1
|
Sheng T, Mang L, Wu Y, Zhu H, Ha C, Xiao S, Yu Z, Zhou Y. Functions of high glycemic index carbohydrates: Exploring the effect of amorphous rice starch digestibility on glycometabolism. Int J Biol Macromol 2025; 307:142287. [PMID: 40112968 DOI: 10.1016/j.ijbiomac.2025.142287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
The digestive characteristics of amorphous starch in cooked rice have rarely been studied from a metabolic perspective. This study explores the effects of cooked rice starch on glycometabolism in rats to explore the role of high glycemic index (GI) carbohydrates in the daily diet. Utilizing X-ray diffraction and Fourier transform infrared spectroscopy allowed the structure of amorphous starch to be probed, while rats were subjected to a long-term pre-prandial gavage intervention (glucose as a positive control and normal saline as a negative control) to assess the effects of high GI carbohydrates on glucose tolerance, insulin sensitivity, and markers of glucose metabolism in skeletal muscle (SIRT1, PGC-1α, GSK-3β, GLUT4). Results showed that high-GI carbohydrates significantly enhanced systemic insulin sensitivity, glucose tolerance, and skeletal muscle glucose metabolism. Waxy rice starch (WRS), containing a high amylopectin content (98.57 %), was found to be particularly effective due to its high rapidly digestible starch (RDS) content (66.01 %) and a GI of 102 after cooked into an amorphous state. Consequently, it can be concluded that a long-term moderate intake of amorphous rice starch induces the body to increase insulin sensitivity and improve glycometabolism. These findings emphasize the functional characteristics of high-GI starchy foods, offering a more profound understanding of carbohydrate-based diets.
Collapse
Affiliation(s)
- Tao Sheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Lai Mang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Hui Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Chuanzhi Ha
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Shixun Xiao
- Anhui Rural and Social Science and Technology Development Center, Hefei 230088, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Gupte M, Umbarkar P, Lemon J, Tousif S, Lal H. Animal models of haploinsufficiency revealed the isoform-specific role of GSK-3 in HFD-induced obesity and glucose intolerance. Am J Physiol Cell Physiol 2024; 327:C1349-C1358. [PMID: 39344416 PMCID: PMC11684859 DOI: 10.1152/ajpcell.00552.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Glycogen synthase kinase 3 (GSK-3), a serine-threonine kinase with two isoforms (α and β) is implicated in the pathogenesis of type 2 diabetes mellitus (T2D). Recently, we reported the isoform-specific role of GSK-3 in T2D using homozygous GSK-3α/β knockout mice. Although the homozygous inhibition models are idealistic in a preclinical setting, they do not mimic the inhibition seen with pharmacological agents. Hence, in this study, we sought to investigate the dose-response effect of GSK-3α/β inhibition in the pathogenesis of obesity-induced T2D. Specifically, to gain insight into the dose-response effect of GSK-3 isoforms in T2D, we generated tamoxifen-inducible global GSK-3α/β heterozygous mice. GSK-3α/β heterozygous and control mice were fed a high-fat diet (HFD) for 16 wk. At baseline, the body weight and glucose tolerance of GSK-3α heterozygous and controls were comparable. In contrast, at baseline, a modest but significantly higher body weight (higher lean mass) was seen in GSK-3β heterozygous compared with controls. Post-HFD, GSK-3α heterozygous and controls displayed a comparable phenotype. However, GSK-3β heterozygous were significantly protected against obesity-induced glucose intolerance. Interestingly, the improved glucose tolerance in GSK-3β heterozygous animals was dampened with chronic HFD-feeding, likely due to significantly higher fat mass and lower lean mass in the GSK-3β animals. These findings suggest that GSK-3β is the dominant isoform in glucose metabolism. However, to avail the metabolic benefits of GSK-3β inhibition, it is critical to maintain a healthy weight.NEW & NOTEWORTHY The precise isoform-specific role of GSK-3 in obesity-induced glucose intolerance is unclear. To overcome the limitations of pharmacological GSK-3 inhibitors (not isoform-specific) and tissue-specific genetic models, in the present study, we created novel inducible heterozygous mouse models of GSK-3 inhibition that allowed us to delete the gene globally in an isoform-specific and temporal manner to determine the isoform-specific role of GSK-3 in obesity-induced glucose intolerance.
Collapse
Affiliation(s)
- Manisha Gupte
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, United States
| | - Prachi Umbarkar
- Division of Cardiovascular Diseases, U.A.B. | University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jacob Lemon
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, United States
| | - Sultan Tousif
- Division of Cardiovascular Diseases, U.A.B. | University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hind Lal
- Division of Cardiovascular Diseases, U.A.B. | University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
3
|
Mathuram TL. GSK-3: An "Ace" Among Kinases. Cancer Biother Radiopharm 2024; 39:619-631. [PMID: 38746994 DOI: 10.1089/cbr.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024] Open
Abstract
Background: Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase known to participate in the regulation of β-catenin signaling (Wnt signaling). This aids in the establishment of a multicomponent destruction complex that stimulates phosphorylation, leading to the destruction of β-catenin. Evidence about the role of increasingly active β-catenin signaling is involved in many forms of human cancer. The understanding of GSK-3 remains elusive as recent research aims to focus on developing potent GSK-3 inhibitors to target this kinase. Objective: This short review aims to highlight the regulation of GSK-3 with emphasis on Wnt signaling while highlighting its interaction with miRNAs corresponding to pluripotency and epithelial mesenchymal transition substantiating this kinase as an "Ace" among kinases in regulation of cellular processes. Result: Significant findings of miRNA regulation by GSK-3 exemplify the underpinnings of kinase-mediated transcriptional regulation in cancers. Conclusion: The review provides evidence on the role of GSK-3 as a possible master regulator of proteins and noncoding RNA, thereby implicating the fate of a cell.
Collapse
|
4
|
Zhu D, Shi C, Sun S, Chen X, Xu Y, Wang B, Xu Z, Zhang P, Sun M. The SIRT3/GSK-3β/GLUT4 axis might be involved in maternal hypoxia-induced skeletal muscle insulin resistance in old male rat offspring. Toxicol Appl Pharmacol 2024; 489:117019. [PMID: 38950736 DOI: 10.1016/j.taap.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Maternal hypoxia is strongly linked to insulin resistance (IR) in adult offspring, and altered insulin signaling for muscle glucose uptake is thought to play a central role. However, whether the SIRT3/GSK-3β/GLUT4 axis is involved in maternal hypoxia-induced skeletal muscle IR in old male rat offspring has not been investigated. Maternal hypoxia was established from Days 5 to 21 of pregnancy by continuous infusion of nitrogen and air. The biochemical parameters and levels of key insulin signaling molecules of old male rat offspring were determined through a series of experiments. Compared to the control (Ctrl) old male rat offspring group, the hypoxic (HY) group exhibited elevated fasting blood glucose (FBG) (∼30%), fasting blood insulin (FBI) (∼35%), total triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), as well as results showing impairment in the glucose tolerance test (GTT) and insulin tolerance test (ITT). In addition, hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) revealed impaired cellular structures and mitochondria in the longitudinal sections of skeletal muscle from HY group mice, which might be associated with decreased SIRT3 expression. Furthermore, the expression of insulin signaling molecules, such as GSK-3β and GLUT4, was also altered. In conclusion, the present results indicate that the SIRT3/GSK-3β/GLUT4 axis might be involved in maternal hypoxia-induced skeletal muscle IR in old male rat offspring.
Collapse
Affiliation(s)
- Dan Zhu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Cuicui Shi
- Health Department of Soochow University Hospital, Soochow, China
| | - Shikun Sun
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Xionghui Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Yinkai Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Zhice Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Soochow, China
| | - Pengjie Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Soochow, China.
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Soochow, China.
| |
Collapse
|
5
|
Ryan AS, Li G, McMillin S, Ortmeyer HK. Sex differences in insulin regulation of skeletal muscle glycogen synthase and changes during weight loss and exercise in adults. Obesity (Silver Spring) 2024; 32:667-677. [PMID: 38414363 PMCID: PMC10965371 DOI: 10.1002/oby.23987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024]
Abstract
OBJECTIVE The authors sought to understand sex differences in muscle metabolism in 73 older men and women. METHODS Body composition, VO2max, and insulin sensitivity (M) by 3-hour hyperinsulinemic-euglycemic clamp with vastus lateralis muscle biopsies were measured. RESULTS Women had lower body weight, VO2max, and fat-free mass than men. Men had lower M, lower change (insulin minus basal) in muscle glycogen synthase (GS) activity, and lower change in AKT protein expression than women. M was associated with the change (insulin-basal) in GS activity and the change in AKT protein expression. Sex differences (n = 60) were tested with 6-month weight loss or 3×/week aerobic exercise training. The postintervention minus preintervention change (insulin-basal) (∆∆) in GS activity (fractional, independent, total) was higher in men than women in the weight loss group and ∆∆ in GS fractional activity was higher in women than men in the aerobic exercise group. In all participants, ∆∆ in GS fractional and independent activities was related to ∆∆ in AKT expression and glycogen content. CONCLUSIONS Sex differences in insulin sensitivity may be explained at the cellular muscle level, and to improve skeletal muscle insulin action in older adults, it may be necessary to recommend different behavioral strategies depending on the individual's sex.
Collapse
Affiliation(s)
- Alice S Ryan
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- VA Research Service, VA Maryland Health Care System, Baltimore, Maryland, USA
- Baltimore VA Medical Center Geriatric Research Education and Clinical Center (GRECC), Baltimore, Maryland, USA
| | - Guoyan Li
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shawna McMillin
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heidi K Ortmeyer
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore VA Medical Center Geriatric Research Education and Clinical Center (GRECC), Baltimore, Maryland, USA
| |
Collapse
|
6
|
Liang LL, He MF, Zhou PP, Pan SK, Liu DW, Liu ZS. GSK3β: A ray of hope for the treatment of diabetic kidney disease. FASEB J 2024; 38:e23458. [PMID: 38315453 DOI: 10.1096/fj.202302160r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3β (glycogen synthase kinase 3β), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3β participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3β in DKD and its damage mechanism in different intrinsic renal cells. GSK3β is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3β inhibitors on DKD are also discussed.
Collapse
Affiliation(s)
- Lu-Lu Liang
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Meng-Fei He
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Pan-Pan Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| |
Collapse
|
7
|
Murthy MHS, Jasbi P, Lowe W, Kumar L, Olaosebikan M, Roger L, Yang J, Lewinski N, Daniels N, Cowen L, Klein-Seetharaman J. Insulin signaling and pharmacology in humans and in corals. PeerJ 2024; 12:e16804. [PMID: 38313028 PMCID: PMC10838073 DOI: 10.7717/peerj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.
Collapse
Affiliation(s)
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Whitney Lowe
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | - Lokender Kumar
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | | | - Liza Roger
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- School of Ocean Futures, Arizona State University, Tempe, AZ, United States of America
| | - Jinkyu Yang
- Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, USA
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Noah Daniels
- Department of Computer Science, University of Rhode Island, Kingston, RI, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Judith Klein-Seetharaman
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
8
|
Jia YR, Guo ZQ, Guo Q, Wang XC. Glycogen Synthase Kinase-3β, NLRP3 Inflammasome, and Alzheimer's Disease. Curr Med Sci 2023; 43:847-854. [PMID: 37721665 DOI: 10.1007/s11596-023-2788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia worldwide. Because of the progressive neurodegeneration, individual cognitive and behavioral functions are impaired, affecting the quality of life of millions of people. Although the exact pathogenesis of AD has not been fully elucidated, amyloid plaques, neurofibrillary tangles (NFTs), and sustaining neuroinflammation dominate its characteristics. As one of the major tau kinases leading to hyperphosphorylation and aggregation of tau, glycogen synthase kinase-3β (GSK-3β) has been drawing great attention in various AD studies. Another research focus of AD in recent years is the inflammasome, a multiprotein complex acting as a regulator in immunological reactions to exogenous and endogenous danger signals, of which the Nod-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome has been studied mostly in AD and proven to play a significant role in AD development by its activation and downstream effects such as caspase-1 maturation and interleukin (IL)-1β release. Studies have shown that the NLRP3 inflammasome is activated in a GSK-3β-dependent way and that inhibition of the NLRP3 inflammasome downregulates GSK-3β, suggesting that these two important proteins are closely related. This article reviews the respective roles of GSK-3β and the NLRP3 inflammasome in AD as well as their relationship and interaction.
Collapse
Affiliation(s)
- Yue-Ran Jia
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zi-Qing Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
9
|
Guo H, Wu H, Hou Y, Hu P, Du J, Cao L, Yang R, Dong X, Li Z. Oat β-D-glucan ameliorates type II diabetes through TLR4/PI3K/AKT mediated metabolic axis. Int J Biol Macromol 2023; 249:126039. [PMID: 37516222 DOI: 10.1016/j.ijbiomac.2023.126039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Diabetes is one of the major global public health problems. Our previous results found that oat β-D-glucan exhibited ameliorative effects on diabetic mice, but the underlying mechanism is unclear. The present study indicates that oat β-D-glucan increased glycogen content, decreased glycogen synthase (GS) phosphorylation and increased hepatic glycogen synthase kinase 3β (GSK3β) phosphorylation for glycogen synthesis via PI3K/AKT/GSK3-mediated GS activation. Moreover, oat β-D-glucan inhibited gluconeogenesis through the PI3K/AKT/Foxo1-mediated phosphoenolpyruvate carboxykinase (PEPCK) decrease. In addition, oat β-D-glucan enhanced glucose catabolism through elevated protein levels of COQ9, UQCRC2, COXIV and ATP5F complexes involved in oxidative phosphorylation, as well as that of TFAM, a key regulator of mitochondrial gene expression. Importantly, our results showed that oat β-D-glucan maintained hepatic glucose balance via TLR4-mediated intracellular signal. After TLR4 blocking with anti-TLR4 antibody, oat β-D-glucan had almost no effect on high glucose-induced HepG2 cells. These data revealed that oat β-D-glucan maintains glucose balance by regulating the TLR4/PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030002, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030002, China
| | - YanBing Hou
- College of Life Science, Shanxi University, Taiyuan 030002, China
| | - Pengli Hu
- College of Life Science, Shanxi University, Taiyuan 030002, China
| | - Jine Du
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030002, China
| | - Lijia Cao
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030002, China
| | - Ruipeng Yang
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030002, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030000, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030002, China.
| |
Collapse
|
10
|
Hartz RA, Ahuja VT, Luo G, Chen L, Sivaprakasam P, Xiao H, Krause CM, Clarke WJ, Xu S, Tokarski JS, Kish K, Lewis H, Szapiel N, Ravirala R, Mutalik S, Nakmode D, Shah D, Burton CR, Macor JE, Dubowchik GM. Discovery of 2-(Anilino)pyrimidine-4-carboxamides as Highly Potent, Selective, and Orally Active Glycogen Synthase Kinase-3 (GSK-3) Inhibitors. J Med Chem 2023. [PMID: 37235865 DOI: 10.1021/acs.jmedchem.3c00364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that serves as an important regulator of a broad range of cellular functions. It has been linked to Alzheimer's disease as well as various other diseases, including mood disorders, type 2 diabetes, and cancer. There is considerable evidence indicating that GSK-3β in the central nervous system plays a role in the production of abnormal, hyperphosphorylated, microtubule-associated tau protein found in neurofibrillary tangles associated with Alzheimer's disease. A series of analogues containing a pyrimidine-based hinge-binding heterocycle was synthesized and evaluated, leading to the identification of highly potent GSK-3 inhibitors with excellent kinase selectivity. Further evaluation of 34 and 40 in vivo demonstrated that these compounds are orally bioavailable, brain-penetrant GSK-3 inhibitors that lowered levels of phosphorylated tau in a triple-transgenic mouse Alzheimer's disease model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ramu Ravirala
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sayali Mutalik
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Deepa Nakmode
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | | | | | | |
Collapse
|
11
|
Hartz RA, Ahuja VT, Sivaprakasam P, Xiao H, Krause CM, Clarke WJ, Kish K, Lewis H, Szapiel N, Ravirala R, Mutalik S, Nakmode D, Shah D, Burton CR, Macor JE, Dubowchik GM. Design, Structure-Activity Relationships, and In Vivo Evaluation of Potent and Brain-Penetrant Imidazo[1,2- b]pyridazines as Glycogen Synthase Kinase-3β (GSK-3β) Inhibitors. J Med Chem 2023; 66:4231-4252. [PMID: 36950863 DOI: 10.1021/acs.jmedchem.3c00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that regulates numerous cellular processes, including metabolism, proliferation, and cell survival. Due to its multifaceted role, GSK-3 has been implicated in a variety of diseases, including Alzheimer's disease, type 2 diabetes, cancer, and mood disorders. GSK-3β has been linked to the formation of the neurofibrillary tangles associated with Alzheimer's disease that arise from the hyperphosphorylation of tau protein. The design and synthesis of a series of imidazo[1,2-b]pyridazine derivatives that were evaluated as GSK-3β inhibitors are described herein. Structure-activity relationship studies led to the identification of potent GSK-3β inhibitors. In vivo studies with 47 in a triple-transgenic mouse Alzheimer's disease model showed that this compound is a brain-penetrant, orally bioavailable GSK-3β inhibitor that significantly lowered levels of phosphorylated tau.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ramu Ravirala
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sayali Mutalik
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Deepa Nakmode
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | | | | | | |
Collapse
|
12
|
Zeng L, Ng JKC, Fung WWS, Chan GCK, Chow KM, Szeto CC. Intrarenal and Urinary Glycogen Synthase Kinase-3 Beta Levels in Diabetic and Nondiabetic Chronic Kidney Disease. Kidney Blood Press Res 2023; 48:241-248. [PMID: 36940673 PMCID: PMC10158084 DOI: 10.1159/000530210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Renal glycogen synthase kinase-3 beta (GSK3β) overactivity has been associated with a diverse range of kidney diseases. GSK3β activity in urinary exfoliated cells was reported to predict the progression of diabetic kidney disease (DKD). We compared the prognostic value of urinary and intrarenal GSK3β levels in DKD and nondiabetic chronic kidney disease (CKD). METHODS We recruited 118 consecutive biopsy-proved DKD patients and 115 nondiabetic CKD patients. Their urinary and intrarenal GSK3β levels were measured. They were then followed for dialysis-free survival and rate of renal function decline. RESULTS DKD group had higher intrarenal and urinary GSK3β levels than nondiabetic CKD (p < 0.0001 for both), but their urinary GSK3β mRNA levels were similar. Urinary p-GSK3β level is statistically significantly correlated with the baseline estimated glomerular filtration rate (eGFR), but urinary GSK3β level by ELISA, its mRNA level, the p-GSK3β level, or the p-GSK3β/GSK3β ratio had no association with dialysis-free survival or the slope of eGFR decline. In contrast, the intrarenal pY216-GSK3β/total GSK3β ratio significantly correlated with the slope of eGFR decline (r = -0.335, p = 0.006) and remained an independent predictor after adjusting for other clinical factors. CONCLUSION Intrarenal and urinary GSK3β levels were increased in DKD. The intrarenal pY216-GSK3β/total GSK3β ratio was associated with the rate of progression of DKD. The pathophysiological roles of GSK3β in kidney diseases deserve further studies.
Collapse
Affiliation(s)
- Lingfeng Zeng
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong SAR
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Jack Kit-Chung Ng
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Winston Wing-Shing Fung
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Gordon Chun-Kau Chan
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Kai-Ming Chow
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Cheuk-Chun Szeto
- Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Shatin, Hong Kong SAR
- Li Ka Shing Institute of Health Sciences (LiHS), Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
13
|
Laiman J, Hsu YJ, Loh J, Tang WC, Chuang MC, Liu HK, Yang WS, Chen BC, Chuang LM, Chang YC, Liu YW. GSK3α phosphorylates dynamin-2 to promote GLUT4 endocytosis in muscle cells. J Cell Biol 2023; 222:e202102119. [PMID: 36445308 PMCID: PMC9712776 DOI: 10.1083/jcb.202102119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2022] Open
Abstract
Insulin-stimulated translocation of glucose transporter 4 (GLUT4) to plasma membrane of skeletal muscle is critical for postprandial glucose uptake; however, whether the internalization of GLUT4 is also regulated by insulin signaling remains unclear. Here, we discover that the activity of dynamin-2 (Dyn2) in catalyzing GLUT4 endocytosis is negatively regulated by insulin signaling in muscle cells. Mechanistically, the fission activity of Dyn2 is inhibited by binding with the SH3 domain of Bin1. In the absence of insulin, GSK3α phosphorylates Dyn2 to relieve the inhibition of Bin1 and promotes endocytosis. Conversely, insulin signaling inactivates GSK3α and leads to attenuated GLUT4 internalization. Furthermore, the isoform-specific pharmacological inhibition of GSK3α significantly improves insulin sensitivity and glucose tolerance in diet-induced insulin-resistant mice. Together, we identify a new role of GSK3α in insulin-stimulated glucose disposal by regulating Dyn2-mediated GLUT4 endocytosis in muscle cells. These results highlight the isoform-specific function of GSK3α on membrane trafficking and its potential as a therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Jessica Laiman
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Jung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Julie Loh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chun Tang
- ResearchCenter for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Kang Liu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Shun Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Bi-Chang Chen
- ResearchCenter for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Lee-Ming Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Cabezas D, Mellado G, Espinoza N, Gárate JA, Morales C, Castro-Alvarez A, Matos MJ, Mellado M, Mella J. In silico approaches to develop new phenyl-pyrimidines as glycogen synthase kinase 3 (GSK-3) inhibitors with halogen-bonding capabilities: 3D-QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2023; 41:13250-13259. [PMID: 36718094 DOI: 10.1080/07391102.2023.2172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) is involved in different diseases, such as manic-depressive illness, Alzheimer's disease and cancer. Studies have shown that insulin inhibits GSK-3 to keep glycogen synthase active. Inhibiting GSK-3 may have an indirect pro-insulin effect by favouring glycogen synthesis. Therefore, the development of GSK-3 inhibitors can be a useful alternative for the treatment of type II diabetes. Aminopyrimidine derivatives already proved to be interesting GSK-3 inhibitors. In the current study, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) have been performed on a series of 122 aminopyrimidine derivatives in order to generate a robust model for the rational design of new compounds with promising antidiabetic activity. The q2 values obtained for the best CoMFA and CoMSIA models have been 0.563 and 0.598, respectively. In addition, the r2 values have been 0.823 and 0.925 for CoMFA and CoMSIA, respectively. The models were statistically validated, and from the contour maps analysis, a proposal of 10 new compounds has been generated, with predicted pIC50 higher than 9. The final contribution of our work is that: (a) we provide an extensive structure-activity relationship for GSK-3 inhibitory pyrimidines; and (b) these models may speed up the discovery of GSK-3 inhibitors based on the aminopyrimidine scaffold. Finally, we carried out docking and molecular dynamics studies of the two best candidates, which were shown to establish halogen-bond interactions with the enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Cabezas
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Guido Mellado
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicolás Espinoza
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - José Antonio Gárate
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad San Sebastián, Santiago, Chile
| | - César Morales
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile
| | - Alejandro Castro-Alvarez
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Maria J Matos
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
15
|
Elekofehinti OO. Computer-aided identification of bioactive compounds from Gongronema latifolium leaf with therapeutic potential against GSK3β, PTB1B and SGLT2. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
16
|
Hamzé R, Delangre E, Tolu S, Moreau M, Janel N, Bailbé D, Movassat J. Type 2 Diabetes Mellitus and Alzheimer's Disease: Shared Molecular Mechanisms and Potential Common Therapeutic Targets. Int J Mol Sci 2022; 23:ijms232315287. [PMID: 36499613 PMCID: PMC9739879 DOI: 10.3390/ijms232315287] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3β and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic β-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Rim Hamzé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Etienne Delangre
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Stefania Tolu
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Manon Moreau
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Nathalie Janel
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Danielle Bailbé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Jamileh Movassat
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
- Correspondence: ; Tel.: +33-1-57-27-77-82; Fax: +33-1-57-27-77-91
| |
Collapse
|
17
|
Lv F, Wang Y, Shan D, Guo S, Chen G, Jin L, Zheng W, Feng H, Zeng X, Zhang S, Zhang Y, Hu X, Xiao RP. Blocking MG53 S255 Phosphorylation Protects Diabetic Heart From Ischemic Injury. Circ Res 2022; 131:962-976. [PMID: 36337049 PMCID: PMC9770150 DOI: 10.1161/circresaha.122.321055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND As an integral component of cell membrane repair machinery, MG53 (mitsugumin 53) is important for cardioprotection induced by ischemia preconditioning and postconditioning. However, it also impairs insulin signaling via its E3 ligase activity-mediated ubiquitination-dependent degradation of IR (insulin receptor) and IRS1 (insulin receptor substrate 1) and its myokine function-induced allosteric blockage of IR. Here, we sought to develop MG53 into a cardioprotection therapy by separating its detrimental metabolic effects from beneficial actions. METHODS Using immunoprecipitation-mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we investigated the role of MG53 phosphorylation at serine 255 (S255). In particular, utilizing recombinant proteins and gene knock-in approaches, we evaluated the potential therapeutic effect of MG53-S255A mutant in treating cardiac ischemia/reperfusion injury in diabetic mice. RESULTS We identified S255 phosphorylation as a prerequisite for MG53 E3 ligase activity. Furthermore, MG53S255 phosphorylation was mediated by GSK3β (glycogen synthase kinase 3 beta) and markedly elevated in the animal models with metabolic disorders. Thus, IR-IRS1-GSK3β-MG53 formed a vicious cycle in the pathogenesis of metabolic disorders where aberrant insulin signaling led to hyper-activation of GSK3β, which in turn, phosphorylated MG53 and enhanced its E3 ligase activity, and further impaired insulin sensitivity. Importantly, S255A mutant eliminated the E3 ligase activity while retained cell protective function of MG53. Consequently, the S255A mutant, but not the wild type MG53, protected the heart against ischemia/reperfusion injury in db/db mice with advanced diabetes, although both elicited cardioprotection in normal mice. Moreover, in S255A knock-in mice, S255A mutant also mitigated ischemia/reperfusion-induced myocardial damage in the diabetic setting. CONCLUSIONS S255 phosphorylation is a biased regulation of MG53 E3 ligase activity. The MG53-S255A mutant provides a promising approach for the treatment of acute myocardial injury, especially in patients with metabolic disorders.
Collapse
Affiliation(s)
- Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Yingfan Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Dan Shan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Sile Guo
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Wen Zheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Han Feng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Xiaohu Zeng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Shuo Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (F.L., Y.W., D.S., S.G., G.C., L.J., W.Z., H.F., X.Z., S.Z., Y.Z., X.H., R.-P.X.)
- Peking-Tsinghua Center for Life Sciences, Beijing, China (R.-P.X.)
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China (R.-P.X.)
| |
Collapse
|
18
|
Anti-diabetic and anti-hyperlipidemic effects of sea cucumber (Cucumaria frondosa) gonad hydrolysates in type II diabetic rats. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Kang CW, Park M, Lee HJ. Mulberry (Morus alba L.) Leaf Extract and 1-Deoxynojirimycin Improve Skeletal Muscle Insulin Resistance via the Activation of IRS-1/PI3K/Akt Pathway in db/db Mice. Life (Basel) 2022; 12:life12101630. [PMID: 36295064 PMCID: PMC9604886 DOI: 10.3390/life12101630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/26/2022] Open
Abstract
Mulberry (Morus alba L.) leaves have been used to lower blood glucose in patients with diabetes. We evaluated the effects of mulberry leaves extract (MLE) and 1-deoxynojirimycin (1-DNJ) in improving insulin resistance through the activation of the IRS-1/PI3K/Akt pathway in the skeletal muscle of db/db mice. Histological analysis revealed an amelioration of muscle deformation and increased muscle fiber size. MLE and 1-DNJ positively raised the protein expression of related glucose uptake and increased the translocation of glucose transporter type 4 (GLUT4) to the membrane. Furthermore, MLE and 1-DNJ activated the IRS-1/PI3K/Akt pathway in the skeletal muscle and, subsequently, modulated the protein levels of glycogen synthase kinase-3beta (GSK-3β) and glycogen synthase (GS), leading to elevated muscle glycogen content. These findings suggest that MLE and 1-DNJ supplementation improves insulin resistance by modulating the insulin signaling pathway in the skeletal muscle of db/db mice.
Collapse
Affiliation(s)
- Chae-Won Kang
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
| | - Miey Park
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Correspondence: (M.P.); (H.-J.L.); Tel.: +82-31-750-4409 (M.P.); +82-31-750-5968 (H.-J.L.); Fax: +82-31-724-4411 (H.-J.L.)
| | - Hae-Jeung Lee
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Correspondence: (M.P.); (H.-J.L.); Tel.: +82-31-750-4409 (M.P.); +82-31-750-5968 (H.-J.L.); Fax: +82-31-724-4411 (H.-J.L.)
| |
Collapse
|
20
|
Deletion of Macrophage-Specific Glycogen Synthase Kinase (GSK)-3α Promotes Atherosclerotic Regression in Ldlr−/− Mice. Int J Mol Sci 2022; 23:ijms23169293. [PMID: 36012557 PMCID: PMC9409307 DOI: 10.3390/ijms23169293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022] Open
Abstract
Recent evidence from our laboratory suggests that impeding ER stress–GSK3α/β signaling attenuates the progression and development of atherosclerosis in mouse model systems. The objective of this study was to determine if the tissue-specific genetic ablation of GSK3α/β could promote the regression of established atherosclerotic plaques. Five-week-old low-density lipoprotein receptor knockout (Ldlr−/−) mice were fed a high-fat diet for 16 weeks to promote atherosclerotic lesion formation. Mice were then injected with tamoxifen to induce macrophage-specific GSK3α/β deletion, and switched to standard diet for 12 weeks. All mice were sacrificed at 33 weeks of age and atherosclerosis was quantified and characterized. Female mice with induced macrophage-specific GSK3α deficiency, but not GSK3β deficiency, had reduced plaque volume (~25%) and necrosis (~40%) in the aortic sinus, compared to baseline mice. Atherosclerosis was also significantly reduced (~60%) in the descending aorta. Macrophage-specific GSK3α-deficient mice showed indications of increased plaque stability and reduced inflammation in plaques, as well as increased CCR7 and ABCA1 expression in lesional macrophages, consistent with regressive plaques. These results suggest that GSK3α ablation promotes atherosclerotic plaque regression and identify GSK3α as a potential target for the development of new therapies to treat existing atherosclerotic lesions in patients with cardiovascular disease.
Collapse
|
21
|
Hazegh Nikroo A, Lemmens LJM, Wezeman T, Ottmann C, Merkx M, Brunsveld L. Switchable Control of Scaffold Protein Activity via Engineered Phosphoregulated Autoinhibition. ACS Synth Biol 2022; 11:2464-2472. [PMID: 35765959 PMCID: PMC9295147 DOI: 10.1021/acssynbio.2c00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Scaffold proteins operate as organizing hubs to enable high-fidelity signaling, fulfilling crucial roles in the regulation of cellular processes. Bottom-up construction of controllable scaffolding platforms is attractive for the implementation of regulatory processes in synthetic biology. Here, we present a modular and switchable synthetic scaffolding system, integrating scaffold-mediated signaling with switchable kinase/phosphatase input control. Phosphorylation-responsive inhibitory peptide motifs were fused to 14-3-3 proteins to generate dimeric protein scaffolds with appended regulatory peptide motifs. The availability of the scaffold for intermolecular partner protein binding could be lowered up to 35-fold upon phosphorylation of the autoinhibition motifs, as demonstrated using three different kinases. In addition, a hetero-bivalent autoinhibitory platform design allowed for dual-kinase input regulation of scaffold activity. Reversibility of the regulatory platform was illustrated through phosphatase-controlled abrogation of autoinhibition, resulting in full recovery of 14-3-3 scaffold activity.
Collapse
Affiliation(s)
- Arjan Hazegh Nikroo
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Lenne J. M. Lemmens
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Tim Wezeman
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| |
Collapse
|
22
|
Seal SV, Henry M, Pajot C, Holuka C, Bailbé D, Movassat J, Darnaudéry M, Turner JD. A Holistic View of the Goto-Kakizaki Rat Immune System: Decreased Circulating Immune Markers in Non- Obese Type 2 Diabetes. Front Immunol 2022; 13:896179. [PMID: 35677049 PMCID: PMC9168276 DOI: 10.3389/fimmu.2022.896179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Type-2 diabetes is a complex disorder that is now considered to have an immune component, with functional impairments in many immune cell types. Type-2 diabetes is often accompanied by comorbid obesity, which is associated with low grade inflammation. However,the immune status in Type-2 diabetes independent of obesity remains unclear. Goto-Kakizaki rats are a non-obese Type-2 diabetes model. The limited evidence available suggests that Goto-Kakizaki rats have a pro-inflammatory immune profile in pancreatic islets. Here we present a detailed overview of the adult Goto-Kakizaki rat immune system. Three converging lines of evidence: fewer pro-inflammatory cells, lower levels of circulating pro-inflammatory cytokines, and a clear downregulation of pro-inflammatory signalling in liver, muscle and adipose tissues indicate a limited pro-inflammatory baseline immune profile outside the pancreas. As Type-2 diabetes is frequently associated with obesity and adipocyte-released inflammatory mediators, the pro-inflammatory milieu seems not due to Type-2 diabetes per se; although this overall reduction of immune markers suggests marked immune dysfunction in Goto-Kakizaki rats.
Collapse
Affiliation(s)
- Snehaa V Seal
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mathilde Henry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Clémentine Pajot
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Cyrielle Holuka
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Danielle Bailbé
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Jamileh Movassat
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Muriel Darnaudéry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
23
|
van der Kolk MR, Janssen MACH, Rutjes FPJT, Blanco‐Ania D. Cyclobutanes in Small-Molecule Drug Candidates. ChemMedChem 2022; 17:e202200020. [PMID: 35263505 PMCID: PMC9314592 DOI: 10.1002/cmdc.202200020] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Indexed: 11/13/2022]
Abstract
Cyclobutanes are increasingly used in medicinal chemistry in the search for relevant biological properties. Important characteristics of the cyclobutane ring include its unique puckered structure, longer C-C bond lengths, increased C-C π-character and relative chemical inertness for a highly strained carbocycle. This review will focus on contributions of cyclobutane rings in drug candidates to arrive at favorable properties. Cyclobutanes have been employed for improving multiple factors such as preventing cis/trans-isomerization by replacing alkenes, replacing larger cyclic systems, increasing metabolic stability, directing key pharmacophore groups, inducing conformational restriction, reducing planarity, as aryl isostere and filling hydrophobic pockets.
Collapse
Affiliation(s)
- Marnix R. van der Kolk
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Mathilde A. C. H. Janssen
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Floris P. J. T. Rutjes
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| | - Daniel Blanco‐Ania
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356526 AJNijmegenThe Netherlands
| |
Collapse
|
24
|
Wang DS, Wang JM, Zhang FR, Lei FJ, Wen X, Song J, Sun GZ, Liu Z. Ameliorative Effects of Malonyl Ginsenoside from Panax ginseng on Glucose-Lipid Metabolism and Insulin Resistance via IRS1/PI3K/Akt and AMPK Signaling Pathways in Type 2 Diabetic Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:863-882. [PMID: 35282802 DOI: 10.1142/s0192415x22500367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our previous study has revealed that malonyl-ginsenosides from Panax ginseng (PG-MGR) play a crucial role in the treatment of T2DM. However, its potential mechanism was still unclear. In this study, we investigated the anti-diabetic mechanisms of action of PG-MGR in high fat diet-fed (HFD) and streptozotocin-induced diabetic mice and determined the main constituents of PG-MGR responsible for its anti-diabetic effects. Our results showed that 16 malonyl ginsenosides were identified in PG-MGR by HPLC-ESI-MS/MS. PG-MGR treatment significantly reduced fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels and improved insulin resistance and glucose tolerance. Simultaneously, PG-MGR treatment improved liver injury by decreasing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) expression. Furthermore, Western blot analysis demonstrated that the protein expression levels of p-PI3K/PI3K, p-AKT/AKT, p-AMPK/AMPK, p-ACC/ACC and GLUT4 in liver and skeletal muscle were significantly up-regulated after PG-MGR treatment, and the protein expression levels of p-IRS-1/IRS-1, Fas and SREBP-1c were significantly reduced. These findings revealed that PG-MGR has the potential to improve glucose and lipid metabolism and insulin resistance by activating the IRS-1/PI3K/AKT and AMPK signal pathways.
Collapse
Affiliation(s)
- Dong-Sheng Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jia-Mei Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Fu-Rui Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Feng-Jie Lei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xin Wen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jia Song
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Guang-Zhi Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| |
Collapse
|
25
|
Development of inhibitors targeting glycogen synthase kinase-3β for human diseases: Strategies to improve selectivity. Eur J Med Chem 2022; 236:114301. [PMID: 35390715 DOI: 10.1016/j.ejmech.2022.114301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a conserved serine/threonine kinase that participates in the transmission of multiple signaling pathways and plays an important role in the occurrence and development of human diseases, such as metabolic diseases, neurological diseases and cancer, making it to be a potential and promising drug target. To date, copious GSK-3β inhibitors have been synthesized, but only few have entered clinical trials. Most of them exerts poor selectivity, concomitant off-target effects and side effects. This review summarizes the structural characteristics, biological functions and relationship with diseases of GSK-3β, as well as the selectivity profile and therapeutic potential of different categories of GSK-3β inhibitors. Strategies for increasing selectivity and reducing adverse effects are proposed for the future design of GSK-3β inhibitors.
Collapse
|
26
|
Gupte M, Tousif S, Lemon JJ, Toro Cora A, Umbarkar P, Lal H. Isoform-Specific Role of GSK-3 in High Fat Diet Induced Obesity and Glucose Intolerance. Cells 2022; 11:cells11030559. [PMID: 35159367 PMCID: PMC8834358 DOI: 10.3390/cells11030559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity-associated metabolic disorders are rising to pandemic proportions; hence, there is an urgent need to identify underlying molecular mechanisms. Glycogen synthase kinase-3 (GSK-3) signaling is highly implicated in metabolic diseases. Furthermore, GSK-3 expression and activity are increased in Type 2 diabetes patients. However, the isoform-specific role of GSK-3 in obesity and glucose intolerance is unclear. Pharmacological GSK-3 inhibitors are not isoform-specific, and tissue-specific genetic models are of limited value to predict the clinical outcome of systemic inhibiion. To overcome these limitations, we created novel mouse models of ROSA26CreERT2-driven, tamoxifen-inducible conditional deletion of GSK-3 that allowed us to delete the gene globally in an isoform-specific and temporal manner. Isoform-specific GSK-3 KOs and littermate controls were subjected to a 16-week high-fat diet (HFD) protocol. On an HFD, GSK-3α KO mice had a significantly lower body weight and modest improvement in glucose tolerance compared to their littermate controls. In contrast, GSK-3β-deletion-mediated improved glucose tolerance was evident much earlier in the timeline and extended up to 12 weeks post-HFD. However, this protective effect weakened after chronic HFD (16 weeks) when GSK-3β KO mice had a significantly higher body weight compared to controls. Importantly, GSK-3β KO mice on a control diet maintained significant improvement in glucose tolerance even after 16 weeks. In summary, our novel mouse models allowed us to delineate the isoform-specific role of GSK-3 in obesity and glucose tolerance. From a translational perspective, our findings underscore the importance of maintaining a healthy weight in patients receiving lithium therapy, which is thought to work by GSK-3 inhibition mechanisms.
Collapse
Affiliation(s)
- Manisha Gupte
- Department of Biology, Austin Peay State University, Clarksville, TN 37044, USA;
- Correspondence: (M.G.); (H.L.)
| | - Sultan Tousif
- Division of Cardiovascular Diseases, The University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA; (S.T.); (A.T.C.); (P.U.)
| | - Jacob J. Lemon
- Department of Biology, Austin Peay State University, Clarksville, TN 37044, USA;
| | - Angelica Toro Cora
- Division of Cardiovascular Diseases, The University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA; (S.T.); (A.T.C.); (P.U.)
| | - Prachi Umbarkar
- Division of Cardiovascular Diseases, The University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA; (S.T.); (A.T.C.); (P.U.)
| | - Hind Lal
- Division of Cardiovascular Diseases, The University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA; (S.T.); (A.T.C.); (P.U.)
- Correspondence: (M.G.); (H.L.)
| |
Collapse
|
27
|
Bala A, Roy S, Das D, Marturi V, Mondal C, Patra S, Haldar PK, Samajdar G. Role of Glycogen Synthase Kinase-3 in the Etiology of Type 2 Diabetes Mellitus: A Review. Curr Diabetes Rev 2022; 18:e300721195147. [PMID: 34376135 DOI: 10.2174/1573399817666210730094225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
The risk of type 2 diabetes mellitus (T2DM) is increasing abundantly due to lifestyle-related obesity and associated cardiovascular problems. Presently, Glycogen synthase kinase-3 (GSK-3) has gained considerable attention from biomedical scientists to treat diabetes. Phosphorylation of GSK-3 permits a number of cellular activities like regulation of cell signaling, cellular metabolism, cell proliferation and cellular transport. Inhibiting GSK-3 activity by pharmacological intervention has become an important strategy for the management of T2DM. This review focuses on the schematic representation of fundamental GSK-3 enzymology and encompasses the GSK-3 inhibitors as a future therapeutic lead target for the management of T2DM that may significantly regulate insulin sensitivity to insulin receptor, glycogen synthesis and glucose metabolism. The various signaling mechanisms of inhibiting the GSK-3 by describing insulin signaling through Insulin Receptor Substrate (IRS-1), Phosphatidylinositol-3 Kinase (PI3K) and Protein Kinase B (PKB/ AKT) pathways that may hopefully facilitate the pharmacologist to design for antidiabetic drug evaluation model in near future have also been highlighted.
Collapse
Affiliation(s)
- Asis Bala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, EPIP Campus, Hajipur, Bihar 844102, India
- Division of Pharmacology and Toxicology, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Road, Panihati, Sodepur, Kolkata-700114; India
| | - Susmita Roy
- Division of Pharmacology and Toxicology, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Road, Panihati, Sodepur, Kolkata-700114; India
| | - Debanjana Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Campus, Hajipur, Bihar 844102, India
| | - Venkatesh Marturi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, EPIP Campus, Hajipur, Bihar 844102, India
| | - Chaitali Mondal
- TCG Life Sciences (Chembiotek) Pvt. Ltd., Sector V, Salt Lake Electronics Complex, Kolkata, West Bengal 700091, India
| | - Susmita Patra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Pallab Kanti Haldar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Gourav Samajdar
- Division of Pharmacology and Toxicology, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Road, Panihati, Sodepur, Kolkata-700114; India
| |
Collapse
|
28
|
Pathways in Skeletal Muscle: Protein Signaling and Insulin Sensitivity after Exercise Training and Weight Loss Interventions in Middle-Aged and Older Adults. Cells 2021; 10:cells10123490. [PMID: 34943997 PMCID: PMC8700073 DOI: 10.3390/cells10123490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022] Open
Abstract
Aging and obesity contribute to insulin resistance with skeletal muscle being critically important for maintaining whole-body glucose homeostasis. Both exercise and weight loss are lifestyle interventions that can affect glucose metabolism. The purpose of this study was to examine the effects of a six-month trial of aerobic exercise training or weight loss on signaling pathways in skeletal muscle in the basal condition and during hyperinsulinemia during a glucose clamp in middle-aged and older adults. Overweight and obese men and women aged 50–70 years were randomly allocated and completed six months of either weight loss (WL) (n = 18) or 3x/week aerobic exercise training (AEX) (n = 17). WL resulted in 10% weight loss and AEX increased maximal oxygen consumption (VO2max) (both p < 0.001). Insulin sensitivity (hyperinsulinemic-euglycemic 80 mU·m−2·min−1 clamp) increased in WL and AEX (both p < 0.01). In vivo insulin stimulation increased phosphorylation/total protein ratio (P/T) of protein kinase B (Akt), glycogen synthase kinase 3 beta (GSK-β3), 70 kDa ribosomal protein S6 kinase (p70S6k), insulin receptor substrate 1 (IRS-1), and insulin receptor (IR) expression (all p < 0.05) but not P/T extracellular regulated kinase ½ (ERK1/2), c-jun N-terminal kinases (JNK), p38 mitogen-activated protein kinases (p38), or insulin-like growth factor 1 receptor (IGF-1R). There were differences between WL and AEX in the change in basal Akt P/T (p = 0.05), GSK-3β P/T ratio (p < 0.01), p70S6k (p < 0.001), ERK1/2 (p = 0.01) P/T ratio but not p38, JNK, IRS-1, and IGF-1R P/T ratios. There was a difference between WL and AEX in the insulin stimulation changes in GSK3 which increased more after WL than AEX (p < 0.05). In the total group, changes in M were associated with changes in basal total GSK-3β and basal total p70Sk as well as insulin stimulation of total p70Sk. Protein signaling in skeletal muscle provides insight as to mechanisms for improvements in insulin sensitivity in aging and obesity.
Collapse
|
29
|
He Z, You G, Liu Q, Li N. Alzheimer's Disease and Diabetes Mellitus in Comparison: The Therapeutic Efficacy of the Vanadium Compound. Int J Mol Sci 2021; 22:ijms222111931. [PMID: 34769364 PMCID: PMC8584792 DOI: 10.3390/ijms222111931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is an intractable neurodegenerative disease that leads to dementia, primarily in elderly people. The neurotoxicity of amyloid-beta (Aβ) and tau protein has been demonstrated over the last two decades. In line with these findings, several etiological hypotheses of AD have been proposed, including the amyloid cascade hypothesis, the oxidative stress hypothesis, the inflammatory hypothesis, the cholinergic hypothesis, et al. In the meantime, great efforts had been made in developing effective drugs for AD. However, the clinical efficacy of the drugs that were approved by the US Food and Drug Association (FDA) to date were determined only mild/moderate. We recently adopted a vanadium compound bis(ethylmaltolato)-oxidovanadium (IV) (BEOV), which was originally used for curing diabetes mellitus (DM), to treat AD in a mouse model. It was shown that BEOV effectively reduced the Aβ level, ameliorated the inflammation in brains of the AD mice, and improved the spatial learning and memory activities of the AD mice. These finding encouraged us to further examine the mechanisms underlying the therapeutic effects of BEOV in AD. In this review, we summarized the achievement of vanadium compounds in medical studies and investigated the prospect of BEOV in AD and DM treatment.
Collapse
Affiliation(s)
- Zhijun He
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
| | - Guanying You
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Nan Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-(0)755-2653-5432; Fax: +86-(0)755-8671-3951
| |
Collapse
|
30
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
31
|
O'Reilly CL, Uranga S, Fluckey JD. Culprits or consequences: Understanding the metabolic dysregulation of muscle in diabetes. World J Biol Chem 2021; 12:70-86. [PMID: 34630911 PMCID: PMC8473417 DOI: 10.4331/wjbc.v12.i5.70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) continues to rise despite the amount of research dedicated to finding the culprits of this debilitating disease. Skeletal muscle is arguably the most important contributor to glucose disposal making it a clear target in insulin resistance and T2D research. Within skeletal muscle there is a clear link to metabolic dysregulation during the progression of T2D but the determination of culprits vs consequences of the disease has been elusive. Emerging evidence in skeletal muscle implicates influential cross talk between a key anabolic regulatory protein, the mammalian target of rapamycin (mTOR) and its associated complexes (mTORC1 and mTORC2), and the well-described canonical signaling for insulin-stimulated glucose uptake. This new understanding of cellular signaling crosstalk has blurred the lines of what is a culprit and what is a consequence with regard to insulin resistance. Here, we briefly review the most recent understanding of insulin signaling in skeletal muscle, and how anabolic responses favoring anabolism directly impact cellular glucose disposal. This review highlights key cross-over interactions between protein and glucose regulatory pathways and the implications this may have for the design of new therapeutic targets for the control of glucoregulatory function in skeletal muscle.
Collapse
Affiliation(s)
| | - Selina Uranga
- Health and Kinesiology, Texas A&M University, TX 77843, United States
| | - James D Fluckey
- Health and Kinesiology, Texas A&M University, TX 77843, United States
| |
Collapse
|
32
|
Ullah A, Ali N, Ahmad S, Rahman SU, Alghamdi S, Bannunah AM, Ali R, Aman A, Khan J, Hussain H, Sahibzada MUK. Glycogen synthase kinase-3 (GSK-3) a magic enzyme: it's role in diabetes mellitus and glucose homeostasis, interactions with fluroquionlones. A mini-review. BRAZ J BIOL 2021; 83:e250179. [PMID: 34524376 DOI: 10.1590/1519-6984.250179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/01/2021] [Indexed: 01/08/2023] Open
Abstract
Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimer's disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.
Collapse
Affiliation(s)
- A Ullah
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan.,Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - N Ali
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - S Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - S U Rahman
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - S Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - A M Bannunah
- Department of Basic Sciences, Common First year Deanship, Umm Al-Qura University, Makkah, Saudi Arabia
| | - R Ali
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - A Aman
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - J Khan
- Department of Pharmacy, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - H Hussain
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - M U K Sahibzada
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
33
|
Zhao M, Shen L, Ouyang Z, Li M, Deng G, Yang C, Zheng W, Kong L, Wu X, Wu X, Guo W, Yin Y, Xu Q, Sun Y. Loss of hnRNP A1 in murine skeletal muscle exacerbates high-fat diet-induced onset of insulin resistance and hepatic steatosis. J Mol Cell Biol 2021; 12:277-290. [PMID: 31169879 PMCID: PMC7232127 DOI: 10.1093/jmcb/mjz050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/14/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Impairment of glucose (Glu) uptake and storage by skeletal muscle is a prime risk factor for the development of metabolic diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a highly abundant RNA-binding protein that has been implicated in diverse cellular functions. The aim of this study was to investigate the function of hnRNP A1 on muscle tissue insulin sensitivity and systemic Glu homeostasis. Our results showed that conditional deletion of hnRNP A1 in the muscle gave rise to a severe insulin resistance phenotype in mice fed a high-fat diet (HFD). Conditional knockout mice fed a HFD showed exacerbated obesity, insulin resistance, and hepatic steatosis. In vitro interference of hnRNP A1 in C2C12 myotubes impaired insulin signal transduction and inhibited Glu uptake, whereas hnRNP A1 overexpression in C2C12 myotubes protected against insulin resistance induced by supraphysiological concentrations of insulin. The expression and stability of glycogen synthase (gys1) mRNA were also decreased in the absence of hnRNP A1. Mechanistically, hnRNP A1 interacted with gys1 and stabilized its mRNA, thereby promoting glycogen synthesis and maintaining the insulin sensitivity in muscle tissue. Taken together, our findings are the first to show that reduced expression of hnRNP A1 in skeletal muscle affects the metabolic properties and systemic insulin sensitivity by inhibiting glycogen synthesis.
Collapse
Affiliation(s)
- Mingxia Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lihong Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zijun Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Manru Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
34
|
Bonnet C, Brahmbhatt A, Deng SX, Zheng JJ. Wnt signaling activation: targets and therapeutic opportunities for stem cell therapy and regenerative medicine. RSC Chem Biol 2021; 2:1144-1157. [PMID: 34458828 PMCID: PMC8341040 DOI: 10.1039/d1cb00063b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Wnt proteins are secreted morphogens that play critical roles in embryonic development, stem cell proliferation, self-renewal, tissue regeneration and remodeling in adults. While aberrant Wnt signaling contributes to diseases such as cancer, activation of Wnt/β-catenin signaling is a target of interest in stem cell therapy and regenerative medicine. Recent high throughput screenings from chemical and biological libraries, combined with improved gene expression reporter assays of Wnt/β-catenin activation together with rational drug design, led to the development of a myriad of Wnt activators, with different mechanisms of actions. Among them, Wnt mimics, antibodies targeting Wnt inhibitors, glycogen-synthase-3β inhibitors, and indirubins and other natural product derivatives are emerging modalities to treat bone, neurodegenerative, eye, and metabolic disorders, as well as prevent ageing. Nevertheless, the creation of Wnt-based therapies has been hampered by challenges in developing potent and selective Wnt activators without off-target effects, such as oncogenesis. On the other hand, to avoid these risks, their use to promote ex vivo expansion during tissue engineering is a promising application.
Collapse
Affiliation(s)
- Clémence Bonnet
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Paris University, Centre de Recherche des Cordeliers, and Cornea Departement, Cochin Hospital, AP-HP F-75014 Paris France
| | - Anvi Brahmbhatt
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| | - Jie J Zheng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| |
Collapse
|
35
|
Patel S, Werstuck G. Characterizing the Role of Glycogen Synthase Kinase-3α/β in Macrophage Polarization and the Regulation of Pro-Atherogenic Pathways in Cultured Ldlr -/- Macrophages. Front Immunol 2021; 12:676752. [PMID: 34394077 PMCID: PMC8361494 DOI: 10.3389/fimmu.2021.676752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Abstract
The molecular and cellular mechanisms that link cardiovascular risk factors to the initiation and progression of atherosclerosis are not understood. Recent findings from our laboratory indicate that endoplasmic reticulum (ER) stress signaling through glycogen synthase kinase (GSK)-3α/β induces pro-atherosclerotic pathways. The objective of this study was to define the specific roles of GSK3α and GSK3β in the activation of pro-atherogenic processes in macrophages. Bone marrow derived macrophages (BMDM) were isolated from low-density lipoprotein receptor knockout (Ldlr-/-) mice and Ldlr-/- mice with myeloid deficiency of GSK3α and/or GSK3β. M1 and M2 macrophages were used to examine functions relevant to the development of atherosclerosis, including polarization, inflammatory response, cell viability, lipid accumulation, migration, and metabolism. GSK3α deficiency impairs M1 macrophage polarization, and reduces the inflammatory response and lipid accumulation, but increases macrophage mobility/migration. GSK3β deficiency promotes M1 macrophage polarization, which further increases the inflammatory response and lipid accumulation, but decreases macrophage migration. Macrophages deficient in both GSK3α and GSK3β exhibit increased cell viability, proliferation, and metabolism. These studies begin to delineate the specific roles of GSK3α and GSK3β in macrophage polarization and function. These data suggest that myeloid cell GSK3α signaling regulates M1 macrophage polarization and pro-atherogenic functions to promote atherosclerosis development.
Collapse
Affiliation(s)
- Sarvatit Patel
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Geoff Werstuck
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
36
|
Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021; 82:71-105. [PMID: 34024838 DOI: 10.3233/jad-210234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost 115 years ago, Alois Alzheimer described Alzheimer's disease (AD) for the first time. Since then, many hypotheses have been proposed. However, AD remains a severe health public problem. The current medical approaches for AD are limited to symptomatic interventions and the complexity of this disease has led to a failure rate of approximately 99.6%in AD clinical trials. In fact, no new drug has been approved for AD treatment since 2003. These failures indicate that we are failing in mimicking this disease in experimental models. Although most studies have focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost opportunities. In this review, we aim to present the striking points of the long scientific path followed since the description of the first AD case and the main AD hypotheses discussed over the last decades. We also propose insulin resistance as a common link between many other hypotheses.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Rui Milton Patrício da Silva-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School -University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Melita Šalković-Petrišić
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil.,Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
37
|
Gong L, Zou Z, Liu L, Guo S, Xing D. Photobiomodulation therapy ameliorates hyperglycemia and insulin resistance by activating cytochrome c oxidase-mediated protein kinase B in muscle. Aging (Albany NY) 2021; 13:10015-10033. [PMID: 33795530 PMCID: PMC8064177 DOI: 10.18632/aging.202760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/25/2020] [Indexed: 12/27/2022]
Abstract
Ameliorating hyperglycemia and insulin resistance are major therapeutic strategies for type 2 diabetes. Previous studies have indicated that photobiomodulation therapy (PBMT) attenuates metabolic abnormalities in insulin-resistant adipose cells and tissues. However, it remains unclear whether PBMT ameliorates glucose metabolism in skeletal muscle in type 2 diabetes models. Here we showed that PBMT reduced blood glucose and insulin resistance, and reversed metabolic abnormalities in skeletal muscle in two diabetic mouse models. PBMT accelerated adenosine triphosphate (ATP) and reactive oxygen species (ROS) generation by elevating cytochrome c oxidase (CcO) activity. ROS-induced activation of phosphatase and tensin homolog (PTEN)/ protein kinase B (AKT) signaling after PBMT promoted glucose transporter GLUT4 translocation and glycogen synthase (GS) activation, accelerating glucose uptake and glycogen synthesis in skeletal muscle. CcO subunit III deficiency, ROS elimination, and AKT inhibition suppressed the PBMT effects of glucose metabolism in skeletal muscle. This study indicated amelioration of glucose metabolism after PBMT in diabetic mouse models and revealed the metabolic regulatory effects and mechanisms of PBMT on skeletal muscle.
Collapse
Affiliation(s)
- Longlong Gong
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China.,College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China.,College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lei Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Shuang Guo
- College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China.,College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
38
|
Budhram-Mahadeo VS, Solomons MR, Mahadeo-Heads EAO. Linking metabolic dysfunction with cardiovascular diseases: Brn-3b/POU4F2 transcription factor in cardiometabolic tissues in health and disease. Cell Death Dis 2021; 12:267. [PMID: 33712567 PMCID: PMC7955040 DOI: 10.1038/s41419-021-03551-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Metabolic and cardiovascular diseases are highly prevalent and chronic conditions that are closely linked by complex molecular and pathological changes. Such adverse effects often arise from changes in the expression of genes that control essential cellular functions, but the factors that drive such effects are not fully understood. Since tissue-specific transcription factors control the expression of multiple genes, which affect cell fate under different conditions, then identifying such regulators can provide valuable insight into the molecular basis of such diseases. This review explores emerging evidence that supports novel and important roles for the POU4F2/Brn-3b transcription factor (TF) in controlling cellular genes that regulate cardiometabolic function. Brn-3b is expressed in insulin-responsive metabolic tissues (e.g. skeletal muscle and adipose tissue) and is important for normal function because constitutive Brn-3b-knockout (KO) mice develop profound metabolic dysfunction (hyperglycaemia; insulin resistance). Brn-3b is highly expressed in the developing hearts, with lower levels in adult hearts. However, Brn-3b is re-expressed in adult cardiomyocytes following haemodynamic stress or injury and is necessary for adaptive cardiac responses, particularly in male hearts, because male Brn-3b KO mice develop adverse remodelling and reduced cardiac function. As a TF, Brn-3b regulates the expression of multiple target genes, including GLUT4, GSK3β, sonic hedgehog (SHH), cyclin D1 and CDK4, which have known functions in controlling metabolic processes but also participate in cardiac responses to stress or injury. Therefore, loss of Brn-3b and the resultant alterations in the expression of such genes could potentially provide the link between metabolic dysfunctions with adverse cardiovascular responses, which is seen in Brn-3b KO mutants. Since the loss of Brn-3b is associated with obesity, type II diabetes (T2DM) and altered cardiac responses to stress, this regulator may provide a new and important link for understanding how pathological changes arise in such endemic diseases.
Collapse
Affiliation(s)
- Vishwanie S Budhram-Mahadeo
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.
| | - Matthew R Solomons
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Eeshan A O Mahadeo-Heads
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.,College of Medicine and Health, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
39
|
Patel S, Werstuck GH. Macrophage Function and the Role of GSK3. Int J Mol Sci 2021; 22:ijms22042206. [PMID: 33672232 PMCID: PMC7926541 DOI: 10.3390/ijms22042206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/18/2023] Open
Abstract
Macrophages are present in nearly all vertebrate tissues, where they respond to a complex variety of regulatory signals to coordinate immune functions involved in tissue development, metabolism, homeostasis, and repair. Glycogen synthase kinase 3 (GSK3) is a ubiquitously expressed protein kinase that plays important roles in multiple pathways involved in cell metabolism. Dysregulation of GSK3 has been implicated in several prevalent metabolic disorders, and recent findings have highlighted the importance of GSK3 activity in the regulation of macrophages, especially with respect to the initiation of specific pathologies. This makes GSK3 a potential therapeutic target for the development of novel drugs to modulate immunometabolic responses. Here, we summarize recent findings that have contributed to our understanding of how GSK3 regulates macrophage function, and we discuss the role of GSK3 in the development of metabolic disorders and diseases.
Collapse
Affiliation(s)
- Sarvatit Patel
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L9L 2X2, Canada;
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Geoff H. Werstuck
- Thrombosis and Atherosclerosis Research Institute, 237 Barton Street E, Hamilton, ON L9L 2X2, Canada;
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Correspondence: ; Tel.: +1-905-521-2100 (ext. 40747)
| |
Collapse
|
40
|
Reddy VS, Pandarinath S, Archana M, Reddy GB. Impact of chronic hyperglycemia on Small Heat Shock Proteins in diabetic rat brain. Arch Biochem Biophys 2021; 701:108816. [PMID: 33631184 DOI: 10.1016/j.abb.2021.108816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
Small heat shock proteins (sHsps) are a family of proteins. Some are induced in response to multiple stimuli and others are constitutively expressed. They are involved in fundamental cellular processes, including protein folding, apoptosis, and maintenance of cytoskeletal integrity. Hyperglycemia created during diabetes leads to neuronal derangements in the brain. In this study, we investigated the impact of chronic hyperglycemia on the expression of sHsps and heat shock transcription factors (HSFs), solubility and aggregation of sHsps and amyloidogenic proteins, and their role in neuronal apoptosis in a diabetic rat model. Diabetes was induced in Sprague-Dawley rats with streptozotocin and hyperglycemia was maintained for 16 weeks. Expressions of sHsps and HSFs were analyzed by qRT-PCR and immunoblotting in the cerebral cortex. Solubility of sHsps and amyloidogenic proteins, including α-synuclein and Tau, was analyzed by the detergent soluble assay. Neuronal cell death was analyzed by TUNEL staining and apoptotic markers. The interaction of sHsps with amyloidogenic proteins and Bax was assessed using co-immunoprecipitation. Hyperglycemia decreased Hsp27 and HSF1, and increased αBC, Hsp22, and HSF4 levels at transcript and protein levels. Diabetes induced the aggregation of αBC, Hsp22, α-synuclein, and pTau, as their levels were higher in the insoluble fraction. Additionally, diabetes impaired the interaction of αBC with α-synuclein and pTau. Furthermore, diabetes reduced the interaction of αBC with Bax, which may possibly contribute to neuronal apoptosis. Together, these results indicate that chronic hyperglycemia induces differential responses of sHsps by altering their expression, solubility, interaction, and roles in apoptosis.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - S Pandarinath
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - M Archana
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | |
Collapse
|
41
|
Lohning A, Kidachi Y, Kamiie K, Sasaki K, Ryoyama K, Yamaguchi H. 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) from Wasabia japonica alleviates inflammatory bowel disease (IBD) by potential inhibition of glycogen synthase kinase 3 beta (GSK-3β). Eur J Med Chem 2021; 216:113250. [PMID: 33691258 DOI: 10.1016/j.ejmech.2021.113250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) describes a set of disorders involving alterations to gastrointestinal physiology and mucosal immunity. Unravelling its complex pathophysiology is important since many IBD patients are refractory to or suffer adverse side effects from current treatments. Isothiocyanates (ITCs), such as 6-(methylsulfinyl)hexyl ITC (6-MITC) in Wasabia japonica, have potential anti-inflammatory activity. We aimed to elucidate the pathways through which 6-MITC alleviates inflammation by examining its role in the nuclear factor-kappa B (NF-κB) pathway through inhibition of glycogen synthase kinase 3 beta (GSK-3β) using a chemically induced murine model of IBD, cell-based and in silico techniques. The effects of 6-MITC and two NF-κB inhibitors, sulfasalazine (SS), pyrrolidine dithiolcarbamate (PDTC) were investigated on a dextran sulfate sodium (DSS)-induced murine mouse model of acute and chronic colitis using macroscopic measurements and pro-inflammatory markers. The effect of 6-MITC on NF-κB induction was assessed using a murine macrophage cell line. Complexes of GSK-3β-6-MITC and GSK-3β-ATP were generated in silico to elucidate the mechanism of 6-MITC's direct inhibition of GSK-3β. Changes in pro-inflammatory markers, inducible nitric oxide synthase (iNOS) (increased) and interleukin-6 (IL-6) (decreased) demonstrated that iNOS regulation occurred at the translational level. Intraperitoneal (ip) injection of 6-MITC to the colitis-induced mice ameliorated weight loss whereas oral administration had negligible effect. Fecal blood and colon weight/length ratio parameters improved on treatment with 6-MITC and the other NF-κB inhibitors. Levels of NF-κB decreased upon addition of 6-MITC in vitro while structural studies showed 6-MITC acts competitively to inhibit GSK-3β at the ATP binding site. In this study we demonstrated that 6-MITC inhibits NF-κB signaling via GSK-3β inhibition ameliorating fecal blood, colonic alterations and DSS-induced weight loss indirectly indicating reduced intestinal stress. Taken together these results suggest a role for 6-MITC in the treatment of IBD acting to alleviate inflammation through the GSK-3β/NF-κB pathway. Furthermore, the GSK-3β-6-MITC model can be utilized as a basis for development of novel therapeutics targeting GSK-3β for use in other disorders including cancer.
Collapse
Affiliation(s)
- Anna Lohning
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia.
| | - Yumi Kidachi
- Department of Pharmacy, Aomori University, 2-3-1 Kobata, Aomori, 030-0943, Japan
| | - Katsuyoshi Kamiie
- Department of Pharmacy, Aomori University, 2-3-1 Kobata, Aomori, 030-0943, Japan
| | - Kazuo Sasaki
- Department of Food and Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma, 374-0193, Japan
| | - Kazuo Ryoyama
- Department of Pharmacy, Aomori University, 2-3-1 Kobata, Aomori, 030-0943, Japan
| | - Hideaki Yamaguchi
- Department of Applied Biological Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| |
Collapse
|
42
|
Zhou J, Wang F, Chen J, Yang R, Chen Y, Gu D, Niu T, Luo Q, Yan X, Chen H, Wu W. Long-term kappa-carrageenan consumption leads to moderate metabolic disorder by blocking insulin binding. Pharmacol Res 2021; 165:105417. [PMID: 33401003 DOI: 10.1016/j.phrs.2020.105417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
Carrageenan (CGN) is a common food additive, and questions have been raised regarding its safety for human consumption. The purpose of this study was to investigate the impact of κ-CGN on glucose intolerance and insulin resistance from the perspective that κ-CGN may interfere with insulin receptor function and affect insulin sensitivity and signaling, thereby leading to body weight loss. The health effects of κ-CGN on C57BL/6 mice were assessed over a 90-d period by monitoring changes in body weight, glucose tolerance, insulin tolerance, fasting glucose and insulin levels, and expression of insulin-pathway-related proteins. Furthermore, HepG2 cells were used to detect the binding of κ-CGN on insulin receptor and measure its effect on downstream signal transduction. In mice, κ-CGN treatment reduced weight gain without affecting food intake. Glucose and insulin tolerance tests revealed that κ-CGN treatment increased blood glucose levels and glycosylated hemoglobin levels, while hepatic and muscle glycogen levels were decreased, suggesting that κ-CGN affected glucose metabolism in mice. Interestingly, κ-CGN treatment did not cause typical diabetic symptoms in mice, as indicated by low levels of fasting and postprandial blood glucose, in addition to normal pancreatic tissue and insulin secretion. The binding studies revealed that κ-CGN could competitively bind to the insulin receptor with FITC-insulin and thereby disrupt PI3K and Akt activation, thus suppressing expression of glucose transporters and glycogen synthase. In summary, this study revealed that κ-CGN reduced weight gain without affecting food intake, but impaired glucose metabolism in mice by interfering with insulin binding to receptors, thereby affecting the sensitivity of insulin and inhibiting the insulin PI3K/AKT signaling pathway, causing non-diabetic weight gain reduction.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, Zhejiang, China; Department of Laboratory Medicine, Taipei Medical University Ningbo Medical Center, Ningbo, 315040, Zhejiang, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yuhao Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Denghui Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Tingting Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Qijun Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xiaojun Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
43
|
Ardalan M, Hejazian SM, Sharabiyani HF, Farnood F, Ghafari Aghdam A, Bastami M, Ahmadian E, Zununi Vahed S, Cucchiarini M. Dysregulated levels of glycogen synthase kinase-3β (GSK-3β) and miR-135 in peripheral blood samples of cases with nephrotic syndrome. PeerJ 2020; 8:e10377. [PMID: 33362958 PMCID: PMC7749650 DOI: 10.7717/peerj.10377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background Glycogen synthase kinase-3 (GSK-3β) is a serine/threonine kinase with multifunctions in various physiological procedures. Aberrant level of GSK-3β in kidney cells has a harmful role in podocyte injury. Methods In this article, the expression levels of GSK-3β and one of its upstream regulators, miR-135a-5p, were measured in peripheral blood mononuclear cells (PBMCs) of cases with the most common types of nephrotic syndrome (NS); focal segmental glomerulosclerosis (FSGS) and membranous glomerulonephritis (MGN). In so doing, fifty-two cases along with twenty-four healthy controls were included based on the strict criteria. Results Levels of GSK-3β mRNA and miR-135 were measured with quantitative real-time PCR. There were statistically significant increases in GSK-3β expression level in NS (P = 0.001), MGN (P = 0.002), and FSGS (P = 0.015) groups compared to the control group. Dysregulated levels of miR-135a-5p in PBMCs was not significant between the studied groups. Moreover, a significant decrease was observed in the expression level of miR-135a-5p in the plasma of patients with NS (P = 0.020), MGN (P = 0.040), and FSGS (P = 0.046) compared to the control group. ROC curve analysis approved a diagnostic power of GSK-3β in discriminating patients from healthy controls (AUC: 0.72, P = 0.002) with high sensitivity and specificity. Conclusions Dysregulated levels of GSK-3β and its regulator miR-135a may participate in the pathogenesis of NS with different etiology. Therefore, more research is needed for understanding the relationship between them.
Collapse
Affiliation(s)
| | - Seyyedeh Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Ghafari Aghdam
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Universität des Saarlandes, Homburg/Saar, Germany
| |
Collapse
|
44
|
Sampath C, Srinivasan S, Freeman ML, Gangula PR. Inhibition of GSK-3β restores delayed gastric emptying in obesity-induced diabetic female mice. Am J Physiol Gastrointest Liver Physiol 2020; 319:G481-G493. [PMID: 32812777 PMCID: PMC7654647 DOI: 10.1152/ajpgi.00227.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diabetic gastroparesis (DG) is a clinical syndrome characterized by delayed gastric emptying (DGE). Loss of nuclear factor erythroid 2-related factor 2 (Nrf2) is associated with reduced neuronal nitric oxide synthase-α (nNOSα)-mediated gastric motility and DGE. Previous studies have shown that nuclear exclusion and inactivation of Nrf2 is partly regulated by glycogen synthase kinase 3β (GSK-3β). In the current study, the molecular signaling of GSK-3β-mediated Nrf2 activation and its mechanistic role on DG were investigated in high-fat diet (HFD)-induced obese/Type 2 diabetes (T2D) female mice. Adult female C57BL/6J mice were fed with HFD or normal diet (ND) with or without GSK-3β inhibitor (SB 216763, 10 mg/kg body wt ip) start from the 14th wk and continued feeding mice for an additional 3-wk time period. Our results show that treatment with GSK-3β inhibitor SB attenuated DGE in obese/T2D mice. Treatment with SB restored impaired gastric 1) Nrf2 and phase II antioxidant enzymes through PI3K/ERK/AKT-mediated pathway, 2) tetrahydrobiopterin (BH4, cofactor of nNOS) biosynthesis enzyme dihydrofolate reductase, and 3) nNOSα dimerization in obese/T2 diabetic female mice. SB treatment normalized caspase 3 activity and downstream GSK-3β signaling in the gastric tissues of the obese/T2 diabetic female mice. In addition, GSK-3β inhibitor restored impaired nitrergic relaxation in hyperglycemic conditions. Finally, SB treatment reduced GSK3 marker, pTau in adult primary enteric neuronal cells. These findings emphasize the importance of GSK-3β on regulating gastric Nrf2 and nitrergic mediated gastric emptying in obese/diabetic rodents.NEW & NOTEWORTHY Inhibition of glycogen synthase kinase 3β (GSK-3β) with SB 216763 attenuates delayed gastric emptying through gastric nuclear factor erythroid 2-related factor 2 (Nrf2)-phase II enzymes in high-fat diet-fed female mice. SB 216763 restored impaired gastric PI3K/AKT/ β-catenin/caspase 3 expression. Inhibition of GSK-3β normalized gastric dihydrofolate reductase, neuronal nitric oxide synthase-α expression, dimerization and nitrergic relaxation. SB 216763 normalized both serum estrogen and nitrate levels in female obese/Type 2 diabetes mice. SB 216763 reduced downstream signaling of GSK-3β in enteric neuronal cells in vitro.
Collapse
Affiliation(s)
- Chethan Sampath
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| | - Shanthi Srinivasan
- 2Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia and Atlanta Veterans Affairs Health Care System, Decatur, Atlanta, Georgia
| | - Michael L. Freeman
- 3Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pandu R. Gangula
- 1Department of Oral Diagnostic Sciences and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| |
Collapse
|
45
|
Zhang HJ, Chen C, Ding L, Shi HH, Wang CC, Xue CH, Zhang TT, Wang YM. Sea cucumbers-derived sterol sulfate alleviates insulin resistance and inflammation in high-fat-high-fructose diet-induced obese mice. Pharmacol Res 2020; 160:105191. [PMID: 32911073 DOI: 10.1016/j.phrs.2020.105191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/08/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Sea cucumbers are widely consumed in traditional medicine and food. Sea cucumbers-derived sulfated sterol exhibits a sulfate group at C-3 position, which is different from phytosterol with a hydroxyl group. However, the effect of sterol sulfate on metabolic syndrome remains unknown. The purpose of the present study is to investigate the alleviation of sterol sulfate on high-fat-high-fructose diet (HFFD)-induced insulin resistance and inflammation. After 2 weeks feeding with HFFD, male C57BL/6J mice were continuously fed with HFFD plus 0.4 % (w/w) sterol sulfate or phytosterol for 6 weeks. The OGTT was carried out at 7 weeks. At the end of the experimental period, the changes of glycogen, circulating glucose, insulin, pro-inflammatory cytokine and adiponectin were measured. H&E staining was used to observe the morphological changes in adipose tissue. Furthermore, the underlying molecular mechanisms were investigated. Dietary sterol sulfate was superior to phytosterol in reducing body weight gain, adipocyte hypertrophy, and levels of circulating glucose and insulin, as well as increasing the glycogen content of tissues. Furthermore, sterol sulfate ameliorated insulin resistance mainly due to the inhibition of gluconeogenesis, the promotion of glycogen synthesis and GLUT4 translocation by activating PI3K/Akt signaling pathway. Additionally, sterol sulfate effectively attenuated inflammation by increasing serum adiponectin and reducing pro-inflammatory cytokine release. Sterol sulfate exhibited a more significant effect than phytosterol in alleviating HFFD -induced insulin resistance and inflammation, which might be closely related to the sulfate group. The results might provide insights into the prevention and alleviation of metabolic syndrome.
Collapse
Affiliation(s)
- Hui-Juan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Cheng Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Lin Ding
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China; Laboratory of Marine Drugs & Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong Province, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China; Laboratory of Marine Drugs & Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong Province, China.
| |
Collapse
|
46
|
Li YZ, Di Cristofano A, Woo M. Metabolic Role of PTEN in Insulin Signaling and Resistance. Cold Spring Harb Perspect Med 2020; 10:a036137. [PMID: 31964643 PMCID: PMC7397839 DOI: 10.1101/cshperspect.a036137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is most prominently known for its function in tumorigenesis. However, a metabolic role of PTEN is emerging as a result of its altered expression in type 2 diabetes (T2D), which results in impaired insulin signaling and promotion of insulin resistance during the pathogenesis of T2D. PTEN functions in regulating insulin signaling across different organs have been identified. Through the use of a variety of models, such as tissue-specific knockout (KO) mice and in vitro cell cultures, PTEN's role in regulating insulin action has been elucidated across many cell types. Herein, we will review the recent advancements in the understanding of PTEN's metabolic functions in each of the tissues and cell types that contribute to regulating systemic insulin sensitivity and discuss how PTEN may represent a promising therapeutic strategy for treatment or prevention of T2D.
Collapse
Affiliation(s)
- Yu Zhe Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology and Medicine (Oncology), Albert Einstein College of Medicine and Albert Einstein Cancer Center, Bronx, New York 10461, USA
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network/Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
47
|
Antidiabetic Effects of Arginyl-Fructosyl-Glucose, a Nonsaponin Fraction from Ginseng Processing in Streptozotocin-Induced Type 2 Diabetic Mice through Regulating the PI3K/AKT/GSK-3 β and Bcl-2/Bax Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3707904. [PMID: 32714403 PMCID: PMC7352147 DOI: 10.1155/2020/3707904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 04/06/2020] [Indexed: 01/21/2023]
Abstract
Streptozotocin- (STZ-) induced type 2 diabetes mellitus (T2DM) caused insulin secretion disorder and hyperglycemia, further causing tissue and organ damage. In recent years, studies on ginseng (Panax ginseng C. A. Meyer) and its saponins (Ginsenosides) have proved to possess antidiabetic pharmacological activities, but the mechanism of nonsaponins on STZ-induced T2DM is still unclear. Arginyl-fructosyl-glucose (AFG) is a representative nonsaponin component produced in the processing of red ginseng. The present study was designed to assess the possible healing consequence of AFG on STZ-induced T2DM in mice and also to explore its fundamental molecular contrivances. T2DM-related indexes, fasting blood glucose levels, and body weight, histological changes, biochemical considerations, biomarkers, the mRNA countenance intensities of inflammatory facts, and variations in correlated protein manifestation in adipose tissue and liver tissue were calculated. Consequences specified that AFG usage successfully amends STZ-induced insulin conflict and liver grievance in T2DM. Systematically, AFG action diminished STZ-induced oxidative stress and inflammatory responses in the liver. In addition, we demonstrated that AFG also attenuates apoptosis and insulin secretion disorders in T2DM by adjusting the PI3K/AKT/GSK3β signaling pathway. At the end, these discoveries recommend that AFG averts the development of T2DM through numerous types of machinery and proposes that AFG can also be used in order to treat T2DM in the future.
Collapse
|
48
|
Adeyanju OA, Michael OS, Soladoye AO, Olatunji LA. Blockade of mineralocorticoid receptor ameliorates oral contraceptive-induced insulin resistance by suppressing elevated uric acid and glycogen synthase kinase-3 instead of circulating mineralocorticoid. Arch Physiol Biochem 2020; 126:225-234. [PMID: 30318954 DOI: 10.1080/13813455.2018.1509220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Context: Estrogen-progestin combined oral contraceptive (COC) has been connected to mineralocorticoid receptor (MR) activation and adverse cardiometabolic events. We consequently hypothesised that insulin resistance (IR), hyperuricemia, and elevated circulating GSK-3 induced by COC is through activation of MR via mineralocorticoid and glucocorticoid pathways.Methods: Female Wistar rats aged 12 weeks received (po) vehicle and COC (1.0 μg ethinylestradiol plus 5.0 μg levonorgestrel) with or without MR blocker (0.25 mg/kg spironolactone; Spl), daily for eight weeks.Results: Data showed that COC treatment led to increased IR, 1-hour postload glucose level, insulinemia, triglyceride/HDL-cholesterol ratio, total cholesterol/HDL-cholesterol ratio, uric acid, GSK-3, aldosterone, corticosterone values, impaired glucose tolerance and pancreatic β-cell function. However, MR blockade by Spl ameliorated all these alterations except that of aldosterone.Conclusion: The results demonstrate that COC induces IR, hyperuricemia and high GSK-3 levels through activation of MR via glucocorticoid dependent pathway.
Collapse
Affiliation(s)
- O A Adeyanju
- HOPE Cardiometabolic Research Team, Department of Physiology, University of Ilorin, Ilorin, Nigeria
- Cardiometabolic Research Unit, Department of Physiology, College of Medicine and Health sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - O S Michael
- HOPE Cardiometabolic Research Team, Department of Physiology, University of Ilorin, Ilorin, Nigeria
- Cardiometabolic Research Unit, Department of Physiology, College of Health sciences, Bowen University, Iwo, Nigeria
| | - A O Soladoye
- HOPE Cardiometabolic Research Team, Department of Physiology, University of Ilorin, Ilorin, Nigeria
- Cardiometabolic Research Unit, Department of Physiology, College of Health sciences, Bowen University, Iwo, Nigeria
| | - L A Olatunji
- HOPE Cardiometabolic Research Team, Department of Physiology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
49
|
Augello G, Emma MR, Cusimano A, Azzolina A, Montalto G, McCubrey JA, Cervello M. The Role of GSK-3 in Cancer Immunotherapy: GSK-3 Inhibitors as a New Frontier in Cancer Treatment. Cells 2020; 9:cells9061427. [PMID: 32526891 PMCID: PMC7348946 DOI: 10.3390/cells9061427] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified because of its key role in the regulation of glycogen synthesis. However, it is now well-established that GSK-3 performs critical functions in many cellular processes, such as apoptosis, tumor growth, cell invasion, and metastasis. Aberrant GSK-3 activity has been associated with many human diseases, including cancer, highlighting its potential therapeutic relevance as a target for anticancer therapy. Recently, newly emerging data have demonstrated the pivotal role of GSK-3 in the anticancer immune response. In the last few years, many GSK-3 inhibitors have been developed, and some are currently being tested in clinical trials. This review will discuss preclinical and initial clinical results with GSK-3β inhibitors, highlighting the potential importance of this target in cancer immunotherapy. As described in this review, GSK-3 inhibitors have been shown to have antitumor activity in a wide range of human cancer cells, and they may also contribute to promoting a more efficacious immune response against tumor target cells, thus showing a double therapeutic advantage.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Maria R. Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA;
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90144 Palermo, Italy; (G.A.); (M.R.E.); (A.C.); (A.A.); (G.M.)
- Correspondence: ; Tel.: +39-091-6809-534
| |
Collapse
|
50
|
Miller S, Hirota T. Pharmacological Interventions to Circadian Clocks and Their Molecular Bases. J Mol Biol 2020; 432:3498-3514. [DOI: 10.1016/j.jmb.2020.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022]
|