1
|
Mondal A, Munan S, Saxena I, Mukherjee S, Upadhyay P, Gupta N, Dar W, Samanta A, Singh S, Pati S. G6PD deficiency mediated impairment of iNOS and lysosomal acidification affecting phagocytotic clearance in microglia in response to SARS-CoV-2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167444. [PMID: 39074627 DOI: 10.1016/j.bbadis.2024.167444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The glucose-6-phosphate dehydrogenase (G6PD) deficiency is X-linked and is the most common enzymatic deficiency disorder globally. It is a crucial enzyme for the pentose phosphate pathway and produces NADPH, which plays a vital role in regulating the oxidative stress of many cell types. The deficiency of G6PD primarily causes hemolytic anemia under oxidative stress triggered by food, drugs, or infection. G6PD-deficient patients infected with SARS-CoV-2 showed an increase in hemolysis and thrombosis. Patients also exhibited prolonged COVID-19 symptoms, ventilation support, neurological impacts, and high mortality. However, the mechanism of COVID-19 severity in G6PD deficient patients and its neurological manifestation is still ambiguous. Here, using a CRISPR-edited G6PD deficient human microglia cell culture model, we observed a significant reduction in NADPH level and an increase in basal reactive oxygen species (ROS) in microglia. Interestingly, the deficiency of the G6PD-NAPDH axis impairs induced nitric oxide synthase (iNOS) mediated nitric oxide (NO) production, which plays a fundamental role in inhibiting viral replication. Surprisingly, we also observed that the deficiency of the G6PD-NADPH axis reduced lysosomal acidification and free radical production, further abrogating the lysosomal clearance of viral particles. Thus, impairment of NO production, lysosomal functions, and redox dysregulation in G6PD deficient microglia altered innate immune response, promoting the severity of SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Abir Mondal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Subrata Munan
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Isha Saxena
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Soumyadeep Mukherjee
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Prince Upadhyay
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Nutan Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Waseem Dar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Animesh Samanta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Soumya Pati
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida UP-201301, India.
| |
Collapse
|
2
|
Chang YL, Nfor ON, Chou YH, Hsiao CH, Zhong JH, Huang CN, Liaw YP. Risk of diabetes mellitus based on the interactive association between G6PD rs72554664 polymorphism and sex in Taiwan Biobank individuals. Sci Rep 2024; 14:12802. [PMID: 38834682 PMCID: PMC11150262 DOI: 10.1038/s41598-024-63361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
The presence of glucose-6-phosphate dehydrogenase (G6PD) deficiency may increase the risk of type 2 diabetes mellitus (T2DM), with differing prevalence between males and females. Although G6PD deficiency is an X-linked genetic condition, its interaction with sex regarding T2DM risk among the Taiwanese population has not been fully explored. This study aimed to investigate the association between G6PD deficiency and T2DM risk in the Taiwanese population, focusing on the potential influence of sex. Data were obtained from the Taiwan Biobank (TWB) database, involving 85,334 participants aged 30 to 70 years. We used multiple logistic regression analysis to assess the interaction between G6PD rs72554664 and sex in relation to T2DM risk. The T2DM cohort comprised 55.35% females and 44.65% males (p < 0.001). The TC + TT genotype of rs72554664 was associated with an increased risk of T2DM, with an odds ratio (OR) of 1.95 (95% CI: 1.39-2.75), and males showed an OR of 1.31 (95% CI: 1.19-1.44). Notably, the G6PD rs72554664-T allelic variant in hemizygous males significantly elevated the T2DM risk (OR), 4.57; p < 0.001) compared to females with the CC genotype. Our findings suggest that the G6PD rs72554664 variant, in conjunction with sex, significantly affects T2DM risk, particularly increasing susceptibility in males. The association of the G6PD rs72554664-T allelic variant with a higher risk of T2DM highlights the importance of sex-specific mechanisms in the interplay between G6PD deficiency and T2DM.
Collapse
Affiliation(s)
- Yen-Lin Chang
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
- Center of Evidence-Based Medicine, Taichung Veterans General Hospital, Taichung, 407219, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Ying-Hsiang Chou
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Chih-Hsuan Hsiao
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Ji-Han Zhong
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Chien-Ning Huang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan.
| |
Collapse
|
3
|
Chong ACN, Vandana JJ, Jeng G, Li G, Meng Z, Duan X, Zhang T, Qiu Y, Duran-Struuck R, Coker K, Wang W, Li Y, Min Z, Zuo X, de Silva N, Chen Z, Naji A, Hao M, Liu C, Chen S. Checkpoint kinase 2 controls insulin secretion and glucose homeostasis. Nat Chem Biol 2024; 20:566-576. [PMID: 37945898 PMCID: PMC11062908 DOI: 10.1038/s41589-023-01466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/03/2023] [Indexed: 11/12/2023]
Abstract
After the discovery of insulin, a century ago, extensive work has been done to unravel the molecular network regulating insulin secretion. Here we performed a chemical screen and identified AZD7762, a compound that potentiates glucose-stimulated insulin secretion (GSIS) of a human β cell line, healthy and type 2 diabetic (T2D) human islets and primary cynomolgus macaque islets. In vivo studies in diabetic mouse models and cynomolgus macaques demonstrated that AZD7762 enhances GSIS and improves glucose tolerance. Furthermore, genetic manipulation confirmed that ablation of CHEK2 in human β cells results in increased insulin secretion. Consistently, high-fat-diet-fed Chk2-/- mice show elevated insulin secretion and improved glucose clearance. Finally, untargeted metabolic profiling demonstrated the key role of the CHEK2-PP2A-PLK1-G6PD-PPP pathway in insulin secretion. This study successfully identifies a previously unknown insulin secretion regulating pathway that is conserved across rodents, cynomolgus macaques and human β cells in both healthy and T2D conditions.
Collapse
Affiliation(s)
- Angie Chi Nok Chong
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, New York City, NY, USA
| | - Ginnie Jeng
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ge Li
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Department of Biological Sciences, Bronx Community College, City University of New York, Bronx, NY, USA
| | - Zihe Meng
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
| | - Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York City, NY, USA
| | - Yunping Qiu
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Kimberly Coker
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yanjing Li
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Zaw Min
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xi Zuo
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Zhengming Chen
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Ali Naji
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Mingming Hao
- Department of Biochemistry, Weill Cornell Medicine, New York City, NY, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York City, NY, USA.
- Center for Genomic Health, Weill Cornell Medicine, New York City, NY, USA.
| |
Collapse
|
4
|
Sharma PR, Vasavada DG, Phulari RGS. Glucose-6-phosphate dehydrogenase enzyme deficiency as a diagnostic factor of diabetes mellitus: An original study. J Oral Maxillofac Pathol 2024; 28:96-99. [PMID: 38800416 PMCID: PMC11126245 DOI: 10.4103/jomfp.jomfp_295_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 05/29/2024] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common genetic disorders affecting approximately 400 million people worldwide. Several recent studies have reported a relationship between G6PD deficiency and the incidence of diabetes. Objectives The aim of the present study was to evaluate and compare levels of G6PD deficiency in diabetes mellitus patients. Materials and Methods G6PD activity and fasting glucose levels were measured in blood samples of 49 diabetic patients and 21 healthy controls. Results G6PD activity was decreased in patients with diabetes mellitus as compared to healthy controls and showed that overall G6PD deficiency was significantly associated with diabetes mellitus as compared to nondiabetics. Conclusion The study concluded that G6PD deficiency is noted in diabetics than in nondiabetics and can be a biomarker of oxidative stress and poor glycemic control in diabetes mellitus.
Collapse
Affiliation(s)
- Prachi R. Sharma
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manubhai Patel Dental College and Hospital and ORI, Vadodara, Gujarat, India
| | - Dharmesh G. Vasavada
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manubhai Patel Dental College and Hospital and ORI, Vadodara, Gujarat, India
| | - Rashmi G. S. Phulari
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manubhai Patel Dental College and Hospital and ORI, Vadodara, Gujarat, India
| |
Collapse
|
5
|
Merzon E, Magen E, Ashkenazi S, Weizman A, Manor I, Krone B, Green I, Golan-Cohen A, Vinker S, Faraone SV, Israel A. The Association between Glucose 6-Phosphate Dehydrogenase Deficiency and Attention Deficit/Hyperactivity Disorder. Nutrients 2023; 15:4948. [PMID: 38068806 PMCID: PMC10708268 DOI: 10.3390/nu15234948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency, impacting 4.9% of the population and more prevalent in Mediterranean communities, is a common enzymopathy with potential relevance to Attention Deficit/Hyperactivity Disorder (ADHD). This study investigated this association. METHODS The clinical characteristics of 7473 G6PD-deficient patients and 29,892 matched case-controls (selected at a 1:4 ratio) from a cohort of 1,031,354 within the Leumit Health Services database were analyzed using Fisher's exact test for categorical variables and the Mann-Whitney U test for continuous variables. RESULTS In total, 68.7% were male. The mean duration of follow-up was 14.3 ± 6.2 years at a mean age of 29.2 ± 22.3 years. G6PD deficiency was associated with an increased risk of being diagnosed with ADHD (Odds Ratio (OR) = 1.16 [95% CI, 1.08-1.25], p < 0.001), seeking care from adult neurologists (OR = 1.30 [95% CI, 1.22-1.38], p < 0.001), and consulting adult psychiatrists (OR = 1.12 [95% CI, 1.01-1.24], p = 0.048). The use of stimulant medications among G6PD-deficient individuals was 17% higher for the methylphenidate class of drugs (OR = 1.17 [95% CI, 1.08, 1.27], p < 0.001), and there was a 16% elevated risk for amphetamine use (OR = 1.16 [95% CI, 1.03, 1.37], p = 0.047). CONCLUSIONS G6PD deficiency signals an increased risk of ADHD diagnosis, more severe presentations of ADHD and a greater need for psychiatric medications to treat ADHD.
Collapse
Affiliation(s)
- Eugene Merzon
- Adelson School of Medicine, Ariel University, Ariel 40776, Israel;
- Leumit Health Services, Tel Aviv 64738, Israel; (I.G.); (A.G.-C.); (S.V.); (A.I.)
| | - Eli Magen
- Department of Medicine A, Assuta Ashdod University Hospital, Faculty of Health Sciences, Ben Gurion University, Beer Sheba 84990, Israel;
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel 40776, Israel;
| | - Abraham Weizman
- ADHD Unit, Geha Mental Health Center, Petah Tikva 49100, Israel; (A.W.); (I.M.)
- Department of Psychiatry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Laboratory of Molecular and Biological Psychiatry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Iris Manor
- ADHD Unit, Geha Mental Health Center, Petah Tikva 49100, Israel; (A.W.); (I.M.)
- Department of Psychiatry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Beth Krone
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ilan Green
- Leumit Health Services, Tel Aviv 64738, Israel; (I.G.); (A.G.-C.); (S.V.); (A.I.)
- Department of Family Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Avivit Golan-Cohen
- Leumit Health Services, Tel Aviv 64738, Israel; (I.G.); (A.G.-C.); (S.V.); (A.I.)
- Department of Family Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shlomo Vinker
- Leumit Health Services, Tel Aviv 64738, Israel; (I.G.); (A.G.-C.); (S.V.); (A.I.)
- Department of Family Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stephen V. Faraone
- Department of Psychiatry, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
| | - Ariel Israel
- Leumit Health Services, Tel Aviv 64738, Israel; (I.G.); (A.G.-C.); (S.V.); (A.I.)
- Department of Epidemiology and Disease Prevention, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Racial and Ethnic Disparities in Diabetes Clinical Care and Management: A Narrative Review. Endocr Pract 2022; 29:295-300. [PMID: 36464131 DOI: 10.1016/j.eprac.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Diabetes affects nearly 37 million Americans, with disproportionately higher disease burden amongst those from minoritized communities. The result of this is greater rates of diabetic complications and mortality. To close this gap in care, it is important to assess the differences in both diagnosis and care between White and ethnic/racial minoritized persons with diabetes. The purpose of this narrative review is to explore this further by assessing the differences in diagnosis, management, diabetes education, and complications.
Collapse
|
7
|
Acquired Glucose-6-Phosphate Dehydrogenase Deficiency. J Clin Med 2022; 11:jcm11226689. [PMID: 36431166 PMCID: PMC9695330 DOI: 10.3390/jcm11226689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a hereditary condition caused by mutations on chromosome X and is transmitted by a sex-linked inheritance. However, impairment of G6PD activity may result from biochemical mechanisms that are able to inhibit the enzyme in specific clinical conditions in the absence of a structural gene-level defect. In this narrative review, a number of clinical settings associated with an "acquired" G6PD deficiency, phenotypically undistinguishable from the primary deficiency, as well as the mechanisms involved, were examined. Hyperaldosteronism and diabetes are the most common culprits of acquired G6PD deficiency. Additional endocrine and metabolic conditions may cause G6PD deficiency in both hospitalized and outpatients. Contrary to the inherited defect, acquired G6PD deficiency is a condition that is potentially curable by removing the factor responsible for enzyme inhibition. Awareness regarding acquired G6PD deficiency by physicians might result in improved recognition and treatment.
Collapse
|
8
|
Toh H, Yang C, Formenti G, Raja K, Yan L, Tracey A, Chow W, Howe K, Bergeron LA, Zhang G, Haase B, Mountcastle J, Fedrigo O, Fogg J, Kirilenko B, Munegowda C, Hiller M, Jain A, Kihara D, Rhie A, Phillippy AM, Swanson SA, Jiang P, Clegg DO, Jarvis ED, Thomson JA, Stewart R, Chaisson MJP, Bukhman YV. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes. BMC Biol 2022; 20:245. [DOI: 10.1186/s12915-022-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic.
Results
We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse.
Conclusions
Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.
Collapse
|
9
|
Glucose 6-P Dehydrogenase—An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise. Cells 2022; 11:cells11193041. [PMID: 36231003 PMCID: PMC9563910 DOI: 10.3390/cells11193041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hypomorphic Glucose 6-P dehydrogenase (G6PD) alleles, which cause G6PD deficiency, affect around one in twenty people worldwide. The high incidence of G6PD deficiency may reflect an evolutionary adaptation to the widespread prevalence of malaria, as G6PD-deficient red blood cells (RBCs) are hostile to the malaria parasites that infect humans. Although medical interest in this enzyme deficiency has been mainly focused on RBCs, more recent evidence suggests that there are broader implications for G6PD deficiency in health, including in skeletal muscle diseases. G6PD catalyzes the rate-limiting step in the pentose phosphate pathway (PPP), which provides the precursors of nucleotide synthesis for DNA replication as well as reduced nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is involved in the detoxification of cellular reactive oxygen species (ROS) and de novo lipid synthesis. An association between increased PPP activity and the stimulation of cell growth has been reported in different tissues including the skeletal muscle, liver, and kidney. PPP activity is increased in skeletal muscle during embryogenesis, denervation, ischemia, mechanical overload, the injection of myonecrotic agents, and physical exercise. In fact, the highest relative increase in the activity of skeletal muscle enzymes after one bout of exhaustive exercise is that of G6PD, suggesting that the activation of the PPP occurs in skeletal muscle to provide substrates for muscle repair. The age-associated loss in muscle mass and strength leads to a decrease in G6PD activity and protein content in skeletal muscle. G6PD overexpression in Drosophila Melanogaster and mice protects against metabolic stress, oxidative damage, and age-associated functional decline, and results in an extended median lifespan. This review discusses whether the well-known positive effects of exercise training in skeletal muscle are mediated through an increase in G6PD.
Collapse
|
10
|
Huang CH, Lin CH, Huang HH, Tsai GJ. Development of Fermented Shrimp Shell Product with Hypoglycemic and Hypolipidemic Effects on Diabetic Rats. Metabolites 2022; 12:metabo12080695. [PMID: 35893262 PMCID: PMC9332839 DOI: 10.3390/metabo12080695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
In 2020, approximately 9.3 billion tons of crustaceans were consumed, and 45–48% of shrimp shell (SS) by-products were discarded as waste. In this study, the SS of Litopenaeus vannamei was fermented by Lactobacillus plantarum LV33204, Stenotrophomonas maltophilia LV2122 (strong proteolytic activity), and Aeromonas dhakensis LV1111 (chitin-degrading activity), and the optimal fermentation conditions of liquid-fermented SS was established. Contents of total peptide, astaxanthin, and total phenolic content of the fermented SS were significantly higher than that of unfermented SS. In the presence of fermented SS, glucose uptake and insulin resistance of TNF-α-stimulated FL83B hepatocytes were markedly improved. Furthermore, daily oral supplement of fermented SS to streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rats for 7 weeks significantly reduced plasma glucose and insulin resistance. Meanwhile, ingestion of fermented SS might enhance hepatic catabolism of glucose by increasing hexokinase and glucose-6-phosphate dehydrogenase activity and decreasing glucose-6-phosphatase activity. In addition, the fermented SS downregulated plasma total cholesterol (TG), triglycerides (TCs), low-density lipoprotein cholesterol (LDL-C), liver TG, and TC and lipid peroxidation levels in diabetic rats. In conclusion, a biorefinery process for waste SS was established through mixed strain fermentation. The in vitro and in vivo data reveal that the fermented SS is a promising functional food for the management of diabetic hyperglycemia and hyperlipidemia.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Chih-Heng Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Hsiao-Han Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-H.H.); (C.-H.L.); (H.-H.H.)
| | - Guo-Jane Tsai
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Oxidative Stress in Type 2 Diabetes: The Case for Future Pediatric Redoxomics Studies. Antioxidants (Basel) 2022; 11:antiox11071336. [PMID: 35883827 PMCID: PMC9312244 DOI: 10.3390/antiox11071336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Considerable evidence supports the role of oxidative stress in adult type 2 diabetes (T2D). Due to increasing rates of pediatric obesity, lack of physical activity, and consumption of excess food calories, it is projected that the number of children living with insulin resistance, prediabetes, and T2D will markedly increase with enormous worldwide economic costs. Understanding the factors contributing to oxidative stress and T2D risk may help develop optimal early intervention strategies. Evidence suggests that oxidative stress, triggered by excess dietary fat consumption, causes excess mitochondrial hydrogen peroxide emission in skeletal muscle, alters redox status, and promotes insulin resistance leading to T2D. The pathophysiological events arising from excess calorie-induced mitochondrial reactive oxygen species production are complex and not yet investigated in children. Systems medicine is an integrative approach leveraging conventional medical information and environmental factors with data obtained from “omics” technologies such as genomics, proteomics, and metabolomics. In adults with T2D, systems medicine shows promise in risk assessment and predicting drug response. Redoxomics is a branch of systems medicine focusing on “omics” data related to redox status. Systems medicine with a complementary emphasis on redoxomics can potentially optimize future healthcare strategies for adults and children with T2D.
Collapse
|
12
|
Ansari U, Bhardwaj P, Quadri H, Barnes M, George J. Diabetic Ketoacidosis Unmasking a Diagnosis of Glucose-6-Phosphate Dehydrogenase Deficiency: A Case Report and Literature Review. Cureus 2022; 14:e23842. [PMID: 35402109 PMCID: PMC8986519 DOI: 10.7759/cureus.23842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/05/2022] Open
|
13
|
Koperniku A, Garcia AA, Mochly-Rosen D. Boosting the Discovery of Small Molecule Inhibitors of Glucose-6-Phosphate Dehydrogenase for the Treatment of Cancer, Infectious Diseases, and Inflammation. J Med Chem 2022; 65:4403-4423. [PMID: 35239352 PMCID: PMC9553131 DOI: 10.1021/acs.jmedchem.1c01577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present an overview of small molecule glucose-6-phosphate dehydrogenase (G6PD) inhibitors that have potential for use in the treatment of cancer, infectious diseases, and inflammation. Both steroidal and nonsteroidal inhibitors have been identified with steroidal inhibitors lacking target selectivity. The main scaffolds encountered in nonsteroidal inhibitors are quinazolinones and benzothiazinones/benzothiazepinones. Three molecules show promise for development as antiparasitic (25 and 29) and anti-inflammatory (32) agents. Regarding modality of inhibition (MOI), steroidal inhibitors have been shown to be uncompetitive and reversible. Nonsteroidal small molecules have exhibited all types of MOI. Strategies to boost the discovery of small molecule G6PD inhibitors include exploration of structure-activity relationships (SARs) for established inhibitors, employment of high-throughput screening (HTS), and fragment-based drug discovery (FBDD) for the identification of new hits. We discuss the challenges and gaps associated with drug discovery efforts of G6PD inhibitors from in silico, in vitro, and in cellulo to in vivo studies.
Collapse
Affiliation(s)
- Ana Koperniku
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
- Corresponding Author: Ana Koperniku,
| | - Adriana A. Garcia
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Xu A, Jiang M, Zhang W, Lin Y, Shao Y, Mei H, Cheng J, Liang C, Li C, Li X, Liu L. Glucose-6-Phosphate dehydrogenase deficiency associated hemolysis in a cohort of new onset type 1 diabetes children in Guangdong province, China. Diabetol Metab Syndr 2022; 14:43. [PMID: 35313968 PMCID: PMC8935706 DOI: 10.1186/s13098-022-00812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, with a high prevalence in Guangdong, China. The purpose of this study was to explore the characteristics of newly diagnosed type 1 diabetes (T1D) patients with G6PD deficiency in a cohort of Chinese children and to investigate the relationship between the diabetic ketoacidosis (DKA) and hemolysis due to G6PD deficiency in these patients. METHODS A total of 503 newly diagnosed T1D children aged 6 months-18 years were collected and their G6PD enzyme activity were measured. Fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), and G6PD gene were analysed. The pH, HCO3, and plasma osmotic pressure between DKA patients with and without hemolysis at the presentation were compared. RESULTS In the present study, G6PD deficiency accounted for 5.3% of newly diagnosed T1D children. There were no significant differences in FPG/HbA1c and HbA1c levels between T1D children alone and T1D children with G6PD deficiency. Hemolysis appeared in five of the twenty-two DKA patients with G6PD deficiency. Two patients had fever at onset and were given ibuprofen and cefazolin. The other three patients did not have infection or ingestion of hemolytic drugs. There were no significant difference in pH, HCO3, and osmotic pressure between the children with DKA with and without hemolysis at the presentation. The hemolysis occurred between 2 and 7 days after admission and the hyperglycaemia had been corrected by the time hemolysis occurs. Four G6PD gene mutations were found in the diabetes with G6PD deficiency patients: c.1376G > T, c.1388G > A, c.95A > G, and c.871G > A, all of which were genes with high frequency of G6PD deficiency in Guangdong Province. No correlation between genotype and hemolysis was found. CONCLUSION In the present study, we found the frequency of G6PD deficiency among newly diagnosed T1D children was similar to that of the general population. However, DKA children with G6PD deficiency are prone to occur hemolytic anemia, and these hemolysis usually occurs when DKA is corrected and blood glucose is in homeostatic state, which is easy to be ignored. To reduce the risk of this complication, especially in areas with high incidence of G6PD deficiency, screening for G6PD activity in people with newly diagnosed diabetes should be considered.
Collapse
Affiliation(s)
- Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Minyan Jiang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Yongxian Shao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Huifen Mei
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Jing Cheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Cuili Liang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Cuiling Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
15
|
Bechmann N, Barthel A, Schedl A, Herzig S, Varga Z, Gebhard C, Mayr M, Hantel C, Beuschlein F, Wolfrum C, Perakakis N, Poston L, Andoniadou CL, Siow R, Gainetdinov RR, Dotan A, Shoenfeld Y, Mingrone G, Bornstein SR. Sexual dimorphism in COVID-19: potential clinical and public health implications. Lancet Diabetes Endocrinol 2022; 10:221-230. [PMID: 35114136 PMCID: PMC8803381 DOI: 10.1016/s2213-8587(21)00346-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023]
Abstract
Current evidence suggests that severity and mortality of COVID-19 is higher in men than in women, whereas women might be at increased risk of COVID-19 reinfection and development of long COVID. Differences between sexes have been observed in other infectious diseases and in the response to vaccines. Sex-specific expression patterns of proteins mediating virus binding and entry, and divergent reactions of the immune and endocrine system, in particular the hypothalamic-pituitary-adrenal axis, in response to acute stress might explain the higher severity of COVID-19 in men. In this Personal View, we discuss how sex hormones, comorbidities, and the sex chromosome complement influence these mechanisms in the context of COVID-19. Due to its role in the severity and progression of SARS-CoV-2 infections, we argue that sexual dimorphism has potential implications for disease treatment, public health measures, and follow-up of patients predisposed to the development of long COVID. We suggest that sex differences could be considered in future pandemic surveillance and treatment of patients with COVID-19 to help to achieve better disease stratification and improved outcomes.
Collapse
Affiliation(s)
- Nicole Bechmann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Barthel
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Medicover Bochum, Bochum, Germany
| | - Andreas Schedl
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Université Côte d'Azur, INSERM, CNRS, iBV, Nice, France
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program Inner Medicine I, Neuherberg, Germany
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Manuel Mayr
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Constanze Hantel
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland; Department for Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lucilla Poston
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Cynthia L Andoniadou
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral, and Craniofacial Sciences, King's College London, London, UK
| | - Richard Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK; Vascular Biology and Inflammation Section, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and St Petersburg University Hospital, St Petersburg State University, St Petersburg, Russia
| | - Arad Dotan
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat Gan, Israel; Ariel University, Ariel, Israel
| | - Geltrude Mingrone
- Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK; Fondazione Policlinico Universitario Agostino Gemelli Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy; Department of Internal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK.
| |
Collapse
|
16
|
Exploration of Hypoglycemic Activity of Saccharomyces pastorianus Extract and Evaluation of the Molecular Mechanisms. Molecules 2021; 26:molecules26144232. [PMID: 34299508 PMCID: PMC8305274 DOI: 10.3390/molecules26144232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Although the hypoglycemic potential of brewer’s yeast extract has been reported, there is limited information pertaining to the hypoglycemic ingredients of Saccharomyces pastorianus extract and their mechanisms of action available. This study aimed to investigate the in vivo and in vitro hypoglycemic effect of S. pastorianus extract and to elucidate its molecular mechanisms. S. pastorianus extract was mainly composed of proteins followed by carbohydrates. In diabetic rats, oral administration of S. pastorianus extract significantly reduced the levels of plasma glucose and enhanced the activity of hepatic glucose-6-phosphatase dehydrogenase. Treatment with S. pastorianus extract increased the localization of type 4 glucose transporter (GLUT4), PTP, and insulin receptor at 3T3-L1 cell membranes and raised the levels of P38 MAPK, PI3K, and AKT in the cytosol. In agreement with these results, pretreatment of 3T3-L1 cells with inhibitors of PTP, PI3K, Akt/PKB, and p38 MAPK inhibited glucose uptake induced by application of S. pastorianus extract. Most importantly, a 54 kDa protein with hypoglycemic activity was identified and suggested as the major ingredient contributing to the hypoglycemic activity of S. pastorianus extract. In summary, these results clearly confirm the hypoglycemic activity of S. pastorianus extract and provide critical insights into the underlying molecular mechanisms.
Collapse
|
17
|
De la Rosa A, Gomez-Cabrera MC, Vinue A, Gonzalez-Navarro H, Sanchez-Andres JV, Viña J. Overexpression of glucose 6 phosphate dehydrogenase preserves mouse pancreatic beta cells function until late in life. Free Radic Biol Med 2021; 164:149-153. [PMID: 33418115 DOI: 10.1016/j.freeradbiomed.2020.12.439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
NAD(P)H donates electrons for reductive biosynthesis and antioxidant defense across all forms of life. Glucose-6-phosphate dehydrogenase (G6PD) is a critical enzyme to provide NADPH. G6PD deficiency is present in more than 400 million people worldwide. This enzymopathy provides protection against malaria but sensitizes cells to oxidative stressors. Oxidative stress has been involved in the pathogenesis of the diabetic complications and several studies have provided evidences of a link between G6PD deficiency and type 2 diabetes (T2D). We hypothesized that a moderate overexpression of G6PD (G6PD-Tg) could protect β-cells from age-associated oxidative stress thus reducing the risk of developing T2D. Here we report, that G6PD-Tg mice show an improved glucose tolerance and insulin sensitivity when compared to old age-matched Wild Type (WT) ones. This is accompanied by a decrease in oxidative damage and stress markers in the pancreas of the old Tg animals (20-24month-old). Pancreatic β-cells progress physiologically towards a state of reduced responsiveness to glucose. In pancreatic islets isolated from G6PD-Tg and WT animals at different ages, and using electrophysiological techniques, we demonstrate a wider range of response to glucose in the G6PD-Tg cells that may explain the improvements in glucose tolerance and insulin sensitivity. Together, our results show that overexpression of G6PD maintains pancreatic β-cells from old mice in a "juvenile-like" state and points to the G6PD dependent generation of NADPH as an important factor to improve the natural history of diabetes.
Collapse
Affiliation(s)
- Adrian De la Rosa
- Freshage Research Group. Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES. Institute of Health Research-INCLIVA, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group. Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES. Institute of Health Research-INCLIVA, Valencia, Spain
| | - Angela Vinue
- Institute of Health Research-INCLIVA, Valencia, Spain
| | - Herminia Gonzalez-Navarro
- Institute of Health Research-INCLIVA, Valencia, Spain and CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research-ISCIII, Madrid, Spain
| | | | - Jose Viña
- Freshage Research Group. Department of Physiology. Faculty of Medicine, University of Valencia and CIBERFES. Institute of Health Research-INCLIVA, Valencia, Spain
| |
Collapse
|
18
|
Infante M, Ricordi C, Fabbri A. Antihyperglycemic properties of hydroxychloroquine in patients with diabetes: Risks and benefits at the time of COVID-19 pandemic. J Diabetes 2020; 12:659-667. [PMID: 32401405 PMCID: PMC7272905 DOI: 10.1111/1753-0407.13053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
The antimalarial drug hydroxychloroquine (HCQ) has long been used as a disease-modifying antirheumatic drug for the treatment of several inflammatory rheumatic diseases. Over the last three decades, various studies have shown that HCQ also plays a role in the regulation of glucose homeostasis. Although the mechanisms of action underlying the glucose-lowering properties of HCQ are still not entirely clear, evidence suggests that this drug may exert multifaceted effects on glucose regulation, including improvement of insulin sensitivity, increase of insulin secretion, reduction of hepatic insulin clearance, and reduction of systemic inflammation. Preliminary studies have shown the safety and efficacy of HCQ (at a dose ranging from 400 to 600 mg/day) in patients with type 2 diabetes over a short-term period. In 2014, HCQ has been approved in India as an add-on hypoglycemic agent for patients with uncontrolled type 2 diabetes. However, large randomized controlled trials are needed to establish the safety and efficacy profile of HCQ in patients with type 2 diabetes over a long-term period. With regard to the COVID-19 pandemic, several medications (including HCQ) have been used as off-label drugs because of the lack of proven effective therapies. However, emerging evidence shows limited benefit from HCQ use in COVID-19 in general. The aim of this manuscript is to comprehensively summarize the current knowledge on the antihyperglycemic properties of HCQ and to critically evaluate the potential risks and benefits related to HCQ use in patients with diabetes, even in light of the current pandemic scenario.
Collapse
Affiliation(s)
- Marco Infante
- Endocrine Unit, CTO Hospital ‐ ASL Roma 2, Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
- Diabetes Research Institute (DRI), University of Miami Miller School of MedicineMiamiFlorida
- Diabetes Research Institute Federation, DRIF (Rome, Miami)MiamiFlorida
| | - Camillo Ricordi
- Diabetes Research Institute (DRI), University of Miami Miller School of MedicineMiamiFlorida
- Diabetes Research Institute Federation, DRIF (Rome, Miami)MiamiFlorida
| | - Andrea Fabbri
- Endocrine Unit, CTO Hospital ‐ ASL Roma 2, Department of Systems MedicineUniversity of Rome Tor VergataRomeItaly
- Diabetes Research Institute Federation, DRIF (Rome, Miami)MiamiFlorida
| |
Collapse
|
19
|
Ou Z, Chen Y, Li J, Ouyang F, Liu G, Tan S, Huang W, Gong X, Zhang Y, Liang Z, Deng W, Xing S, Zeng J. Glucose-6-phosphate dehydrogenase deficiency and stroke outcomes. Neurology 2020; 95:e1471-e1478. [PMID: 32651291 DOI: 10.1212/wnl.0000000000010245] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/16/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the risk of glucose-6-phosphate dehydrogenase (G6PD) on stroke prognosis, we compared outcomes between patients with stroke with and without G6PD deficiency. METHODS The study recruited 1,251 patients with acute ischemic stroke. Patients were individually categorized into G6PD-deficiency and non-G6PD-deficiency groups according to G6PD activity upon admission. The primary endpoint was poor outcome at 3 months defined by a modified Rankin Scale (mRS) score ≥2 (including disability and death). Secondary outcomes included the overall mRS score at 3 months and in-hospital death and all death within 3 months. Logistic regression and Cox models, adjusted for potential confounders, were fitted to estimate the association of G6PD deficiency with the outcomes. RESULTS Among 1,251 patients, 150 (12.0%) were G6PD-deficient. Patients with G6PD deficiency had higher proportions of large-artery atherosclerosis (odds ratio [OR] 1.53, 95% confidence interval [CI] 1.09-2.17) and stroke history (OR 1.93, 95% CI 1.26-2.90) compared to the non-G6PD-deficient group. The 2 groups differed significantly in the overall mRS score distribution (adjusted common OR 1.57, 95% CI 1.14-2.17). Patients with G6PD deficiency had higher rates of poor outcome at 3 months (adjusted OR 1.73, 95% CI 1.08-2.76; adjusted absolute risk increase 13.0%, 95% CI 2.4%-23.6%). The hazard ratio of in-hospital death for patients with G6PD-deficiency was 1.46 (95% CI 1.37-1.84). CONCLUSIONS G6PD deficiency is associated with the risk of poor outcome at 3 months after ischemic stroke and may increase the risk of in-hospital death. These findings suggest the rationality of G6PD screening in patients with stroke.
Collapse
Affiliation(s)
- Zilin Ou
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China.
| | - Yicong Chen
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Jianle Li
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Fubing Ouyang
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Gang Liu
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Shuangquan Tan
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Weixian Huang
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Xiao Gong
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Yusheng Zhang
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Zhijian Liang
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Weisheng Deng
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China
| | - Shihui Xing
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China.
| | - Jinsheng Zeng
- From Section II (S.X.), Department of Neurology (Z.O., Y.C., J.L., F.O., G.L., S.T., W.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou; Department of Epidemiology and Biostatistics (X.G.), School of Public Health, Guangdong Pharmaceutical University; Department of Neurology and Stroke Center (Y.Z.), The First Affiliated Hospital of Jinan University, Guangzhou; Department of Neurology (Z.L.), The First Affiliated Hospital of Guangxi Medical University, Nanning; and Department of Neurology (W.D.), Meizhou Hospital Affiliated to Sun Yat-sen University, China.
| |
Collapse
|
20
|
Badmus OO, Olatunji LA. Dexamethasone causes defective glucose-6-phosphate dehydrogenase dependent antioxidant barrier through endoglin in pregnant and nonpregnant rats. Can J Physiol Pharmacol 2020; 98:667-677. [PMID: 32259461 DOI: 10.1139/cjpp-2018-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid therapy has been associated with adverse cardiometabolic effects during pregnancy. Inflammation-mediated cardiac dysfunction, an independent risk factor for morbidity and mortality, has been linked to defective glucose-6-phosphate dehydrogenase (G6PD) dependent antioxidant defenses and increased endoglin expression. We therefore sought to investigate the effects of dexamethasone (DEX) on cardiac endoglin and G6PD-dependent antioxidant defense. Twenty-four rats were randomly assigned to nonpregnant (PRE(-)), DEX-exposed nonpregnant (PRE(-) + DEX), pregnant (PRE(+)), and DEX-exposed pregnant (PRE(+) + DEX) rats, respectively (n = 6 per group). PRE(-) and PRE(+) rats received vehicle (per oral (po)), while PRE(-) + DEX and PRE(+) + DEX groups were administered DEX (0.2 mg/kg po) between gestational days 14 and 19, respectively. Results showed that DEX caused increased cardiac pro-inflammatory markers (adenosine deaminase (ADA) activity, endoglin, vascular cell adhesion molecule-1 (VCAM-1), tissue injury markers (LDH, GGT, AST, ALT, and ALP), metabolic disturbances (elevated fasting plasma glucose, free fatty acid (FFA), lactate, cardiac FFA, and lactate) and depressed G6PD-dependent antioxidant defenses (G6PD activity, reduced glutathione/oxidized glutathione ratio, and nitric oxide) in pregnant and nonpregnant rats. The present study demonstrates that DEX led to increased cardiac endoglin and VCAM-1 that is accompanied by defective G6PD-dependent antioxidant defenses but not cardiac lipid accumulation in both pregnant and nonpregnant rats.
Collapse
Affiliation(s)
- Olufunto O Badmus
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Public Health, Kwara State University, Malete, Nigeria
| | - Lawrence A Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
21
|
Fasting glucose-to-HbA1c ratio is a good indicator of G6PD deficiency, but not thalassemia, in patients with type 2 diabetes mellitus. Clin Chim Acta 2020; 506:9-15. [PMID: 32156605 DOI: 10.1016/j.cca.2020.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 03/06/2020] [Indexed: 12/23/2022]
Abstract
AIMS Patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency or thalassemia have a shorter red blood cell lifespan; therefore, HbA1c is underestimated in these patients. To address these issues, we sought an early indicator for G6PD deficiency or thalassemia in DM patients. METHODS A total of 4908 patients with DM and 1848 subjects without DM were included in this study. Fasting glucose (FG) levels, HbA1c levels, hemogram profiles and G6PD activities were measured. Genotypic analyses of G6PD deficiency and thalassemia were performed. RESULTS DM patients with G6PD deficiency had significantly higher FG/HbA1c ratios than did those without G6PD deficiency (26.54 vs. 18.36; p < 0.0001). We divided the FG level into four categories: ≤150, 151-250, 251-350, and ≥351 mg/dL. Among all groups, only patients with DM and G6PD deficiency had higher FG/HbA1c ratios than those of patients with DM alone or DM with thalassemia. To evaluate the reliability of the FG/HbA1c ratio, receiver operating characteristic analyses were performed. The areas under the curve for detecting FG ≤ 150, 151-250, 251-350, and ≥351 mg/dL with G6PD deficiency based on the FG/HbA1c ratio were 0.839 (p < 0.001), 0.888 (p < 0.001), 0.891 (p < 0.001), and 0.640 (p = 0.3954), respectively. G6PD deficiency was confirmed by genetic analysis. We found common mutations that influenced G6PD activity and HbA1c levels. CONCLUSIONS The FG/HbA1c ratio is a good indicator of DM with G6PD deficiency. If this ratio is determined to be high in a clinical setting, then the clinician must consider whether the patient has a G6PD deficiency, and HbA1c reference values must be adjusted to avoid misdiagnosis and incorrect treatment decisions.
Collapse
|
22
|
Huang CH, Lin WK, Chang SH, Tsai GJ. Evaluation of the hypoglycaemic and antioxidant effects of submerged Ganoderma lucidum cultures in type 2 diabetic rats. Mycology 2020; 12:82-93. [PMID: 34026300 PMCID: PMC8128183 DOI: 10.1080/21501203.2020.1733119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We aim to investigate the hypoglycaemic and antioxidant effects of submerged Ganoderma lucidum cultures and elucidate the potential mechanisms behind these effects using a type 2 diabetic rat model. Diabetic rats were daily fed with a high-fat diet supplemented with 1% or 3% freeze-dried whole submerged cultures of G. lucidum or mycelia for 5 weeks. We observed significantly decreased fasting plasma glucose levels, homoeostasis model assessment equation-insulin resistance, and plasma glucose in oral glucose tolerance test. Furthermore, we observed increased levels of glycogen, hepatic hexokinase, glucose-6-phosphate dehydrogenase, and intestinal disaccharidase activities. G. lucidum supplement downregulated the plasma levels of aspartate aminotransferase, alanine aminotransferase, creatinine, and urea nitrogen as well as liver and kidney levels of thiobarbituric acid reactive substances. Based on the hypoglycaemic and antioxidant effects of G. lucidum submerged cultures, we recommend the potential application of these products as functional foods or additives for controlling type 2 diabetes. Abbreviations ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; BUN: Blood urea nitrogen; BW: Body weight; CREA: Creatinine; FPG: Fasting plasma glucose; G6Pase: Glucose-6-phosphatase; G6PD: Glucose-6-phosphate dehydrogenase; HOMA-IR: Homoeostasis model assessment of insulin resistance; OGTT: Oral glucose tolerance test; PTP: Protein tyrosine phosphatase; STZ: Streptozotocin; TBARS: Thiobarbituric acid reactive substances.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Kang Lin
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.,Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
23
|
Saddala MS, Lennikov A, Huang H. Discovery of Small-Molecule Activators for Glucose-6-Phosphate Dehydrogenase (G6PD) Using Machine Learning Approaches. Int J Mol Sci 2020; 21:ijms21041523. [PMID: 32102234 PMCID: PMC7073180 DOI: 10.3390/ijms21041523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose-6-Phosphate Dehydrogenase (G6PD) is a ubiquitous cytoplasmic enzyme converting glucose-6-phosphate into 6-phosphogluconate in the pentose phosphate pathway (PPP). The G6PD deficiency renders the inability to regenerate glutathione due to lack of Nicotine Adenosine Dinucleotide Phosphate (NADPH) and produces stress conditions that can cause oxidative injury to photoreceptors, retinal cells, and blood barrier function. In this study, we constructed pharmacophore-based models based on the complex of G6PD with compound AG1 (G6PD activator) followed by virtual screening. Fifty-three hit molecules were mapped with core pharmacophore features. We performed molecular descriptor calculation, clustering, and principal component analysis (PCA) to pharmacophore hit molecules and further applied statistical machine learning methods. Optimal performance of pharmacophore modeling and machine learning approaches classified the 53 hits as drug-like (18) and nondrug-like (35) compounds. The drug-like compounds further evaluated our established cheminformatics pipeline (molecular docking and in silico ADMET (absorption, distribution, metabolism, excretion and toxicity) analysis). Finally, five lead molecules with different scaffolds were selected by binding energies and in silico ADMET properties. This study proposes that the combination of machine learning methods with traditional structure-based virtual screening can effectively strengthen the ability to find potential G6PD activators used for G6PD deficiency diseases. Moreover, these compounds can be considered as safe agents for further validation studies at the cell level, animal model, and even clinic setting.
Collapse
|
24
|
Kwok MK, Leung GM, Au Yeung SL, Schooling CM. Glucose-6-phosphate dehydrogenase deficiency and metabolic profiling in adolescence from the Chinese birth cohort: "Children of 1997". Int J Cardiol 2019; 281:146-149. [PMID: 30739801 DOI: 10.1016/j.ijcard.2019.01.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency affects 6.0% of the global population. G6PD deficiency has been associated with lower risk of cardiovascular disease and higher risk of diabetes, which could be etiologically informative, but these relations are uncertain. To clarify, we assessed the associations of G6PD deficiency with serum metabolite profiles in late adolescence. METHODS In a nested case-control study of 50 G6PD-deficient late adolescents (~17.5 years) and 150 sex-matched non-G6PD-deficient controls from a Chinese birth cohort: "Children of 1997", we compared 80 serum metabolites analyzed by nuclear magnetic resonance spectrometry using adjusted linear regression with Bonferroni correction for testing 12 traits (p < 0.0042). RESULTS G6PD-deficiency was inversely associated with serum levels of total cholesterol (-0.27 mmol, 95% confidence interval (CI) -0.46, -0.09, p = 0.004), free cholesterol (-0.08 mmol, 95% CI -0.13, -0.03, p = 0.003) and creatinine (-0.004 mmol, 95% CI -0.007, -0.001, p = 0.003), adjusted for sex and parental education. G6PD deficiency was not associated with fatty acids, amino acids, glucose or related metabolites, ketone bodies or glycoprotein. CONCLUSIONS G6PD deficiency is associated with lower serum levels of cholesterol and creatinine, but not other serum metabolites. Whether such differences are transient or become more evident in adulthood warrant further investigations.
Collapse
Affiliation(s)
- Man Ki Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gabriel M Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; City University of New York School of Public Health and Health Policy, New York, United States.
| |
Collapse
|
25
|
Kraja AT, Liu C, Fetterman JL, Graff M, Have CT, Gu C, Yanek LR, Feitosa MF, Arking DE, Chasman DI, Young K, Ligthart S, Hill WD, Weiss S, Luan J, Giulianini F, Li-Gao R, Hartwig FP, Lin SJ, Wang L, Richardson TG, Yao J, Fernandez EP, Ghanbari M, Wojczynski MK, Lee WJ, Argos M, Armasu SM, Barve RA, Ryan KA, An P, Baranski TJ, Bielinski SJ, Bowden DW, Broeckel U, Christensen K, Chu AY, Corley J, Cox SR, Uitterlinden AG, Rivadeneira F, Cropp CD, Daw EW, van Heemst D, de las Fuentes L, Gao H, Tzoulaki I, Ahluwalia TS, de Mutsert R, Emery LS, Erzurumluoglu AM, Perry JA, Fu M, Forouhi NG, Gu Z, Hai Y, Harris SE, Hemani G, Hunt SC, Irvin MR, Jonsson AE, Justice AE, Kerrison ND, Larson NB, Lin KH, Love-Gregory LD, Mathias RA, Lee JH, Nauck M, Noordam R, Ong KK, Pankow J, Patki A, Pattie A, Petersmann A, Qi Q, Ribel-Madsen R, Rohde R, Sandow K, Schnurr TM, Sofer T, Starr JM, Taylor AM, Teumer A, Timpson NJ, de Haan HG, Wang Y, Weeke PE, Williams C, Wu H, Yang W, Zeng D, Witte DR, Weir BS, Wareham NJ, Vestergaard H, Turner ST, Torp-Pedersen C, Stergiakouli E, Sheu WHH, et alKraja AT, Liu C, Fetterman JL, Graff M, Have CT, Gu C, Yanek LR, Feitosa MF, Arking DE, Chasman DI, Young K, Ligthart S, Hill WD, Weiss S, Luan J, Giulianini F, Li-Gao R, Hartwig FP, Lin SJ, Wang L, Richardson TG, Yao J, Fernandez EP, Ghanbari M, Wojczynski MK, Lee WJ, Argos M, Armasu SM, Barve RA, Ryan KA, An P, Baranski TJ, Bielinski SJ, Bowden DW, Broeckel U, Christensen K, Chu AY, Corley J, Cox SR, Uitterlinden AG, Rivadeneira F, Cropp CD, Daw EW, van Heemst D, de las Fuentes L, Gao H, Tzoulaki I, Ahluwalia TS, de Mutsert R, Emery LS, Erzurumluoglu AM, Perry JA, Fu M, Forouhi NG, Gu Z, Hai Y, Harris SE, Hemani G, Hunt SC, Irvin MR, Jonsson AE, Justice AE, Kerrison ND, Larson NB, Lin KH, Love-Gregory LD, Mathias RA, Lee JH, Nauck M, Noordam R, Ong KK, Pankow J, Patki A, Pattie A, Petersmann A, Qi Q, Ribel-Madsen R, Rohde R, Sandow K, Schnurr TM, Sofer T, Starr JM, Taylor AM, Teumer A, Timpson NJ, de Haan HG, Wang Y, Weeke PE, Williams C, Wu H, Yang W, Zeng D, Witte DR, Weir BS, Wareham NJ, Vestergaard H, Turner ST, Torp-Pedersen C, Stergiakouli E, Sheu WHH, Rosendaal FR, Ikram MA, Franco OH, Ridker PM, Perls TT, Pedersen O, Nohr EA, Newman AB, Linneberg A, Langenberg C, Kilpeläinen TO, Kardia SLR, Jørgensen ME, Jørgensen T, Sørensen TIA, Homuth G, Hansen T, Goodarzi MO, Deary IJ, Christensen C, Chen YDI, Chakravarti A, Brandslund I, Bonnelykke K, Taylor KD, Wilson JG, Rodriguez S, Davies G, Horta BL, Thyagarajan B, Rao DC, Grarup N, Davila-Roman VG, Hudson G, Guo X, Arnett DK, Hayward C, Vaidya D, Mook-Kanamori DO, Tiwari HK, Levy D, Loos RJF, Dehghan A, Elliott P, Malik AN, Scott RA, Becker DM, de Andrade M, Province MA, Meigs JB, Rotter JI, North KE. Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits. Am J Hum Genet 2019; 104:112-138. [PMID: 30595373 PMCID: PMC6323610 DOI: 10.1016/j.ajhg.2018.12.001] [Show More Authors] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Christian Theil Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kristin Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald 17475, Germany
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Fernando P Hartwig
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas 96020-220, Brazil; MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Shiow J Lin
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Eliana P Fernandez
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Department of Social Work, Tunghai University, Taichung 407, Taiwan
| | - Maria Argos
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sebastian M Armasu
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kathleen A Ryan
- School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ping An
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Thomas J Baranski
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suzette J Bielinski
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Cincinnati, OH 45206, USA
| | - Ulrich Broeckel
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kaare Christensen
- The Danish Aging Research Center, University of Southern Denmark, Odense 5000, Denmark
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Cheryl D Cropp
- Samford University McWhorter School of Pharmacy, Birmingham, Alabama, Translational Genomics Research Institute (TGen), Phoenix, AZ 35229, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - He Gao
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Ioanna Tzoulaki
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK; Department of Hygiene and Epidemiology, University of Ioannina, Ioannina 45110, Greece
| | | | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | | | - James A Perry
- School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mao Fu
- School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yang Hai
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Centre for Genomic and Experimental Medicine, Medical Genetics Section, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Steven C Hunt
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA; Department of Genetic Medicine, Weill Cornell Medicine, PO Box 24144, Doha, Qatar
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna E Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA; Biomedical and Translational Informatics, Geisinger Health, Danville, PA 17822, USA
| | - Nicola D Kerrison
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Nicholas B Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Keng-Hung Lin
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Latisha D Love-Gregory
- Genomics & Pathology Services, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rasika A Mathias
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; GeneSTAR Research Program, Divisions of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - James Pankow
- University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN 55454, USA
| | - Amit Patki
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alison Pattie
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein School of Medicine, Bronx, NY 10461, USA
| | - Rasmus Ribel-Madsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; The Danish Diabetes Academy, 5000 Odense, Denmark
| | - Rebecca Rohde
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Kevin Sandow
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Theresia M Schnurr
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Adele M Taylor
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Hugoline G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Yujie Wang
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Peter E Weeke
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Christine Williams
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Hongsheng Wu
- Computer Science and Networking, Wentworth Institute of Technology, Boston, MA 02115, USA
| | - Wei Yang
- Genome Technology Access Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Donglin Zeng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel R Witte
- Department of Public Health, Section of Epidemiology, Aarhus University, Denmark, Danish Diabetes Academy, Odense University Hospital, 5000 Odense, Denmark
| | - Bruce S Weir
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Steno Diabetes Center Copenhagen, Copenhagen 2820, Denmark
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Christian Torp-Pedersen
- Department of Health Science and Technology, Aalborg University Hospital, Aalborg 9220, Denmark
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; Institute of Medical Technology, National Chung-Hsing University, Taichung 402, Taiwan; School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands; Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thomas T Perls
- Department of Medicine, Geriatrics Section, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ellen A Nohr
- Research Unit for Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Allan Linneberg
- Department of Clinical Experimental Research, Rigshospitalet, Copenhagen 2200, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; The Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen 2000, Denmark
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Torben Jørgensen
- Research Centre for Prevention and Health, Glostrup Hospital, Glostrup 2600, Denmark; Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen 1014, Denmark; Faculty of Medicine, Aalborg University, Aalborg 9100, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research (Section of Metabolic Genetics) and Department of Public Health (Section on Epidemiology), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200N, Denmark
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald 17475, Germany
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Cramer Christensen
- Department of Internal Medicine, Section of Endocrinology, Vejle Lillebaelt Hospital, 7100 Vejle, Denmark
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Vejle Hospital, 7100 Vejle, Denmark; Institute of Regional Health Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Klaus Bonnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte & Naestved 2820, Denmark; Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Bernardo L Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas 96020-220, Brazil
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Victor G Davila-Roman
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Gavin Hudson
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Donna K Arnett
- University of Kentucky, College of Public Health, Lexington, KY 40508, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Dhananjay Vaidya
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands; Department of Public Health and Primary Care, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA, USA; The Population Sciences Branch, NHLBI/NIH, Bethesda, MD 20892, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Genetics of Obesity and Related Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abbas Dehghan
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Paul Elliott
- Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Afshan N Malik
- King's College London, Department of Diabetes, School of Life Course, Faculty of Life Sciences and Medicine, London SE1 1NN, UK
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Diane M Becker
- GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of General Internal Medicine, Massachusetts General Hospital, Boston 02114, MA, USA; Program in Medical and Population Genetics, Broad Institute, Boston, MA 02142, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA.
| |
Collapse
|
26
|
Parsanathan R, Jain SK. Glucose-6-phosphate dehydrogenase deficiency increases cell adhesion molecules and activates human monocyte-endothelial cell adhesion: Protective role of l-cysteine. Arch Biochem Biophys 2018; 663:11-21. [PMID: 30582899 DOI: 10.1016/j.abb.2018.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
Glucose-6-phosphate dehydrogenase is a major enzyme that supplies the reducing agent nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), which is required to recycle oxidized/glutathione disulfide (GSSH) to reduced glutathione (GSH). G6PD-deficient cells are susceptible to oxidative stress and a deficiency of GSH. Endothelial dysfunction is characterized by the loss of nitric oxide (NO) bioavailability, which regulates leukocyte adhesion to endothelium. G6PD-deficient endothelial cells (EC) demonstrate reduced expression of endothelial nitric oxide synthase (eNOS) and NO levels along with reduced GSH. Whether G6PD deficiency plays any role in EC dysfunction is unknown. The chronic inflammation commonly seen in those with metabolic syndrome, characterized by elevated levels of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1), provided an incentive for investigation of these cytokines as well. A GSH/G6PD-deficient model was created using human umbilical vein endothelial cells (HUVEC) treated with either buthionine sulfoximine (BSO), a pharmacological inhibitor of the rate-limiting enzyme of GSH biosynthesis (γ-glutamylcysteine synthetase), or with 6-aminonicotinamide (6-AN), an inhibitor of G6PD or G6PD siRNA. Normal and G6PD-deficient cells were also treated with pro-atherosclerotic stimuli such as high glucose, TNF, and MCP-1. After inhibiting or knocking down G6PD/GSH, the capacity of endothelial cells for monocyte recruitment was assessed by determining the expression of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), which was upregulated by G6PD deficiency and accompanied by the presence of the oxidative stress markers NADPH oxidase 4 (NOX4), inducible nitric oxide synthase (iNOS), and reactive oxygen species (ROS). Treatment with the inhibitors BSO and 6-AN caused increased levels of adhesion molecule mRNA and monocyte-EC adhesion. Following treatment with high glucose, G6PD-deficient cells showed an increase in levels of ICAM-1 and VCAM-1 mRNA, as well as monocyte-EC adherence, compared with results seen in control cells. Treatment with l-cysteine (a precursor of GSH) protected endothelial cells by increasing GSH and attenuating ROS, ICAM-1, VCAM-1, and monocyte-EC adhesion. These results suggest that G6PD/GSH deficiency plays a role in endothelial dysfunction and that supplementation with l-cysteine can restore GSH levels and reduce the EC activation markers in G6PD-deficient conditions.
Collapse
Affiliation(s)
- Rajesh Parsanathan
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Sushil K Jain
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
27
|
Mac-Marcjanek K, Zieleniak A, Zurawska-Klis M, Cypryk K, Wozniak L, Wojcik M. Expression Profile of Diabetes-Related Genes Associated with Leukocyte Sirtuin 1 Overexpression in Gestational Diabetes. Int J Mol Sci 2018; 19:ijms19123826. [PMID: 30513672 PMCID: PMC6321739 DOI: 10.3390/ijms19123826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Although compelling evidence indicates that Sirtuin 1 (SIRT1) plays a prominent role in type 2 diabetes, its relationship with gestational diabetes (GDM) remains elusive. This study was aimed at identifying diabetes-related genes and cellular pathways linked to changes of leukocyte SIRT1 expression at the time of GDM diagnosis. For this purpose, 122 GDM patients were screened for leukocyte SIRT1 expression, and two subgroups were distinguished, namely GDM/SIRT1(↑) (n = 30, p < 0.05) and GDM/SIRT1(↔) (n = 92, p > 0.05), with significant and insignificant changes in leukocyte SIRT1 expression compared to a normal glucose tolerant (NGT) group (n = 41), respectively. PCR array analysis identified 11 diabetes-related genes with at least a ± 2-fold difference in expression in GDM/SIRT1(↑) patients (n = 9) vs. NGT controls (n = 7); in addition, significant differences in the expression of four of the six investigated genes were confirmed between the entire GDM/SIRT1(↑) group and the whole NGT group (p < 0.05). Interestingly, of these four genes, only ACLY expression was found to significantly differ between GDM/SIRT1(↑) and GDM/SIRT1(↔). This study demonstrates that under hyperglycemic conditions, leukocyte SIRT1 overexpression is accompanied by an over-abundance of three transcripts and an under-abundance of another; these four govern related metabolism, inflammation, and transport functions, suggesting that such alterations might represent systemic biological adaptations with a unique ACLY under-expression in GDM/SIRT1(↑) women.
Collapse
Affiliation(s)
- Katarzyna Mac-Marcjanek
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland.
| | - Andrzej Zieleniak
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland.
| | - Monika Zurawska-Klis
- Diabetology and Metabolic Diseases Department, Medical University of Lodz, 92-213 Lodz.
| | - Katarzyna Cypryk
- Diabetology and Metabolic Diseases Department, Medical University of Lodz, 92-213 Lodz.
| | - Lucyna Wozniak
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland.
| | - Marzena Wojcik
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland.
| |
Collapse
|
28
|
Hwang S, Mruk K, Rahighi S, Raub AG, Chen CH, Dorn LE, Horikoshi N, Wakatsuki S, Chen JK, Mochly-Rosen D. Correcting glucose-6-phosphate dehydrogenase deficiency with a small-molecule activator. Nat Commun 2018; 9:4045. [PMID: 30279493 PMCID: PMC6168459 DOI: 10.1038/s41467-018-06447-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/05/2018] [Indexed: 01/06/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, one of the most common human genetic enzymopathies, is caused by over 160 different point mutations and contributes to the severity of many acute and chronic diseases associated with oxidative stress, including hemolytic anemia and bilirubin-induced neurological damage particularly in newborns. As no medications are available to treat G6PD deficiency, here we seek to identify a small molecule that corrects it. Crystallographic study and mutagenesis analysis identify the structural and functional defect of one common mutant (Canton, R459L). Using high-throughput screening, we subsequently identify AG1, a small molecule that increases the activity of the wild-type, the Canton mutant and several other common G6PD mutants. AG1 reduces oxidative stress in cells and zebrafish. Furthermore, AG1 decreases chloroquine- or diamide-induced oxidative stress in human erythrocytes. Our study suggests that a pharmacological agent, of which AG1 may be a lead, will likely alleviate the challenges associated with G6PD deficiency. Glucose-6-phosphate dehydrogenase (G6PD) deficiency provides insufficient protection from oxidative stress, contributing to diverse human pathologies. Here, the authors identify a small molecule that increases the activity and/or stability of mutant G6PD and show that it reduces oxidative stress in zebrafish and hemolysis in isolated human erythrocytes.
Collapse
Affiliation(s)
- Sunhee Hwang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Karen Mruk
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,University of Wyoming School of Pharmacy, 1000 E. University Ave., HS 596, Laramie, WY, 82071, USA
| | - Simin Rahighi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618, USA
| | - Andrew G Raub
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lisa E Dorn
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,The Ohio State University College of Medicine, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Naoki Horikoshi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025-7015, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Glucose 6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. G6PD is the main source of the essential cellular reductant, NADPH. The purpose of this review is to describe the biochemistry of G6PD and NADPH, cellular factors that regulate G6PD, normal physiologic roles of G6PD, and the pathogenic role altered G6PD/NADPH plays in kidney disease. RECENT FINDINGS NADPH is required for many essential cellular processes such as the antioxidant system, nitric oxide synthase, cytochrome p450 enzymes, and NADPH oxidase. Decreased G6PD activity and, as a result, decreased NADPH level have been associated with diabetic kidney disease, altered nitric oxide production, aldosterone-mediated endothelial dysfunction, and dialysis-associated anemia. Increased G6PD activity is associated with all cancers including kidney cancer. Inherited G6PD deficiency is the most common mutation in the world that is thought to be a relatively mild disorder primarily associated with anemia. Yet, intriguing studies have shown an increased prevalence of diabetes mellitus in G6PD-deficient people. It is not known if G6PD-deficient people are at more risk for other diseases. SUMMARY Much more research needs to be done to determine the role of altered G6PD activity (inherited or acquired) in the pathogenesis of kidney disease.
Collapse
|
30
|
Ordelheide AM, Hrabě de Angelis M, Häring HU, Staiger H. Pharmacogenetics of oral antidiabetic therapy. Pharmacogenomics 2018; 19:577-587. [PMID: 29580198 DOI: 10.2217/pgs-2017-0195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes prevalence is still on the rise worldwide. Antidiabetic drugs are widely prescribed to patients with Type 2 diabetes. Most patients start with metformin which is mostly well tolerated. However, a high percentage of patients fail to achieve glycemic control. The effectiveness of metformin as well as most other antidiabetic drugs depends among other factors on interindividual genetic differences that are up to now ignored in the treatment of Type 2 diabetes. Interestingly, many genes influencing the effectiveness of antidiabetic drugs are Type 2 diabetes risk genes making matters worse. Here, we shed light on these interindividual genetic differences.
Collapse
Affiliation(s)
- Anna-Maria Ordelheide
- Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Centre Munich at the Eberhard Karls University Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Chair for Experimental Genetics, Technical University Munich, Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Centre Munich at the Eberhard Karls University Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology & Clinical Chemistry, University Hospital Tübingen, Germany.,Interfaculty Center for Pharmacogenomics & PharmaResearch at the Eberhard Karls University Tübingen, Germany
| | - Harald Staiger
- Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Centre Munich at the Eberhard Karls University Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Interfaculty Center for Pharmacogenomics & PharmaResearch at the Eberhard Karls University Tübingen, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy & Biochemistry, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
31
|
Chen L, Zhang C, Wang Y, Li Y, Han Q, Yang H, Zhu Y. Data mining and pathway analysis of glucose-6-phosphate dehydrogenase with natural language processing. Mol Med Rep 2017. [PMID: 28627690 PMCID: PMC5562079 DOI: 10.3892/mmr.2017.6785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human glucose-6-phosphate dehydrogenase (G6PD) is a crucial enzyme in the pentose phosphate pathway, and serves an important role in biosynthesis and the redox balance. G6PD deficiency is a major cause of neonatal jaundice and acute hemolyticanemia, and recently, G6PD has been associated with diseases including inflammation and cancer. The aim of the present study was to conduct a search of the National Center for Biotechnology Information PubMed library for articles discussing G6PD. Genes that were identified to be associated with G6PD were recorded, and the frequency at which each gene appeared was calculated. Gene ontology (GO), pathway and network analyses were then performed. A total of 98 G6PD‑associated genes and 33 microRNAs (miRNAs) that potentially regulate G6PD were identified. The 98 G6PD‑associated genes were then sub‑classified into three functional groups by GO analysis, followed by analysis of function, pathway, network, and disease association. Out of the 47 signaling pathways identified, seven were significantly correlated with G6PD‑associated genes. At least two out of four independent programs identified the 33 miRNAs that were predicted to target G6PD. miR‑1207‑5P, miR‑1 and miR‑125a‑5p were predicted by all four software programs to target G6PD. The results of the present study revealed that dysregulation of G6PD was associated with cancer, autoimmune diseases, and oxidative stress‑induced disorders. These results revealed the potential roles of G6PD‑regulated signaling and metabolic pathways in the etiology of these diseases.
Collapse
Affiliation(s)
- Long Chen
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chunhua Zhang
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yanling Wang
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuqian Li
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qiaoqiao Han
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Huixin Yang
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
32
|
Lai YK, Lai NM, Lee SWH. Glucose-6-phosphate dehydrogenase deficiency and risk of diabetes: a systematic review and meta-analysis. Ann Hematol 2017; 96:839-845. [PMID: 28197721 DOI: 10.1007/s00277-017-2945-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
Emerging epidemiological evidence suggests that patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency may have a higher risk of developing diabetes. The aim of the review was to synthesise the evidence on the association between G6PD deficiency and diabetes. A systematic search on Medline, EMBASE, AMED and CENTRAL databases for studies published between January 1966 and September 2016 that assessed the association between G6PD deficiency and diabetes was conducted. This was supplemented by a review of the reference list of retrieved articles. We extracted data on study characteristics, outcomes and performed an assessment on the methodological quality of the studies. A random-effects model was used to compute the summary risk estimates. Fifteen relevant publications involving 949,260 participants were identified, from which seven studies contributed to the meta-analysis. G6PD deficiency was associated with a higher odd of diabetes (odds ratio 2.37, 95% confidence interval 1.50-3.73). The odds ratio of diabetes among men was higher (2.22, 1.31-3.75) compared to women (1.87, 1.12-3.12). This association was broadly consistent in the sensitivity analysis. Current evidence suggests that G6PD deficiency may be a risk factor for diabetes, with higher odds among men compared to women. Further research is needed to determine how G6PD deficiency moderates diabetes.
Collapse
Affiliation(s)
- Yin Key Lai
- School of Pharmacy, UCSI University, Jalan Menara Gading, Taman Connaught, 56000, Kuala Lumpur, Malaysia
| | - Nai Ming Lai
- School of Medicine, Taylor's University, Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University Malaysia, 46150, Bandar Sunway, Malaysia.
| |
Collapse
|
33
|
Kwok MK, Leung GM, Schooling CM. Glucose-6-Phosphate Dehydrogenase Deficiency and Physical and Mental Health until Adolescence. PLoS One 2016; 11:e0166192. [PMID: 27824927 PMCID: PMC5100951 DOI: 10.1371/journal.pone.0166192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/24/2016] [Indexed: 11/19/2022] Open
Abstract
Background To examine the association of glucose-6-phosphate dehydrogenase (G6PD) deficiency with adolescent physical and mental health, as effects of G6PD deficiency on health are rarely reported. Methods In a population-representative Chinese birth cohort: “Children of 1997” (n = 8,327), we estimated the adjusted associations of G6PD deficiency with growth using generalized estimating equations, with pubertal onset using interval censored regression, with hospitalization using Cox proportional hazards regression and with size, blood pressure, pubertal maturation and mental health using linear regression with multiple imputation and inverse probability weighting. Results Among 5,520 screened adolescents (66% follow-up), 4.8% boys and 0.5% girls had G6PD deficiency. G6PD-deficiency was not associated with birth weight-for-gestational age or length/height gain into adolescence, but was associated with lower childhood body mass index (BMI) gain (-0.38 z-score, 95% confidence interval (CI) -0.57, -0.20), adjusted for sex and parental education, and later onset of pubic hair development (time ratio = 1.029, 95% CI 1.007, 1.050). G6PD deficiency was not associated with blood pressure, height, BMI or mental health in adolescence, nor with serious infectious morbidity until adolescence. Conclusions G6PD deficient adolescents had broadly similar physical and mental health indicators, but transiently lower BMI gain and later pubic hair development, whose long-term implications warrant investigation.
Collapse
Affiliation(s)
- Man Ki Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gabriel M. Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - C. Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- City University of New York Graduate School of Public Health and Health Policy, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Amoah LE, Opong A, Ayanful-Torgby R, Abankwa J, Acquah FK. Prevalence of G6PD deficiency and Plasmodium falciparum parasites in asymptomatic school children living in southern Ghana. Malar J 2016; 15:388. [PMID: 27456336 PMCID: PMC4960760 DOI: 10.1186/s12936-016-1440-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/12/2016] [Indexed: 01/03/2023] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked genetic disorder that results in impaired enzyme activity. Although G6PD deficiency is globally distributed it is more prevalent in malaria-endemic countries. Several mutations have been identified in the G6PD gene, which alter enzyme activity. The G6PD genotype predominantly found in sub-Saharan Africa is the G6PDB (G6PD376A) with (G6PD376G) and G6PDA- (G6PD376G/202A, G6PD376G/542T, G6PD376G/680T and G6PD376G/968C) occurring at lower frequencies. Aim The aim of this study was to identify the prevalence of G6PD deficiency and asymptomatic Plasmodium falciparum carriage in children living in southern Ghana and determine whether G6PD deficiency influences asymptomatic carriage of P. falciparum parasites. Methods Blood samples were obtained once a month from 170 healthy Ghanaian school children aged between 5 and 12 years from Basic schools in two communities Obom and Abura with similar rainfall patterns and malaria peak seasons. G6PD enzyme activity was assessed using the qualitative G6PD RDT kit (AccessBIO). G6PD genotyping and asymptomatic parasite carriage was determined by PCR followed by restriction fragment length polymorphism (RFLP) of DNA extracted from dried blood spots. Results The only sub-Saharan G6PD A- allele detected was the A376G/G202A found in 12.4 % (21/170), of the children and distributed as 4.1 % (7/170) A-, 1.8 % (3/170) A-/A- homozygous deficient males and females and 6.5 % (11/170) A/A- and B/A- heterozygous deficient females. Phenotypically, 10.6 % (15/142) of the children were G6PD deficient. The asymptomatic carriage of P. falciparum by PCR was 50, 29.4, 38.2 and 38.8 % over the months of February through May 2015, respectively, and 28.8, 22.4, 25.9 and 5.9 % by microscopy during the same periods. Conclusions G6PD deficiency was significantly associated with a lowered risk of PCR-estimated asymptomatic P. falciparum carriage in children during the off peak malaria season in Southern Ghana. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1440-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Akua Opong
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ruth Ayanful-Torgby
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.,Ghana Health Service, Ministry of Health, Accra, Ghana
| | - Joana Abankwa
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Festus K Acquah
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
35
|
Lin HR, Wu YH, Yen WC, Yang CM, Chiu DTY. Diminished COX-2/PGE2-Mediated Antiviral Response Due to Impaired NOX/MAPK Signaling in G6PD-Knockdown Lung Epithelial Cells. PLoS One 2016; 11:e0153462. [PMID: 27097228 PMCID: PMC4838297 DOI: 10.1371/journal.pone.0153462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) provides the reducing agent NADPH to meet the cellular needs for reductive biosynthesis and the maintenance of redox homeostasis. G6PD-deficient cells experience a high level of oxidative stress and an increased susceptibility to viral infections. Cyclooxygenase-2 (COX-2) is a key mediator in the regulation of viral replication and inflammatory response. In the current study, the role of G6PD on the inflammatory response was determined in both scramble control and G6PD-knockdown (G6PD-kd) A549 cells upon tumor necrosis factor-α (TNF-α) stimulation. A decreased expression pattern of induced COX-2 and reduced production of downstream PGE2 occurred upon TNF-α stimulation in G6PD-kd A549 cells compared with scramble control A549 cells. TNF-α-induced antiviral activity revealed that decreased COX-2 expression enhanced the susceptibility to coronavirus 229E infection in G6PD-kd A549 cells and was a result of the decreased phosphorylation levels of MAPK (p38 and ERK1/2) and NF-κB. The impaired inflammatory response in G6PD-kd A549 cells was found to be mediated through NADPH oxidase (NOX) signaling as elucidated by cell pretreatment with a NOX2-siRNA or NOX inhibitor, diphenyleneiodonium chloride (DPI). In addition, NOX activity with TNF-α treatment in G6PD-kd A549 cells was not up-regulated and was coupled with a decrease in NOX subunit expression at the transcriptional level, implying that TNF-α-mediated NOX signaling requires the participation of G6PD. Together, these data suggest that G6PD deficiency affects the cellular inflammatory response and the decreased TNF-α-mediated antiviral response in G6PD-kd A549 cells is a result of dysregulated NOX/MAPK/NF-κB/COX-2 signaling.
Collapse
Affiliation(s)
- Hsin-Ru Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Hsuan Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chuen-Mao Yang
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of physiology and pharmacology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- * E-mail: (DTYC); (CMY)
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of Pediatric Hematology, Chang Gung Memorial Hospital, Lin-Kou, Taiwan
- * E-mail: (DTYC); (CMY)
| |
Collapse
|
36
|
Alharbi KK. Genetic polymorphisms in paraoxonase 1 and G protein-coupled receptor 77, and the risk of glucose-6-phosphate dehydrogenase deficiency in a Saudi population. Saudi Med J 2015; 36:544-8. [PMID: 25935173 PMCID: PMC4436749 DOI: 10.15537/smj.2015.5.11860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To investigate the role of amino acid substitution variants Q192R and C698T in the development of glucose-6-phosphate dehydrogenase (G6PD) deficiency in a Saudi male population. Methods: This case-control study was carried out in 200 Saudi male individuals: 100 patients with G6PD deficiency, and 100 control subjects collected between July and August 2011 in the Taif region of Saudi Arabia. A total of 2100 male Saudi individuals were screened by a fluorescence spot test, and 100 with G6PD deficiency were selected. Two common variants PON1 (rs662) and C5L2 (rs149572881) were genotyped using polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results: The results showed that the R allele and QR genotype were associated with the Q192R polymorphism in PON1 (R versus Q odds ratio [OR], 1.72; 95% confidence interval [95% CI], 1.1-2.6; p=0.01; and QR versus QQ: OR, 1.98; 95% CI, 1.1-3.6; p=0.02). All the C698T genotypes and allele frequencies in C5L2 were almost similar in both the cases and controls (CT versus CC: OR, 2.04; 95% CI, 0.3-11.4; p=0.40; and T versus C: OR, 2.02; 95% CI, 0.3-11.1; p=0.41). Conclusions: These findings suggest the association of PON1 with G6PD deficiency in the Saudi male population studied herein. Future studies, including correlation analyses between the clinical features and genotypes in populations of different ethnicities, are warranted to confirm the disease association with these genetic mutations.
Collapse
Affiliation(s)
- Khalid K Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
37
|
Emeka P, Hilal HA, Asif AH, Almukhalaf A, Khan T. An Assessment of Frequent Haemolytic Crisis in G6PD Deficiency Subjects Linked with Chronic Disease States in Al Ahsa Community, Saudi Arabia. Health (London) 2015. [DOI: 10.4236/health.2015.75074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Sun N, Ly A, Meding S, Witting M, Hauck SM, Ueffing M, Schmitt-Kopplin P, Aichler M, Walch A. High-resolution metabolite imaging of light and dark treated retina using MALDI-FTICR mass spectrometry. Proteomics 2014; 14:913-23. [PMID: 24459044 DOI: 10.1002/pmic.201300407] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 11/06/2022]
Abstract
MS imaging (MSI) is a valuable tool for diagnostics and systems biology studies, being a highly sensitive, label-free technique capable of providing comprehensive spatial distribution of different classes of biomolecules. The application of MSI to the study of endogenous compounds has received considerable attention because metabolites are the result of the interactions of a biosystem with its environment. MSI can therefore enhance understanding of disease mechanisms and elucidate mechanisms for biological variation. We present the in situ comparative metabolomics imaging data for analyses of light- and dark-treated retina using MALDI-FTICR. A wide variety of tissue metabolites were imaged at a high spatial resolution. These include nucleotides, central carbon metabolism pathway intermediates, 2-oxocarboxylic acid metabolism, oxidative phosphorylation, glycerophospholipid metabolism, and cysteine and methionine metabolites. The high lateral resolution enabled the differentiation of retinal layers, allowing determination of the spatial distributions of different endogenous compounds. A number of metabolites demonstrated differences between light and dark conditions. These findings add to the understanding of metabolic activity in the retina.
Collapse
Affiliation(s)
- Na Sun
- Research Unit Analytical Pathology, Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Lindsay E Wu
- Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - David A Sinclair
- Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia Glenn Labs for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA, Australia
| |
Collapse
|
40
|
Ho HY, Cheng ML, Chiu DTY. Glucose-6-phosphate dehydrogenase--beyond the realm of red cell biology. Free Radic Res 2014; 48:1028-48. [PMID: 24720642 DOI: 10.3109/10715762.2014.913788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is critical to the maintenance of NADPH pool and redox homeostasis. Conventionally, G6PD deficiency has been associated with hemolytic disorders. Most biochemical variants were identified and characterized at molecular level. Recently, a number of studies have shone light on the roles of G6PD in aspects of physiology other than erythrocytic pathophysiology. G6PD deficiency alters the redox homeostasis, and affects dysfunctional cell growth and signaling, anomalous embryonic development, and altered susceptibility to infection. The present article gives a brief review of basic science and clinical findings about G6PD, and covers the latest development in the field. Moreover, how G6PD status alters the susceptibility of the affected individuals to certain degenerative diseases is also discussed.
Collapse
Affiliation(s)
- H-Y Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Kwei-san, Tao-yuan , Taiwan
| | | | | |
Collapse
|