1
|
Dovč K, Spanbauer C, Chiarle E, Bratina N, Fröhlich‐Reiterer E, Potočnik N, Zaharieva DP, Hropot T, Fritsch M, Calhoun P, Battelino T. Postprandial time in tight range with faster insulin aspart compared with standard insulin aspart in youth with type 1 diabetes using automated insulin delivery. Diabetes Obes Metab 2025; 27:2147-2153. [PMID: 39868600 PMCID: PMC11885092 DOI: 10.1111/dom.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/28/2025]
Abstract
AIMS The aim of this study was to assess postprandial glycaemic outcomes using automated insulin delivery with faster acting insulin aspart (FIA) or standard insulin aspart (SIA) over 4 weeks in youth (aged 10-18 years) with type 1 diabetes. MATERIALS AND METHODS We undertook a secondary analysis of postprandial glycaemic outcomes from a double-blind, randomised, crossover study comparing FIA to SIA using an investigational version of MiniMed™ 780G. Endpoints included postprandial time in tight range (70-140 mg/dL; TITR), postprandial glucose excursions and peak glucose, and incremental area under curve (iAUC). RESULTS The mean ± SD age of 30 included participants was 15.0 ± 1.7 years, 47% were male, mean HbA1c was 7.5% ± 0.9% (58 ± 9.8 mmol/mol) and the number of meals per day per participant was 3.2 ± 1.2 meals. Overall, the postprandial outcomes were improved with FIA compared with SIA. Mean glucose at the start of the meal was 151 mg/dL in the FIA group and reached a peak glucose of 194 mg/dL, compared with starting level of 151 mg/dL in the SIA group and a peak of 198 mg/dL (difference in excursion: -3.8 mg/dL; 95% confidence interval -5.8 to -1.7; p <0.001). FIA group also had a 1.9% increase in mean TITR (p = 0.02) and a 2.0-mg/dL decrease in mean iAUC (p = 0.003). Differences in outcomes were the most noticeable for breakfast, meals with a larger amount of carbohydrates (>45 g) and participants with lower insulin-to-carbohydrate ratios. CONCLUSIONS Faster insulin formulation with AID improved postprandial glycaemic outcomes and could be a useful therapeutical option in youth with type 1 diabetes that have challenges achieving glycaemic targets.
Collapse
Affiliation(s)
- Klemen Dovč
- Department of Endocrinology, Diabetes and MetabolismUniversity Children's HospitalLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | | | - Eleonora Chiarle
- Division of Pediatrics, Department of Health SciencesUniversity of Piemonte OrientaleNovaraItaly
| | - Natasa Bratina
- Department of Endocrinology, Diabetes and MetabolismUniversity Children's HospitalLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | | | - Nejka Potočnik
- Faculty of Medicine, Institute of PhysiologyUniversity of LjubljanaLjubljanaSlovenia
| | - Dessi P. Zaharieva
- Division of Endocrinology, Department of PediatricsStanford UniversityStanfordCaliforniaUSA
| | - Tim Hropot
- Department of Endocrinology, Diabetes and MetabolismUniversity Children's HospitalLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Maria Fritsch
- Department of Paediatrics and Adolescent MedicineMedical University GrazGrazAustria
| | | | - Tadej Battelino
- Department of Endocrinology, Diabetes and MetabolismUniversity Children's HospitalLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
2
|
Saboo B, Garg S, Bergenstal RM, Battelino T, Ceriello A, Choudhary P, De Bock M, Elbarbary N, Forlenza G, Gomez AM, Corrales BG, Mader J, O'Neal D, Schwarz P. A Call-to-Action to Eliminate Barriers to Accessing Automated Insulin Delivery Systems for People with Type 1 Diabetes. Diabetes Technol Ther 2025; 27:147-151. [PMID: 39981664 DOI: 10.1089/dia.2025.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Affiliation(s)
| | - Satish Garg
- Adult Clinic, University of Colorado Denver Barbara Davis Center for Childhood Diabetes, Aurora, Colorado, USA
| | | | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Children's Hospital, Ljubljana, Slovenia
| | | | | | - Martin De Bock
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Nancy Elbarbary
- Pediatric Diabetes and Endocrinology Unit, Faculty of Medicine, Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Gregory Forlenza
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Denver, Colorado, USA
| | - Ana Maria Gomez
- Endocrinology, San Ignacio Hospital, Javeriana University, Bogota, Colombia
| | - Bruno Grassi Corrales
- Nutrition, Diabetes and Metabolism, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Julia Mader
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - David O'Neal
- Department of Melbourne (St Vincent's Hospital), University of Melbourne, Fitzroy, Australia
| | - Peter Schwarz
- Prevention and Care of Diabetes, Universitätsklinikum Carl Gustav Carus Medizinische Klinik und Poliklinik III, Dresden, Germany
| |
Collapse
|
3
|
Simunovic M, Kumric M, Rusic D, Paradzik Simunovic M, Bozic J. Continuous Glucose Monitoring-New Diagnostic Tool in Complex Pathophysiological Disorder of Glucose Metabolism in Children and Adolescents with Obesity. Diagnostics (Basel) 2024; 14:2801. [PMID: 39767162 PMCID: PMC11674695 DOI: 10.3390/diagnostics14242801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity is one of the leading causes of chronic diseases, and its prevalence is still rising in children and adolescent populations. Chronic cardiovascular complications result in metabolic syndrome (MS) and type 2 diabetes mellitus. Key factors in the development of MS are insulin resistance and low-grade inflammation. The disorder of glucose and insulin metabolism has not been fully elucidated so far, and an oral glucose tolerance test (OGTT) has been the only tool used to look into the complex metabolism disorder in children and adolescents with obesity. Continuous glucose monitoring (CGM) has become commercially available for over two decades and is primarily used to manage type 1 diabetes mellitus in pediatric populations. This review aims to present the current knowledge about the use of CGM in children and adolescent populations with obesity. CGM systems have the potential to serve as valuable tools in everyday clinical practices, not only in the better diagnosis of chronic complications associated with obesity, but CGM can also assist in interventions to make better adjustments to nutritional and therapeutic approaches based on real-time glucose monitoring data. Despite these promising benefits, further research is needed to fully understand the role of CGM in metabolic disorders in pediatric populations with obesity, which will additionally strengthen the importance of CGM systems in everyday clinical practices.
Collapse
Affiliation(s)
- Marko Simunovic
- Department of Pediatrics, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia
- Department of Pediatrics, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | - Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | | | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| |
Collapse
|
4
|
Haridevamuthu B, Ranjan Nayak SPR, Murugan R, Pachaiappan R, Ayub R, Aljawdah HM, Arokiyaraj S, Guru A, Arockiaraj J. Prophylactic effects of apigenin against hyperglycemia-associated amnesia via activation of the Nrf2/ARE pathway in zebrafish. Eur J Pharmacol 2024; 976:176680. [PMID: 38810716 DOI: 10.1016/j.ejphar.2024.176680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
The escalating focus on ageing-associated disease has generated substantial interest in the phenomenon of cognitive impairment linked to diabetes. Hyperglycemia exacerbates oxidative stress, contributes to β-amyloid accumulation, disrupts mitochondrial function, and impairs cognitive function. Existing therapies have certain limitations, and apigenin (AG), a natural plant flavonoid, has piqued interest due to its antioxidant, anti-inflammatory, and anti-hyperglycemic properties. So, we anticipate that AG might be a preventive medicine for hyperglycemia-associated amnesia. To test our hypothesis, naïve zebrafish were trained to acquire memory and pretreated with AG. Streptozotocin (STZ) was administered to mimic hyperglycemia-induced memory dysfunction. Spatial memory was assessed by T-maze and object recognition through visual stimuli. Acetylcholinesterase (AChE) activity, antioxidant enzyme status, and neuroinflammatory genes were measured, and histopathology was performed in the brain to elucidate the neuroprotective mechanism. AG exhibits a prophylactic effect and improves spatial learning and discriminative memory of STZ-induced amnesia in zebrafish under hyperglycemic conditions. AG also reduces blood glucose levels, brain oxidative stress, and AChE activity, enhancing cholinergic neurotransmission. AG prevented neuronal damage by regulating brain antioxidant response elements (ARE), collectively contributing to neuroprotective properties. AG demonstrates a promising effect in alleviating memory dysfunction and mitigating pathological changes via activation of the Nrf2/ARE mechanism. These findings underscore the therapeutic potential of AG in addressing memory dysfunction and neurodegenerative changes associated with hyperglycemia.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rashid Ayub
- College of Science, King Saud University, P.O. Box 2454, Riyadh, 11451, Saudi Arabia
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Jia Y, Long D, Yang Y, Wang Q, Wu Q, Zhang Q. Diabetic peripheral neuropathy and glycemic variability assessed by continuous glucose monitoring: A systematic review and meta-analysis. Diabetes Res Clin Pract 2024; 213:111757. [PMID: 38944250 DOI: 10.1016/j.diabres.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Continuous glucose monitoring (CGM)-derived metrics have been used to accurately assess glycemic variability (GV) to facilitate management of diabetes mellitus, yet their relationship with diabetic peripheral neuropathy (DPN) is not fully understood. We performed a systematic review and meta-analysis to evaluate the association between GV metrics and the risk of developing DPN. Nine studies totaling 3,649 patients with type 1 and type 2 diabetes mellitus were included. A significant association was found between increased GV, as indicated by metrics including standard deviation (SD) with OR and 95% CI of 2.58 (1.45-4.57), mean amplitude of glycemic excursions (MAGE) with OR and 95% CI of 1.90 (1.01-3.58), mean of daily difference (MODD) with OR and 95% CI of 2.88 (2.17-3.81) and the incidence of DPN. Our findings support a link between higher GV and an increased risk of DPN in patients with diabetes. These findings highlight the potential of GV metrics as indicators for the development of DPN, advocating for their inclusion in diabetes management strategies to potentially mitigate neuropathy risk. Longitudinal studies with longer observation periods and larger sample sizes are necessary to validate these associations across diverse populations.
Collapse
Affiliation(s)
- Yifan Jia
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Long
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunshuang Yang
- Department of Preventive Medicine, Beijing Longfu Hospital, Beijing 100010, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
6
|
Stanisławska-Kubiak M, Majewska KA, Krasińska A, Wais P, Majewski D, Mojs E, Kȩdzia A. Brain functional and structural changes in diabetic children. How can intellectual development be optimized in type 1 diabetes? Ther Adv Chronic Dis 2024; 15:20406223241229855. [PMID: 38560719 PMCID: PMC10981223 DOI: 10.1177/20406223241229855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/11/2024] [Indexed: 04/04/2024] Open
Abstract
The neuropsychological functioning of people with type 1 diabetes (T1D) is of key importance to the effectiveness of the therapy, which, in its complexity, requires a great deal of knowledge, attention, and commitment. Intellectual limitations make it difficult to achieve the optimal metabolic balance, and a lack of this alignment can contribute to the further deterioration of cognitive functions. The aim of this study was to provide a narrative review of the current state of knowledge regarding the influence of diabetes on brain structure and functions during childhood and also to present possible actions to optimize intellectual development in children with T1D. Scopus, PubMed, and Web of Science databases were searched for relevant literature using selected keywords. The results were summarized using a narrative synthesis. Disturbances in glucose metabolism during childhood may have a lasting negative effect on the development of the brain and related cognitive functions. To optimize intellectual development in children with diabetes, it is essential to prevent disorders of the central nervous system by maintaining peri-normal glycemic levels. Based on the performed literature review, it seems necessary to take additional actions, including repeated neuropsychological evaluation with early detection of any cognitive dysfunctions, followed by the development of individual management strategies and the training of appropriate skills, together with complex, multidirectional environmental support.
Collapse
Affiliation(s)
- Maia Stanisławska-Kubiak
- Department of Clinical Psychology, Poznan University of Medical Sciences, ul. Bukowska 70, Poznan 60-812, Poland
| | - Katarzyna Anna Majewska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Agata Krasińska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Wais
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Majewski
- Department of Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Kȩdzia
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Seaquist E, Giménez M, Yan Y, Matsuhisa M, Kao CY, Wadwa RP, Nagai Y, Khunti K. Nasal Glucagon Reverses Insulin-induced Hypoglycemia With Less Rebound Hyperglycemia: Pooled Analysis of Clinical Trials. J Endocr Soc 2024; 8:bvae034. [PMID: 38444629 PMCID: PMC10913376 DOI: 10.1210/jendso/bvae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 03/07/2024] Open
Abstract
Background Rebound hyperglycemia may occur following glucagon treatment for severe hypoglycemia. We assessed rebound hyperglycemia occurrence after nasal glucagon (NG) or injectable glucagon (IG) administration in patients with type 1 diabetes (T1D) and type 2 diabetes (T2D). Methods This was a pooled analysis of 3 multicenter, randomized, open-label studies (NCT03339453, NCT03421379, NCT01994746) in patients ≥18 years with T1D or T2D with induced hypoglycemia. Proportions of patients achieving treatment success [blood glucose (BG) increase to ≥70 mg/dL or increase of ≥20 mg/dL from nadir within 15 and 30 minutes]; BG ≥70 mg/dL within 15 minutes; in-range BG (70-180 mg/dL) 1 to 2 and 1 to 4 hours postdose; and BG >180 mg/dL 1 to 2 and 1 to 4 hours postdose were compared. Incremental area under curve (iAUC) of BG >180 mg/dL and area under curve (AUC) of observed BG values postdose were analyzed. Safety was assessed in all studies. Results Higher proportions of patients had in-range BG with NG vs IG (1-2 hours: P = .0047; 1-4 hours: P = .0034). Lower proportions of patients had at least 1 BG value >180 mg/dL with NG vs IG (1-2 hours: P = .0034; 1-4 hours: P = .0068). iAUC and AUC were lower with NG vs IG (P = .025 and P < .0001). As expected, similar proportions of patients receiving NG or IG achieved treatment success at 15 and 30 minutes (97-100%). Most patients had BG ≥70 mg/dL within 15 minutes (93-96%). The safety profile was consistent with previous studies. Conclusion This study demonstrated lower rebound hyperglycemia risk after NG treatment compared with IG. Clinical Trial Registration NCT03421379, NCT03339453, NCT01994746.
Collapse
Affiliation(s)
- Elizabeth Seaquist
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marga Giménez
- Diabetes Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Yu Yan
- Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | | | - R Paul Wadwa
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yukiko Nagai
- Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
8
|
Nouira S, Ach T, Ammar A, Ach M, Sabbagh G, Ezzi O, Benabdelkrim A. Prevalence and factors associated with school failure in children with type 1 diabetes. Pediatr Endocrinol Diabetes Metab 2024; 30:3-7. [PMID: 39026473 PMCID: PMC11037087 DOI: 10.5114/pedm.2023.133124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/22/2023] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) is a health problem that can be difficult for young people to accept. The aim of this study is to determine the prevalence and characteristics of school failure in children with T1DM and to identify the associated factors. MATERIAL AND METHODS This is a retrospective study conducted in the endocrinology department of the Farhat Hached Hospital in Sousse, regarding T1DM patients, by analysing their school and career paths according to their clinicobiological and social data. School failure was defined in our study by the presence of at least one year's repetition and/or exclusion from school. RESULTS Our study included 70 patients. School failure was recorded in 71.4% of cases. School drop-out was observed in 47.1% of patients. The reasons for school drop-out were iterative hospitalizations in 31.4% of cases and glycaemic instability with hyper/hypoglycaemic fluctuations in 17.1%. Multivariate analysis showed that the risk factors significantly associated with school failure were, respectively, number of hospitalizations for ketosis ≥ 5 (p = 0.037) and higher mean HbA1c at the last consultations (p = 0.001). Use of functional insulin therapy (p = 0.031) and use of insulin analogue (p = 0.004) were significantly protective factors. CONCLUSIONS The risk of school failure in T1DM is real and should not be underestimated. Socioeconomic factors such as lack of financial resources, limited family support, and an unfavourable social environment can contribute to school avoidance.
Collapse
Affiliation(s)
- Sawsen Nouira
- Department of Endocrinology, University Hospital of Farhat Hached Sousse, Tunisia
| | - Taieb Ach
- Department of Endocrinology, University Hospital of Farhat Hached Sousse, Tunisia
- Laboratory of Exercise Physiology and Pathophysiology, University of Sousse, Faculty of Medicine of Sousse, Tunisia
| | - Asma Ammar
- Department of Hospital Hygiene, University of Sousse, Faculty of Medicine of Sousse, Tunisia
| | - Meriem Ach
- Family Medicine, University of Sousse, Faculty of Medicine of Sousse, Tunisia
| | - Ghada Sabbagh
- Department of Endocrinology, University Hospital of Farhat Hached Sousse, Tunisia
| | - Olfa Ezzi
- Department of Hospital Hygiene, University of Sousse, Faculty of Medicine of Sousse, Tunisia
| | - Asma Benabdelkrim
- Department of Endocrinology, University Hospital of Farhat Hached Sousse, Tunisia
| |
Collapse
|
9
|
Ottomana AM, Presta M, O'Leary A, Sullivan M, Pisa E, Laviola G, Glennon JC, Zoratto F, Slattery DA, Macrì S. A systematic review of preclinical studies exploring the role of insulin signalling in executive function and memory. Neurosci Biobehav Rev 2023; 155:105435. [PMID: 37913873 DOI: 10.1016/j.neubiorev.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Beside its involvement in somatic dysfunctions, altered insulin signalling constitutes a risk factor for the development of mental disorders like Alzheimer's disease and obsessive-compulsive disorder. While insulin-related somatic and mental disorders are often comorbid, the fundamental mechanisms underlying this association are still elusive. Studies conducted in rodent models appear well suited to help decipher these mechanisms. Specifically, these models are apt to prospective studies in which causative mechanisms can be manipulated via multiple tools (e.g., genetically engineered models and environmental interventions), and experimentally dissociated to control for potential confounding factors. Here, we provide a narrative synthesis of preclinical studies investigating the association between hyperglycaemia - as a proxy of insulin-related metabolic dysfunctions - and impairments in working and spatial memory, and attention. Ultimately, this review will advance our knowledge on the role of glucose metabolism in the comorbidity between somatic and mental illnesses.
Collapse
Affiliation(s)
- Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany; Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mairéad Sullivan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanni Laviola
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
10
|
Cai LY, Tanase C, Anderson AW, Patel NJ, Lee CA, Jones RS, LeStourgeon LM, Mahon A, Taki I, Juvera J, Pruthi S, Gwal K, Ozturk A, Kang H, Rewers A, Rewers MJ, Alonso GT, Glaser N, Ghetti S, Jaser SS, Landman BA, Jordan LC. Exploratory Multisite MR Spectroscopic Imaging Shows White Matter Neuroaxonal Loss Associated with Complications of Type 1 Diabetes in Children. AJNR Am J Neuroradiol 2023; 44:820-827. [PMID: 37263786 PMCID: PMC10337627 DOI: 10.3174/ajnr.a7895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND PURPOSE Type 1 diabetes affects over 200,000 children in the United States and is associated with an increased risk of cognitive dysfunction. Prior single-site, single-voxel MRS case reports and studies have identified associations between reduced NAA/Cr, a marker of neuroaxonal loss, and type 1 diabetes. However, NAA/Cr differences among children with various disease complications or across different brain tissues remain unclear. To better understand this phenomenon and the role of MRS in characterizing it, we conducted a multisite pilot study. MATERIALS AND METHODS In 25 children, 6-14 years of age, with type 1 diabetes across 3 sites, we acquired T1WI and axial 2D MRSI along with phantom studies to calibrate scanner effects. We quantified tissue-weighted NAA/Cr in WM and deep GM and modeled them against study covariates. RESULTS We found that MRSI differentiated WM and deep GM by NAA/Cr on the individual level. On the population level, we found significant negative associations of WM NAA/Cr with chronic hyperglycemia quantified by hemoglobin A1c (P < .005) and a history of diabetic ketoacidosis at disease onset (P < .05). We found a statistical interaction (P < .05) between A1c and ketoacidosis, suggesting that neuroaxonal loss from ketoacidosis may outweigh that from poor glucose control. These associations were not present in deep GM. CONCLUSIONS Our pilot study suggests that MRSI differentiates GM and WM by NAA/Cr in this population, disease complications may lead to neuroaxonal loss in WM in children, and deeper investigation is warranted to further untangle how diabetic ketoacidosis and chronic hyperglycemia affect brain health and cognition in type 1 diabetes.
Collapse
Affiliation(s)
- L Y Cai
- From the Department of Biomedical Engineering (L.Y.C., A.W.A., B.A.L.)
| | - C Tanase
- Departments of Psychiatry and Behavioral Sciences (C.T.)
| | - A W Anderson
- From the Department of Biomedical Engineering (L.Y.C., A.W.A., B.A.L.)
- Vanderbilt University Institute of Imaging Science (A.W.A., B.A.L.)
- Departments of Radiology and Radiological Sciences (A.W.A., S.P., B.A.L.)
| | - N J Patel
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
| | | | - R S Jones
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
| | | | - A Mahon
- Psychology (A.M., S.G.), University of California, Davis, Davis, California
| | - I Taki
- Department of Pediatrics (I.T., A.R., M.J.R.)
| | - J Juvera
- Department of Psychiatry (J.J.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - S Pruthi
- Departments of Radiology and Radiological Sciences (A.W.A., S.P., B.A.L.)
| | - K Gwal
- Departments of Radiology (K.G., A.O.)
| | - A Ozturk
- Departments of Radiology (K.G., A.O.)
| | - H Kang
- Biostatistics (H.K.), Vanderbilt University Medical Center, Nashville, Tennessee
| | - A Rewers
- Department of Pediatrics (I.T., A.R., M.J.R.)
| | - M J Rewers
- Department of Pediatrics (I.T., A.R., M.J.R.)
| | | | - N Glaser
- Pediatrics (N.G.), University of California Davis Health, University of California Davis School of Medicine, Sacramento, California
| | - S Ghetti
- Psychology (A.M., S.G.), University of California, Davis, Davis, California
| | - S S Jaser
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
| | - B A Landman
- From the Department of Biomedical Engineering (L.Y.C., A.W.A., B.A.L.)
- Vanderbilt University Institute of Imaging Science (A.W.A., B.A.L.)
- Department of Electrical and Computer Engineering (B.A.L.), Vanderbilt University, Nashville, Tennessee
- Departments of Radiology and Radiological Sciences (A.W.A., S.P., B.A.L.)
| | - L C Jordan
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
- Neurology (C.A.L., L.C.J.)
| |
Collapse
|
11
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
12
|
Dovc K, Lanzinger S, Cardona-Hernandez R, Tauschmann M, Marigliano M, Cherubini V, Preikša R, Schierloh U, Clapin H, AlJaser F, Pelicand J, Shukla R, Biester T. Association of Achieving Time in Range Clinical Targets With Treatment Modality Among Youths With Type 1 Diabetes. JAMA Netw Open 2023; 6:e230077. [PMID: 36808243 PMCID: PMC9941889 DOI: 10.1001/jamanetworkopen.2023.0077] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
IMPORTANCE Continuous glucose monitoring (CGM) devices have demonstrated efficacy in adults and more recently in youths and older adults with type 1 diabetes. In adults with type 1 diabetes, the use of real-time CGM compared with intermittently scanned CGM was associated with improved glycemic control, but there are limited data available for youths. OBJECTIVE To assess real-world data on achievement of time in range clinical targets associated with different treatment modalities in youths with type 1 diabetes. DESIGN, SETTING, AND PARTICIPANTS This multinational cohort study included children, adolescents, and young adults younger than 21 years (hereinafter referred to collectively as youths) with type 1 diabetes for a duration of at least 6 months who provided CGM data between January 1, 2016, and December 31, 2021. Participants were enrolled from the international Better Control in Pediatric and Adolescent Diabetes: Working to Create Centers of Reference (SWEET) registry. Data from 21 countries were included. Participants were divided into 4 treatment modalities: intermittently scanned CGM with or without insulin pump use and real-time CGM with or without insulin pump use. EXPOSURES Type 1 diabetes and the use of CGM with or without an insulin pump. MAIN OUTCOMES AND MEASURES Proportion of individuals in each treatment modality group achieving recommended CGM clinical targets. RESULTS Among the 5219 participants (2714 [52.0%] male; median age, 14.4 [IQR, 11.2-17.1] years), median duration of diabetes was 5.2 (IQR, 2.7-8.7) years and median hemoglobin A1c level was 7.4% (IQR, 6.8%-8.0%). Treatment modality was associated with the proportion of individuals achieving recommended clinical targets. Adjusted for sex, age, diabetes duration, and body mass index standard deviation score, the proportion achieving the recommended greater than 70% time in range target was highest with real-time CGM plus insulin pump use (36.2% [95% CI, 33.9%-38.4%]), followed by real-time CGM plus injection use (20.9% [95% CI, 18.0%-24.1%]), intermittently scanned CGM plus injection use (12.5% [95% CI, 10.7%-14.4%]), and intermittently scanned CGM plus insulin pump use (11.3% [95% CI, 9.2%-13.8%]) (P < .001). Similar trends were observed for less than 25% time above (real-time CGM plus insulin pump, 32.5% [95% CI, 30.4%-34.7%]; intermittently scanned CGM plus insulin pump, 12.8% [95% CI, 10.6%-15.4%]; P < .001) and less than 4% time below range target (real-time CGM plus insulin pump, 73.1% [95% CI, 71.1%-75.0%]; intermittently scanned CGM plus insulin pump, 47.6% [95% CI, 44.1%-51.1%]; P < .001). Adjusted time in range was highest among real-time CGM plus insulin pump users (64.7% [95% CI, 62.6%-66.7%]). Treatment modality was associated with the proportion of participants experiencing severe hypoglycemia and diabetic ketoacidosis events. CONCLUSIONS AND RELEVANCE In this multinational cohort study of youths with type 1 diabetes, concurrent use of real-time CGM and an insulin pump was associated with increased probability of achieving recommended clinical targets and time in range target as well as lower probability of severe adverse events compared with other treatment modalities.
Collapse
Affiliation(s)
- Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Stefanie Lanzinger
- Institute of Epidemiology and Medical Biometry, ZIBMT, Ulm University, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich–Neuherberg, Germany
| | | | - Martin Tauschmann
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Marco Marigliano
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, University City Hospital of Verona, Verona, Italy
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Valentino Cherubini
- Division of Pediatric Diabetology, Department of Women’s and Children’s Health, Salesi Hospital, Ancona, Italy
| | - Romualdas Preikša
- Institute and Clinic of Endocrinology, Lithuanian University of Health Sciences, Kaunas
| | - Ulrike Schierloh
- Department of Pediatric Diabetes and Endocrinology, Centre Hospitalier Luxembourg, Luxembourg, Luxembourg
| | - Helen Clapin
- Department of Diabetes and Endocrinology, Perth Children’s Hospital, Perth, Australia
| | - Fahed AlJaser
- Department of Pediatrics, Amiri Hospital, Ministry of Health, Dasman, Kuwait
| | - Julie Pelicand
- Pediatric and Adolescent Diabetes Program, Department of Pediatrics, San Camilo Hospital, San Felipe, Chile
- Medicine School, Universidad de Valparaiso, San Felipe, Chile
| | - Rishi Shukla
- Department of Diabetes and Endocrinology, Center for Diabetes & Endocrine Diseases, Kanpur, India
| | | |
Collapse
|
13
|
Marissal-Arvy N, Moisan MP. Diabetes and associated cognitive disorders: Role of the Hypothalamic-Pituitary Adrenal axis. Metabol Open 2022; 15:100202. [PMID: 35958117 PMCID: PMC9357829 DOI: 10.1016/j.metop.2022.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Both diabetes types, types 1 and 2, are associated with cognitive impairments. Each period of life is concerned, and this is an increasing public health problem. Animal models have been developed to investigate the biological actors involved in such impairments. Many levels of the brain function (structure, volume, neurogenesis, neurotransmission, behavior) are involved. In this review, we detailed the part potentially played by the Hypothalamic-Pituitary Adrenal axis in these dysfunctions. Notably, regulating glucocorticoid levels, their receptors and their bioavailability appear to be relevant for future research studies, and treatment development.
Collapse
Affiliation(s)
- Nathalie Marissal-Arvy
- INRAE, Laboratoire de Nutrition et Neurobiologie Intégrée, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Marie-Pierre Moisan
- University of Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33000, Bordeaux, France
| |
Collapse
|
14
|
Arrieta A, Battelino T, Scaramuzza AE, Da Silva J, Castañeda J, Cordero TL, Shin J, Cohen O. Comparison of MiniMed 780G system performance in users aged younger and older than 15 years: Evidence from 12 870 real-world users. Diabetes Obes Metab 2022; 24:1370-1379. [PMID: 35403792 PMCID: PMC9545031 DOI: 10.1111/dom.14714] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
AIM To investigate real-world glycaemic outcomes and goals achieved by users of the MiniMed 780G advanced hybrid closed loop (AHCL) system aged younger and older than 15 years with type 1 diabetes (T1D). MATERIALS AND METHODS Data uploaded by MiniMed 780G system users from 27 August 2020 to 22 July 2021 were aggregated and retrospectively analysed based on self-reported age (≤15 years and >15 years) for three cohorts: (a) post-AHCL initiation, (b) 6-month longitudinal post-AHCL initiation and (c) pre- versus post-AHCL initiation. Analyses included mean percentage of time spent in AHCL and at sensor glucose ranges, insulin delivered and the proportion of users achieving recommended glucose management indicator (GMI < 7.0%) and time in target range (TIR 70-180 mg/dl > 70%) goals. RESULTS Users aged 15 years or younger (N = 3211) achieved a GMI of 6.8% ± 0.3% and TIR of 73.9% ± 8.7%, while spending 92.7% of time in AHCL. Users aged older than 15 years (N = 8874) achieved a GMI of 6.8% ± 0.4% and TIR of 76.5% ± 9.4% with 92.3% of time in AHCL. Time spent at less than 70 mg/dl was within the recommended target of less than 4% (3.2% and 2.3%, respectively). Similar outcomes were observed for each group (N = 790 and N = 1642, respectively) in the first month following AHCL initiation, and were sustained over the 6-month observation period. CONCLUSIONS This real-world analysis shows that more than 75% of users with T1D aged 15 years or younger using the MiniMed 780G system achieved international consensus-recommended glycaemic control, mirroring the achievements of the population aged older than 15 years.
Collapse
Affiliation(s)
| | - Tadej Battelino
- University Children's Hospital, University Medical Centre Ljubljana and Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Andrea E. Scaramuzza
- Diabetes, Endocrinology and Nutrition Service, Division of Pediatrics, ASST CremonaMaggiore HospitalCremonaItaly
| | | | | | | | | | - Ohad Cohen
- Medtronic International Trading SàrlTolochenazSwitzerland
| |
Collapse
|
15
|
Mitchell RJ, McMaugh A, Woodhead H, Lystad RP, Zurynski Y, Badgery‐Parker T, Cameron CM, Hng T. The impact of type 1 diabetes mellitus in childhood on academic performance: A matched population-based cohort study. Pediatr Diabetes 2022; 23:411-420. [PMID: 35080102 PMCID: PMC9306722 DOI: 10.1111/pedi.13317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The impact of type 1 diabetes mellitus (T1D) on academic performance is inconclusive. This study aims to compare scholastic performance and high-school completion in young people hospitalized with T1D compared to matched peers not hospitalized with diabetes. RESEARCH DESIGN Retrospective case-comparison cohort study. METHOD A population-level matched case-comparison study of people aged ≤18 hospitalized with T1D during 2005-2018 in New South Wales, Australia using linked health-related and education records. The comparison cohort was matched on age, gender, and residential postcode. Generalized linear mixed modeling examined risk of school performance below the national minimum standard (NMS) and generalized linear regression examined risk of not completing high school for young people hospitalized with T1D compared to peers. Adjusted relative risks (ARR) were calculated. RESULTS Young females and males hospitalized with T1D did not have a higher risk of not achieving the NMS compared to peers for numeracy (ARR: 1.19; 95%CI 0.77-1.84 and ARR: 0.74; 95%CI 0.46-1.19) or reading (ARR: 0.98; 95%CI 0.63-1.50 and ARR: 0.85; 95%CI 0.58-1.24), respectively. Young T1D hospitalized females had a higher risk of not completing year 11 (ARR: 1.73; 95%CI 1.19-2.53) or 12 (ARR: 1.65; 95%CI 1.17-2.33) compared to peers, while hospitalized T1D males did not. CONCLUSIONS There was no difference in academic performance in youth hospitalized with T1D compared to peers. Improved glucose control and T1D management may explain the absence of school performance decrements in students with T1D. However, females hospitalized with T1D had a higher risk of not completing high school. Potential associations of this increased risk, with attention to T1D and psycho-social management, should be investigated.
Collapse
Affiliation(s)
- Rebecca J. Mitchell
- Australian Institute of Health Innovation, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNSWAustralia
| | - Anne McMaugh
- The Macquarie School of EducationMacquarie UniversitySydneyNSWAustralia
| | - Helen Woodhead
- School of Women's and Children's Health, Faculty of MedicineUniversity of New South WalesSydneyNSWAustralia,Department of Paediatric Diabetes and EndocrinologyRoyal North Shore HospitalSydneyNSWAustralia,Department of Endocrinology and DiabetesSydney Children's HospitalSydneyNSWAustralia
| | - Reidar P. Lystad
- Australian Institute of Health Innovation, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNSWAustralia
| | - Yvonne Zurynski
- Australian Institute of Health Innovation, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNSWAustralia
| | - Tim Badgery‐Parker
- Australian Institute of Health Innovation, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNSWAustralia
| | - Cate M. Cameron
- Jamieson Trauma InstituteRoyal Brisbane & Women's Hospital, Metro North Hospital and Health Services DistrictBrisbaneQLDAustralia,Centre for Healthcare Transformation, Australian Centre for Health Services InnovationQueensland University of TechnologyBrisbaneQLDAustralia
| | - Tien‐Ming Hng
- Department of Diabetes and EndocrinologyBlacktown and Mount Druitt HospitalSydneyNSWAustralia,School of MedicineWestern Sydney UniversitySydneyNSWAustralia
| |
Collapse
|
16
|
Kariyawasam D, Morin C, Casteels K, Le Tallec C, Sfez A, Godot C, Huneker E, Garrec N, Benhamou PY, Polak M, Charpentier G, Franc S, Beltrand J. Hybrid closed-loop insulin delivery versus sensor-augmented pump therapy in children aged 6–12 years: a randomised, controlled, cross-over, non-inferiority trial. Lancet Digit Health 2022; 4:e158-e168. [DOI: 10.1016/s2589-7500(21)00271-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
|
17
|
Affiliation(s)
- Klemen Dovc
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bruce W Bode
- Atlanta Diabetes Associates and Emory University School of Medicine, Atlanta, GA
| | - Tadej Battelino
- Atlanta Diabetes Associates and Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
18
|
Dovc K, Van Name M, Jenko Bizjan B, Rusak E, Piona C, Yesiltepe‐Mutlu G, Mentink R, Frontino G, Macedoni M, Ferreira SH, Serra‐Caetano J, Galhardo J, Pelicand J, Silvestri F, Sherr J, Chobot A, Biester T, for the ISPAD JENIOUS Group. Continuous glucose monitoring use and glucose variability in very young children with type 1 diabetes (VibRate): A multinational prospective observational real-world cohort study. Diabetes Obes Metab 2022; 24:564-569. [PMID: 34820985 PMCID: PMC9306649 DOI: 10.1111/dom.14607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic DiseasesUMC ‐ University Children's HospitalLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Michelle Van Name
- Department of Pediatrics, Section of EndocrinologyYale School of MedicineNew HavenConnecticut
| | - Barbara Jenko Bizjan
- Department of Pediatric Endocrinology, Diabetes and Metabolic DiseasesUMC ‐ University Children's HospitalLjubljanaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Ewa Rusak
- Department of Children's DiabetologyMedical University of SilesiaKatowicePoland
| | - Claudia Piona
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric DiabetesUniversity City Hospital of VeronaVeronaItaly
| | - Gul Yesiltepe‐Mutlu
- Department of Pediatric Endocrinology and DiabetesKoç University HospitalIstanbulTurkey
- School of MedicineKoç UniversityIstanbulTurkey
| | - Rosaline Mentink
- Diaboss (Pediatric and Adolescent Diabetes Clinic)AmsterdamThe Netherlands
- Department of PediatricsOLVGAmsterdamThe Netherlands
| | - Giulio Frontino
- Diabetes Research Institute, IRCCS San Raffaele HospitalMilanItaly
| | - Maddalena Macedoni
- Department of PediatricsUniversity of Milan, V. Buzzi Children's HospitalMilanItaly
| | - Sofia Helena Ferreira
- Pediatric Endocrinology and Diabetology Unit, Department of PediatricsCentro Hospitalar Universitário de São JoãoPortoPortugal
| | - Joana Serra‐Caetano
- Pediatric Endocrinology, Growth and Diabetology Unit, Coimbra Pediatric HospitalCoimbra Universitary and Hospital Centre (CHUC)CoimbraPortugal
| | - Júlia Galhardo
- Paediatric Endocrinology and Diabetes Unit, Hospital de Dona Estefânia ‐ Central Lisbon University Hospital Center and Lisbon Medical Sciences Faculty – Nova Medical SchoolLisbonPortugal
| | - Julie Pelicand
- Pediatric and Adolescent Diabetes Program, Department of PediatricsSan Camilo HospitalSan FelipeChile
- Medicine SchoolUniversidad de ValparaisoSan FelipeChile
| | - Francesca Silvestri
- Pediatric Diabetology Unit, Department of Maternal and Infantile HealthSapienza University of RomeRomeItaly
| | - Jennifer Sherr
- Department of Pediatrics, Section of EndocrinologyYale School of MedicineNew HavenConnecticut
| | - Agata Chobot
- Department of PediatricsInstitute of Medical Sciences, University of OpoleOpolePoland
- Department of PediatricsUniversity Clinical Hospital in OpoleOpolePoland
| | - Torben Biester
- AUF DER BULT, Diabetes Center for Children and AdolescentsHannoverGermany
| | | |
Collapse
|
19
|
Costa C, Linhares MI, Bastos F, Cardoso R, Dinis I, Santos AP, Mirante A, Serra-Caetano J. Effect of ultra-rapid insulin aspart on glycemic control in children with type 1 diabetes: the experience of a Portuguese tertiary centre. Diabetol Int 2022; 13:531-537. [PMID: 35036267 PMCID: PMC8740860 DOI: 10.1007/s13340-021-00565-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 12/01/2022]
Abstract
Background Postprandial hyperglycemia is one of the biggest challenges in children with type 1 diabetes (T1D). Ultra-fast-acting aspartic insulin (faster aspart) has a quicker onset of action and an earlier maximum activity. The aim of this study is to analyze the impact of faster aspart in metabolic control of pediatric patients with T1D in a “real-world” setting. Methods Retrospective analysis of 60 pediatric patients with T1D who changed their insulin analogue to faster aspart. Anthropometric data, insulin doses, capillary and interstitial glucose recordings and average glycated hemoglobin before and after insulin analogue’s switch were obtained. After all population analyses, patients were analyzed separately according to the type of treatment, multiple daily injections (MDI) and continuous subcutaneous insulin infusion (CSII), and according to age group. Results Faster aspart significantly improved metabolic control, increasing time in range (TIR) (42 vs.54%, respectively; P = 0.007) and decreasing time above range (TAR) (52 vs.40%, respectively; P = 0.009), without an increased time in hypoglycemia (7% before and after faster aspart’s introduction; P = 0.933). This was reassured in the adolescent years (n = 45), with an increase in TIR (37 vs. 47%, respectively; P = 0.034) and decrease in TAR (51 vs. 45%, respectively; P = 0.022). Patients on CSII (n = 47), also demonstrated an increase in TIR (38 vs. 50%, respectively; P = 0.010). The reduction of A1c was not statistically significant. Conclusion Although the advantage of faster aspart had already been demonstrated in pediatric patients under MDI, “real-world” studies, including patients under CSII, are still lacking. This study highlights the important impact of faster aspart on metabolic control in children with T1D, particularly among adolescents under CSII.
Collapse
Affiliation(s)
- Cláudia Costa
- Serviço de Endocrinologia, Instituto Português de Oncologia do Porto Francisco Gentil, Rua Dr. António Bernardino de Almeida 865, 4200-072 Porto, Portugal
| | | | - Filipa Bastos
- Serviço de Endocrinologia, Hospital Garcia de Orta, Almada, Portugal
| | - Rita Cardoso
- Unidade de Endocrinologia Pediátrica de Endocrinologia, Hospital Pediátrico de Coimbra-CHUC, Coimbra, Portugal
| | - Isabel Dinis
- Unidade de Endocrinologia Pediátrica de Endocrinologia, Hospital Pediátrico de Coimbra-CHUC, Coimbra, Portugal
| | - Ana Paula Santos
- Serviço de Endocrinologia, Instituto Português de Oncologia do Porto Francisco Gentil, Rua Dr. António Bernardino de Almeida 865, 4200-072 Porto, Portugal
| | - Alice Mirante
- Unidade de Endocrinologia Pediátrica de Endocrinologia, Hospital Pediátrico de Coimbra-CHUC, Coimbra, Portugal
| | - Joana Serra-Caetano
- Unidade de Endocrinologia Pediátrica de Endocrinologia, Hospital Pediátrico de Coimbra-CHUC, Coimbra, Portugal
| |
Collapse
|
20
|
De Ridder F, Charleer S, Jacobs S, Bolsens N, Ledeganck KJ, Van Aken S, Vanbesien J, Gies I, Casteels K, Massa G, Lysy PA, Logghe K, Lebrethon MC, Depoorter S, Gillard P, De Block C, den Brinker M. Effect of nationwide reimbursement of real-time continuous glucose monitoring on HbA1c, hypoglycemia and quality of life in a pediatric type 1 diabetes population: The RESCUE-pediatrics study. Front Pediatr 2022; 10:991633. [PMID: 36275049 PMCID: PMC9582657 DOI: 10.3389/fped.2022.991633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Real-time continuous glucose monitoring (RT-CGM) can improve metabolic control and quality of life (QoL), but long-term real-world data in children with type 1 diabetes (T1D) are scarce. Over a period of 24 months, we assessed the impact of RT-CGM reimbursement on glycemic control and QoL in children/adolescents with T1D treated with insulin pumps. RESEARCH DESIGN AND METHODS We conducted a multicenter prospective observational study. Primary endpoint was the change in HbA1c. Secondary endpoints included change in time in hypoglycemia, QoL, hospitalizations for hypoglycemia and/or ketoacidosis and absenteeism (school for children, work for parents). RESULTS Between December 2014 and February 2019, 75 children/adolescents were followed for 12 (n = 62) and 24 months (n = 50). Baseline HbA1c was 7.2 ± 0.7% (55 ± 8mmol/mol) compared to 7.1 ± 0.8% (54 ± 9mmol/mol) at 24 months (p = 1.0). Participants with a baseline HbA1c ≥ 7.5% (n = 27, mean 8.0 ± 0.3%; 64 ± 3mmol/mol) showed an improvement at 4 months (7.6 ± 0.7%; 60 ± 8mmol/mol; p = 0.009) and at 8 months (7.5 ± 0.6%; 58 ± 7mmol/mol; p = 0.006), but not anymore thereafter (endpoint 24 months: 7.7 ± 0.9%; 61 ± 10mmol/mol; p = 0.2). Time in hypoglycemia did not change over time. QoL for parents and children remained stable. Need for assistance by ambulance due to hypoglycemia reduced from 8 to zero times per 100 patient-years (p = 0.02) and work absenteeism for parents decreased from 411 to 214 days per 100 patient-years (p = 0.03), after 24 months. CONCLUSION RT-CGM in pump-treated children/adolescents with T1D showed a temporary improvement in HbA1c in participants with a baseline HbA1c ≥ 7.5%, without increasing time in hypoglycemia. QoL was not affected. Importantly, RT-CGM reduced the need for assistance by ambulance due to hypoglycemia and reduced work absenteeism for parents after 24 months. CLINICAL TRIAL REGISTRATION [ClinicalTrials.gov], identifier [NCT02601729].
Collapse
Affiliation(s)
- Francesca De Ridder
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Member of the Infla-Med Center of Excellence, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.,Department of Endocrinology-Diabetology-Metabolism, Antwerp University Hospital (UZA), Antwerp, Belgium.,Fund for Scientific Research (FWO), Brussels, Belgium
| | - Sara Charleer
- Department of Endocrinology, University Hospitals Leuven, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Jacobs
- Department of Endocrinology-Diabetology-Metabolism, Antwerp University Hospital (UZA), Antwerp, Belgium
| | - Nancy Bolsens
- Department of Endocrinology-Diabetology-Metabolism, Antwerp University Hospital (UZA), Antwerp, Belgium
| | - Kristien J Ledeganck
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Member of the Infla-Med Center of Excellence, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Sara Van Aken
- Department of Pediatrics, University Hospital Ghent, Ghent, Belgium
| | - Jesse Vanbesien
- Department of Pediatrics, University Hospital Brussels, Free University of Brussels (VUB), Brussels, Belgium
| | - Inge Gies
- Department of Pediatrics, University Hospital Brussels, Free University of Brussels (VUB), Brussels, Belgium
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Guy Massa
- Department of Pediatrics, Jessa Hospital, Hasselt, Belgium
| | - Philippe A Lysy
- Department of Pediatrics, University Hospital Saint-Luc, Brussels, Belgium
| | - Karl Logghe
- Department of Pediatrics, General Hospital Delta, Roeselare, Belgium
| | | | - Sylvia Depoorter
- Department of Pediatrics, General Hospital Sint-Jan Bruges, Bruges, Belgium
| | - Pieter Gillard
- Fund for Scientific Research (FWO), Brussels, Belgium.,Department of Endocrinology, University Hospitals Leuven, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Christophe De Block
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Member of the Infla-Med Center of Excellence, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.,Department of Endocrinology-Diabetology-Metabolism, Antwerp University Hospital (UZA), Antwerp, Belgium
| | - Marieke den Brinker
- Laboratory of Experimental Medicine and Pediatrics (LEMP) and Member of the Infla-Med Center of Excellence, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.,Department of Pediatrics, Antwerp University Hospital (UZA), Antwerp, Belgium
| |
Collapse
|
21
|
Peng L, Fang X, Xu F, Liu S, Qian Y, Gong X, Zhao X, Ma Z, Xia T, Gu X. Amelioration of Hippocampal Insulin Resistance Reduces Tau Hyperphosphorylation and Cognitive Decline Induced by Isoflurane in Mice. Front Aging Neurosci 2021; 13:686506. [PMID: 34512303 PMCID: PMC8425557 DOI: 10.3389/fnagi.2021.686506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023] Open
Abstract
General anesthetics can induce cognitive impairments and increase the risk of Alzheimer’s disease (AD). However, the underlying mechanisms are still unknown. Our previous studies shown that long-term isoflurane exposure induced peripheral and central insulin resistance (IR) in adult mice and aggravated IR in type 2 diabetes mellitus (T2DM) mice. Clinical and preclinical studies revealed an association between impaired insulin signaling and tau pathology in AD and other tauopathies. We investigated if alleviation of hippocampal IR by the antidiabetic agent metformin could reduce tau hyperphosphorylation and cognitive decline induced by isoflurane in mice. The effects of prolonged (6 h) isoflurane anesthesia on hippocampal IR, hippocampal tau hyperphosphorylation, and hippocampus-dependent cognitive function were evaluated in wild type (WT) adult mice and the high-fat diet plus streptozotocin (HFD/STZ) mouse model of T2DM. Here we shown that isoflurane and HFD/STZ dramatically and synergistically induced hippocampal IR and fear memory impairment. Metformin pretreatment strongly ameliorated hippocampal IR and cognitive dysfunction caused by isoflurane in WT mice, but was less effective in T2DM mice. Isoflurane also induced hippocampal tau hyperphosphorylation and metformin reversed this effect. In addition, isoflurane significantly increased blood glucose levels in both adult and T2DM mice, and metformin reversed this effect as well. Administration of 25% glucose to metformin-pretreated mice induced hyperglycemia, but surprisingly did not reverse the benefits of metformin on hippocampal insulin signaling and fear memory following isoflurane anesthesia. Our findings show hippocampal IR and tau hyperphosphorylation contribute to acute isoflurane-induced cognitive dysfunction. Brief metformin treatment can mitigate these effects through a mechanism independent of glycemic control. Future studies are needed to investigate whether long-term metformin treatment can also prevent T2DM-induced hippocampal IR and cognitive decline.
Collapse
Affiliation(s)
- Liangyu Peng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xin Fang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Fangxia Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yue Qian
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xiangdan Gong
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xin Zhao
- Medical School of Nanjing University, Nanjing, China.,Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Tianjiao Xia
- Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Gerhardsson P, Schwandt A, Witsch M, Kordonouri O, Svensson J, Forsander G, Battelino T, Veeze H, Danne T. The SWEET Project 10-Year Benchmarking in 19 Countries Worldwide Is Associated with Improved HbA1c and Increased Use of Diabetes Technology in Youth with Type 1 Diabetes. Diabetes Technol Ther 2021; 23:491-499. [PMID: 33566729 DOI: 10.1089/dia.2020.0618] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: The international SWEET registry (NCT04427189) was initiated in 2008 to improve outcomes in pediatric diabetes. A 10-year follow-up allowed studying time trends of key quality indicators in 22 centers from Europe, Australia, Canada, and India in youth with type 1 diabetes (T1D). Methods: Aggregated data per person with T1D <25 years of age were compared between 2008-2010 and 2016-2018. Hierarchic linear and logistic regression models were applied. Models were adjusted for gender, age-, and diabetes duration groups. Results: The first and second time periods included 4930 versus 13,654 persons, 51% versus 52% male, median age 11.3 [Q1; Q3: 7.9; 14.5] versus 13.3 [9.7; 16.4] years, and T1D duration 2.9 [0.8; 6.4] versus 4.2 [1.4; 7.7] years. The adjusted hemoglobin A1C (HbA1c) improved from 68 (95% confidence interval [CI]: 66-70) to 63 (60; 65) mmol/mol (P < 0.0001) or 8.4 (95% CI: 8.2-8.6) to 7.9 (7.6; 8.1) % (P < 0.0001). Across all age groups, HbA1c was significantly lower in pump and sensor users. Severe hypoglycemia declined from 3.8% (2.9; 5.0) to 2.4% (1.9; 3.1) (P < 0.0001), whereas diabetic ketoacidosis events increased significantly with injection therapy only. Body mass index-standard deviation score also showed significant improvements 0.55 (0.46; 0.64) versus 0.42 (0.33; 0.51) (P < 0.0001). Over time, the increase in pump use from 34% to 44% preceded the increase in HbA1c target achievement (<53 mmol/mol) from 21% to 34%. Conclusions: Twice yearly benchmarking within the SWEET registry was associated with significantly improved HbA1c on a background of increasing pump and sensor use for 10 years in young persons with T1D. Trial Registration: NCT04427189.
Collapse
Affiliation(s)
- Peter Gerhardsson
- Department of Epidemiology, Institute of Applied Economics and Health Research, Copenhagen, Denmark
| | - Anke Schwandt
- Institute of Epidemiology and Medical Biometry, ZIBMT, Ulm University, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Michael Witsch
- Department of Pediatrics DCCP, Center Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Olga Kordonouri
- Children's Hospital AUF DER BULT, Hannover Medical School, Hannover, Germany
| | - Jannet Svensson
- Department of Pediatrics and Adolescents, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gun Forsander
- Department of Pediatrics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Tadej Battelino
- UMC-University Children's Hospital and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Henk Veeze
- Diabeter, Diabetes Center for Pediatric and Adolescent Diabetes Care and Research, Rotterdam, Netherlands
| | - Thomas Danne
- Children's Hospital AUF DER BULT, Hannover Medical School, Hannover, Germany
- SWEET e.V., Hannoversche Kinderheilanstalt, Hannover, Germany
| |
Collapse
|
23
|
Zheng H, Xu P, Jiang Q, Xu Q, Zheng Y, Yan J, Ji H, Ning J, Zhang X, Li C, Zhang L, Li Y, Li X, Song W, Gao H. Depletion of acetate-producing bacteria from the gut microbiota facilitates cognitive impairment through the gut-brain neural mechanism in diabetic mice. MICROBIOME 2021; 9:145. [PMID: 34172092 PMCID: PMC8235853 DOI: 10.1186/s40168-021-01088-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/06/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Modification of the gut microbiota has been reported to reduce the incidence of type 1 diabetes mellitus (T1D). We hypothesized that the gut microbiota shifts might also have an effect on cognitive functions in T1D. Herein we used a non-absorbable antibiotic vancomycin to modify the gut microbiota in streptozotocin (STZ)-induced T1D mice and studied the impact of microbial changes on cognitive performances in T1D mice and its potential gut-brain neural mechanism. RESULTS We found that vancomycin exposure disrupted the gut microbiome, altered host metabolic phenotypes, and facilitated cognitive impairment in T1D mice. Long-term acetate deficiency due to depletion of acetate-producing bacteria resulted in the reduction of synaptophysin (SYP) in the hippocampus as well as learning and memory impairments. Exogenous acetate supplement or fecal microbiota transplant recovered hippocampal SYP level in vancomycin-treated T1D mice, and this effect was attenuated by vagal inhibition or vagotomy. CONCLUSIONS Our results demonstrate the protective role of microbiota metabolite acetate in cognitive functions and suggest long-term acetate deficiency as a risk factor of cognitive decline. Video Abstract.
Collapse
Affiliation(s)
- Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015 China
- Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035 China
| | - Pengtao Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Qiaoying Jiang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Qingqing Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Yafei Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Junjie Yan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Hui Ji
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Jie Ning
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Xi Zhang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430070 China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015 China
| | - Xiaokui Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Weihong Song
- Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035 China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015 China
- Institute of Aging, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035 China
| |
Collapse
|
24
|
Visser MM, Charleer S, Fieuws S, De Block C, Hilbrands R, Van Huffel L, Maes T, Vanhaverbeke G, Dirinck E, Myngheer N, Vercammen C, Nobels F, Keymeulen B, Mathieu C, Gillard P. Comparing real-time and intermittently scanned continuous glucose monitoring in adults with type 1 diabetes (ALERTT1): a 6-month, prospective, multicentre, randomised controlled trial. Lancet 2021; 397:2275-2283. [PMID: 34089660 DOI: 10.1016/s0140-6736(21)00789-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND People with type 1 diabetes can continuously monitor their glucose levels on demand (intermittently scanned continuous glucose monitoring [isCGM]), or in real time (real-time continuous glucose monitoring [rtCGM]). However, it is unclear whether switching from isCGM to rtCGM with alert functionality offers additional benefits. Therefore, we did a trial comparing rtCGM and isCGM in adults with type 1 diabetes (ALERTT1). METHODS We did a prospective, double-arm, parallel-group, multicentre, randomised controlled trial in six hospitals in Belgium. Adults with type 1 diabetes who previously used isCGM were randomly assigned (1:1) to rtCGM (intervention) or isCGM (control). Randomisation was done centrally using minimisation dependent on study centre, age, gender, glycated haemoglobin (HbA1c), time in range (sensor glucose 3·9-10·0 mmol/L), insulin administration method, and hypoglycaemia awareness. Participants, investigators, and study teams were not masked to group allocation. Primary endpoint was mean between-group difference in time in range after 6 months assessed in the intention-to-treat sample. This trial is registered with ClinicalTrials.gov, NCT03772600. FINDINGS Between Jan 29 and Jul 30, 2019, 269 participants were recruited, of whom 254 were randomly assigned to rtCGM (n=127) or isCGM (n=127); 124 and 122 participants completed the study, respectively. After 6 months, time in range was higher with rtCGM than with isCGM (59·6% vs 51·9%; mean difference 6·85 percentage points [95% CI 4·36-9·34]; p<0·0001). After 6 months HbA1c was lower (7·1% vs 7·4%; p<0·0001), as was time <3·0 mmol/L (0·47% vs 0·84%; p=0·0070), and Hypoglycaemia Fear Survey version II worry subscale score (15·4 vs 18·0; p=0·0071). Fewer participants on rtCGM experienced severe hypoglycaemia (n=3 vs n=13; p=0·0082). Skin reaction was more frequently observed with isCGM and bleeding after sensor insertion was more frequently reported by rtCGM users. INTERPRETATION In an unselected adult type 1 diabetes population, switching from isCGM to rtCGM significantly improved time in range after 6 months of treatment, implying that clinicians should consider rtCGM instead of isCGM to improve the health and quality of life of people with type 1 diabetes. FUNDING Dexcom.
Collapse
Affiliation(s)
- Margaretha M Visser
- Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium
| | - Sara Charleer
- Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven and University of Hasselt, Leuven, Belgium
| | - Christophe De Block
- Department of Endocrinology-Diabetology-Metabolism, University Hospital Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Robert Hilbrands
- Academic Hospital and Diabetes Research Centre, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Toon Maes
- Department of Endocrinology, Imeldaziekenhuis Bonheiden, Bonheiden, Belgium
| | | | - Eveline Dirinck
- Department of Endocrinology-Diabetology-Metabolism, University Hospital Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nele Myngheer
- Department of Endocrinology, AZ Groeninge, Kortrijk, Belgium
| | - Chris Vercammen
- Department of Endocrinology, Imeldaziekenhuis Bonheiden, Bonheiden, Belgium
| | - Frank Nobels
- Department of Endocrinology, OLV Hospital Aalst, Aalst, Belgium
| | - Bart Keymeulen
- Academic Hospital and Diabetes Research Centre, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium
| | - Pieter Gillard
- Department of Endocrinology, University Hospitals Leuven-KU Leuven, Leuven, Belgium; Academic Hospital and Diabetes Research Centre, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
25
|
Bode BW, Battelino T, Dovc K. Continuous and Intermittent Glucose Monitoring in 2020. Diabetes Technol Ther 2021; 23:S16-S31. [PMID: 34061633 DOI: 10.1089/dia.2021.2502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Bruce W Bode
- Atlanta Diabetes Associates and Emory University School of Medicine, Atlanta, GA
| | - Tadej Battelino
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dovc
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Grunberger G, Sherr J, Allende M, Blevins T, Bode B, Handelsman Y, Hellman R, Lajara R, Roberts VL, Rodbard D, Stec C, Unger J. American Association of Clinical Endocrinology Clinical Practice Guideline: The Use of Advanced Technology in the Management of Persons With Diabetes Mellitus. Endocr Pract 2021; 27:505-537. [PMID: 34116789 DOI: 10.1016/j.eprac.2021.04.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the use of advanced technology in the management of persons with diabetes mellitus to clinicians, diabetes-care teams, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology (AACE) conducted literature searches for relevant articles published from 2012 to 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established AACE protocol for guideline development. MAIN OUTCOME MEASURES Primary outcomes of interest included hemoglobin A1C, rates and severity of hypoglycemia, time in range, time above range, and time below range. RESULTS This guideline includes 37 evidence-based clinical practice recommendations for advanced diabetes technology and contains 357 citations that inform the evidence base. RECOMMENDATIONS Evidence-based recommendations were developed regarding the efficacy and safety of devices for the management of persons with diabetes mellitus, metrics used to aide with the assessment of advanced diabetes technology, and standards for the implementation of this technology. CONCLUSIONS Advanced diabetes technology can assist persons with diabetes to safely and effectively achieve glycemic targets, improve quality of life, add greater convenience, potentially reduce burden of care, and offer a personalized approach to self-management. Furthermore, diabetes technology can improve the efficiency and effectiveness of clinical decision-making. Successful integration of these technologies into care requires knowledge about the functionality of devices in this rapidly changing field. This information will allow health care professionals to provide necessary education and training to persons accessing these treatments and have the required expertise to interpret data and make appropriate treatment adjustments.
Collapse
Affiliation(s)
| | - Jennifer Sherr
- Yale University School of Medicine, New Haven, Connecticut
| | - Myriam Allende
- University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | - Bruce Bode
- Atlanta Diabetes Associates, Atlanta, Georgia
| | | | - Richard Hellman
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | | | | | - David Rodbard
- Biomedical Informatics Consultants, LLC, Potomac, Maryland
| | - Carla Stec
- American Association of Clinical Endocrinology, Jacksonville, Florida
| | - Jeff Unger
- Unger Primary Care Concierge Medical Group, Rancho Cucamonga, California
| |
Collapse
|
27
|
Mauras N, Buckingham B, White NH, Tsalikian E, Weinzimer SA, Jo B, Cato A, Fox LA, Aye T, Arbelaez AM, Hershey T, Tansey M, Tamborlane W, Foland-Ross LC, Shen H, Englert K, Mazaika P, Marzelli M, Reiss AL. Impact of Type 1 Diabetes in the Developing Brain in Children: A Longitudinal Study. Diabetes Care 2021; 44:983-992. [PMID: 33568403 PMCID: PMC7985430 DOI: 10.2337/dc20-2125] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/05/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess whether previously observed brain and cognitive differences between children with type 1 diabetes and control subjects without diabetes persist, worsen, or improve as children grow into puberty and whether differences are associated with hyperglycemia. RESEARCH DESIGN AND METHODS One hundred forty-four children with type 1 diabetes and 72 age-matched control subjects without diabetes (mean ± SD age at baseline 7.0 ± 1.7 years, 46% female) had unsedated MRI and cognitive testing up to four times over 6.4 ± 0.4 (range 5.3-7.8) years; HbA1c and continuous glucose monitoring were done quarterly. FreeSurfer-derived brain volumes and cognitive metrics assessed longitudinally were compared between groups using mixed-effects models at 6, 8, 10, and 12 years. Correlations with glycemia were performed. RESULTS Total brain, gray, and white matter volumes and full-scale and verbal intelligence quotients (IQs) were lower in the diabetes group at 6, 8, 10, and 12 years, with estimated group differences in full-scale IQ of -4.15, -3.81, -3.46, and -3.11, respectively (P < 0.05), and total brain volume differences of -15,410, -21,159, -25,548, and -28,577 mm3 at 6, 8, 10, and 12 years, respectively (P < 0.05). Differences at baseline persisted or increased over time, and brain volumes and cognitive scores negatively correlated with a life-long HbA1c index and higher sensor glucose in diabetes. CONCLUSIONS Detectable changes in brain volumes and cognitive scores persist over time in children with early-onset type 1 diabetes followed longitudinally; these differences are associated with metrics of hyperglycemia. Whether these changes can be reversed with scrupulous diabetes control requires further study. These longitudinal data support the hypothesis that the brain is a target of diabetes complications in young children.
Collapse
Affiliation(s)
- Nelly Mauras
- Division of Endocrinology, Diabetes & Metabolism, Department of Pediatrics, Nemours Children's Health System, Jacksonville, FL
| | - Bruce Buckingham
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Stanford, CA
| | - Neil H White
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Eva Tsalikian
- Division of Endocrinology and Diabetes, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| | | | - Booil Jo
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Allison Cato
- Division of Neurology, Nemours Children's Health System, Jacksonville, FL
| | - Larry A Fox
- Division of Endocrinology, Diabetes & Metabolism, Department of Pediatrics, Nemours Children's Health System, Jacksonville, FL
| | - Tandy Aye
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Stanford, CA
| | - Ana Maria Arbelaez
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Tamara Hershey
- Departments of Radiology and Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - Michael Tansey
- Division of Endocrinology and Diabetes, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| | | | - Lara C Foland-Ross
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Hanyang Shen
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Kimberly Englert
- Division of Endocrinology, Diabetes & Metabolism, Department of Pediatrics, Nemours Children's Health System, Jacksonville, FL
| | - Paul Mazaika
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Matthew Marzelli
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | | |
Collapse
|
28
|
Backeström A, Papadopoulos K, Eriksson S, Olsson T, Andersson M, Blennow K, Zetterberg H, Nyberg L, Rolandsson O. Acute hyperglycaemia leads to altered frontal lobe brain activity and reduced working memory in type 2 diabetes. PLoS One 2021; 16:e0247753. [PMID: 33739980 PMCID: PMC7978337 DOI: 10.1371/journal.pone.0247753] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 02/15/2021] [Indexed: 01/23/2023] Open
Abstract
How acute hyperglycaemia affects memory functions and functional brain responses in individuals with and without type 2 diabetes is unclear. Our aim was to study the association between acute hyperglycaemia and working, semantic, and episodic memory in participants with type 2 diabetes compared to a sex- and age-matched control group. We also assessed the effect of hyperglycaemia on working memory–related brain activity. A total of 36 participants with type 2 diabetes and 34 controls (mean age, 66 years) underwent hyperglycaemic clamp or placebo clamp in a blinded and randomised order. Working, episodic, and semantic memory were tested. Overall, the control group had higher working memory (mean z-score 33.15 ± 0.45) than the group with type 2 diabetes (mean z-score 31.8 ± 0.44, p = 0.042) considering both the placebo and hyperglycaemic clamps. Acute hyperglycaemia did not influence episodic, semantic, or working memory performance in either group. Twenty-two of the participants (10 cases, 12 controls, mean age 69 years) were randomly invited to undergo the same clamp procedures to challenge working memory, using 1-, 2-, and 3-back, while monitoring brain activity by blood oxygen level–dependent functional magnetic resonance imaging (fMRI). The participants with type 2 diabetes had reduced working memory during the 1- and 2-back tests. fMRI during placebo clamp revealed increased BOLD signal in the left lateral frontal cortex and the anterior cingulate cortex as a function of working memory load in both groups (3>2>1). During hyperglycaemia, controls showed a similar load-dependent fMRI response, whereas the type 2 diabetes group showed decreased BOLD response from 2- to 3-back. These results suggest that impaired glucose metabolism in the brain affects working memory, possibly by reducing activity in important frontal brain areas in persons with type 2 diabetes.
Collapse
Affiliation(s)
- Anna Backeström
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| | - Konstantin Papadopoulos
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Sture Eriksson
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
29
|
Creo AL, Cortes TM, Jo HJ, Huebner AR, Dasari S, Tillema JM, Lteif AN, Klaus KA, Ruegsegger GN, Kudva YC, Petersen RC, Port JD, Nair KS. Brain functions and cognition on transient insulin deprivation in type 1 diabetes. JCI Insight 2021; 6:144014. [PMID: 33561011 PMCID: PMC8021100 DOI: 10.1172/jci.insight.144014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/03/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a risk factor for dementia and structural brain changes. It remains to be determined whether transient insulin deprivation that frequently occurs in insulin-treated individuals with T1D alters brain function. METHODS We therefore performed functional and structural magnetic resonance imaging, magnetic resonance spectroscopy, and neuropsychological testing at baseline and following 5.4 ± 0.6 hours of insulin deprivation in 14 individuals with T1D and compared results with those from 14 age-, sex-, and BMI-matched nondiabetic (ND) participants with no interventions. RESULTS Insulin deprivation in T1D increased blood glucose, and β-hydroxybutyrate, while reducing bicarbonate levels. Participants with T1D showed lower baseline brain N-acetyl aspartate and myo-inositol levels but higher cortical fractional anisotropy, suggesting unhealthy neurons and brain microstructure. Although cognitive functions did not differ between participants with T1D and ND participants at baseline, significant changes in fine motor speed as well as attention and short-term memory occurred following insulin deprivation in participants with T1D. Insulin deprivation also reduced brain adenosine triphosphate levels and altered the phosphocreatine/adenosine triphosphate ratio. Baseline differences in functional connectivity in brain regions between participants with T1D and ND participants were noted, and on insulin deprivation further alterations in functional connectivity between regions, especially cortical and hippocampus-caudate regions, were observed. These alterations in functional connectivity correlated to brain metabolites and to changes in cognition. CONCLUSION Transient insulin deprivation therefore caused alterations in executive aspects of cognitive function concurrent with functional connectivity between memory regions and the sensory cortex. These findings have important clinical implications, as many patients with T1D inadvertently have periods of transient insulin deprivation. TRIAL REGISTRATION ClinicalTrials.gov NCT03392441. FUNDING Clinical and Translational Science Award (UL1 TR002377) from the National Center for Advancing Translational Science; NIH grants (R21 AG60139 and R01 AG62859); the Mayo Foundation.
Collapse
Affiliation(s)
- Ana L Creo
- Division of Pediatric Endocrinology and Metabolism
| | | | | | | | | | | | - Aida N Lteif
- Division of Pediatric Endocrinology and Metabolism
| | | | | | - Yogish C Kudva
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition
| | | | - John D Port
- Division of Neuroradiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
30
|
A Randomized Clinical Trial Assessing Continuous Glucose Monitoring (CGM) Use With Standardized Education With or Without a Family Behavioral Intervention Compared With Fingerstick Blood Glucose Monitoring in Very Young Children With Type 1 Diabetes. Diabetes Care 2021; 44:464-472. [PMID: 33334807 PMCID: PMC9162100 DOI: 10.2337/dc20-1060] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study evaluated the effects of continuous glucose monitoring (CGM) combined with family behavioral intervention (CGM+FBI) and CGM alone (Standard-CGM) on glycemic outcomes and parental quality of life compared with blood glucose monitoring (BGM) in children ages 2 to <8 years with type 1 diabetes. RESEARCH DESIGN AND METHODS This was a multicenter (N = 14), 6-month, randomized controlled trial including 143 youth 2 to <8 years of age with type 1 diabetes. Primary analysis included treatment group comparisons of percent time in range (TIR) (70-180 mg/dL) across follow-up visits. RESULTS Approximately 90% of participants in the CGM groups used CGM ≥6 days/week at 6 months. Between-group TIR comparisons showed no significant changes: CGM+FBI vs. BGM 3.2% (95% CI -0.5, 7.0), Standard-CGM vs. BGM 0.5% (-2.6 to 3.6), CGM+FBI vs. Standard-CGM 2.7% (-0.6, 6.1). Mean time with glucose level <70 mg/dL was reduced from baseline to follow-up in the CGM+FBI (from 5.2% to 2.6%) and Standard-CGM (5.8% to 2.5%) groups, compared with 5.4% to 5.8% with BGM (CGM+FBI vs. BGM, P < 0.001, and Standard-CGM vs. BGM, P < 0.001). No severe hypoglycemic events occurred in the CGM+FBI group, one occurred in the Standard-CGM group, and five occurred in the BGM group. CGM+FBI parents reported greater reductions in diabetes burden and fear of hypoglycemia compared with Standard-CGM (P = 0.008 and 0.04) and BGM (P = 0.02 and 0.002). CONCLUSIONS CGM used consistently over a 6-month period in young children with type 1 diabetes did not improve TIR but did significantly reduce time in hypoglycemia. The FBI benefited parental well-being.
Collapse
|
31
|
Dovc K, Battelino T. Time in range centered diabetes care. Clin Pediatr Endocrinol 2021; 30:1-10. [PMID: 33446946 PMCID: PMC7783127 DOI: 10.1297/cpe.30.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Optimal glycemic control remains challenging and elusive for many people with diabetes. With the comprehensive clinical evidence on safety and efficiency in large populations, and with broader reimbursement, the adoption of continuous glucose monitoring (CGM) is rapidly increasing. Standardized visual reporting and interpretation of CGM data and clear and understandable clinical targets will help professionals and individuals with diabetes use diabetes technology more efficiently, and finally improve long-term outcomes with less everyday disease burden. For the majority of people with type 1 or type 2 diabetes, time in range (between 70 and 180 mg/dL, or 3.9 and 10 mmol/L) target of more than 70% is recommended, with each incremental increase of 5% towards this target being clinically meaningful. At the same time, the goal is to minimize glycemic excursions: a recommended target for a time below range (< 70 mg/dL or < 3.9 mmol/L) is less than 4%, and time above range (> 180 mg/dL or 10 mmol/L) less than 25%, with less stringent goals for older individuals or those at increased risk. These targets should be individualized: the personal use of CGM with the standardized data presentation provides all necessary means to accurately tailor diabetes management to the needs of each individual with diabetes.
Collapse
Affiliation(s)
- Klemen Dovc
- University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
32
|
Martens TW, Bergenstal RM, Pearson T, Carlson AL, Scheiner G, Carlos C, Liao B, Syring K, Pollom RD. Making sense of glucose metrics in diabetes: linkage between postprandial glucose (PPG), time in range (TIR) & hemoglobin A1c (A1C). Postgrad Med 2020; 133:253-264. [PMID: 33315495 DOI: 10.1080/00325481.2020.1851946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
While A1C is the standard diagnostic test for evaluating long-term glucose management, additional glucose data, either from fingerstick blood glucose testing, or more recently, continuous glucose monitoring (CGM), is necessary for safe and effective management of diabetes, especially for individuals treated with insulin. CGM technology and retrospective pattern-based management using various CGM reports have the potential to improve glycemic management beyond what is possible with fingerstick blood glucose monitoring. CGM software can provide valuable retrospective data on Time-in-Ranges (above, below, within) metrics, the Ambulatory Glucose Profile (AGP), overlay reports, and daily views for persons with diabetes and their healthcare providers. This data can aid in glycemic pattern identification and evaluation of the impact of lifestyle factors on these patterns. Time-in-Ranges data provide an easy-to-define metric that can facilitate goal setting discussions between clinicians and persons with diabetes to improve glycemic management and can empower persons with diabetes in self-management between clinic consultation visits. Here we discuss multiple real-life scenarios from a primary care clinic for the application of CGM in persons with diabetes. Optimizing the use of the reports generated by CGM software, with attention to time in range, time below range, and postprandial glucose-induced time above range, can improve the safety and efficacy of ongoing glucose management.
Collapse
Affiliation(s)
| | | | - Teresa Pearson
- Innovative Healthcare Designs, LLC, Minneapolis, MN, USA
| | | | | | - Campos Carlos
- The University of Texas Health Science Center, San Antonio, TX, USA
| | - Birong Liao
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | |
Collapse
|
33
|
Battelino T, Dovč K. Glycemic Variability: The Danger of a Physiologically Stable Metric. J Clin Endocrinol Metab 2020; 105:dgaa486. [PMID: 32772083 PMCID: PMC7659040 DOI: 10.1210/clinem/dgaa486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dovč
- Department of Endocrinology, Diabetes and Metabolism, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
34
|
Battelino T, Bergenstal RM. Continuous Glucose Monitoring-Derived Data Report-Simply a Better Management Tool. Diabetes Care 2020; 43:2327-2329. [PMID: 32958615 DOI: 10.2337/dci20-0032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tadej Battelino
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia .,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Richard M Bergenstal
- International Diabetes Center at Park Nicollet and HealthPartners, Minneapolis, MN
| |
Collapse
|