exercise on high-fat meal-induced inflammation. Metabolism 2017; 71:144-152. [PMID: 28521867 DOI: 10.1016/j.metabol.2017.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Chronic low-grade inflammation is involved in the development of metabolic disorders including atherosclerosis, type 2 diabetes (T2D) and metabolic syndrome. Aerobic exercise has been shown to be anti-inflammatory and attenuate postprandial blood lipids, however, the effect of exercise on postprandial inflammation remains unclear. The aim of this study was to determine the protective effect of a single bout of aerobic exercise against postprandial lipemia and peripheral blood mononuclear cell (PBMC) inflammation and to evaluate associations with changes in the energy-sensing enzyme, AMP-activated protein kinase (AMPK). MATERIALS AND METHODS Healthy male subjects (n=12, age=23±2, %Fat=19±2) reported to the laboratory following an overnight fast (12-14h) on two separate occasions for consumption of a high-fat meal (HFM). Participants completed an acute bout of aerobic exercise the afternoon prior to one of the HFM visits. RESULTS AND CONCLUSION Results indicate that the single bout of moderate aerobic exercise increased AMPK signaling in PBMCs, as shown by increased phosphorylated acetyl-CoA carboxylase (p-ACC). This may be due to decreases in the AMPK inhibitory kinases PKD and GSK3β. Additionally, prior moderate intensity exercise decreased postprandial lipemia (PPL) and some mediators of the inflammatory pathway, such as p-NF-κB. These findings that acute aerobic exercise improves AMPK and NF-κB signaling in human PBMCs contribute support to the anti-inflammatory roles of exercise.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- The Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA; Department of Kinesiology, Iowa State University, Ames, IA
| | - Corey M Summers
- Department of Kinesiology, Iowa State University, Ames, IA; The Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA
| | | |
Collapse
|
34
|
Abstract
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Ian P Salt
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.).
| | - D Grahame Hardie
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.)
| |
Collapse
|
35
|
Zhang M, Zhu H, Ding Y, Liu Z, Cai Z, Zou MH. AMP-activated protein kinase α1 promotes atherogenesis by increasing monocyte-to-macrophage differentiation. J Biol Chem 2017; 292:7888-7903. [PMID: 28330873 PMCID: PMC5427268 DOI: 10.1074/jbc.m117.779447] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/20/2017] [Indexed: 02/01/2023] Open
Abstract
Monocyte-to-macrophage differentiation, which can be initiated by physiological or atherogenic factors, is a pivotal process in atherogenesis, a disorder in which monocytes adhere to endothelial cells and subsequently migrate into the subendothelial spaces, where they differentiate into macrophages and macrophage-derived foam cells and cause atherosclerotic lesions. However, the monocyte-differentiation signaling pathways that are activated by atherogenic factors are poorly defined. Here we report that the AMP-activated protein kinase α1 (AMPKα1) in monocytes promotes atherosclerosis by increasing monocyte differentiation and survival. Exposure of monocytes to oxidized low-density lipoprotein, 7-ketocholesterol, phorbol 12-myristate 13-acetate, or macrophage colony-stimulated factor (M-CSF) significantly activated AMPK and promoted monocyte-to-macrophage differentiation. M-CSF-activated AMPK is via M-CSF receptor-dependent reactive oxygen species production. Consistently, genetic deletion of AMPKα1 or pharmacological inhibition of AMPK blunted monocyte-to-macrophage differentiation and promoted monocyte/macrophage apoptosis. Compared with apolipoprotein E knock-out (ApoE-/-) mice, which show impaired clearing of plasma lipoproteins and spontaneously develop atherosclerosis, ApoE-/-/AMPKα1-/- mice showed reduced sizes of atherosclerotic lesions and lesser numbers of macrophages in the lesions. Furthermore, aortic lesions were decreased in ApoE-/- mice transplanted with ApoE-/-/AMPKα1-/- bone marrow and in myeloid-specific AMPKα1-deficient ApoE-/- mice. Finally, rapamycin treatment, which abolished delayed monocyte differentiation in ApoE-/-/AMPKα1-/- mice, lost its atherosclerosis-lowering effects in these mice. Mechanistically, we found that AMPKα1 regulates FoxO3-dependent expression of both LC3 and ULK1, which are two important autophagy-related markers. Rapamycin treatment increased FoxO3 activity as well as LC3 and ULK1 expressions in macrophages from AMPKα1-/- mice. Our results reveal that AMPKα1 deficiency impairs autophagy-mediated monocyte differentiation and decreases monocyte/macrophage survival, which attenuates atherosclerosis in ApoE-/- mice in vivo.
Collapse
Affiliation(s)
- Miao Zhang
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104 and
| | - Huaiping Zhu
- the Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia 30302-5035
| | - Ye Ding
- the Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia 30302-5035
| | - Zhaoyu Liu
- the Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia 30302-5035
| | - Zhejun Cai
- the Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia 30302-5035
| | - Ming-Hui Zou
- the Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia 30302-5035
| |
Collapse
|
36
|
Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, Samykutty A, Zhang L, Yan J, Miller D, Suttles J, Zhang HG. Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Mol Ther 2017; 25:1641-1654. [PMID: 28274798 DOI: 10.1016/j.ymthe.2017.01.025] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
The intestinal immune system is continuously exposed to massive amounts of nanoparticles derived from food. Whether nanoparticles from plants we eat daily have a role in maintaining intestinal immune homeostasis is poorly defined. Here, we present evidence supporting our hypothesis that edible nanoparticles regulate intestinal immune homeostasis by targeting dendritic cells (DCs). Using three mouse colitis models, our data show that orally given nanoparticles isolated from broccoli extracts protect mice against colitis. Broccoli-derived nanoparticle (BDN)-mediated activation of adenosine monophosphate-activated protein kinase (AMPK) in DCs plays a role in not only prevention of DC activation but also induction of tolerant DCs. Adoptively transferring DCs pre-pulsed with total BDN lipids, but not sulforaphane (SFN)-depleted BDN lipids, prevented DSS-induced colitis in C57BL/6 (B6) mice, supporting the role of BDN SFN in the induction of DC tolerance. Adoptively transferring AMPK+/+, but not AMPK-/-, DCs pre-pulsed with SFN prevented DSS-induced colitis in B6 mice, further supporting the DC AMPK role in SFN-mediated prevention of DSS-induced colitis. This finding could open new preventive or therapeutic avenues to address intestinal-related inflammatory diseases via activating AMPK.
Collapse
Affiliation(s)
- Zhongbin Deng
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Yuan Rong
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Yun Teng
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jingyao Mu
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiaoying Zhuang
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Michael Tseng
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Abhilash Samykutty
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lifeng Zhang
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jun Yan
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Donald Miller
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jill Suttles
- Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex VA Medical Center, Louisville, KY 40206, USA; Department of Microbiology & Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|