1
|
Rao H, Weiss MC, Moon JY, Perreira KM, Daviglus ML, Kaplan R, North KE, Argos M, Fernández-Rhodes L, Sofer T. Advancements in genetic research by the Hispanic Community Health Study/Study of Latinos: A 10-year retrospective review. HGG ADVANCES 2025; 6:100376. [PMID: 39473183 PMCID: PMC11754138 DOI: 10.1016/j.xhgg.2024.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/14/2024] Open
Abstract
The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is a multicenter, longitudinal cohort study designed to evaluate environmental, lifestyle, and genetic risk factors as they relate to cardiometabolic and other chronic diseases among Hispanic/Latino populations in the United States. Since the study's inception in 2008, as a result of the study's robust genetic measures, HCHS/SOL has facilitated major contributions to the field of genetic research. This 10-year retrospective review highlights the major findings for genotype-phenotype relationships and advancements in statistical methods owing to the HCHS/SOL. Furthermore, we discuss the ethical and societal challenges of genetic research, especially among Hispanic/Latino adults in the United States. Continued genetic research, ancillary study expansion, and consortia collaboration through HCHS/SOL will further drive knowledge and advancements in human genetics research.
Collapse
Affiliation(s)
- Hridya Rao
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Margaret C Weiss
- Department of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Jee Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Krista M Perreira
- Department of Social Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Maria Argos
- Department of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA; Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | | | - Tamar Sofer
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Ding P, Gao Z, Gorenflo MP, Xu R. GLP-1 Receptor Agonists and Risk of Paralytic Ileus: A drug-target Mendelian Randomization Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.17.24315627. [PMID: 39484277 PMCID: PMC11527067 DOI: 10.1101/2024.10.17.24315627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Paralytic ileus (PI), a condition characterized by reduced bowel motor activity without physical obstruction, can be affected by complications from type 2 diabetes (T2D) and anti-diabetic medications. It is unclear of the causal associations of glucagon-like peptide-1 receptor agonists (GLP-1RAs) with the risk of PI in the context of T2D management. Methods To investigate the causal relationship of GLP-1RAs with PI, we conducted a 2-sample mendelian randomization (MR) study based on summary statistics from genome-wide association studies (GWAS). Genetic variants in the GLP1R were identified as genetical proxies of GLP-1RAs by the glycemic control therapy, based on genetic associations with glycated hemoglobin (GWAS n=344,182) and T2D (ncases/controls=228,499/1,178,783). The effects of GLP-1RAs were estimated for PI risk (ncases/controls=517/182,423) using GWAS data from the FinnGen project. Results Based on MR analysis, GLP-1RAs are causally associated with a decreased risk of PI (OR per 1 mmol/mol decrease in glycated hemoglobin: 0.21; 95% confidence interval [CI]=0.06-0.69). The magnitude of these benefit exceeded those expected from improved glycemic control more generally. Conclusions Our study's findings show that GLP-1RAs are causally associated with a lower risk for PI, which provides information to guide clinicians in the selection of appropriate therapies for individuals with T2D while mitigating the risk of developing PI. Investigating the underlying mechanisms that contribute to the lower PI risk associated with GLP-1RAs is essential for a deeper understanding of these associations.
Collapse
Affiliation(s)
- Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Maria P. Gorenflo
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Bhasin S, Lincoff AM, Nissen SE, Wannemuehler K, McDonnell ME, Peters AL, Khan N, Snabes MC, Li X, Li G, Buhr K, Pencina KM, Travison TG. Effect of Testosterone on Progression From Prediabetes to Diabetes in Men With Hypogonadism: A Substudy of the TRAVERSE Randomized Clinical Trial. JAMA Intern Med 2024; 184:353-362. [PMID: 38315466 PMCID: PMC10845044 DOI: 10.1001/jamainternmed.2023.7862] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024]
Abstract
Importance The effect of testosterone replacement therapy (TRT) in men with hypogonadism on the risk of progression from prediabetes to diabetes or of inducing glycemic remission in those with diabetes is unknown. Objective To evaluate the efficacy of TRT in preventing progression from prediabetes to diabetes in men with hypogonadism who had prediabetes and in inducing glycemic remission in those with diabetes. Design, Setting, and Participants This nested substudy, an intention-to-treat analysis, within a placebo-controlled randomized clinical trial (Testosterone Replacement Therapy for Assessment of Long-Term Vascular Events and Efficacy Response in Hypogonadal Men [TRAVERSE]) was conducted at 316 trial sites in the US. Participants included men aged 45 to 80 years with hypogonadism and prediabetes or diabetes who were enrolled in TRAVERSE between May 23, 2018, and February 1, 2022. Intervention Participants were randomized 1:1 to receive 1.62% testosterone gel or placebo gel until study completion. Main Outcomes and Measures The primary end point was the risk of progression from prediabetes to diabetes, analyzed using repeated-measures log-binomial regression. The secondary end point was the risk of glycemic remission (hemoglobin A1c level <6.5% [to convert to proportion of total hemoglobin, multiply by 0.01] or 2 fasting glucose measurements <126 mg/dL [to convert to mmol/L, multiply by 0.0555] without diabetes medication) in men who had diabetes. Results Of 5204 randomized participants, 1175 with prediabetes (mean [SD] age, 63.8 [8.1] years) and 3880 with diabetes (mean [SD] age, 63.2 [7.8] years) were included in this study. Mean (SD) hemoglobin A1c level in men with prediabetes was 5.8% (0.4%). Risk of progression to diabetes did not differ significantly between testosterone and placebo groups: 4 of 598 (0.7%) vs 8 of 562 (1.4%) at 6 months, 45 of 575 (7.8%) vs 57 of 533 (10.7%) at 12 months, 50 of 494 (10.1%) vs 67 of 460 (14.6%) at 24 months, 46 of 359 (12.8%) vs 52 of 330 (15.8%) at 36 months, and 22 of 164 (13.4%) vs 19 of 121 (15.7%) at 48 months (omnibus test P = .49). The proportions of participants with diabetes who experienced glycemic remission and the changes in glucose and hemoglobin A1c levels were similar in testosterone- and placebo-treated men with prediabetes or diabetes. Conclusions and Relevance In men with hypogonadism and prediabetes, the incidence of progression from prediabetes to diabetes did not differ significantly between testosterone- and placebo-treated men. Testosterone replacement therapy did not improve glycemic control in men with hypogonadism and prediabetes or diabetes. These findings suggest that TRT alone should not be used as a therapeutic intervention to prevent or treat diabetes in men with hypogonadism. Trial Registration ClinicalTrials.gov Identifier: NCT03518034.
Collapse
Affiliation(s)
- Shalender Bhasin
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - A. Michael Lincoff
- Cleveland Clinic Coordinating Center for Clinical Research, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Steven E. Nissen
- Cleveland Clinic Coordinating Center for Clinical Research, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Kathleen Wannemuehler
- Department of Biostatistics and Medical Informatics, Statistical Data Analysis Center, University of Wisconsin−Madison
| | - Marie E. McDonnell
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne L. Peters
- University of Southern California Clinical Diabetes Program, The Keck School of Medicine of the University of Southern California, Los Angeles
| | | | | | - Xue Li
- AbbVie Inc, North Chicago, Illinois
| | - Geng Li
- Department of Biostatistics and Medical Informatics, Statistical Data Analysis Center, University of Wisconsin−Madison
| | - Kevin Buhr
- Department of Biostatistics and Medical Informatics, Statistical Data Analysis Center, University of Wisconsin−Madison
| | - Karol M. Pencina
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas G. Travison
- Marcus Institute for Aging Research, Hebrew Senior Life, Boston, Massachusetts
- Division of Gerontology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Swislocki AL. Glucose Trajectory: More than Changing Glucose Tolerance with Age? Metab Syndr Relat Disord 2022; 20:313-320. [DOI: 10.1089/met.2021.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Arthur L.M. Swislocki
- Medical Service, VA Northern California Health Care System (612/111), Martinez, California, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, UC Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
5
|
Barroso I. The importance of increasing population diversity in genetic studies of type 2 diabetes and related glycaemic traits. Diabetologia 2021; 64:2653-2664. [PMID: 34595549 PMCID: PMC8563561 DOI: 10.1007/s00125-021-05575-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes has a global prevalence, with epidemiological data suggesting that some populations have a higher risk of developing this disease. However, to date, most genetic studies of type 2 diabetes and related glycaemic traits have been performed in individuals of European ancestry. The same is true for most other complex diseases, largely due to use of 'convenience samples'. Rapid genotyping of large population cohorts and case-control studies from existing collections was performed when the genome-wide association study (GWAS) 'revolution' began, back in 2005. Although global representation has increased in the intervening 15 years, further expansion and inclusion of diverse populations in genetic and genomic studies is still needed. In this review, I discuss the progress made in incorporating multi-ancestry participants in genetic analyses of type 2 diabetes and related glycaemic traits, and associated opportunities and challenges. I also discuss how increased representation of global diversity in genetic and genomic studies is required to fulfil the promise of precision medicine for all.
Collapse
Affiliation(s)
- Inês Barroso
- Exeter Centre of Excellence for Diabetes research (EXCEED), University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
6
|
Chai JF, Kao SL, Wang C, Lim VJY, Khor IW, Dou J, Podgornaia AI, Chothani S, Cheng CY, Sabanayagam C, Wong TY, van Dam RM, Liu J, Reilly DF, Paterson AD, Sim X. Genome-Wide Association for HbA1c in Malay Identified Deletion on SLC4A1 that Influences HbA1c Independent of Glycemia. J Clin Endocrinol Metab 2020; 105:5906591. [PMID: 32936915 DOI: 10.1210/clinem/dgaa658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
CONTEXT Glycated hemoglobin A1c (HbA1c) level is used to screen and diagnose diabetes. Genetic determinants of HbA1c can vary across populations and many of the genetic variants influencing HbA1c level were specific to populations. OBJECTIVE To discover genetic variants associated with HbA1c level in nondiabetic Malay individuals. DESIGN AND PARTICIPANTS We conducted a genome-wide association study (GWAS) analysis for HbA1c using 2 Malay studies, the Singapore Malay Eye Study (SiMES, N = 1721 on GWAS array) and the Living Biobank study (N = 983 on GWAS array and whole-exome sequenced). We built a Malay-specific reference panel to impute ethnic-specific variants and validate the associations with HbA1c at ethnic-specific variants. RESULTS Meta-analysis of the 1000 Genomes imputed array data identified 4 loci at genome-wide significance (P < 5 × 10-8). Of the 4 loci, 3 (ADAM15, LINC02226, JUP) were novel for HbA1c associations. At the previously reported HbA1c locus ATXN7L3-G6PC3, association analysis using the exome data fine-mapped the HbA1c associations to a 27-bp deletion (rs769664228) at SLC4A1 that reduced HbA1c by 0.38 ± 0.06% (P = 3.5 × 10-10). Further imputation of this variant in SiMES confirmed the association with HbA1c at SLC4A1. We also showed that these genetic variants influence HbA1c level independent of glucose level. CONCLUSION We identified a deletion at SLC4A1 associated with HbA1c in Malay. The nonglycemic lowering of HbA1c at rs769664228 might cause individuals carrying this variant to be underdiagnosed for diabetes or prediabetes when HbA1c is used as the only diagnostic test for diabetes.
Collapse
Affiliation(s)
- Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Shih-Ling Kao
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Victor Jun-Yu Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Ing Wei Khor
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Jinzhuang Dou
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | | | - Sonia Chothani
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Nutrition, Harvard T.H Chan School of Public Health, Boston, Massachusetts
| | - Jianjun Liu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Dermot F Reilly
- Merck Research Laboratories, Kenilworth, New Jersey
- Janssen Pharmaceuticals Inc, Titusville, New Jersey
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Canada
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| |
Collapse
|
7
|
Bergman M, Abdul-Ghani M, DeFronzo RA, Manco M, Sesti G, Fiorentino TV, Ceriello A, Rhee M, Phillips LS, Chung S, Cravalho C, Jagannathan R, Monnier L, Colette C, Owens D, Bianchi C, Del Prato S, Monteiro MP, Neves JS, Medina JL, Macedo MP, Ribeiro RT, Filipe Raposo J, Dorcely B, Ibrahim N, Buysschaert M. Review of methods for detecting glycemic disorders. Diabetes Res Clin Pract 2020; 165:108233. [PMID: 32497744 PMCID: PMC7977482 DOI: 10.1016/j.diabres.2020.108233] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Prediabetes (intermediate hyperglycemia) consists of two abnormalities, impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) detected by a standardized 75-gram oral glucose tolerance test (OGTT). Individuals with isolated IGT or combined IFG and IGT have increased risk for developing type 2 diabetes (T2D) and cardiovascular disease (CVD). Diagnosing prediabetes early and accurately is critical in order to refer high-risk individuals for intensive lifestyle modification. However, there is currently no international consensus for diagnosing prediabetes with HbA1c or glucose measurements based upon American Diabetes Association (ADA) and the World Health Organization (WHO) criteria that identify different populations at risk for progressing to diabetes. Various caveats affecting the accuracy of interpreting the HbA1c including genetics complicate this further. This review describes established methods for detecting glucose disorders based upon glucose and HbA1c parameters as well as novel approaches including the 1-hour plasma glucose (1-h PG), glucose challenge test (GCT), shape of the glucose curve, genetics, continuous glucose monitoring (CGM), measures of insulin secretion and sensitivity, metabolomics, and ancillary tools such as fructosamine, glycated albumin (GA), 1,5- anhydroglucitol (1,5-AG). Of the approaches considered, the 1-h PG has considerable potential as a biomarker for detecting glucose disorders if confirmed by additional data including health economic analysis. Whether the 1-h OGTT is superior to genetics and omics in providing greater precision for individualized treatment requires further investigation. These methods will need to demonstrate substantially superiority to simpler tools for detecting glucose disorders to justify their cost and complexity.
Collapse
Affiliation(s)
- Michael Bergman
- NYU School of Medicine, NYU Diabetes Prevention Program, Endocrinology, Diabetes, Metabolism, VA New York Harbor Healthcare System, Manhattan Campus, 423 East 23rd Street, Room 16049C, NY, NY 10010, USA.
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Ralph A DeFronzo
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Melania Manco
- Research Area for Multifactorial Diseases, Bambino Gesù Children Hospital, Rome, Italy.
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome Sapienza, Rome 00161, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Antonio Ceriello
- Department of Cardiovascular and Metabolic Diseases, Istituto Ricerca Cura Carattere Scientifico Multimedica, Sesto, San Giovanni (MI), Italy.
| | - Mary Rhee
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Lawrence S Phillips
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Stephanie Chung
- Diabetes Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Celeste Cravalho
- Diabetes Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ram Jagannathan
- Emory University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta VA Health Care System, Atlanta, GA 30322, USA.
| | - Louis Monnier
- Institute of Clinical Research, University of Montpellier, Montpellier, France.
| | - Claude Colette
- Institute of Clinical Research, University of Montpellier, Montpellier, France.
| | - David Owens
- Diabetes Research Group, Institute of Life Science, Swansea University, Wales, UK.
| | - Cristina Bianchi
- University Hospital of Pisa, Section of Metabolic Diseases and Diabetes, University Hospital, University of Pisa, Pisa, Italy.
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - João Sérgio Neves
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Endocrinology, Diabetes and Metabolism, São João University Hospital Center, Porto, Portugal.
| | | | - Maria Paula Macedo
- CEDOC-Centro de Estudos de Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Diabetes Portugal, Education and Research Center (APDP-ERC), Lisboa, Portugal.
| | - Rogério Tavares Ribeiro
- Institute for Biomedicine, Department of Medical Sciences, University of Aveiro, APDP Diabetes Portugal, Education and Research Center (APDP-ERC), Aveiro, Portugal.
| | - João Filipe Raposo
- CEDOC-Centro de Estudos de Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; APDP-Diabetes Portugal, Education and Research Center (APDP-ERC), Lisboa, Portugal.
| | - Brenda Dorcely
- NYU School of Medicine, Division of Endocrinology, Diabetes, Metabolism, NY, NY 10016, USA.
| | - Nouran Ibrahim
- NYU School of Medicine, Division of Endocrinology, Diabetes, Metabolism, NY, NY 10016, USA.
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University Clinic Saint-Luc, Brussels, Belgium.
| |
Collapse
|
8
|
Leong A, Lim VJY, Wang C, Chai JF, Dorajoo R, Heng CK, van Dam RM, Koh WP, Yuan JM, Jonas JB, Wang YX, Wei WB, Liu J, Reilly DF, Wong TY, Cheng CY, Sim X. Association of G6PD variants with hemoglobin A1c and impact on diabetes diagnosis in East Asian individuals. BMJ Open Diabetes Res Care 2020; 8:8/1/e001091. [PMID: 32209585 PMCID: PMC7103857 DOI: 10.1136/bmjdrc-2019-001091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Hemoglobin A1c (HbA1c) accuracy is important for diabetes diagnosis and estimation of overall glycemia. The G6PD-Asahi variant which causes glucose-6-phosphate dehydrogenase (G6PD) deficiency has been shown to lower HbA1c independently of glycemia in African ancestry populations. As different G6PD variants occur in Asian ancestry, we sought to identify Asian-specific G6PD variants associated with HbA1c. RESEARCH DESIGN AND METHODS In eight Asian population-based cohorts, we performed imputation on the X chromosome using the 1000 Genomes reference panel and tested for association with HbA1c (10 005 East Asians and 2051 South Asians). Results were meta-analyzed across studies. We compared the proportion of individuals classified as having diabetes/pre-diabetes by fasting glucose ≥100 mg/dL or HbA1c ≥5.7% units among carriers and non-carriers of HbA1c-associated variants. RESULTS The strongest association was a missense variant (G6PD-Canton, rs72554665, minor allele frequency=2.2%, effect in men=-0.76% unit, 95% CI -0.88 to -0.64, p=1.25×10-27, n=2844). Conditional analyses identified a secondary distinct signal, missense variant (G6PD-Kaiping, rs72554664, minor allele frequency=1.6%, effect in men=-1.12 % unit, 95% CI -1.32 to -0.92, p=3.12×10-15, pconditional_Canton=7.57×10-11). Adjusting for glucose did not attenuate their effects. The proportion of individuals with fasting glucose ≥100 mg/dL did not differ by carrier status of G6PD-Canton (p=0.21). Whereas the proportion of individuals with HbA1c ≥5.7% units was lower in carriers (5%) compared with non-carriers of G6PD-Canton (30%, p=0.03). CONCLUSIONS We identified two G6PD variants in East Asian men associated with non-glycemic lowering of HbA1c. Carriers of these variants are more likely to be underdiagnosed for diabetes or pre-diabetes than non-carriers if screened by HbA1c without confirmation by direct glucose measurements.
Collapse
Affiliation(s)
- Aaron Leong
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Victor Jun Yu Lim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Woon-Puay Koh
- Health Services and Systems Research, Duke NUS Medical School, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
- Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ya Xing Wang
- Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen-Bin Wei
- Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dermot F Reilly
- Genetics, Merck Sharp and Dohme IA, Kenilworth, New Jersey, USA
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|