1
|
Geng C, Li X, Dan L, Xie L, Zhou M, Guan K, Chen Q, Xu Y, Ding R, Li J, Zhang Y, Sharifzadeh M, Liu R, Li W, Lu H. Female mice exposed to varying ratios of stearic to palmitic acid in a high-fat diet during gestation and lactation shows differential impairments of beta-cell function. Life Sci 2025; 369:123532. [PMID: 40057226 DOI: 10.1016/j.lfs.2025.123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
AIMS While emerging evidence implicates an abnormal stearic-to-palmitic acid ratio in saturated fats in beta-cell dysfunction, their gestational/lactational impacts remain underexplored. This study evaluates the differential transient and long-lasting effects of high-fat diets with contrasting stearic-to-palmitic acid ratios on maternal beta-cell function. MATERIALS AND METHODS Female mice were fed high-fat diets with high/low stearic-to-palmitic acid ratios during gestation/lactation, followed by a recovery period and subsequent exposure to an obesogenic diet. Beta-cell function was assessed using ex-vivo glucose-stimulated insulin secretion (GSIS) and immunohistochemistry. Islets mRNA profiling was performed using RNA-sequencing. KEY FINDINGS Both high- and low-ratio groups showed impaired GSIS post-lactation. High-ratio-fed dams exhibited pronounced compensatory responses, including increased islet size, number, and elevated Stx1a, Stx4, Pdx1, Mafa expression. Following metabolic re-challenge, high-ratio group demonstrated more severely impaired ex vivo insulin release. No significant differences in islet apoptosis and senescence were observed between the two groups. Transcriptomic profiling, however, revealed distinct mechanistic pathways: the high-ratio diet was likely to disrupt beta-cell organelles ultrastructure, while the low-ratio diet predominantly dysregulated chemokine-mediated immune signaling networks. SIGNIFICANCE Gestational/lactational exposure to high-fat diets with both high and low ratios of stearic-to-palmitic acid exerts pronounced transient impacts on beta-cell function, with the high-ratio diet inducing more severe and persistent detrimental effects. These findings highlight the critical influence and importance of dietary saturated fatty acid composition in maternal metabolic programming and beta-cell vulnerability.
Collapse
Affiliation(s)
- Chenchen Geng
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Xiaohan Li
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Lingfeng Dan
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Liyan Xie
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Min Zhou
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Kaile Guan
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Qi Chen
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Yan Xu
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Rong Ding
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Jiaqi Li
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Yue Zhang
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Mohammad Sharifzadeh
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| | - Rui Liu
- Department of Tropical and Liver Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China.
| | - Wenting Li
- Department of Tropical and Liver Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Huimin Lu
- Department of Nutrition and Food Hygiene (National Key Discipline), Public Health College, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Guo J, Xue S, Wang X, Wang L, Wen SY. Emerging insights on the role of Elovl6 in human diseases: Therapeutic challenges and opportunities. Life Sci 2025; 361:123308. [PMID: 39675554 DOI: 10.1016/j.lfs.2024.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
ELOVL6, elongation-of-very-long-chain-fatty acids 6, a crucial enzyme in lipid metabolism, primarily responsible for the elongation of carbon chains of C12-C16 saturated fatty acids. It plays a significant role in various human diseases, particularly those associated with metabolic disorders related to fatty acid synthesis, such as insulin resistance, non-alcoholic fatty liver disease, cancer, and cardiovascular diseases. Emerging research also links ELOVL6 to kidney diseases, neurological conditions such as epilepsy, and pulmonary fibrosis. The enzyme's expression is regulated by various factors including diet, oxidative stress, and circadian rhythms. For instance, a high-carbohydrate diet can promote an increase in ELOVL6 expression. This abnormality leads to an accumulation of long-chain fatty acids and lipid deposition, ultimately resulting in pathological consequences across multiple systems in the body. As a biological target, ELOVL6 holds promise for diagnostic and therapeutic applications, with future research expected to uncover its mechanisms and therapeutic potential, paving the way for novel interventions in multiple disease areas. Here, the expression regulation and function of ELOVL6 in various human diseases are reviewed. This review underscores ELOVL6 as a significant therapeutic target for human diseases, with its potential for diagnostic and therapeutic applications anticipated to drive future research and enable innovative interventions in various pathological conditions.
Collapse
Affiliation(s)
- Jiao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shulan Xue
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Shimizu K, Shindou H, Tomita K, Nishinaka T. [Approaches to the Treatment of Lifestyle-related Diseases Through the Regulation of Phospholipid Biosynthesis in the Liver]. YAKUGAKU ZASSHI 2025; 145:171-176. [PMID: 40024728 DOI: 10.1248/yakushi.24-00177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The incidence of type 2 diabetes mellitus (T2DM), a major lifestyle-related disease, is increasing worldwide. T2DM, which accounts for approximately 90-95% of all diabetes mellitus cases, is caused by deficient insulin secretion, tissue insulin resistance, or both. Many therapeutic drugs for T2DM have been developed that target the pancreas, which secretes insulin. The liver is the central organ for glucose and lipid metabolism, and failure of hepatic regulatory mechanisms leads to hyperglycemia, insulin resistance, and lipid accumulation. Here, we focused on the liver as a novel therapeutic target for T2DM. The fatty acid composition of phospholipids, a major component of biological membranes, has received considerable research attention owing to their involvement in T2DM onset and progression. Fatty acids in phospholipids are cleaved by phospholipase A to form lysophospholipids, which are subsequently remodeled back into phospholipids by lysophospholipid acyltransferases (LPLATs). LPLATs play an important role in lipid metabolism and homeostasis by regulating the abundance of various phospholipid species in multiple cell and tissue types. We investigated whether overexpression of LPLAT10, also called LPCAT4 and LPEAT2, in the liver could improve abnormalities in glucose metabolism and help treat T2DM. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector using an improved Ad vector named Ad-E4-122aT, which exhibited higher and longer-term transgene expression and lower hepatotoxicity than conventional Ad vectors. In this article, we review the current findings that changes in hepatic phospholipid species due to liver-specific LPLAT10 overexpression affect the pancreas and suppress postprandial hyperglycemia by increasing postprandial insulin secretion.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| |
Collapse
|
4
|
Watanabe N, Kaneko YK, Ishihara H, Shizu R, Yoshinari K, Yamaguchi M, Kimura T, Ishikawa T. Diacylglycerol kinase ζ is a positive insulin secretion regulator in pancreatic β-cell line MIN6. Biochem Biophys Res Commun 2025; 742:151109. [PMID: 39644605 DOI: 10.1016/j.bbrc.2024.151109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Some isoforms of diacylglycerol (DAG) kinase (DGK), an enzyme converting DAG into phosphatidic acid, i.e., DGKα, γ and δ, have been reportedly involved in the regulation of pancreatic β-cell function. DGKζ has also been reported to be expressed in rat pancreatic β-cells. However, its function in pancreatic β-cells remains unknown. The present study aimed to elucidate the function of DGKζ in pancreatic β-cells. The expression of DGKζ was detected in the β-cell line MIN6B and mouse pancreatic islets and in the cytoplasmic fraction from MIN6B cells. The knockdown of DGKζ with siRNA significantly decreased glucose-induced insulin secretion in MIN6B cells. The induction of DGKζ expression in MIN6CEon1 cells with a doxycycline-inducible stable expression system significantly increased glucose-induced insulin secretion. In contrast, glucose-induced insulin secretion was not changed when a kinase-dead DGKζ mutant (G356D) was overexpressed in MIN6CEon1 cells, indicating that a mechanism dependent on its kinase activity mediates the facilitatory effect of DGKζ on glucose-induced insulin secretion. Additionally, we revealed that DGKζ overexpression exhibited no effect on cell cycle of MIN6 cells. These results suggest that DGKζ plays a facilitatory role in insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Naoya Watanabe
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan.
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Ryota Shizu
- Department of Molecular Biology and Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Kouichi Yoshinari
- Department of Molecular Biology and Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| |
Collapse
|
5
|
Alradi M, Askari H, Shaw M, Bhavsar JD, Kingham BF, Polson SW, Fancher IS. A long-term high-fat diet induces differential gene expression changes in spatially distinct adipose tissue of male mice. Physiol Genomics 2024; 56:819-832. [PMID: 39348460 PMCID: PMC11573270 DOI: 10.1152/physiolgenomics.00080.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024] Open
Abstract
The accumulation of visceral adipose tissue (VAT) is strongly associated with cardiovascular disease and diabetes. In contrast, individuals with increased subcutaneous adipose tissue (SAT) without corresponding increases in VAT are associated with a metabolic healthy obese phenotype. These observations implicate dysfunctional VAT as a driver of disease processes, warranting investigation into obesity-induced alterations of distinct adipose depots. To determine the effects of obesity on adipose gene expression, male mice (n = 4) were fed a high-fat diet to induce obesity or a normal laboratory diet (lean controls) for 12-14 mo. Mesenteric VAT and inguinal SAT were isolated for bulk RNA sequencing. AT from lean controls served as a reference to obesity-induced changes. The long-term high-fat diet induced the expression of 169 and 814 unique genes in SAT and VAT, respectively. SAT from obese mice exhibited 308 differentially expressed genes (164 upregulated and 144 downregulated). VAT from obese mice exhibited 690 differentially expressed genes (262 genes upregulated and 428 downregulated). KEGG pathway and GO analyses revealed that metabolic pathways were upregulated in SAT versus downregulated in VAT while inflammatory signaling was upregulated in VAT. We next determined common genes that were differentially regulated between SAT and VAT in response to obesity and identified four genes that exhibited this profile: elovl6 and kcnj15 were upregulated in SAT/downregulated in VAT while trdn and hspb7 were downregulated in SAT/upregulated in VAT. We propose that these genes in particular should be further pursued to determine their roles in SAT versus VAT with respect to obesity.NEW & NOTEWORTHY A long-term high-fat diet induced the expression of more than 980 unique genes across subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). The high-fat diet also induced the differential expression of nearly 1,000 AT genes. We identified four genes that were oppositely expressed in SAT versus VAT in response to the high-fat diet and propose that these genes in particular may serve as promising targets aimed at resolving VAT dysfunction in obesity.
Collapse
Affiliation(s)
- Malak Alradi
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, Delaware, United States
| | - Hassan Askari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mark Shaw
- Delware Biotechnology Institute, University of Delaware, Newark, Delaware, United States
| | - Jaysheel D Bhavsar
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - Brewster F Kingham
- Delware Biotechnology Institute, University of Delaware, Newark, Delaware, United States
| | - Shawn W Polson
- Delware Biotechnology Institute, University of Delaware, Newark, Delaware, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
- Department of Computer and Information Sciences, College of Engineering, University of Delaware, Newark, Delaware, United States
| | - Ibra S Fancher
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, Delaware, United States
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
6
|
Mehl F, Sánchez-Archidona AR, Meitil I, Gerl M, Cruciani-Guglielmacci C, Wigger L, Le Stunff H, Meneyrol K, Lallement J, Denom J, Klose C, Simons K, Pagni M, Magnan C, Ibberson M, Thorens B. A multiorgan map of metabolic, signaling, and inflammatory pathways that coordinately control fasting glycemia in mice. iScience 2024; 27:111134. [PMID: 39507247 PMCID: PMC11539597 DOI: 10.1016/j.isci.2024.111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
To identify the pathways that are coordinately regulated in pancreatic β cells, muscle, liver, and fat to control fasting glycemia we fed C57Bl/6, DBA/2, and Balb/c mice a regular chow or a high fat diet for 5, 13, and 33 days. Physiological, transcriptomic and lipidomic data were used in a data fusion approach to identify organ-specific pathways linked to fasting glycemia across all conditions investigated. In pancreatic islets, constant insulinemia despite higher glycemic levels was associated with reduced expression of hormone and neurotransmitter receptors, OXPHOS, cadherins, integrins, and gap junction mRNAs. Higher glycemia and insulin resistance were associated, in muscle, with decreased insulin signaling, glycolytic, Krebs' cycle, OXPHOS, and endo/exocytosis mRNAs; in hepatocytes, with reduced insulin signaling, branched chain amino acid catabolism and OXPHOS mRNAs; in adipose tissue, with increased innate immunity and lipid catabolism mRNAs. These data provide a resource for further studies of interorgan communication in glucose homeostasis.
Collapse
Affiliation(s)
- Florence Mehl
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Ana Rodríguez Sánchez-Archidona
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ida Meitil
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | | | | | - Leonore Wigger
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Hervé Le Stunff
- Université de Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | - Kelly Meneyrol
- Université de Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | | | - Jessica Denom
- Université de Paris Cité, BFA, UMR 8251, CNRS, 75013 Paris, France
| | | | | | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
| | - Bernard Thorens
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Tao YF, Pan YF, Zhong CY, Wang QC, Hua JX, Lu SQ, Li Y, Dong YL, Xu P, Jiang BJ, Qiang J. Silencing the fatty acid elongase gene elovl6 induces reprogramming of nutrient metabolism in male Oreochromis niloticus. Int J Biol Macromol 2024; 271:132666. [PMID: 38806081 DOI: 10.1016/j.ijbiomac.2024.132666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.
Collapse
Affiliation(s)
- Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yi-Fan Pan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Chun-Yi Zhong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qing-Chun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Ji-Xiang Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Si-Qi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ya-Lun Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Bing-Jie Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| |
Collapse
|
8
|
Jin C, Wang S, Sui X, Meng Q, Wu G. Low expression of ELOVL6 may be involved in fat loss in white adipose tissue of cancer-associated cachexia. Lipids Health Dis 2024; 23:144. [PMID: 38760797 PMCID: PMC11100253 DOI: 10.1186/s12944-024-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Cancer-associated cachexia (CAC) arises from malignant tumors and leads to a debilitating wasting syndrome. In the pathophysiology of CAC, the depletion of fat plays an important role. The mechanisms of CAC-induced fat loss include the enhancement of lipolysis, inhibition of lipogenesis, and browning of white adipose tissue (WAT). However, few lipid-metabolic enzymes have been reported to be involved in CAC. This study hypothesized that ELOVL6, a critical enzyme for the elongation of fatty acids, may be involved in fat loss in CAC. METHODS Transcriptome sequencing technology was used to identify CAC-related genes in the WAT of a CAC rodent model. Then, the expression level of ELOVL6 and the fatty acid composition were analyzed in a large clinical sample. Elovl6 was knocked down by siRNA in 3T3-L1 mouse preadipocytes to compare with wild-type 3T3-L1 cells treated with tumor cell conditioned medium. RESULTS In the WAT of patients with CAC, a significant decrease in the expression of ELOVL6 was found, which was linearly correlated with the extent of body mass reduction. Gas chromatographic analysis revealed an increase in palmitic acid (C16:0) and a decrease in linoleic acid (C18:2n-6) in these tissue samples. After treatment with tumor cell-conditioned medium, 3T3-L1 mouse preadipocytes showed a decrease in Elovl6 expression, and Elovl6-knockdown cells exhibited a reduction in preadipocyte differentiation and lipogenesis. Similarly, the knockdown of Elovl6 in 3T3-L1 cells resulted in a significant increase in palmitic acid (C16:0) and a marked decrease in oleic acid (C18:1n-9) content. CONCLUSION Overall, the expression of ELOVL6 was decreased in the WAT of CAC patients. Decreased expression of ELOVL6 might induce fat loss in CAC patients by potentially altering the fatty acid composition of adipocytes. These findings suggest that ELOVL6 may be used as a valuable biomarker for the early diagnosis of CAC and may hold promise as a target for future therapies.
Collapse
Affiliation(s)
- Chenyang Jin
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Shuangjie Wang
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Xiangyu Sui
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qingyang Meng
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China.
- Shanghai Clinical Nutrition Research Centre, Shanghai, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China.
- Shanghai Clinical Nutrition Research Centre, Shanghai, China.
| |
Collapse
|
9
|
Shimizu K, Ono M, Mikamoto T, Urayama Y, Yoshida S, Hase T, Michinaga S, Nakanishi H, Iwasaki M, Terada T, Sakurai F, Mizuguchi H, Shindou H, Tomita K, Nishinaka T. Overexpression of lysophospholipid acyltransferase, LPLAT10/LPCAT4/LPEAT2, in the mouse liver increases glucose-stimulated insulin secretion. FASEB J 2024; 38:e23425. [PMID: 38226852 DOI: 10.1096/fj.202301594rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Moe Ono
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takenari Mikamoto
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Yuya Urayama
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Sena Yoshida
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomomi Hase
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan
| | | | - Miho Iwasaki
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| |
Collapse
|
10
|
Motomura K, Matsuzaka T, Shichino S, Ogawa T, Pan H, Nakajima T, Asano Y, Okayama T, Takeuchi T, Ohno H, Han SI, Miyamoto T, Takeuchi Y, Sekiya M, Sone H, Yahagi N, Nakagawa Y, Oda T, Ueha S, Ikeo K, Ogura A, Matsushima K, Shimano H. Single-Cell Transcriptome Profiling of Pancreatic Islets From Early Diabetic Mice Identifies Anxa10 for Ca2+ Allostasis Toward β-Cell Failure. Diabetes 2024; 73:75-92. [PMID: 37871012 PMCID: PMC10784657 DOI: 10.2337/db23-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Type 2 diabetes is a progressive disorder denoted by hyperglycemia and impaired insulin secretion. Although a decrease in β-cell function and mass is a well-known trigger for diabetes, the comprehensive mechanism is still unidentified. Here, we performed single-cell RNA sequencing of pancreatic islets from prediabetic and diabetic db/db mice, an animal model of type 2 diabetes. We discovered a diabetes-specific transcriptome landscape of endocrine and nonendocrine cell types with subpopulations of β- and α-cells. We recognized a new prediabetic gene, Anxa10, that was induced by and regulated Ca2+ influx from metabolic stresses. Anxa10-overexpressed β-cells displayed suppression of glucose-stimulated intracellular Ca2+ elevation and potassium-induced insulin secretion. Pseudotime analysis of β-cells predicted that this Ca2+-surge responder cluster would proceed to mitochondria dysfunction and endoplasmic reticulum stress. Other trajectories comprised dedifferentiation and transdifferentiation, emphasizing acinar-like cells in diabetic islets. Altogether, our data provide a new insight into Ca2+ allostasis and β-cell failure processes. ARTICLE HIGHLIGHTS The transcriptome of single-islet cells from healthy, prediabetic, and diabetic mice was studied. Distinct β-cell heterogeneity and islet cell-cell network in prediabetes and diabetes were found. A new prediabetic β-cell marker, Anxa10, regulates intracellular Ca2+ and insulin secretion. Diabetes triggers β-cell to acinar cell transdifferentiation.
Collapse
Affiliation(s)
- Kaori Motomura
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Tatsuro Ogawa
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Hao Pan
- Department of Bio-Science, Nagahama Institute of BioScience and Technology, Nagahama, Shiga, Japan
| | - Takuya Nakajima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Yasuhito Asano
- Faculty of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan
| | - Toshitsugu Okayama
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Tomoyo Takeuchi
- Tsukuba Human Tissue Biobank Center, University of Tsukuba Hospital, Ibaraki, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Song-iee Han
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepatobiliary Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Atsushi Ogura
- Department of Bio-Science, Nagahama Institute of BioScience and Technology, Nagahama, Shiga, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Ren L, Charbord J, Chu L, Kemas AM, Bertuzzi M, Mi J, Xing C, Lauschke VM, Andersson O. Adjudin improves beta cell maturation, hepatic glucose uptake and glucose homeostasis. Diabetologia 2024; 67:137-155. [PMID: 37843554 PMCID: PMC10709271 DOI: 10.1007/s00125-023-06020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
AIMS/HYPOTHESIS Recovering functional beta cell mass is a promising approach for future diabetes therapies. The aim of the present study is to investigate the effects of adjudin, a small molecule identified in a beta cell screen using zebrafish, on pancreatic beta cells and diabetes conditions in mice and human spheroids. METHODS In zebrafish, insulin expression was examined by bioluminescence and quantitative real-time PCR (qPCR), glucose levels were examined by direct measurements and distribution using a fluorescent glucose analogue, and calcium activity in beta cells was analysed by in vivo live imaging. Pancreatic islets of wild-type postnatal day 0 (P0) and 3-month-old (adult) mice, as well as adult db/db mice (i.e. BKS(D)-Leprdb/JOrlRj), were cultured in vitro and analysed by qPCR, glucose stimulated insulin secretion and whole mount staining. RNA-seq was performed for islets of P0 and db/db mice. For in vivo assessment, db/db mice were treated with adjudin and subjected to analysis of metabolic variables and islet cells. Glucose consumption was examined in primary human hepatocyte spheroids. RESULTS Adjudin treatment increased insulin expression and calcium response to glucose in beta cells and decreased glucose levels after beta cell ablation in zebrafish. Adjudin led to improved beta cell function, decreased beta cell proliferation and glucose responsive insulin secretion by decreasing basal insulin secretion in in vitro cultured newborn mouse islets. RNA-seq of P0 islets indicated that adjudin treatment resulted in increased glucose metabolism and mitochondrial function, as well as downstream signalling pathways involved in insulin secretion. In islets from db/db mice cultured in vitro, adjudin treatment strengthened beta cell identity and insulin secretion. RNA-seq of db/db islets indicated adjudin-upregulated genes associated with insulin secretion, membrane ion channel activity and exocytosis. Moreover, adjudin promoted glucose uptake in the liver of zebrafish in an insulin-independent manner, and similarly promoted glucose consumption in primary human hepatocyte spheroids with insulin resistance. In vivo studies using db/db mice revealed reduced nonfasting blood glucose, improved glucose tolerance and strengthened beta cell identity after adjudin treatment. CONCLUSIONS/INTERPRETATION Adjudin promoted functional maturation of immature islets, improved function of dysfunctional islets, stimulated glucose uptake in liver and improved glucose homeostasis in db/db mice. Thus, the multifunctional drug adjudin, previously studied in various contexts and conditions, also shows promise in the management of diabetic states. DATA AVAILABILITY Raw and processed RNA-seq data for this study have been deposited in the Gene Expression Omnibus under accession number GSE235398 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235398 ).
Collapse
Affiliation(s)
- Lipeng Ren
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jérémie Charbord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lianhe Chu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jiarui Mi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chen Xing
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Tübingen University, Tübingen, Germany
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Sugi T, Katoh Y, Ikeda T, Seta D, Iwata T, Nishio H, Sugawara M, Kato D, Katoh K, Kawana K, Yaguchi T, Kawakami Y, Hirai S. SCD1 inhibition enhances the effector functions of CD8 + T cells via ACAT1-dependent reduction of esterified cholesterol. Cancer Sci 2024; 115:48-58. [PMID: 37879607 PMCID: PMC10823278 DOI: 10.1111/cas.15999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
We previously reported that the inhibition of stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor function of CD8+ T cells indirectly via restoring production of DC recruiting chemokines by cancer cells and subsequent induction of antitumor CD8+ T cells. In this study, we investigated the molecular mechanism of direct enhancing effects of SCD1 inhibitors on CD8+ T cells. In vitro treatment of CD8+ T cells with SCD1 inhibitors enhanced IFN-γ production and cytotoxic activity of T cells along with decreased oleic acid and esterified cholesterol, which is generated by cholesterol esterase, acetyl-CoA acetyltransferase 1 (ACAT1), in CD8+ T cells. The addition of oleic acid or cholesteryl oleate reversed the enhanced functions of CD8+ T cells treated with SCD1 inhibitors. Systemic administration of SCD1 inhibitor to MCA205 tumor-bearing mice enhanced IFN-γ production of tumor-infiltrating CD8+ T cells, in which oleic acid and esterified cholesterol, but not cholesterol, were decreased. These results indicated that SCD1 suppressed effector functions of CD8+ T cells through the increased esterified cholesterol in an ACAT1-dependent manner, and SCD1 inhibition enhanced T cell activity directly through decreased esterified cholesterol. Finally, SCD1 inhibitors or ACAT1 inhibitors synergistically enhanced the antitumor effects of anti-PD-1 antibody therapy or CAR-T cell therapy in mouse tumor models. Therefore, the SCD1-ACAT1 axis is regulating effector functions of CD8+ T cells, and SCD1 inhibitors, and ACAT1 inhibitors are attractive drugs for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshihiro Sugi
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Yuki Katoh
- Division of Anatomical Science, Department of Functional MorphologyNihon University School of MedicineTokyoJapan
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Toshikatsu Ikeda
- Division of Anatomical Science, Department of Functional MorphologyNihon University School of MedicineTokyoJapan
| | - Daichi Seta
- Nihon University School of MedicineTokyoJapan
| | - Takashi Iwata
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Hiroshi Nishio
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Masaki Sugawara
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Daiki Kato
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kanoko Katoh
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Kei Kawana
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Tomonori Yaguchi
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and ImmunobiologyKyoto University Graduate School of MedicineKyotoJapan
| | - Yutaka Kawakami
- Department of Immunology, School of MedicineInternational University of Health and WelfareChibaJapan
| | - Shuichi Hirai
- Division of Anatomical Science, Department of Functional MorphologyNihon University School of MedicineTokyoJapan
| |
Collapse
|
13
|
Shimizu K. Development of an Improved Adenovirus Vector and Its Application to the Treatment of Lifestyle-Related Diseases. Biol Pharm Bull 2024; 47:886-894. [PMID: 38692864 DOI: 10.1248/bpb.b23-00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The number of patients with lifestyle-related diseases such as type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), has continued to increase worldwide. Therefore, development of innovative therapeutic methods targeting lifestyle-related diseases is required. Gene therapy has attracted considerable attention as an advanced medical treatment. Safe and high-performance vectors are essential for the practical application of gene therapy. Replication-incompetent adenovirus (Ad) vectors are widely used in clinical gene therapy and basic research. Here, we developed a novel Ad vector, named Ad-E4-122aT, exhibiting higher and longer-term transgene expression and lower hepatotoxicity than conventional Ad vectors. We also elucidated the mechanisms underlying Ad vector-induced hepatotoxicity during the early phase using Ad-E4-122aT. Next, we examined the therapeutic effects of the genes of interest, namely zinc finger AN1-type domain 3 (ZFAND3), lipoprotein lipase (LPL), and lysophospholipid acyltransferase 10 (LPLAT10), on lifestyle-related diseases using Ad-E4-122aT. We showed that the overexpression of ZFAND3 in the liver improved glucose tolerance and insulin resistance. Liver-specific LPL overexpression suppressed hepatic lipid accumulation and improved glucose metabolism. LPLAT10 overexpression in the liver suppressed postprandial hyperglycemia by increasing glucose-stimulated insulin secretion. Furthermore, we also focused on foods to advance research on the pathophysiology and treatment of lifestyle-related diseases. Cranberry and calamondin, which are promising functional foods, attenuated the progression of MASLD/NAFLD. Our findings will aid the development of new therapeutic methods, including gene therapy, for lifestyle-related diseases such as T2DM and MASLD/NAFLD.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
14
|
Lin Z, Wu Z, Huang C, Lin H, Zhang M, Chen M, Han K, Huang W, Ruan S. Cloning and expression characterization of elongation of very long-chain fatty acids protein 6 ( elovl6) with dietary fatty acids, ambient salinity and starvation stress in Scylla paramamosain. Front Physiol 2023; 14:1221205. [PMID: 37520818 PMCID: PMC10382226 DOI: 10.3389/fphys.2023.1221205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Elongation of very long-chain fatty acids protein 6 (ELOVL6) played crucial roles in regulating energy expenditure and fatty acid metabolism. Many studies have performed to investigate the physiological roles and regulatory mechanisms of elovl6 in fish and animals, while few studies were reported in crustaceans. Methods: Here we reported on the molecular cloning, tissue distribution and expression profiles in response to dietary fatty acids, ambient salinity and starvation stress in Scylla paramamosain by using rapid amplification of cDNA ends (RACE) and quantitative real-time PCR. Results: Three elovl6 isoforms (named elovl6a, elovl6b and elovl6c) were isolated from S. paramamosain in the present study. The complete sequence of elovl6a was 1345 bp, the full-length sequence of elovl6b was 1419 bp, and the obtained elovl6c sequence was 1375 bp in full length. The elovl6a, elovl6b and elovl6c encoded 287, 329 and 301 amino acids respectively, and exhibited the typical structural features of ELOVL protein family members. Phylogenetic analysis showed that the ELOVL6a from S. paramamosain clustered most closely to ELOVL6 from Portunus trituberculatus and Eriocheir sinensis, while the ELOVL6b and ELOVL6c from S. paramamosain gathered alone into a single branch. Quantitative real-time PCR exhibited that the relatively abundant expression of elovl6b was observed in intestine and stomach, and the elovl6a and elovl6c were highly expressed in hepatopancreas. In addition, studies found that replacing fish oil with soybean oil could significantly increase the transcriptional levels of three elovl6 in hepatopancreas of S. paramamosain, and the expression of elovl6a and elovl6c in hepatopancreas were more sensitive to dietary fatty acids than the elovl6b. Compared with the normal sea water group (27‰), the expression of sterol-regulatory element binding protein1c (srebp-1), elovl6a, elovl6b and elovl6c were upregulated in the low salinity groups, particularly in 7‰. On the contrary, the starvation stress suppressed the expression of srebp-1, elovl6a, elovl6b and elovl6c. Discussion: These results may contribute to understand the functions of elovl6 in fatty acid synthesis and regulatory mechanisms in crustaceans.
Collapse
Affiliation(s)
- Zhideng Lin
- College of Life Science, Ningde Normal University, Ningde, China
- Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde,China
| | - Zhouyu Wu
- College of Life Science, Ningde Normal University, Ningde, China
| | - Chaoyang Huang
- College of Life Science, Ningde Normal University, Ningde, China
| | - Huangbin Lin
- College of Life Science, Ningde Normal University, Ningde, China
| | - Mingyao Zhang
- College of Life Science, Ningde Normal University, Ningde, China
| | - Mingfeng Chen
- College of Life Science, Ningde Normal University, Ningde, China
| | - Kunhuang Han
- College of Life Science, Ningde Normal University, Ningde, China
- Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde,China
| | - Weiqing Huang
- College of Life Science, Ningde Normal University, Ningde, China
- Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde,China
| | - Shaojiang Ruan
- College of Life Science, Ningde Normal University, Ningde, China
- Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde,China
| |
Collapse
|
15
|
Chikamatsu M, Watanabe H, Shintani Y, Murata R, Miyahisa M, Nishinoiri A, Imafuku T, Takano M, Arimura N, Yamada K, Kamimura M, Mukai B, Satoh T, Maeda H, Maruyama T. Albumin-fused long-acting FGF21 analogue for the treatment of non-alcoholic fatty liver disease. J Control Release 2023; 355:42-53. [PMID: 36690035 DOI: 10.1016/j.jconrel.2023.01.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) currently affects about 25% of the world's population, and the numbers continue to rise as the number of obese patients increases. However, there are currently no approved treatments for NAFLD. This study reports on the evaluation of the therapeutic effect of a recombinant human serum albumin-fibroblast growth factor 21 analogue fusion protein (HSA-FGF21) on the pathology of NAFLD that was induced by using two high-fat diets (HFD), HFD-60 and STHD-01. The HFD-60-induced NAFLD model mice with obesity, insulin resistance, dyslipidemia and hepatic lipid accumulation were treated with HSA-FGF21 three times per week for 4 weeks starting at 12 weeks after the HFD-60 feeding. The administration of HSA-FGF21 suppressed the increased body weight, improved hyperglycemia, hyperinsulinemia, and showed a decreased accumulation of plasma lipid and hepatic lipid levels. The elevation of C16:0, C18:0 and C18:1 fatty acids in the liver that were observed in the HFD-60 group was recovered by the HSA-FGF21 administration. The increased expression levels of the hepatic fatty acid uptake receptor (CD36) and fatty acid synthase (SREBP-1c, FAS, SCD-1, Elovl6) were also suppressed. In adipose tissue, HSA-FGF21 caused an improved adipocyte hypertrophy, a decrease in the levels of inflammatory cytokines and induced the expression of adiponectin and thermogenic factors. The administration of HSA-FGF21 to the STHD-01-induced NAFLD model mice resulted in suppressed plasma ALT and AST levels, oxidative stress, inflammatory cell infiltration and fibrosis. Together, HSA-FGF21 has some potential for use as a therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Mayuko Chikamatsu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yuhi Shintani
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ayano Nishinoiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mei Takano
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Nanaka Arimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kohichi Yamada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Miya Kamimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Baki Mukai
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takao Satoh
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
16
|
Istiqamah N, Matsuzaka T, Shimizu M, Motomura K, Ohno H, Hasebe S, Sharma R, Okajima Y, Matsuda E, Han SI, Mizunoe Y, Osaki Y, Aita Y, Suzuki H, Sone H, Takeuchi Y, Sekiya M, Yahagi N, Nakagawa Y, Shimano H. Identification of key microRNAs regulating ELOVL6 and glioblastoma tumorigenesis. BBA ADVANCES 2023; 3:100078. [PMID: 37082255 PMCID: PMC10074970 DOI: 10.1016/j.bbadva.2023.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ELOVL fatty acid elongase 6 (ELOVL6) controls cellular fatty acid (FA) composition by catalyzing the elongation of palmitate (C16:0) to stearate (C18:0) and palmitoleate (C16:1n-7) to vaccinate (C18:1n-7). Although the transcriptional regulation of ELOVL6 has been well studied, the post-transcriptional regulation of ELOVL6 is not fully understood. Therefore, this study aims to evaluate the role of microRNAs (miRNAs) in regulating human ELOVL6. Bioinformatic analysis identified five putative miRNAs: miR-135b-5p, miR-135a-5p, miR-125a-5p, miR-125b-5p, and miR-22-3p, which potentially bind ELOVL6 3'-untranslated region (UTR). Results from dual-luciferase assays revealed that these miRNAs downregulate ELOVL6 by directly interacting with the 3'-UTR of ELOVL6 mRNA. Moreover, miR-135b-5p and miR-135a-5p suppress cell proliferation and migration in glioblastoma multiforme cells by inhibiting ELOVL6 at the mRNA and protein levels. Taken together, our results provide novel regulatory mechanisms for ELOVL6 at the post-transcriptional level and identify potential candidates for the treatment of patients with glioblastoma multiforme.
Collapse
Affiliation(s)
- Nurani Istiqamah
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
- Corresponding authors.
| | - Momo Shimizu
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shiho Hasebe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rahul Sharma
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuka Okajima
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Erika Matsuda
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuhei Mizunoe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding authors.
| |
Collapse
|
17
|
Bogie JF, Guns J, Vanherle S. Lipid metabolism in neurodegenerative diseases. CELLULAR LIPID IN HEALTH AND DISEASE 2023:389-419. [DOI: 10.1016/b978-0-323-95582-9.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Guo C, Zhang X, Yu Y, Wu Y, Xie L, Chang C. Lonicerae Japonicae Flos extract and chlorogenic acid attenuates high-fat-diet- induced prediabetes via CTRPs-AdipoRs-AMPK/PPARα axes. Front Nutr 2022; 9:1007679. [PMID: 36313074 PMCID: PMC9614216 DOI: 10.3389/fnut.2022.1007679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Prediabetes is considered an important reversible checkpoint in T2DM development, which can be delayed and prevented by early interventions. Lonicerae Japonicae Flos (LJF), an edible-medicinal herb, is rich in chlorogenic acid (CGA, 5-O-caffeoylquinic acid) and exerts anti-diabetes effects, but its role in prediabetes remains unclear. The purpose of this study was to explore the effects of LJF extract and CGA on rat with prediabetes. Sprague-Dawley rats were given high-fat diet (HFD) to induce prediabetes, and glycolipid metabolism parameters and molecular mechanisms were evaluated. LJF (the LJF extract treatment group) and CGA (the pure CGA treatment group) significantly attenuated HFD-induced prediabetes with impaired glucose tolerance and dyslipidemia, but their mechanisms of action are not exactly the same. Specifically, LJF prioritizes increasing protective lipid species [such as increasing blood polyunsaturated fatty acids (PUFA)-containing diacylglycerol (DAG) species, high-density lipoprotein-cholesterol (HDL-C)], whereas CGA prioritizes reducing detrimental lipid species [such as saturated fatty acid-containing DAG species, low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC)]. In addition, CGA significantly increased the content of blood very-long-chain fatty-acid (VLCFA)-containing ceramides species. This could be explained mechanically by a distinction between LJF and CGA's effects on C1q/TNF-related proteins (CTRPs) which activate adiponectin receptors, triggering several downstream reactions. Because both LJF and CGA upregulated liver expression of adiponectin receptors (AdipoR1 and AdipoR2) and enhanced the activity of downstream AMPK. LJF also increased serum levels of CTRP3 and CTRP9, especially CTRP9, whereas CGA had higher serum CTRP3 and upregulated liver PPARa expression. Additionally, ELOVL6 expression in the liver was greater in CGA than LJF. This study demonstrates that LJF and CGA exert hypoglycemic and lipid modulation capacity to prevent prediabetes may through the CTRPs-AdipoRs-AMPK/PPARα axes and promoting ELOVL6 protein expression.
Collapse
Affiliation(s)
- Chengcheng Guo
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China,Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Xiaoyuan Zhang
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China
| | - Yingxiang Yu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China
| | - Yifan Wu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China
| | - Lan Xie
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China
| | - Cuiqing Chang
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China,Institute of Sports Medicine, Peking University, Beijing, China,*Correspondence: Cuiqing Chang,
| |
Collapse
|
19
|
Matsuzaka T, Shimano H. Role of Fatty Acid Elongase Elovl6 in the Regulation of Fatty Acid Quality and Lifestyle-related Diseases. YAKUGAKU ZASSHI 2022; 142:473-476. [DOI: 10.1248/yakushi.21-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
20
|
Ren M, Zhang S, Ma S, Zhang Q. Gene-environment interaction identification via penalized robust divergence. Biom J 2022; 64:461-480. [PMID: 34725857 PMCID: PMC9386692 DOI: 10.1002/bimj.202000157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
In high-throughput cancer studies, gene-environment interactions associated with outcomes have important implications. Some commonly adopted identification methods do not respect the "main effect, interaction" hierarchical structure. In addition, they can be challenged by data contamination and/or long-tailed distributions, which are not uncommon. In this article, robust methods based on γ $\gamma$ -divergence and density power divergence are proposed to accommodate contaminated data/long-tailed distributions. A hierarchical sparse group penalty is adopted for regularized estimation and selection and can identify important gene-environment interactions and respect the "main effect, interaction" hierarchical structure. The proposed methods are implemented using an effective group coordinate descent algorithm. Simulation shows that when contamination occurs, the proposed methods can significantly outperform the existing alternatives with more accurate identification. The proposed approach is applied to the analysis of The Cancer Genome Atlas (TCGA) triple-negative breast cancer data and Gene Environment Association Studies (GENEVA) Type 2 Diabetes data.
Collapse
Affiliation(s)
- Mingyang Ren
- School of Mathematics Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing, P. R. China
| | - Sanguo Zhang
- School of Mathematics Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Qingzhao Zhang
- Department of Statistics and Data Science, School of Economics, Wang Yanan Institute for Studies in Economics, Fujian Key Lab of Statistics, Xiamen University, Fujian, P. R. China
| |
Collapse
|
21
|
Okajima Y, Matsuzaka T, Miyazaki S, Motomura K, Ohno H, Sharma R, Shimura T, Istiqamah N, Han SI, Mizunoe Y, Osaki Y, Iwasaki H, Yatoh S, Suzuki H, Sone H, Miyamoto T, Aita Y, Takeuchi Y, Sekiya M, Yahagi N, Nakagawa Y, Tomita T, Shimano H. Morphological and functional adaptation of pancreatic islet blood vessels to insulin resistance is impaired in diabetic db/db mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166339. [PMID: 35017029 DOI: 10.1016/j.bbadis.2022.166339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
The pancreatic islet vasculature is of fundamental importance to the β-cell response to obesity-associated insulin resistance. To explore islet vascular alterations in the pathogenesis of type 2 diabetes, we evaluated two insulin resistance models: ob/ob mice, which sustain large β-cell mass and hyperinsulinemia, and db/db mice, which progress to diabetes due to secondary β-cell compensation failure for insulin secretion. Time-dependent changes in islet vasculature and blood flow were investigated using tomato lectin staining and in vivo live imaging. Marked islet capillary dilation was observed in ob/ob mice, but this adaptive change was blunted in db/db mice. Islet blood flow volume was augmented in ob/ob mice, whereas it was reduced in db/db mice. The protein concentrations of total and phosphorylated endothelial nitric oxide synthase (eNOS) at Ser1177 were increased in ob/ob islets, while they were diminished in db/db mice, indicating decreased eNOS activity. This was accompanied by an increased retention of advanced glycation end-products in db/db blood vessels. Amelioration of diabetes by Elovl6 deficiency involved a restoration of capillary dilation, blood flow, and eNOS phosphorylation in db/db islets. Our findings suggest that the disability of islet capillary dilation due to endothelial dysfunction impairs local islet blood flow, which may play a role in the loss of β-cell function and further exacerbate type 2 diabetes.
Collapse
Affiliation(s)
- Yuka Okajima
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Shun Miyazaki
- Timelapse Vision Inc., 5-23-11 Honcho, Shiki, Saitama 353-0004, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Rahul Sharma
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takuya Shimura
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Nurani Istiqamah
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuhei Mizunoe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shigeru Yatoh
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, 1-754 Asahimachi, Niigata 951-8510, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuichi Aita
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Tsutomu Tomita
- Timelapse Vision Inc., 5-23-11 Honcho, Shiki, Saitama 353-0004, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), 1-7-1, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
22
|
Al-Mrabeh A. β-Cell Dysfunction, Hepatic Lipid Metabolism, and Cardiovascular Health in Type 2 Diabetes: New Directions of Research and Novel Therapeutic Strategies. Biomedicines 2021; 9:226. [PMID: 33672162 PMCID: PMC7927138 DOI: 10.3390/biomedicines9020226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains a major problem for people with type 2 diabetes mellitus (T2DM), and dyslipidemia is one of the main drivers for both metabolic diseases. In this review, the major pathophysiological and molecular mechanisms of β-cell dysfunction and recovery in T2DM are discussed in the context of abnormal hepatic lipid metabolism and cardiovascular health. (i) In normal health, continuous exposure of the pancreas to nutrient stimulus increases the demand on β-cells. In the long term, this will not only stress β-cells and decrease their insulin secretory capacity, but also will blunt the cellular response to insulin. (ii) At the pre-diabetes stage, β-cells compensate for insulin resistance through hypersecretion of insulin. This increases the metabolic burden on the stressed β-cells and changes hepatic lipoprotein metabolism and adipose tissue function. (iii) If this lipotoxic hyperinsulinemic environment is not removed, β-cells start to lose function, and CVD risk rises due to lower lipoprotein clearance. (iv) Once developed, T2DM can be reversed by weight loss, a process described recently as remission. However, the precise mechanism(s) by which calorie restriction causes normalization of lipoprotein metabolism and restores β-cell function are not fully established. Understanding the pathophysiological and molecular basis of β-cell failure and recovery during remission is critical to reduce β-cell burden and loss of function. The aim of this review is to highlight the link between lipoprotein export and lipid-driven β-cell dysfunction in T2DM and how this is related to cardiovascular health. A second aim is to understand the mechanisms of β-cell recovery after weight loss, and to explore new areas of research for developing more targeted future therapies to prevent T2DM and the associated CVD events.
Collapse
Affiliation(s)
- Ahmad Al-Mrabeh
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
23
|
Role of fatty acid elongase Elovl6 in the regulation of energy metabolism and pathophysiological significance in diabetes. Diabetol Int 2020; 12:68-73. [PMID: 33479581 DOI: 10.1007/s13340-020-00481-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an expanding epidemic, closely linked to obesity. Peripheral insulin resistance and impaired insulin secretion remain the core defects in T2DM. Despite significant advances in unraveling the underlying these defects, many of the metabolic pathways and regulators involved in insulin resistance and β-cell dysfunction are not completely understood. This review proposes that manipulating the fatty acid (FA) composition by blocking ELOVL fatty acid elongase 6 (Elovl6) could protect against insulin resistance, impaired insulin secretion, and obesity-related disorders. The molecular mechanism of this new paradigm is also discussed. Elovl6 is a microsomal enzyme involved in the elongation of C16 saturated and monounsaturated FAs to form C18 FAs. We have reported that mice with Elovl6 deletion are protected against obesity-induced insulin resistance or β-cell failure when mated to leptin receptor-deficient db/db mice because the cellular FA composition is changed, even with concurrent obesity. Therefore, Elovl6 appears to be a crucial metabolic checkpoint, and limiting Elovl6 expression or activity could be a new therapeutic approach to treat T2DM.
Collapse
|
24
|
Wang X, Sun S, Cao X, Gao J. Quantitative Phosphoproteomic Analysis Reveals the Regulatory Networks of Elovl6 on Lipid and Glucose Metabolism in Zebrafish. Int J Mol Sci 2020; 21:ijms21082860. [PMID: 32325903 PMCID: PMC7215441 DOI: 10.3390/ijms21082860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/18/2022] Open
Abstract
Elongation of very long-chain fatty acids protein 6 (Elovl6) has been reported to be associated with clinical treatments of a variety of metabolic diseases. However, there is no systematic and comprehensive study to reveal the regulatory role of Elovl6 in mRNA, protein and phosphorylation levels. We established the first knock-out (KO), elovl6−/−, in zebrafish. Compared with wild type (WT) zebrafish, KO presented significant higher whole-body lipid content and lower content of fasting blood glucose. We utilized RNA-Seq, tandem mass tag (TMT) labeling-based quantitative technology and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to perform the transcriptomic, proteomic and phosphoproteomic analyses of livers from WT and elovl6−/− zebrafish. There were 734 differentially expressed genes (DEG) and 559 differentially expressed proteins (DEP) between elovl6−/− and WT zebrafish, identified out of quantifiable 47251 transcripts and 5525 proteins. Meanwhile, 680 differentially expressed phosphoproteins (DEPP) with 1054 sites were found out of quantifiable 1230 proteins with 3604 sites. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of the transcriptomic and proteomic data further suggested that the abnormal lipid metabolism and glucose metabolism in KO were mainly related to fatty acid degradation and biosynthesis, glycolysis/gluconeogenesis and PPAR signaling pathway. Based on phosphoproteomic analyses, some kinases critical for lipid metabolism and glucose metabolism, including ribosomal protein S6 kinase (Rps6kb), mitogen-activated protein kinase14 (Mapk14) and V-akt murine thymoma viral oncogene homolog 2-like (Akt2l), were identified. These results allowed us to catch on the regulatory networks of elovl6 on lipid and glucose metabolism in zebrafish. To our knowledge, this is the first multi-omic study of zebrafish lacking elovl6, which provides strong datasets to better understand many lipid/glucose metabolic risks posed to human health.
Collapse
Affiliation(s)
- Xueting Wang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
| | - Shouxiang Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-(027)-8728-2113
| |
Collapse
|
25
|
Prentki M, Peyot ML, Masiello P, Madiraju SRM. Nutrient-Induced Metabolic Stress, Adaptation, Detoxification, and Toxicity in the Pancreatic β-Cell. Diabetes 2020; 69:279-290. [PMID: 32079704 DOI: 10.2337/dbi19-0014] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022]
Abstract
Paraphrasing the Swiss physician and father of toxicology Paracelsus (1493-1541) on chemical agents used as therapeutics, "the dose makes the poison," it is now realized that this aptly applies to the calorigenic nutrients. The case here is the pancreatic islet β-cell presented with excessive levels of nutrients such as glucose, lipids, and amino acids. The short-term effects these nutrients exert on the β-cell are enhanced insulin biosynthesis and secretion and changes in glucose sensitivity. However, chronic fuel surfeit triggers additional compensatory and adaptive mechanisms by β-cells to cope with the increased insulin demand or to protect itself. When these mechanisms fail, toxicity due to the nutrient surplus ensues, leading to β-cell dysfunction, dedifferentiation, and apoptosis. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity have been widely used, but there is some confusion as to what they mean precisely and which is most appropriate for a given situation. Here we address the gluco-, lipo-, and glucolipo-toxicities in β-cells by assessing the evidence both for and against each of them. We also discuss potential mechanisms and defend the view that many of the identified "toxic" effects of nutrient excess, which may also include amino acids, are in fact beneficial adaptive processes. In addition, candidate fuel-excess detoxification pathways are evaluated. Finally, we propose that a more general term should be used for the in vivo situation of overweight-associated type 2 diabetes reflecting both the adaptive and toxic processes to mixed calorigenic nutrients excess: "nutrient-induced metabolic stress" or, in brief, "nutri-stress."
Collapse
Affiliation(s)
- Marc Prentki
- Departments of Nutrition and Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Marie-Line Peyot
- Departments of Nutrition and Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - S R Murthy Madiraju
- Departments of Nutrition and Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| |
Collapse
|
26
|
Li Y, Pang Y, Zhao Z, Xiang X, Mai K, Ai Q. Molecular Characterization, Nutritional and Insulin Regulation of Elovl6 in Rainbow Trout ( Oncorhynchus mykiss). Biomolecules 2020; 10:biom10020264. [PMID: 32050615 PMCID: PMC7072538 DOI: 10.3390/biom10020264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Elongation of very long-chain fatty acids protein 6 (Elovl6) is a crucial enzyme in the synthesis of endogenous fatty acids, which participates in the energy balance and metabolic diseases. The main objective of this study was to explore the molecular characterization of Elovl6 and the regulation of elovl6 expression in response to dietary fatty acids and insulin. In the present study, the ORF (open reading frame) of Elovl6 from rainbow trout was cloned and characterized, which showed a high identity (87%) with mammals and other teleost. The results of quantitative PCR showed that the transcriptional levels of elovl6 from rainbow trout that were fed diets containing soybean oil (enriched with 18:2n-6, linoleic acid (LA)) or linseed oil (enriched with 18:3n-3, α-linolenic acid (ALA)) were lower than those in the group that were fed diets containing fish oil (enriched with 20:5n-3, eicosapentaenoic acid (EPA) and 22:6n-3, docosahexaenoic acid (DHA)). Correspondingly, mRNA expression of elovl6 in hepatocytes treated with DHA was dramatically higher than that in LA and ALA groups. The transcriptional expression of elovl6 in hepatocytes treated with insulin was also significantly increased. Moreover, the dual luciferase assay showed the transcription factor CREB1 dramatically up-regulated the promoter activity of elovl6, while FOXO1 significantly down-regulated the elovl6 promoter activity in rainbow trout. The differences in transcriptional expression of crbe1 and foxo1 may contribute to the increase or decrease of elovl6 expression in rainbow trout in response to fatty acids or insulin. These findings revealed the molecular characterization of elovl6 and the regulation of elovl6 expression by CREB1 and FOXO1 in rainbow trout in response to dietary fatty acids or insulin.
Collapse
Affiliation(s)
- Yongnan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (Y.L.); (Y.P.); (Z.Z.); (X.X.); (K.M.)
| | - Yuning Pang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (Y.L.); (Y.P.); (Z.Z.); (X.X.); (K.M.)
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (Y.L.); (Y.P.); (Z.Z.); (X.X.); (K.M.)
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (Y.L.); (Y.P.); (Z.Z.); (X.X.); (K.M.)
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (Y.L.); (Y.P.); (Z.Z.); (X.X.); (K.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (Y.L.); (Y.P.); (Z.Z.); (X.X.); (K.M.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-82031943
| |
Collapse
|
27
|
Liu R, Wang M, Li E, Yang Y, Li J, Chen S, Shen WJ, Azhar S, Guo Z, Hu Z. Dysregulation of microRNA-125a contributes to obesity-associated insulin resistance and dysregulates lipid metabolism in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158640. [PMID: 31988048 DOI: 10.1016/j.bbalip.2020.158640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/27/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
Obesity is associated with an increased risk of developing insulin resistance (IR) and type 2 diabetes (T2D). A diverse group of factors including miRNA has been implicated in the pathogenesis of these two metabolic conditions, although underlying molecular mechanisms involved are not well defined. Here, we provide evidence that hepatic miR-125a levels are diminished in both genetic as well as dietary mouse models of obesity. Overexpression of miR-125a enhanced insulin signaling and attenuated cellular lipid accumulation in HepG2 cells and Hepa1-6 cells. Likewise, treatment of mice with ago-miR-125a increased insulin sensitivity, similar to overexpression of miR-125a, whereas treatment of mice with antago-miR-125a blunted the insulin sensitivity. Furthermore, overexpression of miR-125a in mice previously fed a high-fat diet (HFD), significantly improved insulin sensitivity, and attenuated obesity-linked hepatic steatosis and hepatocyte lipid accumulation. In addition, we show that ELOVL fatty acid elongase 6 (Elovl6) is a direct target of miR-125a, and participates in miR-125a mediated regulation of insulin sensitivity and lipid metabolism. These data led us to conclude that dysregulated miR-125a expression augments the development of obesity-induced IR and that miR-125a might serve as a therapeutic target for the development of new drug(s) in the clinical management of metabolic diseases.
Collapse
Affiliation(s)
- Rui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Meina Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Enjie Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Yang Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Jiaxin Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA; Division of Endocrinology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA; Division of Endocrinology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| |
Collapse
|
28
|
Fatty acid metabolism in the progression and resolution of CNS disorders. Adv Drug Deliv Rev 2020; 159:198-213. [PMID: 31987838 DOI: 10.1016/j.addr.2020.01.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Recent advances in lipidomics and metabolomics have unveiled the complexity of fatty acid metabolism and the fatty acid lipidome in health and disease. A growing body of evidence indicates that imbalances in the metabolism and level of fatty acids drive the initiation and progression of central nervous system (CNS) disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Here, we provide an in-depth overview on the impact of the β-oxidation, synthesis, desaturation, elongation, and peroxidation of fatty acids on the pathophysiology of these and other neurological disorders. Furthermore, we discuss the impact of individual fatty acids species, acquired through the diet or endogenously synthesized in mammals, on neuroinflammation, neurodegeneration, and CNS repair. The findings discussed in this review highlight the therapeutic potential of modulators of fatty acid metabolism and the fatty acid lipidome in CNS disorders, and underscore the diagnostic value of lipidome signatures in these diseases.
Collapse
|
29
|
Motoi Y, Ito Z, Suzuki S, Takami S, Matsuo K, Sato M, Ota Y, Tsuruta M, Kojima M, Noguchi M, Uchiyama K, Kubota T. FADS2 and ELOVL6 mutation frequencies in Japanese Crohn's disease patients. Drug Discov Ther 2019; 13:354-359. [DOI: 10.5582/ddt.2019.01081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yutaro Motoi
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Zensho Ito
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Shizuka Suzuki
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Shinichiro Takami
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Kaori Matsuo
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Mio Sato
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yuki Ota
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Mizuki Tsuruta
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masahiro Kojima
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Mitsutaka Noguchi
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Kan Uchiyama
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Takahiro Kubota
- Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
30
|
Yamada H, Hakozaki M, Uemura A, Yamashita T. Effect of fatty acids on melanogenesis and tumor cell growth in melanoma cells. J Lipid Res 2019; 60:1491-1502. [PMID: 31345992 PMCID: PMC6718436 DOI: 10.1194/jlr.m090712] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 07/12/2019] [Indexed: 11/20/2022] Open
Abstract
Fatty acids have various physiological effects on melanoma. For example, palmitic acid (PA) increases melanin levels; linoleic acid and DHA decrease melanin levels; and DHA suppresses tumor growth. In this study, we focused on the relationship between the structure of fatty acids and their physiological effects in melanoma to examine the likely mechanisms of action. We showed that saturated fatty acids and PUFAs display opposing effects on melanin content in melanoma cells. Likewise, PA and EPA have opposing effects in terms of actin polymerization. Our findings suggest that PA and EPA change melanin content in melanoma to alter melanosome trafficking by modulating actin polymerization. Here, we also examined the mechanism of the anti-tumor effect of DHA. We found that DHA interacts with receptor for activated C kinase 1 and represses melanoma cell proliferation by suppressing protein kinase C signaling. Our results suggest a new mechanism to explain the physiological effects of fatty acids.
Collapse
Affiliation(s)
- Hidetoshi Yamada
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan.
| | - Mayuka Hakozaki
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry and Food Sciences Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
31
|
Temperature affects liver and muscle metabolism in photostimulated migratory redheaded buntings (Emberiza bruniceps). J Comp Physiol B 2019; 189:623-635. [DOI: 10.1007/s00360-019-01229-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
|
32
|
Octacosanol and policosanol prevent high-fat diet-induced obesity and metabolic disorders by activating brown adipose tissue and improving liver metabolism. Sci Rep 2019; 9:5169. [PMID: 30914769 PMCID: PMC6435753 DOI: 10.1038/s41598-019-41631-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/13/2019] [Indexed: 01/02/2023] Open
Abstract
Brown adipose tissue (BAT) is an attractive therapeutic target for treating obesity and metabolic diseases. Octacosanol is the main component of policosanol, a mixture of very long chain aliphatic alcohols obtained from plants. The current study aimed to investigate the effect of octacosanol and policosanol on high-fat diet (HFD)-induced obesity. Mice were fed on chow, or HFD, with or without octacosanol or policosanol treatment for four weeks. HFD-fed mice showed significantly higher body weight and body fat compared with chow-fed mice. However, mice fed on HFD treated with octacosanol or policosanol (HFDo/p) showed lower body weight gain, body fat gain, insulin resistance and hepatic lipid content. Lower body fat gain after octacosanol or policosanol was associated with increased BAT activity, reduced expression of genes involved in lipogenesis and cholesterol uptake in the liver, and amelioration of white adipose tissue (WAT) inflammation. Moreover, octacosanol and policosanol significantly increased the expression of Ffar4, a gene encoding polyunsaturated fatty acid receptor, which activates BAT thermogenesis. Together, these results suggest that octacosanol and policosanol ameliorate diet-induced obesity and metabolic disorders by increasing BAT activity and improving hepatic lipid metabolism. Thus, these lipids represent promising therapeutic targets for the prevention and treatment of obesity and obesity-related metabolic disorders.
Collapse
|
33
|
Shimizu K, Nishinaka T, Tomita K, Terada T. [The Investigation of Genes, Using an Improved Adenovirus Vector, and Food for the Treatment and Prevention of Type 2 Diabetes Mellitus]. YAKUGAKU ZASSHI 2019; 139:47-51. [PMID: 30606928 DOI: 10.1248/yakushi.18-00163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although many treatments for type 2 diabetes mellitus (T2DM) have been developed, the quality of life for people with T2DM still tends to be lower than in those without the disease. Thus, the development of new T2DM treatments and prevention methods is required. Genetic predisposition and environmental factors are understood to be involved in the onset and pathology of T2DM. Therefore, we have attempted to explore genes and foods with potential for use in the treatment and prevention of T2DM. LipoQuality, which describes the functional features of diverse lipid species, has recently been a focus of study in the pathology of metabolic diseases. Phospholipids, the major components of biological membranes, are known to change in composition during the development of obesity and diabetes. Therefore, for our research, we focused on genes that regulate the composition of phospholipids. We examined the effects of such genes on T2DM using an improved adenovirus vector that demonstrates safer, higher, and longer-term transgene expression than that of the conventional adenovirus vector. We also found that certain foods inhibit the progression of non-alcoholic fatty liver disease, which is related to T2DM. In this review, we introduce our research results, demonstrating how genes and food independently contribute to the mechanisms of T2DM pathology.
Collapse
Affiliation(s)
- Kahori Shimizu
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University
| | - Tomoyuki Terada
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University
| |
Collapse
|
34
|
Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 2018; 20 Suppl 2:28-50. [PMID: 30230185 PMCID: PMC6463291 DOI: 10.1111/dom.13378] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202 IN USA
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Nischay Rege
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| |
Collapse
|
35
|
Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules 2018; 23:molecules23061483. [PMID: 29921789 PMCID: PMC6100479 DOI: 10.3390/molecules23061483] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet β-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased β-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by β-cells, leads to an inevitable failure of pancreatic β-cells.
Collapse
|
36
|
The interplay between noncoding RNAs and insulin in diabetes. Cancer Lett 2018; 419:53-63. [DOI: 10.1016/j.canlet.2018.01.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/11/2022]
|