1
|
Law M, Wang PC, Zhou ZY, Wang Y. From Microcirculation to Aging-Related Diseases: A Focus on Endothelial SIRT1. Pharmaceuticals (Basel) 2024; 17:1495. [PMID: 39598406 PMCID: PMC11597311 DOI: 10.3390/ph17111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Silent information regulator sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase with potent anti-arterial aging activities. Its protective function in aging-related diseases has been extensively studied. In the microcirculation, SIRT1 plays a crucial role in preventing microcirculatory endothelial senescence by suppressing inflammation and oxidative stress while promoting mitochondrial function and optimizing autophagy. It suppresses hypoxia-inducible factor-1α (HIF-1α)-mediated pathological angiogenesis while promoting healthy, physiological capillarization. As a result, SIRT1 protects against microvascular dysfunction, such as diabetic microangiopathy, while enhancing exercise-induced skeletal muscle capillarization and energy metabolism. In the brain, SIRT1 upregulates tight junction proteins and strengthens their interactions, thus maintaining the integrity of the blood-brain barrier. The present review summarizes recent findings on the regulation of microvascular function by SIRT1, the underlying mechanisms, and various approaches to modulate SIRT1 activity in microcirculation. The importance of SIRT1 as a molecular target in aging-related diseases, such as diabetic retinopathy and stroke, is underscored, along with the need for more clinical evidence to support SIRT1 modulation in the microcirculation.
Collapse
Affiliation(s)
- Martin Law
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
| | - Pei-Chun Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Turkistani A, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Al‐Windy S, Batiha GE. Pharmacological characterization of the antidiabetic drug metformin in atherosclerosis inhibition: A comprehensive insight. Immun Inflamm Dis 2024; 12:e1346. [PMID: 39092773 PMCID: PMC11295104 DOI: 10.1002/iid3.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/05/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a progressive disease that interferes with blood flow, leading to cardiovascular complications such as hypertension, ischemic heart disease, ischemic stroke, and vascular ischemia. The progression of AS is correlated with inflammation, oxidative stress, and endothelial dysfunction. Various signaling pathways, like nuclear erythroid-related factor 2 (Nrf2) and Kruppel-like factor 2 (KLF2), are involved in the pathogenesis of AS. Nrf2 and KLF2 have anti-inflammatory and antioxidant properties. Thus, activation of these pathways may reduce the development of AS. Metformin, an insulin-sensitizing drug used in the management of type 2 diabetes mellitus (T2DM), increases the expression of Nrf2 and KLF2. AS is a common long-term macrovascular complication of T2DM. Thus, metformin, through its pleiotropic anti-inflammatory effect, may attenuate the development and progression of AS. AIMS Therefore, this review aims to investigate the possible role of metformin in AS concerning its effect on Nrf2 and KLF2 and inhibition of reactive oxygen species (ROS) formation. In addition to its antidiabetic effect, metformin can reduce cardiovascular morbidities and mortalities compared to other antidiabetic agents, even with similar blood glucose control by the Nrf2/KLF2 pathway activation. CONCLUSION In conclusion, metformin is an effective therapeutic strategy against the development and progression of AS, mainly through activation of the KLF2/Nrf2 axis.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of MedicineTaif UniversityTaifSaudi Arabia
| | - Haydar M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
- Department of Clinical Pharmacology and MedicineJabir ibn Hayyan Medical UniversityKufaIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
- Department of Research & DevelopmentFunogenAthensGreece
- University Centre for Research & DevelopmentChandigarh UniversityPunjabIndia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Salah Al‐Windy
- Department of Biology, College of ScienceBaghdad UniversityBaghdadIraq
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Possible role of LCZ696 in atherosclerosis: new inroads and perspective. Mol Cell Biochem 2024; 479:1895-1908. [PMID: 37526794 DOI: 10.1007/s11010-023-04816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
4
|
Alomair BM, Al-Kuraishy HM, Al-Gareeb AI, Alshammari MA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Increased thyroid stimulating hormone (TSH) as a possible risk factor for atherosclerosis in subclinical hypothyroidism. Thyroid Res 2024; 17:13. [PMID: 38880884 PMCID: PMC11181570 DOI: 10.1186/s13044-024-00199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Primary hypothyroidism (PHT) is associated with an increased risk for the development of atherosclerosis (AS) and other cardiovascular disorders. PHT induces atherosclerosis (AS) through the induction of endothelial dysfunction, and insulin resistance (IR). PHT promotes vasoconstriction and the development of hypertension. However, patients with subclinical PHT with normal thyroid hormones (THs) are also at risk for cardiovascular complications. In subclinical PHT, increasing thyroid stimulating hormone (TSH) levels could be one of the causative factors intricate in the progression of cardiovascular complications including AS. Nevertheless, the mechanistic role of PHT in AS has not been fully clarified in relation to increased TSH. Therefore, in this review, we discuss the association between increased TSH and AS, and how increased TSH may be involved in the pathogenesis of AS. In addition, we also discuss how L-thyroxine treatment affects the development of AS.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Assistant Professor, Internal Medicine and Endocrinology, Department of Medicine, College of Medicine, Jouf University, Sakakah, 04631, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majed Ayed Alshammari
- Department of Medicine, Prince Mohammed Bin Abdulaziz Medical City, Al Jouf-Sakkaka, 42421, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Vienna, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, 2770, NSW, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal, 42283, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
5
|
Zhang X, Zhao S, Huang Y, Ma M, Li B, Li C, Zhu X, Xu X, Chen H, Zhang Y, Zhou C, Zheng Z. Diabetes-Related Macrovascular Complications Are Associated With an Increased Risk of Diabetic Microvascular Complications: A Prospective Study of 1518 Patients With Type 1 Diabetes and 20 802 Patients With Type 2 Diabetes in the UK Biobank. J Am Heart Assoc 2024; 13:e032626. [PMID: 38818935 PMCID: PMC11255647 DOI: 10.1161/jaha.123.032626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Diabetic vascular complications share common pathophysiological mechanisms, but the relationship between diabetes-related macrovascular complications (MacroVCs) and incident diabetic microvascular complications remains unclear. We aimed to investigate the impact of MacroVCs on the risk of microvascular complications. METHODS AND RESULTS There were 1518 participants with type 1 diabetes (T1D) and 20 802 participants with type 2 diabetes from the UK Biobank included in this longitudinal cohort study. MacroVCs were defined by the presence of macrovascular diseases diagnosed after diabetes at recruitment, including coronary heart disease, peripheral artery disease, stroke, and ≥2 MacroVCs. The primary outcome was incident microvascular complications, a composite of diabetic retinopathy, diabetic kidney disease, and diabetic neuropathy. During a median (interquartile range) follow-up of 11.61 (5.84-13.12) years and 12.2 (9.50-13.18) years, 596 (39.3%) and 4113 (19.8%) participants developed a primary outcome in T1D and type 2 diabetes, respectively. After full adjustment for conventional risk factors, Cox regression models showed significant associations between individual as well as cumulative MacroVCs and the primary outcome, except for coronary heart disease in T1D (T1D: diabetes coronary heart disease: 1.25 [0.98-1.60]; diabetes peripheral artery disease: 3.00 [1.86-4.84]; diabetes stroke: 1.71 [1.08-2.72]; ≥2: 2.57 [1.66-3.99]; type 2 diabetes: diabetes coronary heart disease: 1.59 [1.38-1.82]; diabetes peripheral artery disease: 1.60 [1.01-2.54]; diabetes stroke: 1.50 [1.13-1.99]; ≥2: 2.66 [1.92-3.68]). Subgroup analysis showed that strict glycemic (glycated hemoglobin <6.5%) and blood pressure (<140/90 mm Hg) control attenuated the association. CONCLUSIONS Individual and cumulative MacroVCs confer significant risk of incident microvascular complications in patients with T1D and type 2 diabetes. Our results may facilitate cost-effective high-risk population identification and development of precise prevention strategies.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiPeople’s Republic of China
| | - Shuzhi Zhao
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiPeople’s Republic of China
| | - Yikeng Huang
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiPeople’s Republic of China
| | - Mingming Ma
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiPeople’s Republic of China
| | - Bo Li
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiPeople’s Republic of China
| | - Chenxin Li
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiPeople’s Republic of China
| | - Xinyu Zhu
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiPeople’s Republic of China
| | - Xun Xu
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiPeople’s Republic of China
| | - Haibin Chen
- Department of Endocrinology and MetabolismShanghai 10th People’s HospitalTongji UniversityShanghaiPeople’s Republic of China
| | - Yili Zhang
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiPeople’s Republic of China
| | - Chuandi Zhou
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai Ninth People’s HospitalShanghai JiaoTong University School of MedicineShanghaiPeople’s Republic of China
| | - Zhi Zheng
- Department of OphthalmologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
- National Clinical Research Center for Eye DiseasesShanghai Key Laboratory of Ocular Fundus DiseasesShanghai Engineering Center for Visual Science and PhotomedicineShanghai Engineering Center for Precise Diagnosis and Treatment of Eye DiseasesShanghaiPeople’s Republic of China
- Ningde Municipal HospitalNingde Normal UniversityNingdePeople’s Republic of China
- Fujian Medical UniversityFuzhouFujianPeople’s Republic of China
| |
Collapse
|
6
|
Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective Factors and the Pathogenesis of Complications in Diabetes. Endocr Rev 2024; 45:227-252. [PMID: 37638875 PMCID: PMC10911956 DOI: 10.1210/endrev/bnad030] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Chronic complications of diabetes are due to myriad disorders of numerous metabolic pathways that are responsible for most of the morbidity and mortality associated with the disease. Traditionally, diabetes complications are divided into those of microvascular and macrovascular origin. We suggest revising this antiquated classification into diabetes complications of vascular, parenchymal, and hybrid (both vascular and parenchymal) tissue origin, since the profile of diabetes complications ranges from those involving only vascular tissues to those involving mostly parenchymal organs. A major paradigm shift has occurred in recent years regarding the pathogenesis of diabetes complications, in which the focus has shifted from studies on risks to those on the interplay between risk and protective factors. While risk factors are clearly important for the development of chronic complications in diabetes, recent studies have established that protective factors are equally significant in modulating the development and severity of diabetes complications. These protective responses may help explain the differential severity of complications, and even the lack of pathologies, in some tissues. Nevertheless, despite the growing number of studies on this field, comprehensive reviews on protective factors and their mechanisms of action are not available. This review thus focused on the clinical, biochemical, and molecular mechanisms that support the idea of endogenous protective factors, and their roles in the initiation and progression of chronic complications in diabetes. In addition, this review also aimed to identify the main needs of this field for future studies.
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gordin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Department of Nephrology, University of Helsinki and Helsinki University Central Hospital, Stenbäckinkatu 9, FI-00029 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Jialin Fu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Kyoungmin Park
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Qian Li
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Sawayama Y, Yano Y, Hisamatsu T, Fujiyoshi A, Kadota A, Torii S, Kondo K, Kadowaki S, Higo Y, Harada A, Watanabe Y, Nakagawa Y, Miura K, Ueshima H. Heart Rate Fragmentation, Ambulatory Blood Pressure, and Coronary Artery Calcification: A Population-Based Study. JACC. ASIA 2024; 4:216-225. [PMID: 38463673 PMCID: PMC10920050 DOI: 10.1016/j.jacasi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 03/12/2024]
Abstract
Background Little is known regarding whether ultra-rapid patterns of heart rate variability (eg, heart rate fragmentation [HRF]) are associated with coronary artery calcification (CAC) in a general population. Objectives This study aimed to assess the association between HRF and CAC, and whether these associations are independent of systolic blood pressure (SBP) levels. Methods From SESSA (the Shiga Epidemiological Study of Subclinical Atherosclerosis), we used data from 24-hour ambulatory blood pressure monitoring to identify awake and asleep SBP levels, and data from concurrent 24-hour Holter monitoring to quantify HRF using the awake and asleep percentage of inflection points (PIP). CAC on computed tomography scanning was quantified using an Agatston score. We used multivariable binomial logistic regression to assess the associations of PIP and ambulatory SBP with the presence of CAC, as defined by Agatston score >0. Results Of the 508 participants in this study (mean age: 66.5 ± 7.3 years), 325 (64%) had CAC and 183 (36%) did not. In fully adjusted models of prevalent CAC that also included office SBP, the ORs with 95% CIs for awake PIP, awake SBP, asleep PIP, and asleep SBP were 1.23 (95% CI: 0.99-1.54), 1.40 (95% CI: 1.11-1.77), 1.31 (95% CI: 1.05-1.62), and 1.28 (95% CI: 1.02-1.60), respectively. There was no evidence of interaction between PIP and ambulatory SBP in association with CAC. Results were similar when other HRF indices instead of PIP were used. Conclusions Higher HRF and SBP levels during sleep are each associated with the presence of CAC in a general male population.
Collapse
Affiliation(s)
- Yuichi Sawayama
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yuichiro Yano
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Takashi Hisamatsu
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Fujiyoshi
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
- Department of Hygiene, Wakayama Medical University, Wakayama, Japan
| | - Aya Kadota
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Sayuki Torii
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Keiko Kondo
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Sayaka Kadowaki
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yosuke Higo
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Akiko Harada
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Katsuyuki Miura
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - Hirotsugu Ueshima
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
| | - SESSA Research Group
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Hygiene, Wakayama Medical University, Wakayama, Japan
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
- Department of Radiology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
8
|
Serés-Noriega T, Perea V, Amor AJ. Screening for Subclinical Atherosclerosis and the Prediction of Cardiovascular Events in People with Type 1 Diabetes. J Clin Med 2024; 13:1097. [PMID: 38398409 PMCID: PMC10889212 DOI: 10.3390/jcm13041097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
People with type 1 diabetes (T1D) have a high cardiovascular disease (CVD) risk, which remains the leading cause of death in this population. Despite the improved control of several classic risk factors, particularly better glycaemic control, cardiovascular morbidity and mortality continue to be significantly higher than in the general population. In routine clinical practice, estimating cardiovascular risk (CVR) in people with T1D using scales or equations is often imprecise because much of the evidence comes from pooled samples of people with type 2 diabetes (T2D) and T1D or from extrapolations of studies performed on people with T2D. Given that T1D onsets at a young age, prolonged exposure to the disease and its consequences (e.g., hyperglycaemia, changes in lipid metabolism or inflammation) have a detrimental impact on cardiovascular health. Therefore, it is critical to have tools that allow for the early identification of those individuals with a higher CVR and thus be able to make the most appropriate management decisions in each case. In this sense, atherosclerosis is the prelude to most cardiovascular events. People with diabetes present pathophysiological alterations that facilitate atherosclerosis development and that may imply a greater vulnerability of atheromatous plaques. Screening for subclinical atherosclerosis using various techniques, mainly imaging, has proven valuable in predicting cardiovascular events. Its use enables the reclassification of CVR and, therefore, an individualised adjustment of therapeutic management. However, the available evidence in people with T1D is scarce. This narrative review provides and updated overview of the main non-invasive tests for detecting atherosclerosis plaques and their association with CVD in people with T1D.
Collapse
Affiliation(s)
- Tonet Serés-Noriega
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Verónica Perea
- Endocrinology and Nutrition Department, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain
| | - Antonio J. Amor
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
| |
Collapse
|
9
|
Lim JZM, Burgess J, Ooi C, Ferdousi M, Azmi S, Kalteniece A, Anson M, Cuthbertson DJ, Petropoulos IN, Malik RA, Wilding JPH, Alam U. Corneal Confocal Microscopy Predicts Cardiovascular and Cerebrovascular Events and Demonstrates Greater Peripheral Neuropathy in Patients with Type 1 Diabetes and Foot Ulcers. Diagnostics (Basel) 2023; 13:2793. [PMID: 37685330 PMCID: PMC10486928 DOI: 10.3390/diagnostics13172793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVE In this study, we evaluate small and large nerve fibre pathology in relation to diabetic foot ulceration (DFU) and incident cardiovascular and cerebrovascular events in type 1 diabetes (T1D). METHODS A prospective observational study was conducted on people with T1D without diabetic peripheral neuropathy (DPN) (n = 25), T1D with DPN (n = 28), T1D with DFU (n = 25) and 32 healthy volunteers. ROC analysis of parameters was conducted to diagnose DPN and DFU, and multivariate Cox regression analysis was performed to evaluate the predictive ability of corneal nerves for cardiac and cerebrovascular events over 3 years. RESULTS Corneal nerve fibre length (CNFL), fibre density (CNFD) and branch density (CNBD) were lower in T1D-DPN and T1D-DFU vs. T1D (all p < 0.001). In ROC analysis, CNFD (sensitivity 88%, specificity 87%; AUC 0.93; p < 0.001; optimal cut-off 7.35 no/mm2) and CNFL (sensitivity 76%, specificity 77%; AUC 0.90; p < 0.001; optimal cut-off 7.01 mm/mm2) had good ability to differentiate T1D with and without DFU. Incident cardiovascular events (p < 0.001) and cerebrovascular events (p < 0.001) were significantly higher in T1D-DPN and T1D-DFU. Corneal nerve loss, specifically CNFD predicted incident cardiovascular (HR 1.67, 95% CI 1.12 to 2.50, p = 0.01) and cerebrovascular (HR 1.55, 95% CI 1.06 to 2.26, p = 0.02) events. CONCLUSIONS Our study provides threshold values for corneal nerve fibre metrics for neuropathic foot at risk of DFU and further demonstrates that lower CNFD predicts incident cardiovascular and cerebrovascular events in T1D.
Collapse
Affiliation(s)
- Jonathan Z M Lim
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Diabetes, Endocrinology, and Metabolism Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Department of Medicine, Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool L9 7AL, UK
| | - Jamie Burgess
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Department of Medicine, Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool L9 7AL, UK
| | - Cheong Ooi
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Department of Medicine, Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool L9 7AL, UK
| | - Maryam Ferdousi
- Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester M13 9WL, UK
| | - Shazli Azmi
- Diabetes, Endocrinology, and Metabolism Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester M13 9WL, UK
| | - Alise Kalteniece
- Institute of Cardiovascular Sciences, Cardiac Centre, Faculty of Medical and Human Sciences, University of Manchester and NIHR/Wellcome Trust Clinical Research Facility, Manchester M13 9WL, UK
| | - Matthew Anson
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Department of Medicine, Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool L9 7AL, UK
| | - Daniel J Cuthbertson
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Department of Medicine, Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool L9 7AL, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool University NHS Foundation Trust, Liverpool L69 3BX, UK
| | | | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar
| | - John P H Wilding
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Department of Medicine, Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool L9 7AL, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool University NHS Foundation Trust, Liverpool L69 3BX, UK
| | - Uazman Alam
- Department of Cardiovascular & Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool University NHS Foundation Trust, Liverpool L69 3BX, UK
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| |
Collapse
|
10
|
Zhang L, Guo J, Liu Y, Sun S, Liu B, Yang Q, Tao J, Tian XL, Pu J, Hong H, Wang M, Chen HZ, Ren J, Wang X, Liang Z, Wang Y, Huang K, Zhang W, Qu J, Ju Z, Liu GH, Pei G, Li J, Zhang C. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. LIFE MEDICINE 2023; 2:lnad033. [PMID: 40040784 PMCID: PMC11879419 DOI: 10.1093/lifemedi/lnad033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 03/06/2025]
Abstract
Aging of the vasculature, which is integral to the functioning of literally all human organs, serves as a fundamental physiological basis for age-related alterations as well as a shared etiological mechanism for various chronic diseases prevalent in the elderly population. China, home to the world's largest aging population, faces an escalating challenge in addressing the prevention and management of these age-related conditions. To meet this challenge, the Aging Biomarker Consortium of China has developed an expert consensus on biomarkers of vascular aging (VA) by synthesizing literature and insights from scientists and clinicians. This consensus provides a comprehensive assessment of biomarkers associated with VA and presents a systemic framework to classify them into three dimensions: functional, structural, and humoral. Within each dimension, the expert panel recommends the most clinically relevant VA biomarkers. For the functional domain, biomarkers reflecting vascular stiffness and endothelial function are highlighted. The structural dimension encompasses metrics for vascular structure, microvascular structure, and distribution. Additionally, proinflammatory factors are emphasized as biomarkers with the humoral dimension. The aim of this expert consensus is to establish a foundation for assessing the extent of VA and conducting research related to VA, with the ultimate goal of improving the vascular health of the elderly in China and globally.
Collapse
Affiliation(s)
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yuehong Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shimin Sun
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena 07743, Germany
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun-Yat-sen University, Guangzhou 510080, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai 200127, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhen Liang
- Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Pei
- Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
11
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
12
|
Schiborn C, Schulze MB. Precision prognostics for the development of complications in diabetes. Diabetologia 2022; 65:1867-1882. [PMID: 35727346 PMCID: PMC9522742 DOI: 10.1007/s00125-022-05731-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
Abstract
Individuals with diabetes face higher risks for macro- and microvascular complications than their non-diabetic counterparts. The concept of precision medicine in diabetes aims to optimise treatment decisions for individual patients to reduce the risk of major diabetic complications, including cardiovascular outcomes, retinopathy, nephropathy, neuropathy and overall mortality. In this context, prognostic models can be used to estimate an individual's risk for relevant complications based on individual risk profiles. This review aims to place the concept of prediction modelling into the context of precision prognostics. As opposed to identification of diabetes subsets, the development of prediction models, including the selection of predictors based on their longitudinal association with the outcome of interest and their discriminatory ability, allows estimation of an individual's absolute risk of complications. As a consequence, such models provide information about potential patient subgroups and their treatment needs. This review provides insight into the methodological issues specifically related to the development and validation of prediction models for diabetes complications. We summarise existing prediction models for macro- and microvascular complications, commonly included predictors, and examples of available validation studies. The review also discusses the potential of non-classical risk markers and omics-based predictors. Finally, it gives insight into the requirements and challenges related to the clinical applications and implementation of developed predictions models to optimise medical decision making.
Collapse
Affiliation(s)
- Catarina Schiborn
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
13
|
Lytvyn Y, Albakr R, Bjornstad P, Lovblom LE, Liu H, Lovshin JA, Boulet G, Farooqi MA, Weisman A, Keenan HA, Brent MH, Paul N, Bril V, Perkins BA, Cherney DZI. Renal hemodynamic dysfunction and neuropathy in longstanding type 1 diabetes: Results from the Canadian study of longevity in type 1 diabetes. J Diabetes Complications 2022; 36:108320. [PMID: 36201892 PMCID: PMC10187942 DOI: 10.1016/j.jdiacomp.2022.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
AIMS To determine the relationship between renal hemodynamic function and neuropathy in adults with ≥50-years of type 1 diabetes (T1D) compared to nondiabetic controls. METHODS Glomerular filtration rate (GFR, inulin), effective renal plasma flow (ERPF, p-aminohippurate), modified Toronto Clinical Neuropathy Score (mTCNS), corneal confocal microscopy, nerve conduction, and heart rate variability (autonomic function) were measured; afferent (RA) and efferent (RE) arteriolar resistances were estimated using the Gomez equations in 74 participants with T1D and in 75 controls. Diabetic kidney disease (DKD) non-resistors were defined by eGFRMDRD < 60 ml/min/1.73 m2 or 24-h urine albumin excretion >30 mg/day. Linear regression was applied to examine the relationships between renal function (dependent variable) and neuropathy measures (independent variable), adjusted for age, sex, HbA1c, systolic blood pressure, low density lipoprotein cholesterol, and 24-h urine albumin to creatinine ratio. RESULTS Higher mTCNS associated with lower renal blood flow (β ± SE:-9.29 ± 4.20, p = 0.03) and greater RE (β ± SE:32.97 ± 15.43, p = 0.04) in participants with T1D, but not in controls. DKD non-resistors had a higher mTCNS and worse measures of corneal nerve morphology compared to those without DKD. Renal hemodynamic parameters did not associate with autonomic nerve function. CONCLUSIONS Although neurological dysfunction in the presence of diabetes may contribute to impaired renal blood flow resulting in ischemic injury in patients with T1D, early autonomic dysfunction does not appear to be associated with kidney function changes.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rehab Albakr
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Petter Bjornstad
- Department of Pediatrics, Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Hongyan Liu
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Julie A Lovshin
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Genevieve Boulet
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed A Farooqi
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Alanna Weisman
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael H Brent
- Department of Ophthalmology and Vision Sciences, Department of Medicine, University of Toronto, Ontario, Canada
| | - Narinder Paul
- Joint Department of Medical Imaging, Division of Cardiothoracic Radiology, University Health Network, Toronto, Ontario, Canada
| | - Vera Bril
- Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada
| | - Bruce A Perkins
- Department of Medicine, Division of Endocrinology and Metabolism, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Lin W, Luo Y, Liu F, Li H, Wang Q, Dong Z, Chen X. Status and Trends of the Association Between Diabetic Nephropathy and Diabetic Retinopathy From 2000 to 2021: Bibliometric and Visual Analysis. Front Pharmacol 2022; 13:937759. [PMID: 35795563 PMCID: PMC9251414 DOI: 10.3389/fphar.2022.937759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes that share a similar pathogenesis and clinical relevance. The study aimed to visually analyze the research status and development trend of the relationship between DN and DR by means of bibliometrics and knowledge mapping. Methods: Publications were collected from the Science Citation Index-Expanded of the Web of Science Core Collection between 2000 and 2021. CiteSpace, Alluvial Generator, and Microsoft Excel were used to analyze and present the data. Results: A total of 3,348 publications were retrieved and 3,285 were included in the analysis after deduplication. The publications demonstrated an annually increasing trend. The results of the collaborative network analysis showed that the United States, Steno Diabetes Center, and Tien Y. Wong were the most influential country, institution and author, in this field of research, respectively. The analysis of references and keywords showed that the pathogenesis of DN and DR and their relationship with cardiovascular disease are research hotspots. The clinical relevance and drug therapy for DN and DR will become frontiers of future research in this field. Conclusion: This study is the first to visualize the correlation between DN and DR using a bibliometric approach. This study provides a reference of research trends for scholars.
Collapse
Affiliation(s)
- Wenwen Lin
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing, China
| | - Yayong Luo
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing, China
| | - Fang Liu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing, China
| | - Hangtian Li
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing, China
| | - Qian Wang
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing, China
| | - Zheyi Dong
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing, China
| | - Xiangmei Chen
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- National Clinical Research Center for Kidney Diseases, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
15
|
Jeng CJ, Hsieh YT, Lin CL, Wang IJ. Effect of anticoagulant/antiplatelet therapy on the development and progression of diabetic retinopathy. BMC Ophthalmol 2022; 22:127. [PMID: 35300625 PMCID: PMC8932222 DOI: 10.1186/s12886-022-02323-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background We investigated whether antiplatelet/anticoagulant (APAC) therapy can protect patients with type 2 diabetes mellitus (T2DM) from the development or progression of diabetic retinopathy (DR). Methods This is a retrospective cohort study using Longitudinal Health Insurance Database in Taiwan. A total of 73,964 type 2 diabetic patients older than 20 years old were included. Hazard ration (HR) of non-proliferative DR (NPDR), proliferative DR (PDR), and diabetic macular edema (DME) were analyzed with APAC usage as a time-dependent covariate. Age, sex, comorbidities, and medicines were further adjusted in a multi-variable model. Contributions of respective APAC was investigated with sensitivity analysis. Results Compared with nonusers, APAC users had a lower cumulative incidence of NPDR (P < 0.001), overall incidence of NPDR (10.7 per 1000 person-years), and risk of developing NPDR (adjusted HR = 0.78, 95% CI = 0.73–0.83). However, no significant differences were observed between APAC users and nonusers in the risks of PDR or DME. Hypertension, diabetic nephropathy and diabetic neuropathy were risk factors for NDPR development, while heart disease, cardiovascular disease, peripheral arterial occlusive disease, and statin usage were covariates decreasing NPDR development. Aspirin and Dipyridamole showed significant protection against NPDR development. Clopidogrel, Ticlopidine, and warfarin showed enhanced protection in combination with aspirin usage. Conclusions APAC medications have a protective effect against NPDR development. Diabetic patients benefit from single use of aspirin or dipyridamole on prevention of NPDR. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02323-z.
Collapse
Affiliation(s)
- Chi-Juei Jeng
- Department of Ophthalmology, Taipei Medical University-Shuang-Ho hospital, Ministry of Health and Welfare, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Ophthalmology, School of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ting Hsieh
- Department of Ophthalmology, School of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University, Taichung, Taiwan.
| | - I-Jong Wang
- Department of Ophthalmology, School of Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
16
|
Shi M, Tang R, Huang F, Zhong T, Chen Y, Li X, Zhou Z. Cardiovascular disease in patients with type 1 diabetes: Early evaluation, risk factors and possible relation with cardiac autoimmunity. Diabetes Metab Res Rev 2021; 37:e3423. [PMID: 33252830 DOI: 10.1002/dmrr.3423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/28/2020] [Accepted: 11/01/2020] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease now is the leading cause of mortality among patients with type 1 diabetes (T1D). The risk of death from cardiovascular events in subjects with T1D is 2-10 times higher than the general population, depending on blood glucose control. Although complications of cardiovascular disease occur in middle and old age, pathological processes begin in childhood. Some methods used to evaluate subclinical cardiovascular disease, such as carotid intima-media thickness and pulse wave velocity, can detect early cardiovascular abnormalities in adolescence. The effect of risk factors including hypertension, dyslipidemia and diabetic nephropathy on cardiovascular disease has been well studied. According to the current clinical practice recommendations from the American Diabetes Association, cardiovascular risk factors should be systematically assessed at least annually and treated as recommended. And yet, the effects of intensive insulin therapy on cardiovascular risk, as well as the mechanisms of cardiac autoimmunity require further studying. This review concentrates on the cardiovascular risk in type 1 diabetes in order to provide a comprehensive outlook of its epidemiology, early assessment, risk factors and possible relations with cardiac autoimmunity, aiming to propose promising therapeutic strategies.
Collapse
Affiliation(s)
- Mei Shi
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Rong Tang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Fansu Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Ting Zhong
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Yan Chen
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
17
|
Fahrmann ER, Adkins L, Driscoll HK. Modification of the Association Between Severe Hypoglycemia and Ischemic Heart Disease by Surrogates of Vascular Damage Severity in Type 1 Diabetes During ∼30 Years of Follow-up in the DCCT/EDIC Study. Diabetes Care 2021; 44:2132-2139. [PMID: 34233927 PMCID: PMC8740933 DOI: 10.2337/dc20-2757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/25/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Literature suggests that severe hypoglycemia (SH) may be linked to cardiovascular events only in older individuals with high cardiovascular risk score (CV-score). Whether a potential relationship between any-SH and cardiovascular disease exists and whether it is conditional on vascular damage severity in a young cohort with type 1 diabetes (T1D) without apparent macrovascular and no or mild-to-moderate microvascular complications at baseline is unknown. RESEARCH DESIGN AND METHODS We evaluated data of 1,441 Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study volunteers (diabetes duration 1-15 years) followed for ∼30 years. Time-dependent associations between any-SH and ischemic heart disease (IHD: death, silent/nonfatal myocardial infarct, revascularization, or confirmed angina) and associations between interactions of any-SH with surrogates of baseline micro-/macrovascular damage severity and IHD were analyzed. Diabetes duration, steps on DCCT Early Treatment Diabetic Retinopathy Study severity scale (DCCT-ETDRS), Diabetes Complications Severity Index (DCSI), and CV-scores were considered as surrogates of baseline micro-/macrovascular damage severity. RESULTS Without interactions, in the minimally adjusted model controlling for confounding bias by age and HbA1c, SH was a significant IHD factor (P = 0.003). SH remained a significant factor for IHD in fully adjusted models (P < 0.05). In models with interactions, interactions between SH and surrogates of microvascular complications severity, but not between SH and CV-score, were significant. Hazard ratios for IHD based on SH increased 1.19-fold, 1.32-fold, and 2.21-fold for each additional year of diabetes duration, DCCT-ETDRS unit, and DCSI unit, respectively. At time of IHD event, ∼15% of 110 participants with SH had high CV-scores. CONCLUSIONS In a young cohort with T1D with no baseline macrovascular complications, surrogates of baseline microvascular damage severity impact the effect of SH on IHD. Older age with high CV-score per se is not mandatory for an association of SH with IHD. However, the association is multifactorial.
Collapse
Affiliation(s)
- Elke R Fahrmann
- Internal Medicine/Endocrinology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Laura Adkins
- Department of Mathematics, Marshall University, Huntington, WV
| | - Henry K Driscoll
- Internal Medicine/Endocrinology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV.,VA Medical Center, Huntington, WV
| |
Collapse
|
18
|
(Type 2 diabetes and heart failure - how to optimize cooperation of cardiologist and diabetologist). COR ET VASA 2021. [DOI: 10.33678/cor.2021.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Pararajasingam G, Heinsen LJ, Larsson J, Andersen TR, Løgstrup BB, Auscher S, Hangaard J, Møgelvang R, Egstrup K. Diabetic microvascular complications are associated with reduced global longitudinal strain independent of atherosclerotic coronary artery disease in asymptomatic patients with diabetes mellitus: a cross-sectional study. BMC Cardiovasc Disord 2021; 21:269. [PMID: 34078282 PMCID: PMC8173786 DOI: 10.1186/s12872-021-02063-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023] Open
Abstract
Background Reduced left ventricular function, assessed by global longitudinal strain (GLS), is sometimes observed in asymptomatic patients with diabetes mellitus (DM) and is often present in patients with diabetes-related microvascular complications. Our aim was to assess the association between microvascular complications, coronary artery plaque burden (PB) and GLS in asymptomatic patients with DM and non-obstructive coronary artery disease (CAD). Methods This cross-sectional study included patients with DM without any history, symptoms or objective evidence of obstructive CAD. All patients were identified in the outpatient Clinic of Endocrinology at Odense University Hospital Svendborg. An echocardiography and a coronary computed tomography angiography were performed to assess GLS and the degree of CAD, respectively. A coronary artery stenosis < 50% was considered non-obstructive. A linear regression model was used to evaluate the impact of potential confounders on GLS with adjustment of body mass index (BMI), mean arterial pressure (MAP), microvascular complications, type of diabetes, tissue Doppler average early diastolic mitral annulus velocity (e’) and PB.
Results Two hundred and twenty-two patients were included, of whom 172 (77%) had type 2 DM and 50 (23%) had type 1 diabetes. One hundred and eleven (50%) patients had microvascular complications. GLS decreased as the burden of microvascular complications increased (P-trend = 0.01): no microvascular complications, GLS (− 16.4 ± 2.5%), 1 microvascular complication (− 16.0 ± 2.5%) and 2–3 microvascular complications (− 14.9 ± 2.8%). The reduction in GLS remained significant after multivariable adjustment (β 0.50 [95% CI 0.11–0.88], p = 0.01). BMI (β 0.12 [95% CI 0.05–0.19]) and MAP (β 0.05 [95% CI 0.01–0.08]) were associated with reduced GLS. In addition, an increased number of microvascular complications was associated with increased PB (β 2.97 [95% CI 0.42–5.51], p = 0.02) in a univariable linear regression model, whereas there was no significant association between PB and GLS. Conclusions The burden of microvascular complications was associated with reduced GLS independent of other cardiovascular risk factors in asymptomatic patients with DM and non-obstructive CAD. In addition, the burden of microvascular complications was associated with increasing PB, whereas PB was not associated with GLS. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02063-w.
Collapse
Affiliation(s)
- Gokulan Pararajasingam
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Allé 15, 5700, Svendborg, Denmark.
| | - Laurits Juhl Heinsen
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Allé 15, 5700, Svendborg, Denmark
| | - Johanna Larsson
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Allé 15, 5700, Svendborg, Denmark
| | - Thomas Rueskov Andersen
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Allé 15, 5700, Svendborg, Denmark
| | - Brian Bridal Løgstrup
- Department of Cardiology, Aarhus University Hospital Skejby, Palle Juul Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Søren Auscher
- Department of Internal Medicine (Cardiology), Odense University Hospital Svendborg, Baagøes Allé 15, 5700, Svendborg, Denmark
| | - Jørgen Hangaard
- Department of Internal Medicine (Endocrinology), Odense University Hospital Svendborg, Baagøes Allé 15, 5700, Svendborg, Denmark
| | - Rasmus Møgelvang
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Allé 15, 5700, Svendborg, Denmark.,Heart Centre, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kenneth Egstrup
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Allé 15, 5700, Svendborg, Denmark
| |
Collapse
|
20
|
Sveen KA, Bech Holte K, Svanteson M, Hanssen KF, Nilsson J, Bengtsson E, Julsrud Berg T. Autoantibodies Against Methylglyoxal-Modified Apolipoprotein B100 and ApoB100 Peptide Are Associated With Less Coronary Artery Atherosclerosis and Retinopathy in Long-Term Type 1 Diabetes. Diabetes Care 2021; 44:1402-1409. [PMID: 33858856 PMCID: PMC8247486 DOI: 10.2337/dc20-2089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/22/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Methylglyoxal (MGO), a reactive aldehyde forming advanced glycation end products (AGEs), is increased in diabetes and recognized by the immune system, resulting in anti-AGE-specific autoantibodies. The association of these immune responses with macro- and microvascular complications in type 1 diabetes remains unclarified. We investigated associations between MGO-modified apolipoprotein B100 (apoB100) and apoB100 peptide 5 (MGO-p5) autoantibodies and coronary atherosclerosis and retinopathy in type 1 diabetes. RESEARCH DESIGN AND METHODS IgM and IgG against MGO-apoB100 and MGO-p5 were measured by ELISA in plasma from 103 subjects with type 1 diabetes and 63 control subjects (Dialong study) and in a replication cohort of 27 subjects with type 1 diabetes (Oslo study). Coronary atherosclerosis was assessed by computed tomography coronary angiography or intravascular ultrasound. Retinopathy was classified by retinal photos. RESULTS MGO-apoB100 IgM and MGO-p5 IgM levels were higher in subjects with diabetes with no coronary artery stenosis compared with subjects with significant stenosis (median [interquartile range]: 96.2 arbitrary units [AU] [71-126.8] vs. 54 AU [36.1-85.4], P = 0.003 for MGO-apoB100; and 77.4 AU [58-106] vs. 36.9 AU [28.9-57.4], P = 0.005 for MGO-p5). MGO-apoB100 IgM and MGO-p5 IgM were associated with less severe coronary stenosis after adjusting for confounders (odds ratio 0.2 [95% CI 0.05-0.6], P = 0.01; and 0.22 [0.06-0.75], P = 0.02). The inverse association of MGO-p5 IgM and coronary stenosis was confirmed in the replication cohort. Subjects with proliferative retinopathy had significantly lower MGO-apoB100 IgM and MGO-p5 IgM than those with background retinopathy. CONCLUSIONS Autoantibodies against AGE-modified apoB100 are inversely associated with coronary atherosclerosis and proliferative retinopathy, suggesting vascular protective effects of these autoantibodies in type 1 diabetes.
Collapse
Affiliation(s)
- Kari Anne Sveen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristine Bech Holte
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Mona Svanteson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristian F Hanssen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan Nilsson
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmø, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmø, Sweden
| | - Tore Julsrud Berg
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Perkins BA, Lovblom LE, Lanctôt SO, Lamb K, Cherney DZI. Discoveries from the study of longstanding type 1 diabetes. Diabetologia 2021; 64:1189-1200. [PMID: 33661335 DOI: 10.1007/s00125-021-05403-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
Award programmes that acknowledge the remarkable accomplishments of long-term survivors with type 1 diabetes have naturally evolved into research programmes to determine the factors associated with survivorship and resistance to chronic complications. In this review, we present an overview of the methodological sources of selection bias inherent in survivorship research (selection of those with early-onset diabetes, incidence-prevalence bias and bias from losses to follow-up in cohort studies) and the breadth and depth of literature focusing on this special study population. We focus on the learnings from the study of longstanding type 1 diabetes on discoveries about the natural history of insulin production loss and microvascular complications, and mechanisms associated with them that may in future offer therapeutic targets. We detail descriptive findings about the prevalence of preserved insulin production and resistance to complications, and the putative mechanisms associated with such resistance. To date, findings imply that the following mechanisms exist: strategies to maintain or recover beta cells and their function; activation of specific glycolytic enzymes such as pyruvate kinase M2; modification of AGE production and processing; novel mechanisms for modification of renin-angiotensin-aldosterone system activation, in particular those that may normalise afferent rather than efferent renal arteriolar resistance; and activation and modification of processes such as retinol binding and DNA damage checkpoint proteins. Among the many clinical and public health insights, research into this special study population has identified putative mechanisms that may in future serve as therapeutic targets, knowledge that likely could not have been gained without studying long-term survivors.
Collapse
Affiliation(s)
- Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sebastien O Lanctôt
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Krista Lamb
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Ambinathan JPN, Sridhar VS, Lytvyn Y, Lovblom LE, Liu H, Bjornstad P, Perkins BA, Lovshin JA, Cherney DZI. Relationships between inflammation, hemodynamic function and RAAS in longstanding type 1 diabetes and diabetic kidney disease. J Diabetes Complications 2021; 35:107880. [PMID: 33678512 DOI: 10.1016/j.jdiacomp.2021.107880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/24/2022]
Abstract
The renin angiotensin aldosterone system (RAAS) is associated with renal disease and inflammation in a diabetes setting, however, little is known about the implicated mechanisms in individuals with long standing diabetes. Accordingly, our aim was to perform an observational study to quantify urinary excretion of inflammatory biomarkers in participants with long standing type 1 diabetes (T1D) (with and without diabetic kidney disease [DKD]) and controls, at baseline and in response to RAAS activation. GFRINULIN, ERPFPAH, and 42 urine inflammatory biomarkers were measured in 74 participants with T1D for ≥50 years (21 with DKD and 44 without DKD [DKD resistors]) and 73 healthy controls. Additionally, inflammatory biomarkers were measured before and after an angiotensin II infusion (ANGII, 1 ng∙kg-1∙min-1). Significantly lower urinary excretion of cytokines (IL-18, IL-1RA, IL-8), chemokines (MCP1, RANTES) and growth factors (TGF-α, PDGFAA, PDGFBB, VEGF-A) was observed in participants with T1D at baseline compared to controls. Urinary IL-6 was higher in DKD than in DKD resistors in an exploratory analysis unadjusted for multiple comparisons. In T1D only, lower GFRINULIN correlated with greater excretion of proinflammatory biomarkers (IL-18, IP-10, & RANTES), growth factors (PDGF-AA & VEGFAA), and chemokines (eotaxin & MCP-1). ANGII increased 31 of 42 inflammatory biomarkers in T1D vs controls (p < 0.05), regardless of DKD resistor status. In conclusion, lower GFR and intra-renal RAAS activation were associated with increased inflammation even after longstanding T1D. The increased urinary IL-6 in patients with DKD requires further investigation to determine whether IL-6 is a candidate protective biomarker for prognostication or targeted therapy in DKD.
Collapse
Affiliation(s)
| | - Vikas S Sridhar
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yuliya Lytvyn
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Hongyan Liu
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bruce A Perkins
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, Toronto, Canada
| | - Julie A Lovshin
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, Toronto, Canada
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, Toronto, Canada.
| |
Collapse
|
23
|
Dyusupova A, Faizova R, Yurkovskaya O, Belyaeva T, Terekhova T, Khismetova A, Sarria-Santamera A, Bokov D, Ivankov A, Glushkova N. Clinical characteristics and risk factors for disease severity and mortality of COVID-19 patients with diabetes mellitus in Kazakhstan: A nationwide study. Heliyon 2021; 7:e06561. [PMID: 33763618 PMCID: PMC7972671 DOI: 10.1016/j.heliyon.2021.e06561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with higher risk of developing infectious disease and COVID-19 is not the exception. There is a need to generate more data on clinical characteristics and risks of COVID19 patients presenting with DM. In this retrospective study we aimed to report on demographic features, clinical data, and outcomes of COVID-19 patients with DM in comparison with age- and sex-matched patients without DM. METHODS This was a retrospective study that relied on the nationwide data on all COVID-19 patients who were diagnosed from 14 March to 18 April, 2020. Overall, there were 31 cases with DM for which we randomly matched 4 patients without DM by age and sex. RESULTS COVID-19 patients with associated DM had less beneficial outcomes and more severe disease course both at hospital admission and final diagnosis, as compared with the age and sex-matched non-DM patients. Diabetics were more predisposed to impaired breathing (29.0 % versus 4.9 % in controls), nausea/vomiting (6.5 % versus 0 % in controls) and weakness/lethargy (45.2 % versus 26.0 % in controls). Finally, 48.4 % of diabetics showed the signs of pneumonia on CT scans versus 20.3 % of non-diabetics (p = 0.001), and 32.3 % of DM patients were admitted to intensive care units as compared with just 5.7 % of non-DM patients (p<0.001). CONCLUSION There is a need to envisage early status monitoring and supportive care in this vulnerable category of patients to enable better prognosis.
Collapse
Affiliation(s)
- Azhar Dyusupova
- Department of Personalized Medicine, Semey Medical University, Semey, Kazakhstan
| | - Raida Faizova
- Department of Personalized Medicine, Semey Medical University, Semey, Kazakhstan
| | - Oksana Yurkovskaya
- Department of Personalized Medicine, Semey Medical University, Semey, Kazakhstan
| | - Tatiana Belyaeva
- Department of Personalized Medicine, Semey Medical University, Semey, Kazakhstan
| | - Tatiana Terekhova
- Department of Personalized Medicine, Semey Medical University, Semey, Kazakhstan
| | - Amina Khismetova
- Department of Personalized Medicine, Semey Medical University, Semey, Kazakhstan
| | | | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Alexandr Ivankov
- Department of Postgraduate Education, Kazakh Medical University of Continuing Education, Almaty, Kazakhstan
| | - Natalya Glushkova
- Department of Epidemiology, Evidence-Based Medicine and Biostatistics, Kazakhstan Medical University Higher School of Public Health, Almaty, Kazakhstan
| |
Collapse
|
24
|
Volsky SK, Shalitin S, Fridman E, Yackobovitch-Gavan M, Lazar L, Bello R, Oron T, Tenenbaum A, Vries LD, Lebenthal Y. Dyslipidemia and cardiovascular disease risk factors in patients with type 1 diabetes: A single-center experience. World J Diabetes 2021; 12:56-68. [PMID: 33520108 PMCID: PMC7807252 DOI: 10.4239/wjd.v12.i1.56] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) contributes to altered lipid profiles and increases the risk of cardiovascular disease (CVD). Youth with T1D may have additional CVD risk factors within the first decade of diagnosis.
AIM To examine risk factors for dyslipidemia in young subjects with T1D.
METHODS Longitudinal and cross-sectional retrospective study of 170 young subjects with T1D (86 males; baseline mean age 12.2 ± 5.6 years and hemoglobin A1c 8.4% ± 1.4%) were followed in a single tertiary diabetes center for a median duration of 15 years. Predictors for outcomes of lipid profiles at last visit (total cholesterol [TC], triglycerides [TGs], low-density lipoprotein-cholesterol [LDL-c], and high-density lipoprotein-cholesterol [HDL-c]) were analyzed by stepwise linear regression models.
RESULTS At baseline, 79.5% of the patients had at least one additional CVD risk factor (borderline dyslipidemia/dyslipidemia [37.5%], pre-hypertension/hypertension [27.6%], and overweight/obesity [16.5%]) and 41.6% had multiple (≥ 2) CVD risk factors. A positive family history of at least one CVD risk factor in a first-degree relative was reported in 54.1% of the cohort. Predictors of elevated TC: family history of CVD (β[SE] = 23.1[8.3], P = 0.006); of elevated LDL-c: baseline diastolic blood pressure (DBP) (β[SE] = 11.4[4.7], P = 0.003) and family history of CVD (β[SE] = 20.7[6.8], P = 0.017); of elevated TGs: baseline DBP (β[SE] = 23.8[9.1], P = 0.010) and family history of CVD (β[SE] = 31.0[13.1], P = 0.020); and of low HDL-c levels: baseline DBP (β[SE] = 4.8[2.1], P = 0.022]).
CONCLUSION Our findings suggest that elevated lipid profiles are associated with DBP and a positive family history of CVD. It is of utmost importance to prevent and control modifiable risk factors such as these, as early as childhood, given that inadequate glycemic control and elevation in blood pressure intensify the risk of dyslipidemia.
Collapse
Affiliation(s)
- Sari Krepel Volsky
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach-Tikva 4920235, Israel
| | - Shlomit Shalitin
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach-Tikva 4920235, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Elena Fridman
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach-Tikva 4920235, Israel
| | - Michal Yackobovitch-Gavan
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach-Tikva 4920235, Israel
| | - Liora Lazar
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach-Tikva 4920235, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rachel Bello
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach-Tikva 4920235, Israel
| | - Tal Oron
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach-Tikva 4920235, Israel
| | - Ariel Tenenbaum
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach-Tikva 4920235, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Liat de Vries
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach-Tikva 4920235, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Lebenthal
- National Center for Childhood Diabetes, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach-Tikva 4920235, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
25
|
Dovc K, Battelino T. Time in range centered diabetes care. Clin Pediatr Endocrinol 2021; 30:1-10. [PMID: 33446946 PMCID: PMC7783127 DOI: 10.1297/cpe.30.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Optimal glycemic control remains challenging and elusive for many people with diabetes. With the comprehensive clinical evidence on safety and efficiency in large populations, and with broader reimbursement, the adoption of continuous glucose monitoring (CGM) is rapidly increasing. Standardized visual reporting and interpretation of CGM data and clear and understandable clinical targets will help professionals and individuals with diabetes use diabetes technology more efficiently, and finally improve long-term outcomes with less everyday disease burden. For the majority of people with type 1 or type 2 diabetes, time in range (between 70 and 180 mg/dL, or 3.9 and 10 mmol/L) target of more than 70% is recommended, with each incremental increase of 5% towards this target being clinically meaningful. At the same time, the goal is to minimize glycemic excursions: a recommended target for a time below range (< 70 mg/dL or < 3.9 mmol/L) is less than 4%, and time above range (> 180 mg/dL or 10 mmol/L) less than 25%, with less stringent goals for older individuals or those at increased risk. These targets should be individualized: the personal use of CGM with the standardized data presentation provides all necessary means to accurately tailor diabetes management to the needs of each individual with diabetes.
Collapse
Affiliation(s)
- Klemen Dovc
- University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Marstrand SD, Buch-Larsen K, Andersson M, Jensen LT, Schwarz P. Heart rate variability and vibration perception threshold to assess chemotherapy-induced neuropathy in women with breast cancer - a systematic review. Cancer Treat Res Commun 2020; 26:100295. [PMID: 33387870 DOI: 10.1016/j.ctarc.2020.100295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND It is well known that breast cancer (BC) patients often suffer from chemotherapy-induced peripheral neuropathy (CIPN). However, it is not always recognized that they have higher risk of falling, dizziness and other signs of dysfunctional autonomous nervous system. We performed a systematic review of the literature on vibration perception threshold (VPT) and heart rate variability (HRV) as methods to objectively assess (CIPN) in BC-patients. Could VPT and HRV describe coexisting sensory and autonomic nerve damage? MATERIALS AND METHODS PubMed was searched in September 2019. The included studies had to address HRV and/or VPT in BC-patients who received chemotherapy. RESULTS Seven studies assessed VPT and six studies assessed HRV in BC-patients. Studies showed lowered perception of vibrations after chemotherapy reflected in higher VPT and no changes in HRV after taxane-based chemotherapy. No studies evaluated VPT and HRV at the same time. CONCLUSION The results were limited by short follow-up, small sample sizes, and different chemotherapy regimens which makes generalizability problematic. A standard assessment method of CIPN is still missing and further research is needed to evaluate if VPT and HRV could contribute to an objective assessment of CIPN. With higher survival rates for BC-patients autonomous and sensory nerve damage will be an increasing task. However, our literature review showed that no one have focused on the combination of autonomous and sensory affection measured by the simple methods VPT and HRV. Therefore, we encourage the development of international guidelines for the objective measure of nerve damage in BC-patients.
Collapse
Affiliation(s)
- Simone Diedrichsen Marstrand
- Diabetes and bone-metabolic research unit, Department of Endocrinology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Kristian Buch-Larsen
- Diabetes and bone-metabolic research unit, Department of Endocrinology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Michael Andersson
- Department of Oncology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Lars Thorbjørn Jensen
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, Borgmester Ib Juuls Vej 71, 2730 Herlev, Denmark; Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Peter Schwarz
- Diabetes and bone-metabolic research unit, Department of Endocrinology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
27
|
Dovc K, Battelino T. Closed-loop insulin delivery systems in children and adolescents with type 1 diabetes. Expert Opin Drug Deliv 2020; 17:157-166. [PMID: 32077342 DOI: 10.1080/17425247.2020.1713747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Optimal glycemic control remains challenging in children and adolescents with type 1 diabetes due to highly variable day-to-day and night-to-night insulin requirements. This hurdle could be addressed by glucose-responsive insulin delivery based on real-time continuous glucose measurements.Areas covered: This review summaries recent advances of closed-loop systems in children and adolescents with type 1 diabetes, using both single- and dual-hormone closed-loop systems. The main outcomes, proportions of time spent in target range 70-180 mg/dl, and time spent in hypoglycemia below 70 mg/dl, are assessed particularly during unsupervised free-living randomized controlled trials.Expert opinion: Noteworthy and clinically meaningful translation of experimental investigations from controlled in-hospital settings to unrestricted home studies have been achieved over the past years, resulting in the regulatory approval of the first hybrid closed-loop system also in the pediatric population and with several other advanced devices in the pipeline. Large multinational and pivotal clinical trials including broad age populations are underway to facilitate the use of closed-loop systems in routine clinical practice.
Collapse
Affiliation(s)
- Klemen Dovc
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Paediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Luo Y, Li J, Liu Z, Yu H, Peng X, Cao C. Characteristics and outcomes of hemodialysis patients with COVID-19: a retrospective single center study. PeerJ 2020; 8:e10459. [PMID: 33304660 PMCID: PMC7700734 DOI: 10.7717/peerj.10459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023] Open
Abstract
Background The coronavirus 19 (COVID-19) pandemic has heightened the threat to the health and lives of patients with comorbid diseases. Infection by COVID-19 is especially detrimental to patients on hemodialysis. In this study, we evaluated the clinical characteristics, laboratory findings, treatments and prognoses of hemodialysis patients with COVID-19. Methods A total of 16 hemodialysis patients with COVID-19 were recruited from Wuhan Fourth Hospital from 5 February to 20 March 2020 for a retrospective, single-center study. A total of 62 non-dialysis patients with COVID-19 were the control group. We collected data on the clinical characteristics, laboratory findings, treatments, and clinical outcomes of patients affected by the virus. Results Hemodialysis patients with COVID-19 had a lower incidence of fever (P = 0.001) and relatively higher incidence of pre-admission comorbidities and shortness of breath than non-dialysis patients with COVID-19 (75% vs. 61%, P = 0.467 50% vs. 33.87%, P = 0.248 ). Hemodialysis patients had lower levels of hemoglobin (P < 0.001), white blood cell counts (P = 0.015), neutrophils (P = 0.016), AST (P = 0.037), ALT (P < 0.001) and procalcitonin (P < 0.001), and higher levels of D-dimer (P < 0.001) and thrombin time (P < 0.001). Hemodialysis patients had a higher incidence of pulmonary effusion, cord-like high-density shadows, pleural thickening, and atelectasis (P < 0.05). Hemodialysis patients also had relatively higher rates of mortality and prolonged hospital stays compared with the control group. Conclusions Hemodialysis patients typically present with multiple comorbidities and are considered to be a high-risk group for COVID-19 infections. Hemodialysis patients with COVID-19 may have prolonged hospital stays and unfavorable prognoses and should be closely monitored.
Collapse
Affiliation(s)
- Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junli Li
- Institute of Laboratory Animal Sciences, Peking Union Medical College, Beijing, China
| | - Zhifen Liu
- Department of Nephrology, Wuhan Fourth Hospital, Wuhan, China
| | - Heping Yu
- Department of Thyroid and Breast Surgery, Wuhan Fourth Hospital, Wuhan, China
| | - Xiang Peng
- Department of Neurology, Wuhan Fourth Hospital, Wuhan, China
| | - Cheng'an Cao
- Department of Neurology, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
29
|
Azmi S, Ferdousi M, Kalteniece A, Petropoulos IN, Ponirakis G, Alam U, Asghar O, Marshall A, Sankar A, Boulton AJM, Soran H, Efron N, Malik RA. Protection from neuropathy in extreme duration type 1 diabetes. J Peripher Nerv Syst 2020; 26:49-54. [PMID: 33236478 PMCID: PMC7983958 DOI: 10.1111/jns.12423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
A proportion of individuals with type 1 diabetes mellitus for more than 50 years (medallists) may be protected from developing nephropathy, retinopathy and neuropathy. Detailed neuropathy phenotyping was undertaken in a cohort of 33 medallists aged 63.7 ± 1.4 years with diabetes for 58.5 ± 0.8 years and HbA1c of 65.9 ± 2.1 mmol/mmol. Medallists had a significantly higher HbA1c (P < .001), lower estimated glomerular filtration rate (eGFR) (P = .005) and higher albumin creatinine excretion ratio (ACR) (P = .01), but a lower total cholesterol (P < .001), triacylglycerols (P = .001), low density lipoprotein‐cholesterol (P < .001) and higher high density lipoprotein‐cholesterol (P = .03), compared to controls. Twenty‐four percent of participants were identified as “escapers” without confirmed diabetic neuropathy. They had a lower neuropathy symptom profile (P = .002), vibration perception threshold (P = .02), warm threshold (P = .05), higher peroneal amplitude (P = .005), nerve conduction velocity (P = .03), heart rate variability (P = .001), corneal nerve fibre density (P = 0.001), branch density (P < .001) and length (P = .001), compared to medallists with diabetic neuropathy. Escapers had a shorter duration of diabetes (P = .006), lower alcohol consumption (P = .04), lower total cholesterol (P = .04) and LDL (P = .02), higher eGFR (P = .001) and lower ACR (P < .001). Patients with extreme duration diabetes without diabetic neuropathy have a comparable HbA1c, blood pressure and body mass index, but a more favourable lipid profile and consume less alcohol compared to those with diabetic neuropathy.
Collapse
Affiliation(s)
- Shazli Azmi
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Alise Kalteniece
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | | | | | - Uazman Alam
- Diabetes & Endocrinology Research, Institute of Cardiovascular and Metabolic Medicine and The Pain Research Institute, University of Liverpool and Liverpool University NHS Hospital Trust, Liverpool, UK
| | - Omar Asghar
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Andrew Marshall
- Institute of Life course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Adhithya Sankar
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Andrew J M Boulton
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Rayaz A Malik
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK.,Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
30
|
Shi Q, Zhang X, Jiang F, Zhang X, Hu N, Bimu C, Feng J, Yan S, Guan Y, Xu D, He G, Chen C, Xiong X, Liu L, Li H, Tao J, Peng Z, Wang W. Clinical Characteristics and Risk Factors for Mortality of COVID-19 Patients With Diabetes in Wuhan, China: A Two-Center, Retrospective Study. Diabetes Care 2020; 43:1382-1391. [PMID: 32409504 DOI: 10.2337/dc20-0598] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/28/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Diabetes is common in COVID-19 patients and associated with unfavorable outcomes. We aimed to describe the characteristics and outcomes and to analyze the risk factors for in-hospital mortality of COVID-19 patients with diabetes. RESEARCH DESIGN AND METHODS This two-center retrospective study was performed at two tertiary hospitals in Wuhan, China. Confirmed COVID-19 patients with diabetes (N = 153) who were discharged or died from 1 January 2020 to 8 March 2020 were identified. One sex- and age-matched COVID-19 patient without diabetes was randomly selected for each patient with diabetes. Demographic, clinical, and laboratory data were abstracted. Cox proportional hazards regression analyses were performed to identify the risk factors associated with the mortality in these patients. RESULTS Of 1,561 COVID-19 patients, 153 (9.8%) had diabetes, with a median age of 64.0 (interquartile range 56.0-72.0) years. A higher proportion of intensive care unit admission (17.6% vs. 7.8%, P = 0.01) and more fatal cases (20.3% vs. 10.5%, P = 0.017) were identified in COVID-19 patients with diabetes than in the matched patients. Multivariable Cox regression analyses of these 306 patients showed that hypertension (hazard ratio [HR] 2.50, 95% CI 1.30-4.78), cardiovascular disease (HR 2.24, 95% CI 1.19-4.23), and chronic pulmonary disease (HR 2.51, 95% CI 1.07-5.90) were independently associated with in-hospital death. Diabetes (HR 1.58, 95% CI 0.84-2.99) was not statistically significantly associated with in-hospital death after adjustment. Among patients with diabetes, nonsurvivors were older (76.0 vs. 63.0 years), most were male (71.0% vs. 29.0%), and they were more likely to have underlying hypertension (83.9% vs. 50.0%) and cardiovascular disease (45.2% vs. 14.8%) (all P values <0.05). Age ≥70 years (HR 2.39, 95% CI 1.03-5.56) and hypertension (HR 3.10, 95% CI 1.14-8.44) were independent risk factors for in-hospital death of patients with diabetes. CONCLUSIONS COVID-19 patients with diabetes had worse outcomes compared with the sex- and age-matched patients without diabetes. Older age and comorbid hypertension independently contributed to in-hospital death of patients with diabetes.
Collapse
Affiliation(s)
- Qiao Shi
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyi Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Jiang
- Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xuanzhe Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Hu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chibu Bimu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiarui Feng
- Deparment of Medical Management, Renmin Hospital of Wuhan University, Wuhan, China
| | - Su Yan
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongjun Guan
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongxue Xu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guangzhen He
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Liu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanjun Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Pitocco D, Tartaglione L, Pontecorvi A. Comment on risk factors differ by first manifestation of cardiovascular disease in type 1 diabetes: The impact of microvascular complications. Diabetes Res Clin Pract 2020; 164:108182. [PMID: 32360696 DOI: 10.1016/j.diabres.2020.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Dario Pitocco
- Diabetes Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy.
| | - Linda Tartaglione
- Diabetes Care Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Department of Endocrinology, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
32
|
Abstract
Optimal glycemic control remains challenging in individuals with type 1 diabetes. With the comprehensive clinical evidence on safety and efficiency, the adoption of continuous glucose monitoring (CGM), insulin pumps, and control algorithms merging the two into closed-loop systems is rapidly increasing. Particularly the CGM and intermittently scanned CGM improved diabetes management outcomes in large populations. A meaningful translation from clinical trials in highly controlled settings to numerous evaluations of closed-loop technology in the unrestricted home environment ended with its commercialization and use in routine clinical practice. Although it is still not a cure, the closed-loop currently seems to be the most promising advancement in the treatment of diabetes, with promising results also reported from routine clinical practice in children and adults with type 1 diabetes. We summarize different aspects of a technological approach to diabetes care, list currently available devices and systems in the pipeline, and the key supporting clinical evidence for their use. We consider human factors associated with technology use and the importance of health economics to support implementation and reimbursement.
Collapse
Affiliation(s)
- Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, Ljubljana, Slovenia - .,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
33
|
Abstract
Diabetes mellitus (DM) is the most common endocrine and metabolic disease caused by absolute or insufficient insulin secretion. Under the context of an aging population worldwide, the number of diabetic patients is increasing year by year. Most patients with diabetes have multiple complications that severely threaten their survival and living quality. DM is mainly divided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). T1DM is caused by absolute lack of insulin secretion, so the current treatment for T1DM patients is exogenous insulin replacement therapy. At present, exercise therapy has been widely recognized in the prevention and treatment of diabetes, and regular aerobic exercise has become an important part of T1DM treatment. At the same time, exercise therapy is also used in conjunction with other treatments in the prevention and treatment of diabetic complications. However, for patients with T1DM, exercise still has the risk of hypoglycemia or hyperglycemia. T1DM Patients and specialist physician need to fully understand the effects of exercise on metabolism and implement individualized exercise programs. This chapter reviews the related content of exercise and T1DM.
Collapse
Affiliation(s)
- Xiya Lu
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cuimei Zhao
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Keshawarz A, Pyle L, Alman A, Sassano C, Westfeldt E, Sippl R, Snell-Bergeon J. Type 1 Diabetes Accelerates Progression of Coronary Artery Calcium Over the Menopausal Transition: The CACTI Study. Diabetes Care 2019; 42:2315-2321. [PMID: 31558547 PMCID: PMC6868458 DOI: 10.2337/dc19-1126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/07/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 1 diabetes is associated with a higher risk of cardiovascular disease (CVD) in women. Although menopause increases risk of CVD, it is uncertain how menopause affects risk of CVD in women with type 1 diabetes. We examined whether risk of CVD changes differentially in women with and those without type 1 diabetes over the transition through menopause. RESEARCH DESIGN AND METHODS Premenopausal women with type 1 diabetes (n = 311) and premenopausal women without diabetes (n = 325) enrolled in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study and attended up to four study visits over 18 years. Coronary artery calcium (CAC) volume was measured from computed tomography scans obtained at each visit. Longitudinal repeated-measures modeling estimated the effect of diabetes on CAC volume over time and the effect of menopause on the diabetes-CAC relationship. RESULTS CAC volume was higher at baseline and increased more over time in women with type 1 diabetes than in women without diabetes. A significant diabetes-by-menopause interaction was found (P < 0.0001): postmenopausal women with type 1 diabetes had significantly higher CAC volumes than premenopausal women (5.14 ± 0.30 vs. 2.91 ± 0.18 mm3), while there was no difference in women without diabetes (1.78 ± 0.26 vs. 1.78 ± 0.17 mm3). This interaction remained significant after adjusting for CVD risk factors. CONCLUSIONS Type 1 diabetes was associated with higher CAC volume and accelerated progression of CAC over time. Menopause increased CAC progression more in women with diabetes than in women without diabetes independent of age and other CVD risk factors known to worsen with menopause.
Collapse
Affiliation(s)
- Amena Keshawarz
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO .,Barbara Davis Center for Diabetes, Aurora, CO
| | - Laura Pyle
- Barbara Davis Center for Diabetes, Aurora, CO.,Department of Biostatistics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Amy Alman
- Department of Epidemiology & Biostatistics, University of South Florida, Tampa, FL
| | | | | | | | - Janet Snell-Bergeon
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO.,Barbara Davis Center for Diabetes, Aurora, CO
| |
Collapse
|
35
|
Garofolo M, Gualdani E, Giannarelli R, Aragona M, Campi F, Lucchesi D, Daniele G, Miccoli R, Francesconi P, Del Prato S, Penno G. Microvascular complications burden (nephropathy, retinopathy and peripheral polyneuropathy) affects risk of major vascular events and all-cause mortality in type 1 diabetes: a 10-year follow-up study. Cardiovasc Diabetol 2019; 18:159. [PMID: 31733651 PMCID: PMC6858978 DOI: 10.1186/s12933-019-0961-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Microvascular complications (MC) have been claimed to increase the risk for cardiovascular disease in diabetic subjects. However, the effect of MC burden on the risk of major vascular outcomes and all-cause mortality in type 1 diabetes is still poorly explored. We evaluated the relationship between microvascular complications burden and incidence of major cardiovascular events and all-cause mortality in subjects with type 1 diabetes. METHODS We recruited 774 participants with type 1 diabetes in a single-center observational study over a follow-up of 10.8 ± 2.5 years. Hazard ratios (HR) for cardiovascular outcomes and all-cause death associated with microvascular complications were determined by unadjusted and adjusted Cox regression analysis. RESULTS Out of 774 individuals, 54.9% had no-MC, 32.3% 1 MC, 9.7% 2 MC and 3.1% 3 MC. A total of 54 deaths (7.0%) occurred. Death rate increased from no-MC 2.1% (Ref) to 1 MC 7.2% (HR 3.54 [95% CI 1.59-7.87]), 2 MC 14.7% (HR 6.41 [95% CI 2.65-15.49]) and 3 MC 66.7% (HR 41.73 [95% CI 18.42-94.57], p < 0.0001). After adjustments, HRs were: 1 MC 2.05 (95% CI 0.88-4.76), 2 MC 1.98 (95% CI 0.75-5.21), 3 MC 7.02 (95% CI 2.44-20.20, p = 0.002). Forty-nine subjects (6.7%) had at least one cardiovascular event, and cumulative incidence went from no-MC 2.2% (Ref) to 1 MC 5.0%; (HR 2.27 [95% CI 0.96-5.38]), 2 MC 26.8% (HR 12.88 [95% CI 5.82-28.50]) and 3 MC 40.9% (HR 29.34 [95% CI 11.59-74.25], p < 0.0001). Upon adjustments, HRs were: 1 MC 1.59 (95% CI 0.65-3.88), 2 MC 4.33 (95% CI 1.75-10.74), 3 MC 9.31 (95% CI 3.18-27.25, p < 0.0001). Thirty-five individuals (4.8%) had at least one coronary event, which cumulative incidence increased with MC burden (p < 0.0001). CONCLUSIONS In type 1 diabetes, microvascular complications burden increases in an independent dose-dependent manner the risk of major cardiovascular outcomes and all-cause mortality. The presence and number of microvascular complications should be considered in stratifying overall cardiovascular risk in type 1 diabetes.
Collapse
Affiliation(s)
- Monia Garofolo
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Elisa Gualdani
- Epidemiology Unit, Regional Health Agency (ARS) of Tuscany, Florence, Italy
| | - Rosa Giannarelli
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Michele Aragona
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Fabrizio Campi
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Daniela Lucchesi
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Giuseppe Daniele
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Roberto Miccoli
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| | - Paolo Francesconi
- Epidemiology Unit, Regional Health Agency (ARS) of Tuscany, Florence, Italy
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy.
| | - Giuseppe Penno
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero-Universitaria Pisana, Via Paradisa, 2, 56124, Pisa, Italy
| |
Collapse
|
36
|
Association between Beta2-Adrenergic Receptor Agonists and the Risk of Vascular Complications in Diabetic Patients: A Population-Based Cohort Study. J Clin Med 2019; 8:jcm8081145. [PMID: 31370361 PMCID: PMC6722988 DOI: 10.3390/jcm8081145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Beta2-adrenergic receptor (β2AR) agonists can have protective effects targeting macrophage activation, but research on human subjects has not been done. This study was designed to assess the relationship between the use of β2AR agonists and diabetic vascular complications. Using data from the Korean National Health Insurance Service, adults first diagnosed with diabetes in 2004 (n = 249,222) were followed up until 31 December 2015. Propensity score matching was performed between case and control groups (n = 5179 in each), and multivariate analysis was conducted. The β2AR agonist group was divided into quartiles according to the duration of β2AR agonist use. During the follow-up, the incidence of vascular complications gradually decreased as the duration of β2AR agonist administration increased. Multivariate analysis revealed that the hazard ratio for all composite vascular complications was 0.80 (95% CI, 0.75–0.86, p < 0.001) in the longest quartile of β2AR agonist use as compared with the control group after adjusting for confounding variables. The association between the duration of β2AR agonist use and the risk of each vascular complication including cerebrovascular, peripheral vascular, peripheral neural, renal, and ophthalmic complications was consistent, and the risks were significantly lower in the longest users than the control group. Long-term use of β2AR agonists may exert a protective effect against diabetic vascular complications.
Collapse
|
37
|
Adeva-Andany MM, Funcasta-Calderón R, Fernández-Fernández C, Ameneiros-Rodríguez E, Domínguez-Montero A. Subclinical vascular disease in patients with diabetes is associated with insulin resistance. Diabetes Metab Syndr 2019; 13:2198-2206. [PMID: 31235157 DOI: 10.1016/j.dsx.2019.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
Patients with diabetes experience increased cardiovascular risk that is not fully explained by deficient glycemic control or traditional cardiovascular risk factors such as smoking and hypercholesterolemia. Asymptomatic patients with diabetes show structural and functional vascular damage that includes impaired vasodilation, arterial stiffness, increased intima-media thickness and calcification of the arterial wall. Subclinical vascular injury associated with diabetes predicts subsequent manifestations of cardiovascular disease, such as ischemic heart disease, peripheral artery disease and stroke. Noninvasive detection of subclinical vascular disease is commonly used to estimate cardiovascular risk associated to diabetes. Longitudinal studies in normotensive subjects show that arterial stiffness at baseline is associated with a greater risk for future hypertension independently of established risk factors. In patients with type 2 diabetes, vascular disease begins to develop during the latent phase of insulin resistance, long before the clinical diagnosis of diabetes. In contrast, patients with type 1 diabetes do not manifest vascular injury when they are first diagnosed due to insulin deficiency, as they lack the preceding period of insulin resistance. These findings suggest that insulin resistance plays an important role in the development of early vascular disease associated with diabetes. Cross-sectional and prospective studies confirm that insulin resistance is associated with subclinical vascular injury in patients with diabetes, independently of standard cardiovascular risk factors. Asymptomatic vascular disease associated with diabetes begins to occur early in life having been documented in children and adolescents. Insulin resistance should be considered a therapeutic target in order to prevent the vascular complications associated with diabetes.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, C/ Pardo Bazán S/n, 15406, Ferrol, Spain.
| | - Raquel Funcasta-Calderón
- Internal Medicine Department, Hospital General Juan Cardona, C/ Pardo Bazán S/n, 15406, Ferrol, Spain
| | | | - Eva Ameneiros-Rodríguez
- Internal Medicine Department, Hospital General Juan Cardona, C/ Pardo Bazán S/n, 15406, Ferrol, Spain
| | - Alberto Domínguez-Montero
- Internal Medicine Department, Hospital General Juan Cardona, C/ Pardo Bazán S/n, 15406, Ferrol, Spain
| |
Collapse
|
38
|
Pongrac Barlovic D, Harjutsalo V, Groop PH. Response to Comment on Pongrac Barlovic et al. The Association of Severe Diabetic Retinopathy With Cardiovascular Outcomes in Long-standing Type 1 Diabetes: A Longitudinal Follow-up. Diabetes Care 2018;41:2487-2494. Diabetes Care 2019; 42:e49-e50. [PMID: 30787064 DOI: 10.2337/dci18-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Drazenka Pongrac Barlovic
- University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,Diabetes and Obesity, Research Programs Unit, University of Helsinki, Helsinki, Finland.,The Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland .,Abdominal Center Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,Diabetes and Obesity, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Jenkins A, Januszewski A, O’Neal D. The early detection of atherosclerosis in type 1 diabetes: why, how and what to do about it. Cardiovasc Endocrinol Metab 2019; 8:14-27. [PMID: 31646294 PMCID: PMC6739889 DOI: 10.1097/xce.0000000000000169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
The major cause of morbidity and often premature mortality in people with type I diabetes (T1D) is cardiovascular disease owing to accelerated atherosclerosis. We review publications relating to the rationale behind, and clinical tests for, detecting and treating early atherosclerosis in people with T1D. Currently available tools for atherosclerosis assessment include risk equations using vascular risk factors, arterial intima-media thickness, the ankle-brachial index, coronary artery calcification and angiography, and for more advanced lesions, intravascular ultrasound and optical coherence tomography. Evolving research tools include risk equations incorporating novel clinical, biochemical and molecular tests; vascular MRI and molecular imaging. As yet there is little information available to quantify early atherosclerosis. With better means to control the vascular risk factors, such as hypertension, dyslipidaemia and glycaemic control, and emerging therapies to control novel risk factors, further epidemiologic and clinical trials are merited to facilitate the translation into clinical practice of robust means to detect, monitor and treat early atherosclerosis in those with T1D.
Collapse
Affiliation(s)
- Alicia Jenkins
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales
- Department of Endocrinology, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - Andrzej Januszewski
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales
- Department of Endocrinology, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - David O’Neal
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales
- Department of Endocrinology, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
40
|
Cardiovascular disease in type 1 diabetes. Cardiovasc Endocrinol Metab 2019; 8:28-34. [PMID: 31646295 DOI: 10.1097/xce.0000000000000167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is a well-recognized complication of diabetes. Although the association of type 2 diabetes with CVD has been well described, the mechanisms, risk stratification and screening strategies of CVD in type 1 diabetes (T1D) are less understood. This review aims to evaluate recent literature and guidelines regarding CVD in T1D. At the cellular level, the early stage of CVD is characterized by endothelial dysfunction. Recent studies have shown that endothelial function is unaffected in younger T1D patients but there is a significant degree of endothelial dysfunction in the older T1D population compared with healthy age-matched controls, highlighting the importance of the endothelial dysfunction in T1D as a major age-dependent cardiovascular risk factor. T1D risk assessment tools have been developed similar to those seen in type 2 diabetes. Foremost among these are the Danish Steno Type 1 risk engine, the Swedish T1D risk score, the Scottish T1D risk score and the QRISK risk calculator. The latter risk prediction tool is used for all patients but contains T1D as an independent risk variable and has the advantage of being derived from, and validated in, a large and diverse population. The latest version (QRISK3) is likely to be recommended for routine use in T1D patients in upcoming guidelines by the National Institute of Clinical Excellence. Mortality in adults with T1D is increasingly due to CVD. This is driven by hyperglycaemia-mediated oxidative stress and vascular inflammation, resulting in atherosclerosis and cardiac autonomic neuropathy. Coronary artery disease is the most significant contributor to CVD and in T1D, has a propensity towards a more silent and severe form. Routine screening of coronary artery disease does not alter outcomes and is therefore not recommended; however, risk prediction tools are being developed to aid identification of high-risk individuals for aggressive risk factor modification strategies.
Collapse
|