1
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Park JS, Kim KS, Choi HJ. Glucagon-Like Peptide-1 and Hypothalamic Regulation of Satiation: Cognitive and Neural Insights from Human and Animal Studies. Diabetes Metab J 2025; 49:333-347. [PMID: 40367985 PMCID: PMC12086555 DOI: 10.4093/dmj.2025.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as blockbuster drugs for treating metabolic diseases. Glucagon-like peptide-1 (GLP-1) plays a pivotal role in glucose homeostasis by enhancing insulin secretion, suppressing glucagon release, delaying gastric emptying, and acting on the central nervous system to regulate satiation and satiety. This review summarizes the discovery of GLP-1 and the development of GLP-1RAs, with a particular focus on their central mechanisms of action. Human neuroimaging studies demonstrate that GLP-1RAs influence brain activity during food cognition, supporting a role in pre-ingestive satiation. Animal studies on hypothalamic feed-forward regulation of hunger suggest that cognitive hypothalamic mechanisms may also contribute to satiation control. We highlight the brain mechanisms of GLP-1RA-induced satiation and satiety, including cognitive impacts, with an emphasis on animal studies of hypothalamic glucagon-like peptide-1 receptor (GLP-1R) and GLP-1R-expressing neurons. Actions in non-hypothalamic regions are also discussed. Additionally, we review emerging combination drugs and oral GLP-1RA formulations aimed at improving efficacy and patient adherence. In conclusion, the dorsomedial hypothalamus (DMH)-a key GLP-1RA target-mediates pre-ingestive cognitive satiation, while other hypothalamic GLP-1R neurons regulate diverse aspects of feeding behavior, offering potential therapeutic targets for obesity treatment.
Collapse
Affiliation(s)
- Joon Seok Park
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Sik Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Jin Choi
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Zhou Q, Zhao F, Zhang Y, Yang D, Wang MW. Structural pharmacology and mechanisms of GLP-1R signaling. Trends Pharmacol Sci 2025; 46:422-436. [PMID: 40221226 DOI: 10.1016/j.tips.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/14/2025]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R), a class B1 G protein-coupled receptor, plays critical roles in glucose homeostasis. Recent structural pharmacology studies using cryogenic electron microscopy, X-ray crystallography, mass spectrometry, and functional analyses, have provided valuable insights into its activation by endogenous hormones and mono- or dual agonists like semaglutide and tirzepatide, highly effective in treating type 2 diabetes and obesity. They highlight significant conformational changes in the extracellular and transmembrane domains of GLP-1R that drive receptor activation and downstream signal transduction. Additionally, allosteric modulators, supported by emerging structural information, show great promises as an alternative strategy. Future research investigating unexplored effector interactions, biased signaling, weight rebound mechanisms, and personalized therapy strategies will be critical for developing better therapeutic agents targeting GLP-1R.
Collapse
Affiliation(s)
- Qingtong Zhou
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China
| | - Fenghui Zhao
- The National Center for Drug Screening, Shanghai 201203, China
| | - Yao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China; The National Center for Drug Screening, Shanghai 201203, China
| | - Ming-Wei Wang
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Research Center for Deepsea Bioresources, Sanya, Hainan 572025, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou 570228, China; Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Adriaenssens AE. Unravelling the GIPR agonist versus antagonist paradox. Nat Metab 2025:10.1038/s42255-025-01299-6. [PMID: 40301584 DOI: 10.1038/s42255-025-01299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Affiliation(s)
- Alice E Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
5
|
Xu Z, Wen S, Dong M, Zhou L. Targeting central pathway of Glucose-Dependent Insulinotropic Polypeptide, Glucagon and Glucagon-like Peptide-1 for metabolic regulation in obesity and type 2 diabetes. Diabetes Obes Metab 2025; 27:1660-1675. [PMID: 39723473 DOI: 10.1111/dom.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Obesity and type 2 diabetes are significant public health challenges that greatly impact global well-being. The development of effective therapeutic strategies has become more and more concentrated on the central nervous system and metabolic regulation. The primary pharmaceutical interventions for the treatment of obesity and uncontrolled hyperglycemia are now generally considered to be incretin-based anti-diabetic treatments, particularly glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonists. This is a result of their substantial influence on the central nervous system and the consequent effects on energy balance and glucose regulation. It is increasingly crucial to understand the neural pathways of these pharmaceuticals. The purpose of this review is to compile and present the most recent central pathways regarding glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide and glucagon receptors, with a particular emphasis on central metabolic regulation.
Collapse
Affiliation(s)
- Zhimin Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Fudan Zhangjiang Institute, Fudan University, Shanghai, China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
6
|
Dou X, Zhao L, Li J, Jiang Y. Effect and mechanism of GLP-1 on cognitive function in diabetes mellitus. Front Neurosci 2025; 19:1537898. [PMID: 40171533 PMCID: PMC11959055 DOI: 10.3389/fnins.2025.1537898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Background Diabetes mellitus (DM) is a metabolic disorder associated with cognitive impairment. Glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) have shown neuroprotective effects. Scope of review This review explores the impact of DM on cognitive function. Diabetes-related cognitive impairment is divided into three stages: diabetes-associated cognitive decrements, mild cognitive impairment (MCI), and dementia. GLP-1R agonists (GLP-1RAs) have many functions, such as neuroprotection, inhibiting infection, and metabolic regulation, and show good application prospects in improving cognitive function. The mechanisms of GLP-1RAs neuroprotection may be interconnected, warranting further investigation. Understanding these mechanisms could lead to targeted treatments for diabetes-related cognitive dysfunction. Major conclusions Therefore, this paper reviewed the regulatory effects of GLP-1 on cognitive dysfunction and its possible mechanism. Further research is required to fully explore the potential of GLP-1 and its analogs in this context.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, China
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Zhao
- Department of Laboratory Medicine, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jing Li
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| | - Yaqiu Jiang
- Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Yacawych WT, Wang Y, Zhou G, Hassan S, Kernodle S, Sass F, DeVaux M, Wu I, Rupp A, Tomlinson AJ, Lin Z, Secher A, Raun K, Pers T, Seeley RJ, Myers M, Qiu W. A single dorsal vagal complex circuit mediates the aversive and anorectic responses to GLP1R agonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634167. [PMID: 39896596 PMCID: PMC11785067 DOI: 10.1101/2025.01.21.634167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
GLP-1 receptor agonists (GLP1RAs) effectively reduce feeding to treat obesity, although nausea and other aversive side effects of these drugs can limit their use. Brainstem circuits that promote satiation and that mediate the physiologic control of body weight can be distinguished from those that cause aversion. It remains unclear whether brainstem Glp1r neurons contribute to the normal regulation of energy balance and whether GLP1RAs control appetite via circuits distinct from those that mediate aversive responses, however. Hence, we defined roles for AP and NTS Glp1r-expressing neurons (APGlp1r and NTSGlp1r neurons, respectively) in the physiologic control of body weight, the GLP1RA-dependent suppression of food intake, and the GLP1RA-mediated stimulation of aversive responses. While silencing non-aversive NTSGlp1r neurons interfered with the physiologic restraint of feeding and body weight, restoring NTSGlp1r neuron Glp1r expression on an otherwise Glp1r-null background failed to enable long-term body weight suppression by GLP1RAs. In contrast, selective Glp1r expression in APGlp1r neurons restored both aversive responses and long-term body weight suppression by GLP1RAs. Thus, while non-aversive NTSGlp1r neurons control physiologic feeding, aversive APGlp1r neurons mediate both the anorectic and weight loss effects of GLP1RAs, dictating the functional inseparability of these pharmacologic GLP1RA responses at a circuit level.
Collapse
Affiliation(s)
- Warren T. Yacawych
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Yi Wang
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Guoxiang Zhou
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Shad Hassan
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Stace Kernodle
- Department of Surgery, University of Michigan, Ann Arbor MI USA
| | - Frederike Sass
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Martin DeVaux
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
| | - Iris Wu
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Alan Rupp
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
| | | | - Zitian Lin
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anna Secher
- Global Drug Discovery, Novo Nordisk A/S, Maløv, Denmark
| | - Kirsten Raun
- Research and Early Development, Novo Nordisk A/S, Bagsværd, Denmark
| | - Tune Pers
- Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Randy J. Seeley
- Department of Surgery, University of Michigan, Ann Arbor MI USA
| | - Martin Myers
- Departments of Internal Medicine, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Weiwei Qiu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Ludwig MQ, Coester B, Gordian D, Hassan S, Tomlinson AJ, Toure MH, Christensen OP, Moltke-Prehn A, Brown JM, Rausch DM, Gowda A, Wu I, Kernodle S, Dong V, Ayensu-Mensah M, Sabatini PV, Shin JH, Kirigiti M, Egerod KL, Le Foll C, Lundh S, Gerstenberg MK, Lutz TA, Kievit P, Secher A, Raun K, Myers MG, Pers TH. A Cross-Species Atlas of the Dorsal Vagal Complex Reveals Neural Mediators of Cagrilintide's Effects on Energy Balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632726. [PMID: 39868309 PMCID: PMC11760743 DOI: 10.1101/2025.01.13.632726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Amylin analogs, including potential anti-obesity therapies like cagrilintide, act on neurons in the brainstem dorsal vagal complex (DVC) that express calcitonin receptors (CALCR). These receptors, often combined with receptor activity-modifying proteins (RAMPs), mediate the suppression of food intake and body weight. To understand the molecular and neural mechanisms of cagrilintide action, we used single-nucleus RNA sequencing to define 89 cell populations across the rat, mouse, and non-human primate caudal brainstem. We then integrated spatial profiling to reveal neuron distribution in the rat DVC. Furthermore, we compared the acute and long-term transcriptional responses to cagrilintide across DVC neurons of rats, which exhibit strong cagrilintide responsiveness, and mice, which respond poorly to cagrilintide over the long term. We found that cagrilintide promoted long-term transcriptional changes, including increased prolactin releasing hormone (Prlh) expression, in the nucleus of the solitary tract (NTS) Calcr/Prlh cells in rats, but not in mice, suggesting the importance of NTS Calcr/Prlh cells for sustained weight loss. Indeed, activating rat area postrema Calcr cells briefly reduced food intake but failed to decrease food intake or body weight over the long term. Overall, these results not only provide a cross-species and spatial atlas of DVC cell populations but also define the molecular and neural mediators of acute and long-term cagrilintide action.
Collapse
Affiliation(s)
- Mette Q. Ludwig
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Digital Science & Innovation, Novo Nordisk A/S, Måløv, Denmark
| | - Bernd Coester
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Desiree Gordian
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Shad Hassan
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Abigail J. Tomlinson
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Mouhamadoul Habib Toure
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Oliver P. Christensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Anja Moltke-Prehn
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jenny M. Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dylan M. Rausch
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anika Gowda
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Iris Wu
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Stace Kernodle
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Victoria Dong
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Mike Ayensu-Mensah
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Paul V. Sabatini
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Jae Hoon Shin
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Melissa Kirigiti
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Kristoffer L. Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Sofia Lundh
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | | | - Paul Kievit
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Anna Secher
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Kirsten Raun
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Martin G. Myers
- Departments of Internal Medicine, University of Michigan and Molecular and Integrative Physiology, Ann Arbor, Michigan, USA
| | - Tune H. Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Yu SJ, Wang Y, Shen H, Bae EK, Li Y, Sambamurti K, Tones MA, Zaleska MM, Hoffer BJ, Greig NH. DPP-4 inhibitors sitagliptin and PF-00734,200 mitigate dopaminergic neurodegeneration, neuroinflammation and behavioral impairment in the rat 6-OHDA model of Parkinson's disease. GeroScience 2024; 46:4349-4371. [PMID: 38563864 PMCID: PMC11336009 DOI: 10.1007/s11357-024-01116-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Epidemiological studies report an elevated risk of Parkinson's disease (PD) in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed dipeptidyl peptidase 4 (DPP-4) inhibitors. With an objective to characterize clinically translatable doses of DPP-4 inhibitors (gliptins) in a well-characterized PD rodent model, sitagliptin, PF-00734,200 or vehicle were orally administered to rats initiated either 7-days before or 7-days after unilateral medial forebrain bundle 6-hydroxydopamine (6-OHDA) lesioning. Measures of dopaminergic cell viability, dopamine content, neuroinflammation and neurogenesis were evaluated thereafter in ipsi- and contralateral brain. Plasma and brain incretin and DPP-4 activity levels were quantified. Furthermore, brain incretin receptor levels were age-dependently evaluated in rodents, in 6-OHDA challenged animals and human subjects with/without PD. Cellular studies evaluated neurotrophic/neuroprotective actions of combined incretin administration. Pre-treatment with oral sitagliptin or PF-00734,200 reduced methamphetamine (meth)-induced rotation post-lesioning and dopaminergic degeneration in lesioned substantia nigra pars compacta (SNc) and striatum. Direct intracerebroventricular gliptin administration lacked neuroprotective actions, indicating that systemic incretin-mediated mechanisms underpin gliptin-induced favorable brain effects. Post-treatment with a threefold higher oral gliptin dose, likewise, mitigated meth-induced rotation, dopaminergic neurodegeneration and neuroinflammation, and augmented neurogenesis. These gliptin-induced actions associated with 70-80% plasma and 20-30% brain DPP-4 inhibition, and elevated plasma and brain incretin levels. Brain incretin receptor protein levels were age-dependently maintained in rodents, preserved in rats challenged with 6-OHDA, and in humans with PD. Combined GLP-1 and GIP receptor activation in neuronal cultures resulted in neurotrophic/neuroprotective actions superior to single agonists alone. In conclusion, these studies support further evaluation of the repurposing of clinically approved gliptins as a treatment strategy for PD.
Collapse
Affiliation(s)
- Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, 35053, Taiwan.
- National Institute On Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Hui Shen
- National Institute On Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, 35053, Taiwan
| | - Yazhou Li
- National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kumar Sambamurti
- Department of Neurosciences, the Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | | | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Nigel H Greig
- National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
10
|
Huang KP, Acosta AA, Ghidewon MY, McKnight AD, Almeida MS, Nyema NT, Hanchak ND, Patel N, Gbenou YSK, Adriaenssens AE, Bolding KA, Alhadeff AL. Dissociable hindbrain GLP1R circuits for satiety and aversion. Nature 2024; 632:585-593. [PMID: 38987598 DOI: 10.1038/s41586-024-07685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
The most successful obesity therapeutics, glucagon-like peptide-1 receptor (GLP1R) agonists, cause aversive responses such as nausea and vomiting1,2, effects that may contribute to their efficacy. Here, we investigated the brain circuits that link satiety to aversion, and unexpectedly discovered that the neural circuits mediating these effects are functionally separable. Systematic investigation across drug-accessible GLP1R populations revealed that only hindbrain neurons are required for the efficacy of GLP1-based obesity drugs. In vivo two-photon imaging of hindbrain GLP1R neurons demonstrated that most neurons are tuned to either nutritive or aversive stimuli, but not both. Furthermore, simultaneous imaging of hindbrain subregions indicated that area postrema (AP) GLP1R neurons are broadly responsive, whereas nucleus of the solitary tract (NTS) GLP1R neurons are biased towards nutritive stimuli. Strikingly, separate manipulation of these populations demonstrated that activation of NTSGLP1R neurons triggers satiety in the absence of aversion, whereas activation of APGLP1R neurons triggers strong aversion with food intake reduction. Anatomical and behavioural analyses revealed that NTSGLP1R and APGLP1R neurons send projections to different downstream brain regions to drive satiety and aversion, respectively. Importantly, GLP1R agonists reduce food intake even when the aversion pathway is inhibited. Overall, these findings highlight NTSGLP1R neurons as a population that could be selectively targeted to promote weight loss while avoiding the adverse side effects that limit treatment adherence.
Collapse
Affiliation(s)
| | | | - Misgana Y Ghidewon
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron D McKnight
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Nisha Patel
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Alice E Adriaenssens
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Kevin A Bolding
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber L Alhadeff
- Monell Chemical Senses Center, Philadelphia, PA, USA.
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Liskiewicz A, Müller TD. Regulation of energy metabolism through central GIPR signaling. Peptides 2024; 176:171198. [PMID: 38527521 DOI: 10.1016/j.peptides.2024.171198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
In recent years, significant progress has been made to pharmacologically combat the obesity pandemic, particularly with regard to biochemically tailored drugs that simultaneously target the receptors for glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic polypeptide (GIP). But while the pharmacological benefits of GLP-1 receptor (GLP-1R) agonism are widely acknowledged, the role of the GIP system in regulating systems metabolism remains controversial. When given in adjunct to GLP-1R agonism, both agonism and antagonism of the GIP receptor (GIPR) improves metabolic outcome in preclinical and clinical studies, and despite persistent concerns about its potential obesogenic nature, there is accumulating evidence indicating that GIP has beneficial metabolic effects via central GIPR agonism. Nonetheless, despite growing recognition of the GIP system as a valuable pharmacological target, there remains great uncertainty as to where and how GIP acts in the brain to regulate metabolism, and how GIPR agonism may differ from GIPR antagonism in control of energy metabolism. In this review we highlight current knowledge on the central action of GIP, and discuss open questions related to its multifaceted biology in the brain and the periphery.
Collapse
Affiliation(s)
- Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.
| |
Collapse
|
12
|
Borgmann D, Fenselau H. Vagal pathways for systemic regulation of glucose metabolism. Semin Cell Dev Biol 2024; 156:244-252. [PMID: 37500301 DOI: 10.1016/j.semcdb.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Maintaining blood glucose at an appropriate physiological level requires precise coordination of multiple organs and tissues. The vagus nerve bidirectionally connects the central nervous system with peripheral organs crucial to glucose mobilization, nutrient storage, and food absorption, thereby presenting a key pathway for the central control of blood glucose levels. However, the precise mechanisms by which vagal populations that target discrete tissues participate in glucoregulation are much less clear. Here we review recent advances unraveling the cellular identity, neuroanatomical organization, and functional contributions of both vagal efferents and vagal afferents in the control of systemic glucose metabolism. We focus on their involvement in relaying glucoregulatory cues from the brain to peripheral tissues, particularly the pancreatic islet, and by sensing and transmitting incoming signals from ingested food to the brain. These recent findings - largely driven by advances in viral approaches, RNA sequencing, and cell-type selective manipulations and tracings - have begun to clarify the precise vagal neuron populations involved in the central coordination of glucose levels, and raise interesting new possibilities for the treatment of glucose metabolism disorders such as diabetes.
Collapse
Affiliation(s)
- Diba Borgmann
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Physical Activity Research (CFAS), Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Henning Fenselau
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50937 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne 50931, Germany.
| |
Collapse
|
13
|
Qiu W, Hutch CR, Wang Y, Wloszek J, Rucker RA, Myers MG, Sandoval D. Multiple NTS neuron populations cumulatively suppress food intake. eLife 2023; 12:e85640. [PMID: 38059498 PMCID: PMC10781422 DOI: 10.7554/elife.85640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups, we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g. NTSLepr plus NTSCalcr [NTSLC], or NTSLC plus NTSCck [NTSLCK]) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.
Collapse
Affiliation(s)
- Weiwei Qiu
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Chelsea R Hutch
- Department of Surgery, University of Michigan, Ann Arbor, United States
| | - Yi Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Jennifer Wloszek
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Rachel A Rucker
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States
| | - Darleen Sandoval
- Department of Pediatrics, University of Colorado, Aurora, United States
| |
Collapse
|
14
|
Liskiewicz A, Khalil A, Liskiewicz D, Novikoff A, Grandl G, Maity-Kumar G, Gutgesell RM, Bakhti M, Bastidas-Ponce A, Czarnecki O, Makris K, Lickert H, Feuchtinger A, Tost M, Coupland C, Ständer L, Akindehin S, Prakash S, Abrar F, Castelino RL, He Y, Knerr PJ, Yang B, Hogendorf WFJ, Zhang S, Hofmann SM, Finan B, DiMarchi RD, Tschöp MH, Douros JD, Müller TD. Glucose-dependent insulinotropic polypeptide regulates body weight and food intake via GABAergic neurons in mice. Nat Metab 2023; 5:2075-2085. [PMID: 37946085 PMCID: PMC10730394 DOI: 10.1038/s42255-023-00931-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical1-3 and clinical studies4,5, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake3,6-8; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified. Here, we report that long-acting GIPR agonists and GIPR-GLP-1R co-agonists decrease body weight and food intake via inhibitory GABAergic neurons. We show that acyl-GIP decreases body weight and food intake in male diet-induced obese wild-type mice, but not in mice with deletion of Gipr in Vgat(also known as Slc32a1)-expressing GABAergic neurons (Vgat-Gipr knockout). Whereas the GIPR-GLP-1R co-agonist MAR709 leads, in male diet-induced obese wild-type mice, to greater weight loss and further inhibition of food intake relative to a pharmacokinetically matched acyl-GLP-1 control, this superiority over GLP-1 vanishes in Vgat-Gipr knockout mice. Our data demonstrate that long-acting GIPR agonists crucially depend on GIPR signaling in inhibitory GABAergic neurons to decrease body weight and food intake.
Collapse
Affiliation(s)
- Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ahmed Khalil
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniela Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gandhari Maity-Kumar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert M Gutgesell
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Czarnecki
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Konstantinos Makris
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Annette Feuchtinger
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Monica Tost
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Callum Coupland
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lisa Ständer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Seun Akindehin
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sneha Prakash
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Faiyaz Abrar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Russell L Castelino
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Yantao He
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | - Shiqi Zhang
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Susanna M Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
15
|
Campbell JE, Müller TD, Finan B, DiMarchi RD, Tschöp MH, D'Alessio DA. GIPR/GLP-1R dual agonist therapies for diabetes and weight loss-chemistry, physiology, and clinical applications. Cell Metab 2023; 35:1519-1529. [PMID: 37591245 PMCID: PMC10528201 DOI: 10.1016/j.cmet.2023.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
The incretin system is an essential metabolic axis that regulates postprandial metabolism. The two incretin peptides that enable this effect are the glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide 1 (GLP-1), which have cognate receptors (GIPR and GLP-1R) on islet β cells as well as in other tissues. Pharmacologic engagement of the GLP-1R is a proven strategy for treating hyperglycemia in diabetes and reducing body weight. Tirzepatide is the first monomeric peptide with dual activity at both incretin receptors now available for clinical use, and in clinical trials it has shown unprecedented effects to reduce blood glucose and body weight. Here, we discuss the foundational science that led to the development of monomeric multi-incretin receptor agonists, culminating in the development of tirzepatide. We also look to the future of this field and comment on how the concept of multi-receptor agonists will continue to progress for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of München, Munich, Germany; Helmholtz Munich, Neuherberg, Germany.
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
Adriaenssens A, Broichhagen J, de Bray A, Ast J, Hasib A, Jones B, Tomas A, Burgos NF, Woodward O, Lewis J, O’Flaherty E, El K, Cui C, Harada N, Inagaki N, Campbell J, Brierley D, Hodson DJ, Samms R, Gribble F, Reimann F. Hypothalamic and brainstem glucose-dependent insulinotropic polypeptide receptor neurons employ distinct mechanisms to affect feeding. JCI Insight 2023; 8:e164921. [PMID: 37212283 PMCID: PMC10322681 DOI: 10.1172/jci.insight.164921] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/18/2023] [Indexed: 05/23/2023] Open
Abstract
Central glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) signaling is critical in GIP-based therapeutics' ability to lower body weight, but pathways leveraged by GIPR pharmacology in the brain remain incompletely understood. We explored the role of Gipr neurons in the hypothalamus and dorsal vagal complex (DVC) - brain regions critical to the control of energy balance. Hypothalamic Gipr expression was not necessary for the synergistic effect of GIPR/GLP-1R coagonism on body weight. While chemogenetic stimulation of both hypothalamic and DVC Gipr neurons suppressed food intake, activation of DVC Gipr neurons reduced ambulatory activity and induced conditioned taste avoidance, while there was no effect of a short-acting GIPR agonist (GIPRA). Within the DVC, Gipr neurons of the nucleus tractus solitarius (NTS), but not the area postrema (AP), projected to distal brain regions and were transcriptomically distinct. Peripherally dosed fluorescent GIPRAs revealed that access was restricted to circumventricular organs in the CNS. These data demonstrate that Gipr neurons in the hypothalamus, AP, and NTS differ in their connectivity, transcriptomic profile, peripheral accessibility, and appetite-controlling mechanisms. These results highlight the heterogeneity of the central GIPR signaling axis and suggest that studies into the effects of GIP pharmacology on feeding behavior should consider the interplay of multiple regulatory pathways.
Collapse
Affiliation(s)
- Alice Adriaenssens
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | | | - Anne de Bray
- Oxford Center for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Center, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Metabolism and Systems Research (IMSR) and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Julia Ast
- Oxford Center for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Center, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Metabolism and Systems Research (IMSR) and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Annie Hasib
- Institute of Metabolism and Systems Research (IMSR) and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Natalie Figueredo Burgos
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Orla Woodward
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Jo Lewis
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Elisabeth O’Flaherty
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley El
- Department of Medicine, Duke University Hospital, Durham, North Carolina, USA
| | - Canqi Cui
- Department of Medicine, Duke University Hospital, Durham, North Carolina, USA
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan
| | - Jonathan Campbell
- Department of Medicine, Duke University Hospital, Durham, North Carolina, USA
| | - Daniel Brierley
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - David J. Hodson
- Oxford Center for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Center, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Metabolism and Systems Research (IMSR) and Center of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Ricardo Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Fiona Gribble
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Seeley RJ, Rhodes CJ. Who knew? PPARs may act in the brain too. Nat Metab 2022; 4:965-966. [PMID: 35995998 DOI: 10.1038/s42255-022-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
18
|
Cheng W, Gordian D, Ludwig MQ, Pers TH, Seeley RJ, Myers MG. Hindbrain circuits in the control of eating behaviour and energy balance. Nat Metab 2022; 4:826-835. [PMID: 35879458 DOI: 10.1038/s42255-022-00606-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Body weight and adiposity represent biologically controlled parameters that are influenced by a combination of genetic, developmental and environmental variables. Although the hypothalamus plays a crucial role in matching caloric intake with energy expenditure to achieve a stable body weight, it is now recognized that neuronal circuits in the hindbrain not only serve to produce nausea and to terminate feeding in response to food consumption or during pathological states, but also contribute to the long-term control of body weight. Additionally, recent work has identified hindbrain neurons that are capable of suppressing food intake without producing aversive responses like those associated with nausea. Here we review recent advances in our understanding of the hindbrain neurons that control feeding, particularly those located in the area postrema and the nucleus tractus solitarius. We frame this information in the context of new atlases of hindbrain neuronal populations and develop a model of the hindbrain circuits that control food intake and energy balance, suggesting important areas for additional research.
Collapse
Affiliation(s)
- Wenwen Cheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Desiree Gordian
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mette Q Ludwig
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Nampoothiri S, Nogueiras R, Schwaninger M, Prevot V. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat Metab 2022; 4:813-825. [PMID: 35879459 PMCID: PMC7613794 DOI: 10.1038/s42255-022-00610-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
Communication between the periphery and the brain is key for maintaining energy homeostasis. To do so, peripheral signals from the circulation reach the brain via the circumventricular organs (CVOs), which are characterized by fenestrated vessels lacking the protective blood-brain barrier (BBB). Glial cells, by virtue of their plasticity and their ideal location at the interface of blood vessels and neurons, participate in the integration and transmission of peripheral information to neuronal networks in the brain for the neuroendocrine control of whole-body metabolism. Metabolic diseases, such as obesity and type 2 diabetes, can disrupt the brain-to-periphery communication mediated by glial cells, highlighting the relevance of these cell types in the pathophysiology of such complications. An improved understanding of how glial cells integrate and respond to metabolic and humoral signals has become a priority for the discovery of promising therapeutic strategies to treat metabolic disorders. This Review highlights the role of glial cells in the exchange of metabolic signals between the periphery and the brain that are relevant for the regulation of whole-body energy homeostasis.
Collapse
Affiliation(s)
- Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Ruben Nogueiras
- Universidade de Santiago de Compostela-Instituto de Investigation Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrition, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
20
|
Emetic Response to T-2 Toxin Correspond to Secretion of Glucagon-like Peptide-17–36 Amide and Glucose-Dependent Insulinotropic Polypeptide. Toxins (Basel) 2022; 14:toxins14060389. [PMID: 35737050 PMCID: PMC9228683 DOI: 10.3390/toxins14060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
The T-2 toxin, a major secondary metabolite of Fusarium Gramineae, is considered a great risk to humans and animals due to its toxicity, such as inducing emesis. The mechanism of emesis is a complex signal involving an imbalance of hormones and neurotransmitters, as well as activity of visceral afferent neurons. The T-2 toxin has been proven to induce emesis and possess the capacity to elevate expressions of intestinal hormones glucagon-like peptide-17–36 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), both of which are important emetic factors. In addition, the activation of calcium-sensitive receptor (CaSR) and transient receptor potential (TRP) channels are engaged in intestinal hormone release. However, it is unknown whether hormones GLP-1 and GIP mediate T-2 toxin-induced emetic response through activating CaSR and TRP channels. To further assess the mechanism of T-2 toxin-induced emesis, we studied the hypothesis that T-2 toxin-caused emetic response and intestinal hormones GLP-1 and GIP released in mink are associated with activating calcium transduction. Following oral gavage and intraperitoneal injection T-2 toxin, emetic responses were observed in a dose-dependent manner, which notably corresponded to the secretion of GLP-1 and GIP, and were suppressed by pretreatment with respective antagonist Exending9–39 and Pro3GIP. Additional research found that NPS-2143 (NPS) and ruthenium red (RR), respective antagonists of CaSR and TRP channels, dramatically inhibited both T-2 toxin-induced emesis response and the expression of plasma GLP-1 and GIP. According to these data, we observed that T-2 toxin-induced emetic response corresponds to secretion of GLP-1 and GIP via calcium transduction.
Collapse
|
21
|
Guccio N, Gribble FM, Reimann F. Glucose-Dependent Insulinotropic Polypeptide-A Postprandial Hormone with Unharnessed Metabolic Potential. Annu Rev Nutr 2022; 42:21-44. [PMID: 35609956 DOI: 10.1146/annurev-nutr-062320-113625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is released from the upper small intestine in response to food intake and contributes to the postprandial control of nutrient disposition, including of sugars and fats. Long neglected as a potential therapeutic target, the GIPR axis has received increasing interest recently, with the emerging data demonstrating the metabolically favorable outcomes of adding GIPR agonism to GLP-1 receptor agonists in people with type 2 diabetes and obesity. This review examines the physiology of the GIP axis, from the mechanisms underlying GIP secretion from the intestine to its action on target tissues and therapeutic development. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nunzio Guccio
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| | - Frank Reimann
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| |
Collapse
|
22
|
Glial Modulation of Energy Balance: The Dorsal Vagal Complex Is No Exception. Int J Mol Sci 2022; 23:ijms23020960. [PMID: 35055143 PMCID: PMC8779587 DOI: 10.3390/ijms23020960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.
Collapse
|