1
|
Han Z, Han S, Fang X, Lu M, Mao Y, Shi L, Song J, Wang T, Xiao J, Xiang L, Yang C, Zhu Z, Wang Y, Feng J. Acetyl-CoA carboxylase activation disrupts iron homeostasis to drive ferroptosis. Free Radic Biol Med 2025:S0891-5849(25)00720-8. [PMID: 40449808 DOI: 10.1016/j.freeradbiomed.2025.05.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/20/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
Acetyl-CoA carboxylase (ACC) is a rate-limiting enzyme in de novo lipogenesis. Here, we show a unique function of ACC in disrupting cellular iron homeostasis to drive ferroptosis, an iron-dependent, lipid peroxidation-induced form of cell death. We observed neuronal lipid accumulation and elevated labile iron pool associated with ACC dephosphorylation in mouse models of obstructive sleep apnea (OSA), a highly prevalent neurodegenerative disorder. ACC gene (Acaca) knockout (KO) or inhibition of its enzymatic activity rescued cellular iron metabolism through restoring lysosomal integrity and function, suppressing neuronal ferroptosis. ACC inactivation-driven lysosomal iron homeostasis requires the NFE2L2/NRF2-TFEB axis. Empagliflozin mitigates cellular iron overload via the ACC-NRF2-TFEB-lysosome pathway to alleviate neuronal ferroptosis, cognitive impairment, and mood dysfunction in OSA mice. Furthermore, inhibiting neuronal ACC reduces microglial activation, characterized by elevated complement proteins and pro-inflammatory cytokines, while microglia-specific C1qa KO prevents neuronal injury in OSA mice. Our findings identify a unique coupling between iron homeostasis and lipogenic signaling, suggesting ACC as a potential therapeutic target for neuronal ferroptosis and the resultant microgliosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziqi Han
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Shuangyu Han
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Xiaoyan Fang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Mengyu Lu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Yuanling Mao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Leilei Shi
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Junxiu Song
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Tian Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Jichen Xiao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Li Xiang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Changqing Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Zhigang Zhu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital
| | - Yubao Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital.
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital.
| |
Collapse
|
2
|
Zhang J, Huang L, Zheng Y, Yang J, Wu X, He J. Canagliflozin protects cardiovascular function in type 2 diabetic coronary artery disease by regulating natriuretic peptide B. J Diabetes Investig 2025. [PMID: 40390212 DOI: 10.1111/jdi.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/03/2025] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Canagliflozin (Cana) has protected against diabetes-related cardiovascular disease. This study was intended to explore the effect and molecular mechanism of Cana on cardiovascular protection in type 2 diabetic coronary atherosclerotic heart disease (CAD). MATERIALS AND METHODS We constructed a rat model of type 2 diabetic CAD and examined its physiological and biochemical indices before and after Cana treatment. Next-generation transcriptome sequencing was performed on rat cardiac tissue. Various functional and molecular experiments involving Cana treatment and the natriuretic peptide B (NPPB) gene were performed on human cardiomyocytes (AC16 cells). RESULTS The physiological, biochemical, and imaging parameters of the model rats were abnormal. Cana treatment reversed these injuries. In all, 369 differentially expressed genes were discovered by next-generation transcriptome sequencing; NPPB was identified as the target gene. Cana treatment significantly improved the function of AC16 cells treated with high glucose and significantly upregulated the expression level of the NPPB gene. The NPPB gene significantly increased the viability of AC16 cells and significantly decreased the apoptosis rate and reactive oxygen species (ROS) level. In addition, NPPB significantly upregulated the expression of B-cell lymphoma 2 (Bcl-2) and downregulated the expression of Bcl-2 associated X protein (Bax). Cana treatment further improved these cellular functions and protein expression levels. Furthermore, the NPPB gene significantly upregulated protein kinase 1-α (PKG1α) expression level and Cana treatment enhanced the regulatory effect of NPPB on PKG1α. CONCLUSIONS The cardiovascular protective effect of Cana in diabetes mellitus was mediated by upregulating the expression of NPPB and upregulating the level of PKG1α, which in turn regulated the viability, apoptosis rate, and ROS level of AC16 cells.
Collapse
Affiliation(s)
- Jiarui Zhang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lichenlu Huang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongqin Zheng
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ji Yang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaopei Wu
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jundong He
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Abdelhadi NA, Ragab KM, Elkholy M, Koneru J, Ellenbogen KA, Pillai A. Impact of Sodium-Glucose Co-Transporter 2 Inhibitors on Atrial Fibrillation Recurrence Post-Catheter Ablation Among Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Cardiovasc Electrophysiol 2025; 36:673-682. [PMID: 39789826 PMCID: PMC11903381 DOI: 10.1111/jce.16544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
Atrial fibrillation (AF) is the most common cause of arrhythmia-induced cardiomyopathy. Effective management strategies include medical therapy for rate and rhythm control, catheter ablation (CA), and goal-directed medical therapy. Sodium-glucose co-transporter 2 inhibitors (SGLT2i), a novel class of antidiabetic drugs, have shown a promising impact in reducing cardiovascular events in diabetic and nondiabetic heart failure (HF) patients. It is unclear what impact SGLT2i use may have on AF recurrence following CA. To evaluate the effects of SGLT2i on preventing AF recurrence following CA and its impact on other cardiovascular outcomes. We performed a comprehensive literature search through multiple search engines (PubMed, Scopus, Web of Science, and Cochrane) to include eligible studies using the appropriate keywords until 10 April 2024. Our search yielded nine eligible studies with 16 857 patients. Our analysis reveals a significant reduction in AF recurrence after CA among patients receiving SGLT2i compared to non-SGLT2i medications (RR = 0.72, 95% CI [0.67-0.78], p < 0.00001). Additionally, SGLT2i therapy was associated with decreased all-cause hospitalizations and reduced risk of ischemic stroke. However, no significant difference in all-cause mortality was observed between SGLT2i and non-SGLT2i groups. Our study found that SGLT2 inhibitors significantly reduced AF recurrence post-CA in diabetic patients. Moreover, SGLT2i use was associated with lowered hospitalization and ischemic stroke risk. Though no significant difference in mortality was noted, the decrease in hospitalization suggests a possible favorable effect on cardiovascular events.
Collapse
Affiliation(s)
- Naser A. Abdelhadi
- Division of Cardiac ElectrophysiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Mohammed Elkholy
- Department of RadiologyBeth Israel Deaconess Medical Center/Harvard UniversityBostonMassachusettsUSA
| | - Jayanthi Koneru
- Division of Cardiac ElectrophysiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Kenneth A. Ellenbogen
- Division of Cardiac ElectrophysiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Ajay Pillai
- Division of Cardiac ElectrophysiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
4
|
Penna C, Pagliaro P. Endothelial Dysfunction: Redox Imbalance, NLRP3 Inflammasome, and Inflammatory Responses in Cardiovascular Diseases. Antioxidants (Basel) 2025; 14:256. [PMID: 40227195 PMCID: PMC11939635 DOI: 10.3390/antiox14030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Endothelial dysfunction (ED) is characterized by an imbalance between vasodilatory and vasoconstrictive factors, leading to impaired vascular tone, thrombosis, and inflammation. These processes are critical in the development of cardiovascular diseases (CVDs) such as atherosclerosis, hypertension and ischemia/reperfusion injury (IRI). Reduced nitric oxide (NO) production and increased oxidative stress are key contributors to ED. Aging further exacerbates ED through mitochondrial dysfunction and increased oxidative/nitrosative stress, heightening CVD risk. Antioxidant systems like superoxide-dismutase (SOD), glutathione-peroxidase (GPx), and thioredoxin/thioredoxin-reductase (Trx/TXNRD) pathways protect against oxidative stress. However, their reduced activity promotes ED, atherosclerosis, and vulnerability to IRI. Metabolic syndrome, comprising insulin resistance, obesity, and hypertension, is often accompanied by ED. Specifically, hyperglycemia worsens endothelial damage by promoting oxidative stress and inflammation. Obesity leads to chronic inflammation and changes in perivascular adipose tissue, while hypertension is associated with an increase in oxidative stress. The NLRP3 inflammasome plays a significant role in ED, being triggered by factors such as reactive oxygen and nitrogen species, ischemia, and high glucose, which contribute to inflammation, endothelial injury, and exacerbation of IRI. Treatments, such as N-acetyl-L-cysteine, SGLT2 or NLRP3 inhibitors, show promise in improving endothelial function. Yet the complexity of ED suggests that multi-targeted therapies addressing oxidative stress, inflammation, and metabolic disturbances are essential for managing CVDs associated with metabolic syndrome.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
5
|
Zhou R, Zhang Z, Li X, Duan Q, Miao Y, Zhang T, Wang M, Li J, Zhang W, Wang L, Jones OD, Xu M, Liu Y, Xu X. Autophagy in High-Fat Diet and Streptozotocin-Induced Metabolic Cardiomyopathy: Mechanisms and Therapeutic Implications. Int J Mol Sci 2025; 26:1668. [PMID: 40004130 PMCID: PMC11855906 DOI: 10.3390/ijms26041668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic cardiomyopathy, encompassing diabetic and obese cardiomyopathy, is an escalating global health concern, driven by the rising prevalence of metabolic disorders such as insulin resistance, type 1 and type 2 diabetes, and obesity. These conditions induce structural and functional alterations in the heart, including left ventricular dysfunction, fibrosis, and ultimately heart failure, particularly in the presence of coronary artery disease or hypertension. Autophagy, a critical cellular process for maintaining cardiac homeostasis, is frequently disrupted in metabolic cardiomyopathy. This review explores the role of autophagy in the pathogenesis of high-fat diet (HFD) and streptozotocin (STZ)-induced metabolic cardiomyopathy, focusing on non-selective and selective autophagy pathways, including mitophagy, ER-phagy, and ferritinophagy. Key proteins and genes such as PINK1, Parkin, ULK1, AMPK, mTOR, ATG7, ATG5, Beclin-1, and miR-34a are central to the regulation of autophagy in metabolic cardiomyopathy. Dysregulated autophagic flux impairs mitochondrial function, promotes oxidative stress, and drives fibrosis in the heart. Additionally, selective autophagy processes such as lipophagy, regulated by PNPLA8, and ferritinophagy, modulated by NCOA4, play pivotal roles in lipid metabolism and iron homeostasis. Emerging therapeutic strategies targeting autophagy, including plant extracts (e.g., curcumin, dihydromyricetin), endogenous compounds (e.g., sirtuin 3, LC3), and lipid/glucose-lowering drugs, offer promising avenues for mitigating the effects of metabolic cardiomyopathy. Despite recent advances, the precise mechanisms underlying autophagy in this context remain poorly understood. A deeper understanding of autophagy's regulatory networks, particularly involving these critical genes and proteins, may lead to novel therapeutic approaches for treating metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Rong Zhou
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Zutong Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Xinjie Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Yuanlin Miao
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Tingting Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Mofei Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Jiali Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Wei Zhang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Liyang Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Odell D. Jones
- University Laboratory Animal Resources (ULAR), University of Pennsylvania School of Medicine, Philadelphia, PA 19144, USA;
| | - Mengmeng Xu
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Yingli Liu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an 710062, China; (R.Z.); (Z.Z.); (X.L.); (Q.D.); (Y.M.); (T.Z.); (M.W.); (J.L.); (W.Z.); (L.W.); (Y.L.)
| |
Collapse
|
6
|
Dong Q, Dai G, Quan N, Tong Q. Role of natural products in cardiovascular disease. Mol Cell Biochem 2025; 480:733-745. [PMID: 38879838 DOI: 10.1007/s11010-024-05048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/09/2024] [Indexed: 01/03/2025]
Abstract
As the world's aging population increases, cardiovascular diseases (CVDs) associated with aging deserve increasing attention. CVD in association with age is considered a major cause of morbidity and mortality worldwide. In this review, we provide an overview of the key molecular pathways, cellular processes such as autophagy, oxidative stress, inflammatory responses, myocardial remodeling and ischemia-refocused injury that accompany CVD as well as the natural products of targeting these mechanisms and some of the dietary habits that have been studied in cardiovascular-related diseases. The potential preventive and therapeutic avenues resulting from these dietary habits and natural products related to animal models and clinical studies can help us to better understand the processes involved in cardiovascular diseases and provide recommendations to reduce the cardiovascular burden associated with aging heart.
Collapse
Affiliation(s)
- Qi Dong
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Qian Tong
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Hopkins S, Baqai F, Gajagowni S, Hickey G. Direct Cardiac Mechanisms of the Sodium Glucose Co-Transporter 2 Inhibitor Class. J Cardiovasc Pharmacol Ther 2025; 30:10742484251323428. [PMID: 40221961 DOI: 10.1177/10742484251323428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
BackgroundSodium-glucose co-transporter 2 (SGLT2) inhibitors have demonstrated significant cardiovascular benefits in clinical trial. While their role in reducing heart failure hospitalizations and cardiovascular mortality is well established, the precise mechanisms underlying their direct cardiac effects remain unclear. This literature review aims to synthesize current knowledge on the molecular and physiological pathways by which SGLT2 inhibitors may exert effects on cardiac tissue, independent of glycemic control.MethodsA comprehensive review of peer-reviewed articles, randomized controlled trials, meta-analyses, and mechanistic studies published in PubMed and related databases was conducted. The search focused on studies examining the direct impact of SGLT2 inhibitors on cardiac function, remodeling, metabolism, and intracellular signaling pathways. Only studies evaluating the cardiac effects separate from their glucose-lowering action were included in the analysis.ResultsThis review identified several key mechanisms by which SGLT2 inhibitors may benefit the heart directly, including reductions in oxidative stress, inflammation, and myocardial fibrosis. Emerging evidence suggests that these drugs modulate key pathways such as sodium-hydrogen exchange (NHE) inhibition, improvement of mitochondrial function, and promotion of ketone body utilization in cardiomyocytes.ConclusionsSGLT2 inhibitors appear to confer direct cardioprotective effects. These include anti-inflammatory, anti-fibrotic, and energy efficiency improvements in the myocardium. The findings highlight new potential therapeutic mechanisms and provide a foundation for further research into the non-diabetic use of SGLT2 inhibitors in heart failure and other cardiac conditions. Understanding these direct effects could lead to optimized treatment strategies for patients with and without diabetes.
Collapse
Affiliation(s)
| | - Faiz Baqai
- Department of Internal Medicine, Baylor College of Medicine, Houston, USA
| | | | - Gavin Hickey
- Heart and Vascular Institute, UPMC, Pittsburgh, USA
| |
Collapse
|
8
|
Mooradian AD. Cardiomodulatory Effects of Cardiometabolic and Antihyperglycemic Medications: The Roles of Oxidative and Endoplasmic Reticulum Stress. Am J Cardiovasc Drugs 2025; 25:37-46. [PMID: 39392561 DOI: 10.1007/s40256-024-00685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Uncontrolled hyperglycemia in people with diabetes is an established risk of premature cardiovascular disease. Repeated hypoglycemic events are also associated with increased cardiovascular mortality. Both hyperglycemia and hypoglycemia induce cellular stress, notably endoplasmic reticulum (ER) stress, a known promoter of cardiovascular disease. Contemporary anti-hyperglycemic drugs such as glucagon-like peptide 1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT-2) inhibitors simultaneously inhibit oxidative stress and ER stress in human coronary artery endothelial cells. Similarly, other known cardioprotective drugs, such as statins and inhibitors of the renin-angiotensin-aldosterone system (RAAS) share a common pleiotropic effect of reducing cellular stress. Antioxidants reduce oxidative stress but may aggravate ER stress. This dichotomy of antioxidant effects may underline the unfavorable outcomes of clinical trials with antioxidant vitamin use. The aim of this review is to highlight the potential role of cellular stress reduction in cardioprotective effects of contemporary diabetes drugs. Future clinical trials are needed to test the hypothesis that cellular stress is the fundamental culprit in cardiovascular disease.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street, Jacksonville, FL, 32209, USA.
| |
Collapse
|
9
|
Göpel SO, Adingupu D, Wang J, Semenova E, Behrendt M, Jansson-Löfmark R, Ahlström C, Jönsson-Rylander AC, Gopaul VS, Esterline R, Gan LM, Xiao RP. SGLT2 inhibition improves coronary flow velocity reserve and contractility: role of glucagon signaling. Cardiovasc Diabetol 2024; 23:408. [PMID: 39548491 PMCID: PMC11568596 DOI: 10.1186/s12933-024-02491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND SGLT2 inhibitors, a T2DM medication to lower blood glucose, markedly improve cardiovascular outcomes but the underlying mechanism(s) are not fully understood. SGLT2i's produce a unique metabolic pattern by lowering blood glucose without increasing insulin while increasing ketone body and glucagon levels and reducing body weight. We tested if glucagon signaling contributes to SGLT2i induced improvement in CV function. METHODS Cardiac contractility and coronary flow velocity reserve (CFVR) were monitored in ob/ob mice and rhesus monkeys with metabolic syndrome using echocardiography. Metabolic status was characterized by measuring blood ketone levels, glucose tolerance during glucose challenge and Arg and ADMA levels were measured. Baysian models were developed to analyse the data. RESULTS Dapagliflozin improved CFVR and contractility, co-application of a glucagon receptor inhibitor (GcgRi) blunted the effect on CFVR but not contractility. Dapagliflozin increased the Arg/ADMA ratio and ketone levels and co-treatment with GcgRi blunted only the Dapagliflozin induced increase in Arg/ADMA ratio but not ketone levels. CONCLUSIONS Since GcgRi co-treatment only reduced the Arg/ADMA increase we hypothesize that dapagliflozin via a glucagon-signaling dependent pathway improves vascular function through the NO-signaling pathway leading to improved vascular function. Increase in ketone levels might be a contributing factor in SGLT2i induced contractility increase and does not require glucagon signaling.
Collapse
Affiliation(s)
- Sven O Göpel
- Global Patient Safety BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden.
| | - Damilola Adingupu
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jue Wang
- College of Future Technology, Peking University, Beijing, 100871, China
| | - Elizaveta Semenova
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
- Imperial College London, School of Public Health, Department of Epidemiology and Biostatistics, London, United Kingdom
| | - Margareta Behrendt
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson-Löfmark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christine Ahlström
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ann-Cathrine Jönsson-Rylander
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - V Sashi Gopaul
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Li-Ming Gan
- Ribocure Pharmaceuticals AB, Gothenburg, Sweden & SuZhou Ribo Life Science Co. Ltd., Gothenburg, Sweden
- Department of Cardiology, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Rui-Ping Xiao
- College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Li X, Wang Z, Mouton AJ, Omoto ACM, da Silva AA, do Carmo JM, Li J, Hall JE. Sestrin2 Attenuates Myocardial Endoplasmic Reticulum Stress and Cardiac Dysfunction During Ischemia/Reperfusion Injury. J Am Heart Assoc 2024; 13:e035193. [PMID: 39494564 PMCID: PMC11935719 DOI: 10.1161/jaha.124.035193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Sesn2 (Sestrin2) is a stress-induced protein that provides protective effects during myocardial ischemia and reperfusion (I/R) injury, while endoplasmic reticulum (ER) stress may be a pivotal mediator of I/R injury. The goal of this study was to determine whether Sesn2-mTOR (mammalian target of rapamycin) signaling regulates ER stress during myocardial I/R. METHODS AND RESULTS In vivo cardiac I/R was induced by ligation and subsequent release of the left anterior descending coronary artery in wild-type (WT) and cardiac-specific Sesn2 knockout (Sesn2cKO) mice. At 6 hours and 24 hours after reperfusion, cardiac function was evaluated, and heart samples were collected for analysis. I/R induced cardiac ER stress and upregulated Sesn2 mRNA and protein levels. Inhibiting ER stress with 4-phenylbutyric acid reduced infarct size by 37.5%, improved cardiac systolic function, and mitigated myocardial cell apoptosis post-I/R. Hearts from Sesn2cKO mice displayed increased susceptibility to ER stress during I/R compared with WT. Notably, cardiac mTOR signaling was further increased in Sesn2cKO hearts compared with WT hearts during I/R. In mice with cardiac Sesn2 deficiency, compared with WT, ER lumen was significantly expanded after tunicamycin-induced ER stress, as assessed by transmission electron microscopy. Additionally, pharmacological inhibition of mTOR signaling with rapamycin improved cardiac function after tunicamycin treatment and significantly attenuated the unfolded protein response and apoptosis in WT and Sesn2cKO mice. CONCLUSIONS Sesn2 attenuates cardiac ER stress post-I/R injury via regulation of mTOR signaling. Thus, modulation of the mTOR pathway by Sesn2 could be a critical factor for maintaining cardiac ER homeostasis control during myocardial I/R injury.
Collapse
Affiliation(s)
- Xuan Li
- Department of Physiology and Biophysics and Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Zhen Wang
- Department of Physiology and Biophysics and Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Alan J. Mouton
- Department of Physiology and Biophysics and Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics and Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics and Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics and Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Ji Li
- Department of Physiology and Biophysics and Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - John E. Hall
- Department of Physiology and Biophysics and Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
11
|
Yerra VG, Connelly KA. Extrarenal Benefits of SGLT2 Inhibitors in the Treatment of Cardiomyopathies. Physiology (Bethesda) 2024; 39:0. [PMID: 38888433 DOI: 10.1152/physiol.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have emerged as pivotal medications for heart failure, demonstrating remarkable cardiovascular benefits extending beyond their glucose-lowering effects. The unexpected cardiovascular advantages have intrigued and prompted the scientific community to delve into the mechanistic underpinnings of these novel actions. Preclinical studies have generated many mechanistic theories, ranging from their renal and extrarenal effects to potential direct actions on cardiac muscle cells, to elucidate the mechanisms linking these drugs to clinical cardiovascular outcomes. Despite the strengths and limitations of each theory, many await validation in human studies. Furthermore, whether SGLT2 inhibitors confer therapeutic benefits in specific subsets of cardiomyopathies akin to their efficacy in other heart failure populations remains unclear. By examining the shared pathological features between heart failure resulting from vascular diseases and other causes of cardiomyopathy, certain specific molecular actions of SGLT2 inhibitors (particularly those targeting cardiomyocytes) would support the concept that these medications will yield therapeutic benefits across a broad range of cardiomyopathies. This article aims to discuss the important mechanisms of SGLT2 inhibitors and their implications in hypertrophic and dilated cardiomyopathies. Furthermore, we offer insights into future research directions for SGLT2 inhibitor studies, which hold the potential to further elucidate the proposed biological mechanisms in greater detail.
Collapse
Affiliation(s)
- Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
12
|
Gong S, Sui Y, Xiao M, Fu D, Xiong Z, Zhang L, Tian Q, Fu Y, Xiong W. Canagliflozin Mediates Mitophagy Through the AMPK/PINK1/Parkin Pathway to Alleviate ISO-induced Cardiac Remodeling. J Cardiovasc Pharmacol 2024; 84:496-505. [PMID: 39150485 DOI: 10.1097/fjc.0000000000001625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
ABSTRACT Heart failure has always been a prevalent, disabling, and potentially life-threatening disease. For the treatment of heart failure, controlling cardiac remodeling is very important. In recent years, clinical trials have shown that sodium-glucose cotransporter-2 (SGLT-2) inhibitors not only excel in lowering glucose levels but also demonstrate favorable cardiovascular protective effects. However, the precise mechanisms behind the cardiovascular benefits of SGLT-2 inhibitors remain elusive. In this research, we assessed the impact of canagliflozin (CANA, an SGLT-2 inhibitor) on cardiac remodeling progression in mice and preliminarily elucidated the possible mechanism of action of the SGLT-2 inhibitor. Our results indicate that the administration of canagliflozin significantly attenuates myocardial hypertrophy and fibrosis and enhances cardiac ejection function in mice with isoprenaline (ISO)-induced cardiac remodeling. Notably, excessive mitophagy, along with mitochondrial structural abnormalities observed in ISO-induced cardiac remodeling, was mitigated by canagliflozin treatment, thereby attenuating cardiac remodeling progression. Furthermore, the differential expression of AMPK/PINK1/Parkin pathway-related proteins in ISO-induced cardiac remodeling was effectively reversed by canagliflozin, suggesting the therapeutic potential of targeting this pathway with the drug. Thus, our study indicates that canagliflozin holds promise in mitigating cardiac injury, enhancing cardiac function, and potentially exerting cardioprotective effects by modulating mitochondrial function and mitophagy through the AMPK/PINK1/Parkin pathway.
Collapse
MESH Headings
- Animals
- Male
- Mice
- AMP-Activated Protein Kinases/metabolism
- Canagliflozin/pharmacology
- Disease Models, Animal
- Fibrosis
- Isoproterenol
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/pathology
- Mitochondria, Heart/metabolism
- Mitophagy/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Protein Kinases/metabolism
- Signal Transduction/drug effects
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Stroke Volume/drug effects
- Ubiquitin-Protein Ligases/metabolism
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Shaolin Gong
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China ; and
| | - Yuan Sui
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China ; and
| | - Mengxuan Xiao
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China ; and
| | - Daoyao Fu
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China ; and
| | - Zhiping Xiong
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China ; and
| | - Liuping Zhang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China ; and
| | - Qingshan Tian
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China ; and
| | - Yongnan Fu
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China ; and
| | - Wenjun Xiong
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China ; and
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
13
|
Soares RR, Viggiani LF, Reis Filho JM, Joviano-Santos JV. Cardioprotection of Canagliflozin, Dapagliflozin, and Empagliflozin: Lessons from preclinical studies. Chem Biol Interact 2024; 403:111229. [PMID: 39244185 DOI: 10.1016/j.cbi.2024.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Clinical and preclinical studies have elucidated the favorable effects of Inhibitors of Sodium-Glucose Cotransporter-2 (iSGLT2) in patients and animal models with type 2 diabetes. Notably, these inhibitors have shown significant benefits in reducing hospitalizations and mortality among patients with heart failure. However, despite their incorporation into clinical practice for indications beyond diabetes, the decision-making process regarding their use often lacks a systematic approach. The selection of iSGLT2 remains arbitrary, with only a limited number of studies simultaneously exploring the different classes of them. Currently, no unique guideline establishes their application in both clinical and basic research. This review delves into the prevalent use of iSGLT2 in animal models previously subjected to induced cardiac stress. We have compiled key findings related to cardioprotection across various animal models, encompassing diverse dosages and routes of administration. Beyond their established role in diabetes management, iSGLT2 has demonstrated utility as agents for safeguarding heart health and cardioprotection can be class-dependent among the iSGLT2. These findings may serve as valuable references for other researchers. Preclinical studies play a pivotal role in ensuring the safety of novel compounds or treatments for potential human use. By assessing side effects, toxicity, and optimal dosages, these studies offer a robust foundation for informed decisions, identifying interventions with the highest likelihood of success and minimal risk to patients. The insights gleaned from preclinical studies, which play a crucial role in highlighting areas of knowledge deficiency, can guide the exploration of novel mechanisms and strategies involving iSGLT2.
Collapse
Affiliation(s)
- Rayla Rodrigues Soares
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Larissa Freitas Viggiani
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Juliano Moreira Reis Filho
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julliane V Joviano-Santos
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Piperis C, Marathonitis A, Anastasiou A, Theofilis P, Mourouzis K, Giannakodimos A, Tryfou E, Oikonomou E, Siasos G, Tousoulis D. Multifaceted Impact of SGLT2 Inhibitors in Heart Failure Patients: Exploring Diverse Mechanisms of Action. Biomedicines 2024; 12:2314. [PMID: 39457625 PMCID: PMC11504660 DOI: 10.3390/biomedicines12102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Heart failure (HF) is a growing concern due to the aging population and increasing prevalence of comorbidities. Despite advances in treatment, HF remains a significant burden, necessitating novel therapeutic approaches. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) have emerged as a promising treatment option, demonstrating benefits across the entire spectrum of HF, regardless of left ventricular ejection fraction (LVEF). This review explores the multifaceted mechanisms through which SGLT2is exert cardioprotective effects, including modulation of energy metabolism, reduction of oxidative stress, attenuation of inflammation, and promotion of autophagy. SGLT2is shift myocardial energy substrate utilization from carbohydrates to more efficient fatty acids and ketone bodies, enhancing mitochondrial function and reducing insulin resistance. These inhibitors also mitigate oxidative stress by improving mitochondrial biogenesis, reducing reactive oxygen species (ROS) production, and regulating calcium-signaling pathways. Inflammation, a key driver of HF progression, is alleviated through the suppression of proinflammatory cytokines and modulation of immune cell activity. Additionally, SGLT2is promote autophagy, facilitating the clearance of damaged cellular components and preserving myocardial structure and function. Beyond their glucose-lowering effects, SGLT2is provide significant benefits in patients with chronic kidney disease (CKD) and HF, reducing the progression of CKD and improving overall survival. The pleiotropic actions of SGLT2is highlight their potential as a cornerstone in HF management. Further research is needed to fully elucidate their mechanisms and optimize their use in clinical practice.
Collapse
Affiliation(s)
- Christos Piperis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Anastasios Marathonitis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Panagiotis Theofilis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Mourouzis
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Alexios Giannakodimos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Elsi Tryfou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.P.); (A.M.); (A.A.); (K.M.); (A.G.); (E.T.); (E.O.); (G.S.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
15
|
Yang CC, Chen KH, Yue Y, Cheng BC, Hsu TW, Chiang JY, Chen CH, Liu F, Xiao J, Yip HK. SGLT2 inhibitor downregulated oxidative stress via activating AMPK pathway for cardiorenal (CR) protection in CR syndrome rodent fed with high protein diet. J Mol Histol 2024; 55:803-823. [PMID: 39190032 PMCID: PMC11464616 DOI: 10.1007/s10735-024-10233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/21/2024] [Indexed: 08/28/2024]
Abstract
This study tested the hypothesis that empagliflozin (EMPA) therapy effectively protected renal and heart functions via downregulating reactive oxygen species (ROS) and activating AMPK signaling in cardiorenal syndrome (CRS) (induced by doxorubicin-5/6 nephrectomy) rats. In vitro result showed that underwent p-Cresol treatment, the H9C2/NRK-52E cell viabilities, were significantly suppressed, whereas cellular levels of ROS and early/late apoptosis of these cells were significantly increased that were significantly reversed by EMPA treatment (all p < 0.001). The protein levels of the cell-stress/oxidative signaling (p-PI3K/p-Akt/p-mTOR/NOXs/p-DRP1) were significantly activated, whereas the mitochondrial biogenesis signaling (p-AMPK/SIRT-1/TFAM/PGC-1α) was significantly repressed in these two cell lines treated by p-Cresol and all of these were significantly reversed by EMPA treatment (all p < 0.001). Male-adult-SD rats were categorized into groups 1 [sham-operated control (SC)]/2 [SC + high protein diet (HPD) since day 1 after CKD induction]/3 (CRS + HPD)/4 (CRS + HPD+EMPA/20 mg/kg/day) and heart/kidney were harvested by day 60. By day 63, the renal function parameters (creatinine/BUN/proteinuria)/renal artery restrictive index/cellular levels of ROS/inflammation were significantly increased in group 3 than in groups 1/2, whereas heart function exhibited an opposite pattern of ROS among the groups, and all of these parameters were significantly reversed by EMPA treatment (all p < 0.0001). The protein levels of inflammation/ oxidative-stress/cell-stress signalings were highest in group 2, lowest in group 1 and significantly lower in group 4 than in group 2, whereas the AMPK-mitochondrial biogenesis displayed an opposite manner of oxidative-stress among the groups (all p < 0.0001). EMPA treatment effectively protected the heart/kidney against CRS damage via suppressing ROS signaling and upregulating AMPK-mediated mitochondrial biogenesis.
Collapse
Affiliation(s)
- Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C
| | - Ya Yue
- The First Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ben-Chung Cheng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C
| | - Tsuen-Wei Hsu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, R.O.C
| | - Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C
| | - Fanna Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Jie Xiao
- The First Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Dapi Rd. Niaosung Dist., Kaohsiung, 83301, Taiwan, R.O.C..
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, R.O.C..
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, R.O.C..
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, R.O.C..
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, R.O.C..
- Department of Nursing, Asia University, Taichung, 41354, Taiwan, R.O.C..
| |
Collapse
|
16
|
Rooban S, Senghor KA, Vinodhini V, Kumar J. Sestrin2 at the crossroads of cardiovascular disease and diabetes: A comprehensive review. OBESITY MEDICINE 2024; 51:100558. [DOI: 10.1016/j.obmed.2024.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Lei L, Zhu T, Cui TJ, Liu Y, Hocher JG, Chen X, Zhang XM, Cai KW, Deng ZY, Wang XH, Tang C, Lin L, Reichetzeder C, Zheng ZH, Hocher B, Lu YP. Renoprotective effects of empagliflozin in high-fat diet-induced obesity-related glomerulopathy by regulation of gut-kidney axis. Am J Physiol Cell Physiol 2024; 327:C994-C1011. [PMID: 39183639 PMCID: PMC11481992 DOI: 10.1152/ajpcell.00367.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The increasing prevalence of obesity-related glomerulopathy (ORG) poses a significant threat to public health. Sodium-glucose cotransporter-2 (SGLT2) inhibitors effectively reduce body weight and total fat mass in individuals with obesity and halt the progression of ORG. However, the underlying mechanisms of their reno-protective effects in ORG remain unclear. We established a high-fat diet-induced ORG model using C57BL/6J mice, which were divided into three groups: normal chow diet (NCD group), high-fat diet (HFD) mice treated with placebo (ORG group), and HFD mice treated with empagliflozin (EMPA group). We conducted 16S ribosomal RNA gene sequencing of feces and analyzed metabolites from kidney, feces, liver, and serum samples. ORG mice showed increased urinary albumin creatinine ratio, cholesterol, triglyceride levels, and glomerular diameter compared with NCD mice (all P < 0.05). EMPA treatment significantly alleviated these parameters (all P < 0.05). Multitissue metabolomics analysis revealed lipid metabolic reprogramming in ORG mice, which was significantly altered by EMPA treatment. MetOrigin analysis showed a close association between EMPA-related lipid metabolic pathways and gut microbiota alterations, characterized by reduced abundances of Firmicutes and Desulfovibrio and increased abundance of Akkermansia (all P < 0.05). The metabolic homeostasis of ORG mice, especially in lipid metabolism, was disrupted and closely associated with gut microbiota alterations, contributing to the progression of ORG. EMPA treatment improved kidney function and morphology by regulating lipid metabolism through the gut-kidney axis, highlighting a novel therapeutic approach for ORG. NEW & NOTEWORTHY Our study uncovered that empagliflozin (EMPA) potentially protects renal function and morphology in obesity-related glomerulopathy (ORG) mice by regulating the gut-kidney axis. EMPA's reno-protective effects in ORG mice are associated with the lipid metabolism, especially in glycerophospholipid metabolism and the pantothenate/CoA synthesis pathways. EMPA's modulation of gut microbiota appears to be pivotal in suppressing glycerol 3-phosphate and CoA synthesis. The insights into gut microbiota-host metabolic interactions offer a novel therapeutic approach for ORG.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Tian-Jiao Cui
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Yvonne Liu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Medical Faculty of Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johann-Georg Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xue-Mei Zhang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Kai-Wen Cai
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zi-Yan Deng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Lian Lin
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Christoph Reichetzeder
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, People's Republic of China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, People's Republic of China
| | - Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Luo Y, Ye T, Tian H, Song H, Kan C, Han F, Hou N, Sun X, Zhang J. Empagliflozin alleviates obesity-related cardiac dysfunction via the activation of SIRT3-mediated autophagosome formation. Lipids Health Dis 2024; 23:308. [PMID: 39334359 PMCID: PMC11430456 DOI: 10.1186/s12944-024-02293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Empagliflozin (EMPA) has demonstrated efficacy in providing cardiovascular benefits in metabolic diseases. However, the direct effect of EMPA on autophagy in obesity-related cardiac dysfunction remains unclear. Therefore, this study aimed to determine changes in cardiac autophagy during diet-induced obesity and clarify the exact mechanism by which EMPA regulates autophagic pathways. METHODS Male C57BL/6J mice were fed a 12-week high-fat diet (HFD) followed by 8 weeks of EMPA treatment. Body composition analysis and echocardiography were performed to evaluate metabolic alterations and cardiac function. Histological and immunofluorescence staining was used to evaluate potential enhancements in myocardial structure and biological function. Additionally, H9c2 cells were transfected with small interfering RNA targeting sirtuin 3 (SIRT3) and further treated with palmitic acid (PA) with or without EMPA. Autophagy-related targets were analyzed by western blotting and RT‒qPCR. RESULTS EMPA administration effectively ameliorated metabolic disorders and cardiac diastolic dysfunction in HFD-fed mice. EMPA prevented obesity-induced myocardial hypertrophy, fibrosis, and inflammation through the activation of SIRT3-mediated autophagosome formation. The upregulation of SIRT3 triggered by EMPA promoted the initiation of autophagy by activating AMP-activated protein kinase (AMPK) and Beclin1. Furthermore, activated SIRT3 contributed to the elongation of autophagosomes through autophagy-related 4B cysteine peptidase (ATG4B) and autophagy-related 5 (ATG5). CONCLUSIONS EMPA promotes SIRT3-mediated autophagosome formation to alleviate damage to the cardiac structure and function of obese mice. Activated SIRT3 initiates autophagy through AMPK/Beclin1 and further stimulates elongation of the autophagosome membrane via ATG4B/ATG5. These results provide a new explanation for the cardioprotective benefits of EMPA in obesity.
Collapse
Affiliation(s)
- Youhong Luo
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Tongtong Ye
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Hongzhan Tian
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Hongwei Song
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| |
Collapse
|
19
|
Hou J, Ren L, Hou Q, Jia X, Mei Z, Xu J, Yang Z, Li Y, Yan C. Efficacy and safety of sodium-glucose cotransporter 2 (SGLT2) inhibitors in patients with acute heart failure: a systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1388337. [PMID: 39323760 PMCID: PMC11422105 DOI: 10.3389/fcvm.2024.1388337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Background The effectiveness and safety of a novel class of hypoglycemic medications known as sodium-glucose cotransporter 2 (SGLT2) inhibitors have not been completely established in relation to acute heart failure (AHF). Consequently, we sought to compare the prognostic and safety outcomes of patients administered SGLT2 inhibitors for the treatment of AHF. Methods An extensive search of the Web of Science, PubMed, and EMBASE was conducted for randomized controlled trials and observational studies that have evaluated the use of SGLT2 inhibitors in AHF from the inception of these drugs to the present. We compiled data related to cardiovascular safety and prognosis. Aggregated risk ratios (RR), mean differences (MD), or standardized mean differences (SMD) were generated for all outcomes, with 95% confidence intervals (CIs), to evaluate the predictive significance of SGLT2 inhibitors in patients with AHF. Results We identified 4,053 patients from 13 studies. Patients experienced a substantial reduction in all-cause mortality (RR = 0.82, 95% CI: 0.70-0.96, P = 0.01), readmission rates (RR = 0.85, 95% CI: 0.74-0.98, P = 0.02), the number of heart failure exacerbation events (RR = 0.69, 95% CI: 0.50-0.95, P = 0.02), and the number of rehospitalization events due to heart failure (RR = 0.71, 95% CI: 0.58-0.86, P < 0.05) in the SGLT2 inhibitors-treatment group compared to a placebo or standard care (control group). SGLT2 inhibitors improved patient quality of life (SMD = -0.24, 95% CI: -0.40 to -0.09, P = 0.002). SGLT2 inhibitors were associated with enhanced diuresis in patients with AHF (MD = 2.83, 95% CI: 1.36-4.29, P < 0.05). Overall, treatment with SGLT2 inhibitors significantly reduced the level of serum NT-proBNP (MD = -497.62, 95% CI: -762.02 to -233.21, P < 0.05) and did not increase the incidence of adverse events (RR = 0.91, 95% CI: 0.82-1.01, P = 0.06). Conclusions This meta-analysis suggests that treatment with SGLT2 inhibitors is associated with a better prognosis in patients with AHF than in patients not treated with SGLT2 inhibitors. It is safe and effective to initiate SGLT2 inhibitors in patients with AHF. Systematic Review Registration https://www.doi.org/10.37766/inplasy2024.9.0015, identifier (INPLASY202490015).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiming Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | | |
Collapse
|
20
|
Pan Z, Yu X, Wang W, Shen K, Chen J, Zhang Y, Huang R. Sestrin2 remedies neuroinflammatory response by inhibiting A1 astrocyte conversion via autophagy. J Neurochem 2024; 168:2640-2653. [PMID: 38761015 DOI: 10.1111/jnc.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Most central nervous diseases are accompanied by astrocyte activation. Autophagy, an important pathway for cells to protect themselves and maintain homeostasis, is widely involved in regulation of astrocyte activation. Reactive astrocytes may play a protective or harmful role in different diseases due to different phenotypes of astrocytes. It is an urgent task to clarify the formation mechanisms of inflammatory astrocyte phenotype, A1 astrocytes. Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions as a potential protective role in oxidative damage process. However, whether Sestrin2 can affect autophagy and involve in A1 astrocyte conversion is still uncovered. In this study, we reported that Sestrin2 and autophagy were significantly induced in mouse hippocampus after multiple intraperitoneal injections of lipopolysaccharide, with the elevation of A1 astrocyte conversion and inflammatory mediators. Knockdown Sestrin2 in C8-D1A astrocytes promoted the levels of A1 astrocyte marker C3 mRNA and inflammatory factors, which was rescued by autophagy inducer rapamycin. Overexpression of Sestrin2 in C8-D1A astrocytes attenuated A1 astrocyte conversion and reduced inflammatory factor levels via abundant autophagy. Moreover, Sestrin2 overexpression improved mitochondrial structure and morphology. These results suggest that Sestrin2 can suppress neuroinflammation by inhibiting A1 astrocyte conversion via autophagy, which is a potential drug target for treating neuroinflammation.
Collapse
Affiliation(s)
- Zhenguo Pan
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurology, People's Hospital of Xiangshui County, Yancheng, China
| | - Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Weiwei Wang
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Kai Shen
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jianwei Chen
- Interventional Medicine Center, Xi'an People's Hospital, Xi'an, China
| | - Yunfeng Zhang
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Rongrong Huang
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
21
|
Yue L, Wang Y, Wang C, Niu S, Dong X, Guan Y, Chen S. Empagliflozin improves aortic injury in obese mice by regulating fatty acid metabolism. Open Med (Wars) 2024; 19:20241012. [PMID: 39176252 PMCID: PMC11340858 DOI: 10.1515/med-2024-1012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Background Empagliflozin has been shown in clinical studies to lower the risk of adverse cardiovascular events. Using proteomics, the current study aims to determine whether empagliflozin reduces aortic alterations in obese mice and to investigate its molecular mechanism of action. Methods We constructed obese mice and then treated them with empagliflozin. Changes in the weight of the mice were recorded. Blood glucose and lipid levels were measured in each group of mice, and changes in pulse wave velocity and aortic structure were recorded. In addition, changes in aortic protein expression were detected by proteomics and analyzed bioinformatically. Results Proteomics results showed that 507 differentially expressed proteins (DEPs) were identified in the comparison of normal and obese mice, while 90 DEPs were identified in the comparison of obese and empagliflozin-treated mice. Examination of these three groups revealed that DEPs were largely associated with the digestion of unsaturated fats. Among them, empagliflozin significantly reduced the expression of fatty acid synthase (FASN), acyl-CoA desaturase 3 (SCD3), ACSL1. and ACSL5 in the aorta of obesity-induced mice, and there was a close relationship between the four. Conclusion Empagliflozin reduced the protein expression of FASN, SCD3, ACSL1, and ACSL5 in the aorta of obese mice and improved aortic fatty acid metabolism and reduced vascular stiffness for vasoprotective effects.
Collapse
Affiliation(s)
- Lin Yue
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yue Wang
- Department of Ultrasonography, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Cuiying Wang
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Shu Niu
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, 050000, P.R. China
| | - Xihong Dong
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yaqing Guan
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, P.R. China
| |
Collapse
|
22
|
Zhang L, Kan C, Shi J, Qiu H, Zhang J, Ding W, Xu L, Zhang K, Guo Z, Hou N, Sun X, Han F. Sestrin2 knockout exacerbates high-fat diet induced metabolic disorders and complications in female mice. Nutr Metab (Lond) 2024; 21:60. [PMID: 39095887 PMCID: PMC11295554 DOI: 10.1186/s12986-024-00834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/27/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Obesity and its associated complications raise significant public concern, revealing gender disparities in the susceptibility to metabolic disorders, with females often displaying greater resistance to obesity-related metabolic disorder than males. Sestrin2 is a crucial protein involved in metabolism and energy balance. This study seeks to explore whether Sesn2 knockout (KO) exacerbates high-fat diet (HFD) induced obesity in female mice. METHODS Female mice with wild-type (WT) and Sesn2 KO were subjected to a 12-week regimen of normal diet or HFD. Using a Body Composition Analyzer, body composition was gauged. Biochemical assays encompassed glucose, lipid, and liver function measurements, alongside 24-hour urine albumin excretion. Echocardiographic evaluation assessed cardiac function. Histopathological analysis of key metabolic tissues (liver, kidney, and heart tissues) were conducted. Western blotting or qRT-PCR evaluated key proteins and genes linked to inflammation, mitochondrial, and lipid metabolism in adipose tissues. RESULTS In comparison to mice fed a regular diet, those on a HFD exhibited significant increases in body weight and fat mass. Notably, Sesn2 KO further aggravated obesity, showcasing the most pronounced metabolic anomalies: elevated body weight, fat mass, impaired glucose tolerance, and insulin sensitivity, alongside heightened levels of free fatty acids and triglycerides. Additionally, KO-HFD mice displayed exacerbated multi-tissue impairments, including elevated hepatic enzymes, increased urinary albumin excretion, compromised cardiac function, and accumulation of lipids in the liver, kidney, and heart. Moreover, adipose tissue showcased altered lipid dynamics and function, characterized by enhanced triglyceride breakdown and modified adipokine levels. Browning was diminished, along with decreased Pgc1α and Sirt1 in KO-HFD mice. CONCLUSION Sesn2 KO exacerbates HFD-induced obesity and metabolic disorders in female mice. These findings underscore Sestrin2's novel role as a regulator of obesity in female mice.
Collapse
Affiliation(s)
- Le Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Wenli Ding
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Linfei Xu
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| |
Collapse
|
23
|
Wu HH, Du JM, Liu P, Meng FL, Li YY, Li WJ, Wang SX, Du NL, Zheng Y, Zhang L, Wang HY, Liu YR, Song CH, Ni X, Li Y, Su GH. LDHA contributes to nicotine induced cardiac fibrosis through autophagy flux impairment. Int Immunopharmacol 2024; 136:112338. [PMID: 38850787 DOI: 10.1016/j.intimp.2024.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Cardiac fibrosis is a typical feature of cardiac pathological remodeling, which is associated with adverse clinical outcomes and has no effective therapy. Nicotine is an important risk factor for cardiac fibrosis, yet its underlying molecular mechanism remains poorly understood. This study aimed to identify its potential molecular mechanism in nicotine-induced cardiac fibrosis. Our results showed nicotine exposure led to the proliferation and transformation of cardiac fibroblasts (CFs) into myofibroblasts (MFs) by impairing autophagy flux. Through the use of drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR) technology, it was discovered that nicotine directly increased the stability and protein levels of lactate dehydrogenase A (LDHA) by binding to it. Nicotine treatment impaired autophagy flux by regulating the AMPK/mTOR signaling pathway, impeding the nuclear translocation of transcription factor EB (TFEB), and reducing the activity of cathepsin B (CTSB). In vivo, nicotine treatment exacerbated cardiac fibrosis induced in spontaneously hypertensive rats (SHR) and worsened cardiac function. Interestingly, the absence of LDHA reversed these effects both in vitro and in vivo. Our study identified LDHA as a novel nicotine-binding protein that plays a crucial role in mediating cardiac fibrosis by blocking autophagy flux. The findings suggest that LDHA could potentially serve as a promising target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Hui-Hui Wu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jia-Min Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Peng Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fan-Liang Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Yan Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wen-Jing Li
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuang-Xi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Nai-Li Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Zheng
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Zhang
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui-Yun Wang
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi-Ran Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chun-Hong Song
- Department of Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xi Ni
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Ying Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Guo-Hai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
24
|
Emara AM, El Bendary AS, Ahmed LM, Okda HI. Evaluation of serum levels of sestrin 2 and betatrophin in type 2 diabetic patients with diabetic nephropathy. BMC Nephrol 2024; 25:231. [PMID: 39030467 PMCID: PMC11264897 DOI: 10.1186/s12882-024-03663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most serious microvascular complications of diabetes mellitus (DM) and the leading cause of chronic kidney disease (CKD) worldwide. Since obesity and type 2 DM (T2DM) are considered as inflammatory conditions, thus reducing their accompanied systemic inflammation may lessen their complications. Sestrin 2 belongs to a group of stress induced proteins which are produced in response to oxidative stress, inflammation and DNA damage. Betatrophin; a hormone that stimulates the growth, proliferation and mass expansion of pancreatic beta-cells and improves glucose tolerance. The objective of the study was to evaluate levels of serum Sestrin 2 and betatrophin in patients with different stages of diabetic nephropathy (DN)) and compare results with healthy control. METHODS This cross sectional study was carried out on 60 patients above 18 years old, recruited from Tanta University hospitals out patients clinics and 20 apparently healthy individuals of matched sex and age as a control group. Participants were divided into two groups: group I: 20 normal subjects as control group and group II: 60 patients with type 2 DM,. further subdivided in to three equal groups: group 1IIA(20 patients) with normo-albuminuria (ACR < 30 mg/g), group IIB (20 patients) with micro albuminuria (ACR = 30 to 300 mg/g) and group IIC (20 patients) with macro albuminuria (ACR > 300 mg/g). They were subjected to detailed history taking, careful clinical examination and laboratory investigations including blood urea, serum creatinine, estimated glomerular filtration rate (eGFR), urinary albumin creatinine ratio, and specific laboratory tests for Sestrin 2 and Betatrophin by using ELISA technique. RESULTS Serum Sestrin 2 significantly decreased, while serum betatrophin level significantly increased in macroalbuminuric group compared to control and other 2 diabetic groups (P value < 0.05). The cut off value of serum sestrin 2 was 0.98 ng/ml with sensitivity 99%, specificity 66% while the cut off value of serum betatrophin was > 98.25 ng/ml with sensitivity 98%, specificity 82%. Serum betatrophin positively correlated with age, fasting, 2 h postprandial, BMI, triglyceride, total cholesterol, serum creatinine, blood urea, UACR, and negatively correlated with eGFR and serum albumin. Serum Sestrin 2 positively correlated with serum albumin. BMI, serum urea, UACR and serum albumin. Serum betatrophin are found to be risk factors or predictors for diabetic nephropathy. CONCLUSIONS Patients with DN, particularly the macroalbuminuria group, had a significant increase in betatrophin levels and a significant decrease in serum Sestrin 2 level. The function of Sestrin 2 is compromised in DN, and restoring it can reverse a series of molecular alterations with subsequent improvement of the renal functions, albuminuria and structural damage.
Collapse
Affiliation(s)
- Asmaa Mounir Emara
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Amal Said El Bendary
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Laila Mahmoud Ahmed
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hanaa Ibrahim Okda
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
25
|
Qu H, Liu X, Zhu J, He N, He Q, Zhang L, Wang Y, Gong X, Xiong X, Liu J, Wang C, Yang G, Yang Q, Luo G, Zhu Z, Zheng Y, Zheng H. Mitochondrial glycerol 3-phosphate dehydrogenase deficiency exacerbates lipotoxic cardiomyopathy. iScience 2024; 27:109796. [PMID: 38832016 PMCID: PMC11145339 DOI: 10.1016/j.isci.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024] Open
Abstract
Metabolic diseases such as obesity and diabetes induce lipotoxic cardiomyopathy, which is characterized by myocardial lipid accumulation, dysfunction, hypertrophy, fibrosis and mitochondrial dysfunction. Here, we identify that mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) is a pivotal regulator of cardiac fatty acid metabolism and function in the setting of lipotoxic cardiomyopathy. Cardiomyocyte-specific deletion of mGPDH promotes high-fat diet induced cardiac dysfunction, pathological hypertrophy, myocardial fibrosis, and lipid accumulation. Mechanically, mGPDH deficiency inhibits the expression of desuccinylase SIRT5, and in turn, the hypersuccinylates majority of enzymes in the fatty acid oxidation (FAO) cycle and promotes the degradation of these enzymes. Moreover, manipulating SIRT5 abolishes the effects of mGPDH ablation or overexpression on cardiac function. Finally, restoration of mGPDH improves lipid accumulation and cardiomyopathy in both diet-induced and genetic obese mouse models. Thus, our study indicates that targeting mGPDH could be a promising strategy for lipotoxic cardiomyopathy in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Hua Qu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiufei Liu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiaran Zhu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Niexia He
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qingshan He
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuren Wang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoli Gong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xin Xiong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jinbo Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Gang Luo
- Department of Orthopedics, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, the Third Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yi Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Li Y, Zhang Z, Zhang Z, Zheng N, Ding X. Empagliflozin, a sodium-glucose cotransporter inhibitor enhancing mitochondrial action and cardioprotection in metabolic syndrome. J Cell Physiol 2024; 239:e31264. [PMID: 38764242 DOI: 10.1002/jcp.31264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024]
Abstract
Metabolic syndrome (MetS) has a large clinical population nowadays, usually due to excessive energy intake and lack of exercise. During MetS, excess nutrients stress the mitochondria, resulting in relative hypoxia in tissues and organs, even when blood supply is not interrupted or reduced, making mitochondrial dysfunction a central pathogenesis of cardiovascular disease in the MetS. Sodium-glucose cotransporter 2 inhibitors were designed as a hyperglycemic drug that acts on the renal tubules to block sugar reabsorption in primary urine. Recently they have been shown to have anti-inflammatory and other protective effects on cardiomyocytes in MetS, and have also been recommended in the latest heart failure guidelines as a routine therapy. Among these inhibitors, empagliflozin shows better clinical promise due to less influence from glomerular filtration rate. This review focuses on the mitochondrial mechanisms of empagliflozin, which underlie the anti-inflammatory and recover cellular functions in MetS cardiomyocytes, including stabilizing calcium concentration, mediating metabolic reprogramming, maintaining homeostasis of mitochondrial quantity and quality, stable mitochondrial DNA copy number, and repairing damaged mitochondrial DNA.
Collapse
Affiliation(s)
- Yunhao Li
- Graduate School, China Medical University, Shenyang, China
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhanming Zhang
- Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Zheming Zhang
- Graduate School, China Medical University, Shenyang, China
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xudong Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Song XW, He WX, Su T, Li CJ, Jiang LL, Huang SQ, Li SH, Guo ZF, Zhang BL. Abnormal expression of PRKAG2-AS1 in endothelial cells induced inflammation and apoptosis by reducing PRKAG2 expression. Noncoding RNA Res 2024; 9:536-546. [PMID: 38511052 PMCID: PMC10950609 DOI: 10.1016/j.ncrna.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
PRKAG2 is required for the maintenance of cellular energy balance. PRKAG2-AS1, a long non-coding RNA (lncRNA), was found within the promoter region of PRKAG2. Despite the extensive expression of PRKAG2-AS1 in endothelial cells, the precise function and mechanism of this gene in endothelial cells have yet to be elucidated. The localization of PRKAG2-AS1 was predominantly observed in the nucleus, as revealed using nuclear and cytoplasmic fractionation and fluorescence in situ hybridization. The manipulation of PRKAG2-AS1 by knockdown and overexpression within the nucleus significantly altered PRKAG2 expression in a cis-regulatory manner. The expression of PRKAG2-AS1 and its target genes, PRKAG2b and PRKAG2d, was down-regulated in endothelial cells subjected to oxLDL and Hcy-induced injury. This finding suggests that PRKAG2-AS1 may be involved in the mechanism behind endothelial injury. The suppression of PRKAG2-AS1 specifically in the nucleus led to an upregulation of inflammatory molecules such as cytokines, adhesion molecules, and chemokines in endothelial cells. Additionally, this nuclear suppression of PRKAG2-AS1 facilitated the adherence of THP1 cells to endothelial cells. We confirmed the role of nuclear knockdown PRKAG2-AS1 in the induction of apoptosis and inhibition of cell proliferation, migration, and lumen formation through flow cytometry, TUNEL test, CCK8 assay, and cell scratching. Finally, it was determined that PRKAG2-AS1 exerts direct control over the transcription of PRKAG2 by its binding to their promoters. In conclusion, downregulation of PRKAG2-AS1 suppressed the proliferation and migration, promoted inflammation and apoptosis of endothelial cells, and thus contributed to the development of atherosclerosis resulting from endothelial cell injury.
Collapse
Affiliation(s)
- Xiao-Wei Song
- Department of Anesthesiology, Shidong Hospital of Shanghai, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Xia He
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ting Su
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chang-Jin Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li-Li Jiang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Song-Qun Huang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Song-Hua Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhi-Fu Guo
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bi-Li Zhang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Noh HJ, Cha SJ, Kim CH, Choi SW, Lee CH, Hwang JK. Efficacy of dapagliflozin in improving arrhythmia-related outcomes after ablation for atrial fibrillation: a retrospective single-center study. Clin Res Cardiol 2024; 113:924-932. [PMID: 38358416 DOI: 10.1007/s00392-024-02389-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a widespread type of sustained arrhythmia that poses significant health risks. Catheter ablation is the preferred treatment; however, arrhythmia recurrence remains challenging. Sodium-glucose co-transporter 2 inhibitors, particularly dapagliflozin (DAPA), have exhibited cardiovascular benefits. However, to date, the influence of these inhibitors on AF post-ablation remains unclear. METHODS We analyzed the records of 272 patients who underwent catheter ablation for AF from January 2018 to December 2022. Patients were divided into the control (n = 199) and DAPA (n = 73) groups based on DAPA prescription post-ablation. The primary outcome was total atrial arrhythmia recurrence after a 3-month blanking period. RESULTS The mean age was 72.19 ± 5.45 years; 86.8% of the patients were men. At 18 months post-ablation, 36.2% and 9.5% of the patients in the control and DAPA groups, respectively, reported atrial arrhythmia. Multivariate analysis revealed that DAPA use was associated with a significantly reduced risk of arrhythmia recurrence (adjusted hazard ratio [aHR]: 0.15, 95% confidence interval [CI]: 0.07-0.32, p < 0.001). After propensity score-matching (PSM) in 65 pairs, arrhythmia recurrence was lower in the DAPA group compared with the control (8.3% versus 30.8%, aHR: 0.17, 95% CI: 0.06-0.51, p = 0.002). Freedom from total arrhythmia recurrence was significantly higher in the DAPA group compared with the control group in both the overall and PSM population (log-rank test p < 0.01). CONCLUSION DAPA administration post-ablation was associated with significantly reduced atrial arrhythmia recurrence rates, indicating its potential as an adjunct therapy for enhancing the success of AF ablation.
Collapse
Affiliation(s)
- Hyeong Jun Noh
- Division of Cardiology, Department of Internal Medicine, Veterans Health Service Medical Center, (05368) #53 Jinhawngdo-Ro 61 Gil, Gangdong-Gu, Seoul, Republic of Korea
| | - Sung Joo Cha
- Division of Cardiology, Department of Internal Medicine, Veterans Health Service Medical Center, (05368) #53 Jinhawngdo-Ro 61 Gil, Gangdong-Gu, Seoul, Republic of Korea
| | - Chee Hae Kim
- Division of Cardiology, Department of Internal Medicine, Veterans Health Service Medical Center, (05368) #53 Jinhawngdo-Ro 61 Gil, Gangdong-Gu, Seoul, Republic of Korea
| | - Suk-Won Choi
- Division of Cardiology, Department of Internal Medicine, Veterans Health Service Medical Center, (05368) #53 Jinhawngdo-Ro 61 Gil, Gangdong-Gu, Seoul, Republic of Korea
| | - Chang Hoon Lee
- Division of Cardiology, Department of Internal Medicine, Veterans Health Service Medical Center, (05368) #53 Jinhawngdo-Ro 61 Gil, Gangdong-Gu, Seoul, Republic of Korea
| | - Jin Kyung Hwang
- Division of Cardiology, Department of Internal Medicine, Veterans Health Service Medical Center, (05368) #53 Jinhawngdo-Ro 61 Gil, Gangdong-Gu, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Kurochkina ON, Korotkov DA, Sazhina AS, Bogomolov AN. Metabolic reprogramming as the basis for sodium-glucose co-transporter type 2 inhibitors cardio- and nephroprotective effect. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2024; 20:258-264. [DOI: 10.20996/1819-6446-2024-3014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
In recent years, it has been shown that sodium-g lucose co-transporter type 2 inhibitors (SGLT2), drugs for type 2 diabetes mellitus treatment, significantly improve metabolic parameters and have protective effect on the kidneys and heart not only in patients with type 2 diabetes mellitus. New research indicates that the progression of chronic heart failure (CHF) and chronic kidney disease (CKD) involves metabolic reprogramming, which consists of a deterioration in energy metabolism in the heart as a result of a mismatch between glucose uptake and its oxidation, leading to the accumulation of glucose-6-phosphate (G6P), glycogen and activation of the pentose phosphate pathway. This nutrient excess activates the mammalian target of rapamycin (mTOR), thereby promoting pathological myocardial remodeling, and at the same time suppresses the nutrient deficiency sensors SIRT1, AMPK and PGC-1α, which is accompanied by mitochondrial dysfunction, increased oxidative stress and decreased fatty acid oxidation. Similar processes occur in the proximal convoluted tubules of the kidneys in CKD, leading to renal dysfunction, albuminuria, and interstitial fibrosis. SGLT2 inhibitors inhibit the reabsorption of sodium and glucose in the proximal tubule, which leads to increased urinary glucose excretion and moderate osmotic diuresis and natriuresis. Nutrient deficiency resulting from glucose excretion promotes the activation of AMPK, which is involved in the regulation of mitochondrial biogenesis by stimulating PGC-1α, stimulates catabolic metabolism and activates autophagy by inhibiting mTORC1, which is accompanied by antiinflammatory effects, reduced oxidative stress and apoptosis and increased autophagy. These processes are accompanied by a decrease in blood pressure and a decrease in the load on the myocardium, with a simultaneous decrease in the tone of the sympathetic nervous system. Taking SGLT2 inhibitors is accompanied by normalization of tubuloglomerular feedback and a decrease in hyperfiltration, which has a beneficial effect on glomerular hemodynamics, as well as stimulation of erythropoiesis as a result of simulating systemic hypoxia. The described processes may serve as the basis for the cardioprotective and nephroprotective effects of SGLT2 inhibitors.
Collapse
Affiliation(s)
| | | | | | - A N. Bogomolov
- St. Petersburg Institute of Bioregulation and Gerontology
| |
Collapse
|
30
|
Alsereidi FR, Khashim Z, Marzook H, Gupta A, Al-Rawi AM, Ramadan MM, Saleh MA. Targeting inflammatory signaling pathways with SGLT2 inhibitors: Insights into cardiovascular health and cardiac cell improvement. Curr Probl Cardiol 2024; 49:102524. [PMID: 38492622 DOI: 10.1016/j.cpcardiol.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted significant attention for their broader therapeutic impact beyond simply controlling blood sugar levels, particularly in their ability to influence inflammatory pathways. This review delves into the anti-inflammatory properties of SGLT2 inhibitors, with a specific focus on canagliflozin, empagliflozin, and dapagliflozin. One of the key mechanisms through which SGLT2 inhibitors exert their anti-inflammatory effects is by activating AMP-activated protein kinase (AMPK), a crucial regulator of both cellular energy balance and inflammation. Activation of AMPK by these inhibitors leads to the suppression of pro-inflammatory pathways and a decrease in inflammatory mediators. Notably, SGLT2 inhibitors have demonstrated the ability to inhibit the release of cytokines in an AMPK-dependent manner, underscoring their direct influence on inflammatory signaling. Beyond AMPK activation, SGLT2 inhibitors also modulate several other inflammatory pathways, including the NLRP3 inflammasome, expression of Toll-like receptor 4 (TLR-4), and activation of NF-κB (Nuclear factor kappa B). This multifaceted approach contributes to their efficacy in reducing inflammation and managing associated complications in conditions such as diabetes and cardiovascular disorders. Several human and animal studies provide support for the anti-inflammatory effects of SGLT2 inhibitors, demonstrating protective effects on various cardiac cells. Additionally, these inhibitors exhibit direct anti-inflammatory effects by modulating immune cells. Overall, SGLT2 inhibitors emerge as promising therapeutic agents for targeting inflammation in a range of pathological conditions. Further research, particularly focusing on the molecular-level pathways of inflammation, is necessary to fully understand their mechanisms of action and optimize their therapeutic potential in inflammatory diseases.
Collapse
Affiliation(s)
- Fatmah R Alsereidi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Zenith Khashim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, MN, United States
| | - Hezlin Marzook
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anamika Gupta
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed M Al-Rawi
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mahmoud M Ramadan
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Cardiology, Faculty of Medicine, Mansoura University, 35516 Egypt
| | - Mohamed A Saleh
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt.
| |
Collapse
|
31
|
Priscilla L, Yoo C, Jang S, Park S, Lim G, Kim T, Lee DY. Immunotherapy targeting the obese white adipose tissue microenvironment: Focus on non-communicable diseases. Bioact Mater 2024; 35:461-476. [PMID: 38404641 PMCID: PMC10884763 DOI: 10.1016/j.bioactmat.2024.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Obesity triggers inflammatory responses in the microenvironment of white adipose tissue, resulting in chronic systemic inflammation and the subsequent development of non-communicable diseases, including type 2 diabetes, coronary heart disease, and breast cancer. Current therapy approaches for obesity-induced non-communicable diseases persist in prioritizing symptom remission while frequently overlooking the criticality of targeting and alleviating inflammation at its source. Accordingly, this review highlights the importance of the microenvironment of obese white adipose tissue and the promising potential of employing immunotherapy to target it as an effective therapeutic approach for non-communicable diseases induced by obesity. Additionally, this review discusses the challenges and offers perspective about the immunotherapy targeting the microenvironment of obese white adipose tissue.
Collapse
Affiliation(s)
- Lia Priscilla
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chaerim Yoo
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seonmi Jang
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sewon Park
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gayoung Lim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Taekyun Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology (INST) & Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul, 07463, Republic of Korea
| |
Collapse
|
32
|
Ma YL, Xu M, Cen XF, Qiu HL, Guo YY, Tang QZ. Tectorigenin protects against cardiac fibrosis in diabetic mice heart via activating the adiponectin receptor 1-mediated AMPK pathway. Biomed Pharmacother 2024; 174:116589. [PMID: 38636400 DOI: 10.1016/j.biopha.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common severe complication of diabetes that occurs independently of hypertension, coronary artery disease, and valvular cardiomyopathy, eventually leading to heart failure. Previous studies have reported that Tectorigenin (TEC) possesses extensive anti-inflammatory and anti-oxidative stress properties. In this present study, the impact of TEC on diabetic cardiomyopathy was examined. The model of DCM in mice was established with the combination of a high-fat diet and STZ treatment. Remarkably, TEC treatment significantly attenuated cardiac fibrosis and improved cardiac dysfunction. Concurrently, TEC was also found to mitigate hyperglycemia and hyperlipidemia in the DCM mouse. At the molecular level, TEC is involved in the activation of AMPK, both in vitro and in vivo, by enhancing its phosphorylation. This is achieved through the regulation of endothelial-mesenchymal transition via the AMPK/TGFβ/Smad3 pathway. Furthermore, it was demonstrated that the level of ubiquitination of the adiponectin receptor 1 (AdipoR1) protein is associated with TEC-mediated improvement of cardiac dysfunction in DCM mice. Notably the substantial reduction of myocardial fibrosis. In conclusion, TEC improves cardiac fibrosis in DCM mice by modulating the AdipoR1/AMPK signaling pathway. These findings suggest that TEC could be an effective therapeutic agent for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yu-Lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xian-Feng Cen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ying-Ying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.
| |
Collapse
|
33
|
Heather LC, Gopal K, Srnic N, Ussher JR. Redefining Diabetic Cardiomyopathy: Perturbations in Substrate Metabolism at the Heart of Its Pathology. Diabetes 2024; 73:659-670. [PMID: 38387045 PMCID: PMC11043056 DOI: 10.2337/dbi23-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Cardiovascular disease represents the leading cause of death in people with diabetes, most notably from macrovascular diseases such as myocardial infarction or heart failure. Diabetes also increases the risk of a specific form of cardiomyopathy, referred to as diabetic cardiomyopathy (DbCM), originally defined as ventricular dysfunction in the absence of underlying coronary artery disease and/or hypertension. Herein, we provide an overview on the key mediators of DbCM, with an emphasis on the role for perturbations in cardiac substrate metabolism. We discuss key mechanisms regulating metabolic dysfunction in DbCM, with additional focus on the role of metabolites as signaling molecules within the diabetic heart. Furthermore, we discuss the preclinical approaches to target these perturbations to alleviate DbCM. With several advancements in our understanding, we propose the following as a new definition for, or approach to classify, DbCM: "diastolic dysfunction in the presence of altered myocardial metabolism in a person with diabetes but absence of other known causes of cardiomyopathy and/or hypertension." However, we recognize that no definition can fully explain the complexity of why some individuals with DbCM exhibit diastolic dysfunction, whereas others develop systolic dysfunction. Due to DbCM sharing pathological features with heart failure with preserved ejection fraction (HFpEF), the latter of which is more prevalent in the population with diabetes, it is imperative to determine whether effective management of DbCM decreases HFpEF prevalence. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Lisa C. Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nikola Srnic
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
Li M, Liu L, Zhang C, Deng L, Zhong Y, Liao B, Li X, Wan Y, Feng J. The latest emerging drugs for the treatment of diabetic cardiomyopathy. Expert Opin Pharmacother 2024; 25:641-654. [PMID: 38660817 DOI: 10.1080/14656566.2024.2347468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus involving multiple pathophysiologic mechanisms. In addition to hypoglycemic agents commonly used in diabetes, metabolism-related drugs, natural plant extracts, melatonin, exosomes, and rennin-angiotensin-aldosterone system are cardioprotective in DCM. However, there is a lack of systematic summarization of drugs for DCM. AREAS COVERED In this review, the authors systematically summarize the most recent drugs used for the treatment of DCM and discusses them from the perspective of DCM pathophysiological mechanisms. EXPERT OPINION We discuss DCM drugs from the perspective of the pathophysiological mechanisms of DCM, mainly including inflammation and metabolism. As a disease with multiple pathophysiological mechanisms, the combination of drugs may be more advantageous, and we have discussed some of the current studies on the combination of drugs.
Collapse
Affiliation(s)
- Minghao Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lin Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuying Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University; Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Ying Wan
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University; Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
35
|
Gao T, Wang J, Xiao M, Wang J, Wang S, Tang Y, Zhang J, Lu G, Guo H, Guo Y, Liu Q, Li J, Gu J. SESN2-Mediated AKT/GSK-3β/NRF2 Activation to Ameliorate Adriamycin Cardiotoxicity in High-Fat Diet-Induced Obese Mice. Antioxid Redox Signal 2024; 40:598-615. [PMID: 37265150 DOI: 10.1089/ars.2022.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aims: Obese patients are highly sensitive to adriamycin (ADR)-induced cardiotoxicity. However, the potential mechanism of superimposed toxicity remains to be elucidated. Sestrin 2 (SESN2), a potential antioxidant, could attenuate stress-induced cardiomyopathy; therefore, this study aims to explore whether SESN2 enhances cardiac resistance to ADR-induced oxidative damage in high-fat diet (HFD)-induced obese mice. Results: The results revealed that obesity decreased SESN2 expression in ADR-exposed heart. And, HFD mice may predispose to ADR-induced cardiotoxicity, which was probably associated with inhibiting protein kinase B (AKT), glycogen synthase kinase-3 beta (GSK-3β) phosphorylation and subsequently blocking nuclear localization of nuclear factor erythroid-2 related factor 2 (NRF2), ultimately resulting in cardiac oxidative damage. However, these destructive cascades and cardiac oxidative damage effects induced by HFD/sodium palmitate combined with ADR were blocked by overexpression of SESN2. Moreover, the antioxidant effect of SESN2 could be largely abolished by sh-Nrf2 or wortmannin. And sulforaphane, an NRF2 agonist, could remarkably reverse cardiac pathological and functional abnormalities caused by ADR in obese mice. Innovation and Conclusion: This study demonstrated that SESN2 might be a promising therapeutic target for improving anthracycline-related cardiotoxicity in obesity by upregulating activity of NRF2 via AKT/GSK-3β/Src family tyrosine kinase signaling pathway. Antioxid. Redox Signal. 40, 598-615.
Collapse
Affiliation(s)
- Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, Shenyang, China
- Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Guo
- Department of Nursing, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
36
|
Dabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:159-182. [PMID: 38774006 PMCID: PMC11103046 DOI: 10.1016/j.jaccao.2024.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 05/24/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally approved for type 2 diabetes mellitus, have demonstrated efficacy in reducing cardiovascular events, particularly heart failure, in patients with and without diabetes. An intriguing research area involves exploring the potential application of SGLT2 inhibitors in cardio-oncology, aiming to mitigate the cardiovascular adverse events associated with anticancer treatments. These inhibitors present a unique dual nature, offering both cardioprotective effects and anticancer properties, conferring a double benefit for cardio-oncology patients. In this review, the authors first examine the established cardioprotective effects of SGLT2 inhibitors in heart failure and subsequently explore the existing body of evidence, including both preclinical and clinical studies, that supports the use of SGLT2 inhibitors in the context of cardio-oncology. The authors further discuss the mechanisms through which SGLT2 inhibitors protect against cardiovascular toxicity secondary to cancer treatment. Finally, they explore the potential anticancer effects of SGLT2 inhibitors along with their proposed mechanisms.
Collapse
Affiliation(s)
- Mohamed S. Dabour
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mina Y. George
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mary R. Daniel
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anne H. Blaes
- Division of Hematology/Oncology/Transplantation, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
37
|
Zhang KX, Kan CX, Han F, Zhang JW, Sun XD. Elucidating the cardioprotective mechanisms of sodium-glucose cotransporter-2 inhibitors beyond glycemic control. World J Diabetes 2024; 15:137-141. [PMID: 38464375 PMCID: PMC10921166 DOI: 10.4239/wjd.v15.i2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors have emerged as a pivotal intervention in diabetes management, offering significant cardiovascular benefits. Empagliflozin, in particular, has demonstrated cardioprotective effects beyond its glucose-lowering action, reducing heart failure hospitalizations and improving cardiac function. Of note, the cardioprotective mechanisms appear to be inde-pendent of glucose lowering, possibly mediated through several mechanisms involving shifts in cardiac metabolism and anti-fibrotic, anti-inflammatory, and anti-oxidative pathways. This editorial summarizes the multifaceted cardiovascular advantages of SGLT2 inhibitors, highlighting the need for further research to elucidate their full therapeutic potential in cardiac care.
Collapse
Affiliation(s)
- Ke-Xin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Cheng-Xia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Jing-Wen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
38
|
Fu WJ, Huo JL, Mao ZH, Pan SK, Liu DW, Liu ZS, Wu P, Gao ZX. Emerging role of antidiabetic drugs in cardiorenal protection. Front Pharmacol 2024; 15:1349069. [PMID: 38384297 PMCID: PMC10880452 DOI: 10.3389/fphar.2024.1349069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
The global prevalence of diabetes mellitus (DM) has led to widespread multi-system damage, especially in cardiovascular and renal functions, heightening morbidity and mortality. Emerging antidiabetic drugs sodium-glucose cotransporter 2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RAs), and dipeptidyl peptidase-4 inhibitors (DPP-4i) have demonstrated efficacy in preserving cardiac and renal function, both in type 2 diabetic and non-diabetic individuals. To understand the exact impact of these drugs on cardiorenal protection and underlying mechanisms, we conducted a comprehensive review of recent large-scale clinical trials and basic research focusing on SGLT2i, GLP-1RAs, and DPP-4i. Accumulating evidence highlights the diverse mechanisms including glucose-dependent and independent pathways, and revealing their potential cardiorenal protection in diabetic and non-diabetic cardiorenal disease. This review provides critical insights into the cardiorenal protective effects of SGLT2i, GLP-1RAs, and DPP-4i and underscores the importance of these medications in mitigating the progression of cardiovascular and renal complications, and their broader clinical implications beyond glycemic management.
Collapse
Affiliation(s)
- Wen-Jia Fu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jin-Ling Huo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
39
|
Yang G, Zhang Q, Dong C, Hou G, Li J, Jiang X, Xin Y. Nrf2 prevents diabetic cardiomyopathy via antioxidant effect and normalization of glucose and lipid metabolism in the heart. J Cell Physiol 2024; 239:e31149. [PMID: 38308838 DOI: 10.1002/jcp.31149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 02/05/2024]
Abstract
Metabolic disorders and oxidative stress are the main causes of diabetic cardiomyopathy. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a powerful antioxidant effect and prevents the progression of diabetic cardiomyopathy. However, the mechanism of its cardiac protection and direct action on cardiomyocytes are not well understood. Here, we investigated in a cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) the direct effect of Nrf2 on cardiomyocytes in DCM and its mechanism. In this study, cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) were used to directly observe whether cardiomyocyte-specific overexpression of Nrf2 can prevent diabetic cardiomyopathy and correct glucose and lipid metabolism disorders in the heart. Compared to wild-type mice, Nrf2-TG mice showed resistance to diabetic cardiomyopathy in a streptozotocin-induced type 1 diabetes mouse model. This was primarily manifested as improved echocardiography results as well as reduced myocardial fibrosis, cardiac inflammation, and oxidative stress. These results showed that Nrf2 can directly act on cardiomyocytes to exert a cardioprotective role. Mechanistically, the cardioprotective effects of Nrf2 depend on its antioxidation activity, partially through improving glucose and lipid metabolism by directly targeting lipid metabolic pathway of AMPK/Sirt1/PGC-1α activation via upstream genes of sestrin2 and LKB1, and indirectly enabling AKT/GSK-3β/HK-Ⅱ activity via AMPK mediated p70S6K inhibition.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qihe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Guowen Hou
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
40
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
41
|
Tian X, Wei J. Sestrin 2 protects human lens epithelial cells from oxidative stress and apoptosis induced by hydrogen peroxide by regulating the mTOR/Nrf2 pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241234741. [PMID: 38379215 PMCID: PMC10880533 DOI: 10.1177/03946320241234741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE We aimed to explore the effect and potential mechanism of Sestrin 2 (SESN2) in human lens epithelial cells (HLECs). METHODS To mimic the oxidative stress environment, SAR01/04 cells were treated with 200 μM hydrogen peroxide (H2O2) for 24 h. Cell viability and apoptosis were checked by cell counting kit-8 and flow cytometry. Western blot was taken to check the protein changes of SESN2, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, ribosomal protein S6 kinase B1 (p70S6K), p-p70S6K, and nuclear factor erythroid 2-related factor 2 (Nrf2). Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and reactive oxygen species (ROS) were detected via the corresponding reagent kit. The levels of interleukin (IL)-1β, IL-18, and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay. RESULTS SESN2 was down-regulated in cataract lens tissue and up-regulated in SAR01/04 cells treated with H2O2. Under treatment of H2O2, up-regulation of SESN2 improved cell viability, enhanced the activity of SOD and CAT, inhibited cell apoptosis, and reduced the levels of MDA, ROS, IL-1β, IL-18, and TNF-α, while down-regulation of SESN2 caused the contrary effects. Further bioinformatics analysis suggested that SESN2 regulated the mTOR signaling pathway. Treatment of H2O2 inhibited p-mTOR and p-p70S6K protein expression, while overexpression of SESN2 increased p-mTOR and p-p70S6K protein expression in the H2O2 group and down-regulation of SESN2 further decreased p-mTOR and p-p70S6K protein expression in the H2O2 group. Additionally, H2O2 increased Nrf2 protein expression, and overexpression of SESN2 further increased Nrf2 protein expression in the H2O2 group. Importantly, rapamycin (an inhibitor of mTOR signaling pathway) and knockdown of Nrf2 reversed the promotive effects of SESN2 on cell viability and the inhibitive effects of SESN2 on cell apoptosis, oxidative stress, and inflammatory reaction. CONCLUSION SESN2 protected HLECs damage induced by H2O2, which was related to the activation of mTOR/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Ophthalmology, Jinan Aier Eye Hospital, Jinan, China
| | - Jie Wei
- Department of Ophthalmology, No. 960 Hospital of PLA Joint Logistic Support Force, Jinan, China
| |
Collapse
|
42
|
Bar-Tana J. TorS - Reframing a rational for type 2 diabetes treatment. Diabetes Metab Res Rev 2024; 40:e3712. [PMID: 37615286 DOI: 10.1002/dmrr.3712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
The mammalian target of rapamycin complex 1 syndrome (Tors), paradigm implies an exhaustive cohesive disease entity driven by a hyperactive mTORC1, and which includes obesity, type 2 diabetic hyperglycemia, diabetic dyslipidemia, diabetic cardiomyopathy, diabetic nephropathy, diabetic peripheral neuropathy, hypertension, atherosclerotic cardiovascular disease, non-alcoholic fatty liver disease, some cancers, neurodegeneration, polycystic ovary syndrome, psoriasis and other. The TorS paradigm may account for the efficacy of standard-of-care treatments of type 2 diabetes (T2D) in alleviating the glycaemic and non-glycaemic diseases of TorS in T2D and non-T2D patients. The TorS paradigm may generate novel treatments for TorS diseases.
Collapse
|
43
|
Azizian H, Farhadi Z, Bader M, Alizadeh Ghalenoei J, Ghafari MA, Mahmoodzadeh S. GPER activation attenuates cardiac dysfunction by upregulating the SIRT1/3-AMPK-UCP2 pathway in postmenopausal diabetic rats. PLoS One 2023; 18:e0293630. [PMID: 38134189 PMCID: PMC10745199 DOI: 10.1371/journal.pone.0293630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2023] [Indexed: 12/24/2023] Open
Abstract
Postmenopausal diabetic women are at higher risk to develop cardiovascular diseases (CVD) compared with nondiabetic women. Alterations in cardiac cellular metabolism caused by changes in sirtuins are one of the main causes of CVD in postmenopausal diabetic women. Several studies have demonstrated the beneficial actions of the G protein-coupled estrogen receptor (GPER) in postmenopausal diabetic CVD. However, the molecular mechanisms by which GPER has a cardioprotective effect are still not well understood. In this study, we used an ovariectomized (OVX) type-two diabetic (T2D) rat model induced by high-fat diet/streptozotocin to investigate the effect of G-1 (GPER-agonist) on sirtuins, and their downstream pathways involved in regulation of cardiac metabolism and function. Animals were divided into five groups: Sham-Control, T2D, OVX+T2D, OVX+T2D+Vehicle, and OVX+T2D+G-1. G-1 was administrated for six weeks. At the end, hemodynamic factors were measured, and protein levels of sirtuins, AMP-activated protein kinase (AMPK), and uncoupling protein 2 (UCP2) were determined by Western blot analysis. In addition, cardiac levels of oxidative stress biomarkers were measured. The findings showed that T2D led to left ventricular dysfunction and signs of oxidative stress in the myocardium, which were accompanied by decreased protein levels of Sirt1/2/3/6, p-AMPK, and UCP2 in the heart. Moreover, the induction of the menopausal state exacerbated these changes. In contrast, treatment with G-1 ameliorated the hemodynamic changes associated with ovariectomy by increasing Sirt1/3, p-AMPK, UCP2, and improving oxidative status. The results provide evidence of the cardioprotective effects of GPER operating through Sirt1/3, p-AMPK, and UCP2, thereby improving cardiac function. Our results suggest that increasing Sirt1/3 levels may offer new therapeutic approaches for postmenopausal diabetic CVD.
Collapse
Affiliation(s)
- Hossein Azizian
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Zeinab Farhadi
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
- University of Lübeck, Institute for Biology, Lübeck, Germany
| | - Jalil Alizadeh Ghalenoei
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Amin Ghafari
- Yazd Neuroendocrine Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokoufeh Mahmoodzadeh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
44
|
Song MW, Cui W, Lee CG, Cui R, Son YH, Kim YH, Kim Y, Kim HJ, Choi SE, Kang Y, Kim TH, Jeon JY, Lee KW. Protective effect of empagliflozin against palmitate-induced lipotoxicity through AMPK in H9c2 cells. Front Pharmacol 2023; 14:1228646. [PMID: 38116084 PMCID: PMC10728651 DOI: 10.3389/fphar.2023.1228646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have recently emerged as novel cardioprotective agents. However, their direct impact on cardiomyocyte injury is yet to be studied. In this work, we investigate the underlying molecular mechanisms of empagliflozin (EMPA), an SGLT2 inhibitor, in mitigating palmitate (PA)-induced cardiomyocyte injury in H9c2 cells. We found that EMPA significantly attenuated PA-induced impairments in insulin sensitivity, ER stress, inflammatory cytokine gene expression, and cellular apoptosis. Additionally, EMPA elevated AMP levels, activated the AMPK pathway, and increased carnitine palmitoyl transferase1 (CPT1) gene expression, which collectively enhanced fatty acid oxidation and reduced stress signals. This study reveals a novel mechanism of EMPA's protective effects against PA-induced cardiomyocyte injury, providing new therapeutic insights into EMPA as a cardioprotective agent.
Collapse
Affiliation(s)
- Min-Woo Song
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Wenhao Cui
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin, China
| | - Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju, Republic of Korea
| | - Rihua Cui
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin, China
| | - Young Ho Son
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young Ha Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yujin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung-E. Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Ho Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul Medical Center, Seoul, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
45
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
46
|
Wang J, Du H, Sun Q, Wan W, Zhang H. The promotion of sestrin2/AMPK signaling by HIF-1α overexpression enhances the damage caused by acute myocardial infarction. BMC Cardiovasc Disord 2023; 23:571. [PMID: 37986153 PMCID: PMC10662688 DOI: 10.1186/s12872-023-03604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVE Acute myocardial infarction (AMI), is a serious form of coronary heart disease. The present study sought to investigate the impact of HIF-1α on AMI, along with its fundamental mechanism. METHODS Sprague-Dawley (SD) rats were used to conduct an AMI model. 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) staining was used examine the region of myocardial infract area at various time intervals. Protein expression levels were detected using western blotting. The rats were randomly divided into sham, model, negative control (NC), HIF-1α overexpression (HIF-1α-OE), and HIF-1α-OE+ si-sestrin2 groups. We examined the impact of HIF-1α overexpression on AMI rats using Haematoxylin-Eosin (H&E) staining, TTC staining, enzyme-linked immunosorbent assay (ELISA), TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, and immunohistochemistry (IHC) staining. RESULTS According to the TTC findings, the region affected by myocardial infarction reached its peak at day 14. Based on the results from the western blot analysis, the levels of HIF-1α and sestrin2 were found the minimum on day 28. Subsequently, we discovered that the overexpression of HIF-1α rescued the cardiac function parameters, improved the morphology of myocardial tissue, and mitigated inflammation. Furthermore, the overexpression of HIF-1α led to a reduction in the levels of MDA and an increase in the levels of SOD. Moreover, the overexpression of HIF-1α resulted in a decrease in cellular apoptosis. This result was confirmed by the expression levels of Bcl-2 and Bax. Nevertheless, the defensive impact of elevated HIF-1α expression was somewhat counteracted by the suppression of sestrin2. In terms of mechanism, the overexpression of HIF-1α enhanced the levels of sestrin2 and the protein adenosine monophosphate activated kinase (AMPK). CONCLUSION Our research suggests that the overexpression of HIF-1α may rescue the damage to myocardial tissue, and this effect is associated with the sestrin2/AMPK signaling pathway. Our study provides a novel comprehension of the protective effects of HIF-1α overexpression on AMI.
Collapse
Affiliation(s)
- Jie Wang
- Cardiac Intensive Care Unit, Yantaishan Hospital, Yantai, Shandong, China
| | - Honglei Du
- Department of Cardiology, Yantai Yeda Hospital, No.23-1, the Yellow River Road, Yantai economic and Technological Development Zone, Yantai, Shandong, 264006, China
| | - Qing Sun
- Department of Cardiology, Yantaishan Hospital, Yantai, China
| | - Weiping Wan
- Department of Ultrasound, Yantaishan Hospital, Yantai, Shandong, China
| | - Haifeng Zhang
- Department of Cardiology, Yantai Yeda Hospital, No.23-1, the Yellow River Road, Yantai economic and Technological Development Zone, Yantai, Shandong, 264006, China.
| |
Collapse
|
47
|
Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, Gao N, Sun Y, Zhu L. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle 2023; 22:2467-2484. [PMID: 38179789 PMCID: PMC10802212 DOI: 10.1080/15384101.2023.2293595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
Pathological cardiac hypertrophy (referred to as cardiac hypertrophy) is a maladaptive response of the heart to a variety of pathological stimuli, and cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Currently, the treatments for cardiac hypertrophy are limited to improving symptoms and have little effect. Elucidation of the developmental process of cardiac hypertrophy at the molecular level and the identification of new targets for the treatment of cardiac hypertrophy are crucial. In this review, we summarize the research on multiple active substances related to the pathogenesis of cardiac hypertrophy and the signaling pathways involved and focus on the role of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in the development of cardiac hypertrophy and the identification of potential targets for molecular intervention. We aim to identify important signaling molecules with clinical value and hope to help promote the precise treatment of cardiac hypertrophy and thus improve patient outcomes.
Collapse
Affiliation(s)
- Jing Wen
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huarui Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunyan Wan
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhouhong Yao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nannan Gao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Zhu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
48
|
Liu L, Ma J, Wei Z, Yang Y, Liu Z, Li D, Yu X, Fan Y, Wang F, Wan Y. chi-miR-130b-3p regulates the ZEA-induced oxidative stress damage through the KEAP1/NRF2 signaling pathway by targeting SESN2 in goat GCs. FASEB J 2023; 37:e23212. [PMID: 37773760 DOI: 10.1096/fj.202300822r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/13/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
As a dominant mycotoxin, zearalenone (ZEA) has attracted extensive attention due to its estrogen-like effect and oxidative stress damage in cells. In order to find a way to relieve cell oxidative stress damage caused by ZEA, we treated goat granulosa cells (GCs) with ZEA and did a whole transcriptome sequencing. The results showed that the expression level of Sesterin2 (SESN2) was promoted extremely significantly in the ZEA group (p < .01). In addition, our research demonstrated that SESN2 could regulate oxidative stress level in GCs through Recombinant Kelch Like ECH Associated Protein 1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. The overexpression of SESN2 could reduce the oxidative damage, whereas knockdown of SESN2 would aggravate the oxidative damage caused by ZEA. What's more, microRNA (miRNA) chi-miR-130b-3p can bind to SESN2 3'-untranslated region (3'UTR) to regulate the expression of SESN2. The mimics/inhibition of chi-miR-130b-3p would have an effect on oxidative damage triggered by ZEA in GCs as well. In summary, these results elucidate a new pathway by which chi-miR-130b-3p affects the KEAP1/NRF2 pathway in GCs by modulating SESN2 expression in response to ZEA-induced oxidative stress damage.
Collapse
Affiliation(s)
- Liang Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Jianyu Ma
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zongyou Wei
- Taicang Agricultural and Rural Science & Technology Service Center, and Enterprise Graduate Workstation, Taicang, P.R. China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Xiaoqing Yu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
49
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Saha S, Fang X, Green CD, Das A. mTORC1 and SGLT2 Inhibitors-A Therapeutic Perspective for Diabetic Cardiomyopathy. Int J Mol Sci 2023; 24:15078. [PMID: 37894760 PMCID: PMC10606418 DOI: 10.3390/ijms242015078] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetic cardiomyopathy is a critical diabetes-mediated co-morbidity characterized by cardiac dysfunction and heart failure, without predisposing hypertensive or atherosclerotic conditions. Metabolic insulin resistance, promoting hyperglycemia and hyperlipidemia, is the primary cause of diabetes-related disorders, but ambiguous tissue-specific insulin sensitivity has shed light on the importance of identifying a unified target paradigm for both the glycemic and non-glycemic context of type 2 diabetes (T2D). Several studies have indicated hyperactivation of the mammalian target of rapamycin (mTOR), specifically complex 1 (mTORC1), as a critical mediator of T2D pathophysiology by promoting insulin resistance, hyperlipidemia, inflammation, vasoconstriction, and stress. Moreover, mTORC1 inhibitors like rapamycin and their analogs have shown significant benefits in diabetes and related cardiac dysfunction. Recently, FDA-approved anti-hyperglycemic sodium-glucose co-transporter 2 inhibitors (SGLT2is) have gained therapeutic popularity for T2D and diabetic cardiomyopathy, even acknowledging the absence of SGLT2 channels in the heart. Recent studies have proposed SGLT2-independent drug mechanisms to ascertain their cardioprotective benefits by regulating sodium homeostasis and mimicking energy deprivation. In this review, we systematically discuss the role of mTORC1 as a unified, eminent target to treat T2D-mediated cardiac dysfunction and scrutinize whether SGLT2is can target mTORC1 signaling to benefit patients with diabetic cardiomyopathy. Further studies are warranted to establish the underlying cardioprotective mechanisms of SGLT2is under diabetic conditions, with selective inhibition of cardiac mTORC1 but the concomitant activation of mTORC2 (mTOR complex 2) signaling.
Collapse
Affiliation(s)
- Sumit Saha
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Christopher D. Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|