1
|
Hade MD, Greenwald J, Palacio PL, Nguyen KT, Shantaram D, Butsch BL, Kim Y, Noria S, Brethauer SA, Needleman BJ, Hsueh W, Wysocki VH, Reátegui E, Magaña SM. Novel multiparametric bulk and single extracellular vesicle pipeline for adipose cell-specific biomarker discovery in paired human biospecimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.18.590172. [PMID: 38659953 PMCID: PMC11042368 DOI: 10.1101/2024.04.18.590172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Obesity remains a growing and global public health burden across a broad spectrum of metabolic, systemic, and neurodegenerative diseases. Previously considered merely a fat storage depot, adipose tissue is now recognized as an active endocrine organ crucial for metabolic and systemic regulation of local and distant organs. A burgeoning line of investigation centers on adipose-derived extracellular vesicles (ADEVs) and their pivotal role in obesity-associated pathobiology. However, robust methodologies are lacking for specifically isolating and characterizing human ADEVs. To bridge this gap, we have developed a robust multiparametric framework incorporating bulk and single EV characterization, proteomics, and mRNA phenotyping. EVs from matched human visceral adipose tissue, mature adipocyte-conditioned media, and plasma collected from the same individual bariatric surgical patients were analyzed and subjected to bottom-up proteomics analysis. This framework integrates bulk EV proteomics for cell-specific marker identification and subsequent single EV interrogation with single-particle interferometric reflectance imaging (SP-IRIS) and total internal reflection fluorescence (TIRF) microscopy. Our proteomics analysis revealed 76 unique proteins from adipose tissue-derived EVs (ATEVs), 512 unique proteins from adipocyte EVs (aEVs), and 1003 shared proteins. Prominent pathways enriched in ATEVs included lipid metabolism, extracellular matrix organization, and immune modulation, while aEVs exhibited enhanced roles in chromatin remodeling, oxidative stress responses, and metabolic regulation. Notably, adipose tissue-specific proteins such as adiponectin and perilipin were highly enriched in ADEVs and confirmed in circulating plasma EVs. Colocalization of key EV and adipocyte markers, including CD63 and PPARG, were validated in circulating plasma EVs. In summary, our study paves the way toward a tissue and cell-specific, multiparametric framework for an 'adiposity EV signature' in obesity-driven diseases.
Collapse
|
2
|
Odeniyi IA, Ahmed B, Anbiah B, Hester G, Abraham PT, Lipke EA, Greene MW. An improved in vitro 3T3-L1 adipocyte model of inflammation and insulin resistance. Adipocyte 2024; 13:2414919. [PMID: 39415617 PMCID: PMC11487959 DOI: 10.1080/21623945.2024.2414919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Tumor necrosis factor alpha (TNF-α)/hypoxia-treated 3T3-L1 adipocytes have been used to model inflamed and insulin-resistant adipose tissue: this study examines gaps in the model. We tested whether modulating TNF-α/hypoxia treatment time could reduce cell death while still inducing inflammation and insulin resistance. Adipocytes were treated with TNF-α (12 h or 24 h) and incubated in a hypoxic chamber for 24 h. To examine maintenance of the phenotype over time, glucose and FBS were added at 24 h post initiation of treatment, and the cells were maintained for an additional 48 h. Untreated adipocytes were used as a control. Viability, insulin resistance, and inflammation were assessed using Live/Dead staining, RT-qPCR, ELISA, and glucose uptake assays. Treatment for 12 h with TNF-α in the presence of hypoxia resulted in an increase in the percentage of live cells compared to 24 h treated cells. Importantly, insulin resistance and inflammation were still induced in the 12 h treated adipocytes: the expression of the insulin sensitive and inflammatory genes was decreased and increased, respectively. In 72 h treated adipocytes, no significant differences were found in the viability, glucose uptake or insulin-sensitive and inflammatory gene expression. This study provides a modified approach to in vitro odeling adipocyte inflammation and insulin resistance. .
Collapse
Affiliation(s)
| | - Bulbul Ahmed
- Department of Nutritional Sciences, Auburn University, Auburn, AL, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Grace Hester
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Peter T. Abraham
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | | | - Michael W. Greene
- Department of Nutritional Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Chen X, Cheng S, Huang L, Chen X, Jin N, Hong J, Zhao X, Rong J. Serum uric acid, body mass index, and cardiovascular diseases: A multiple two-step Mendelian randomization study. Nutr Metab Cardiovasc Dis 2024; 34:2386-2394. [PMID: 39097442 DOI: 10.1016/j.numecd.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/14/2024] [Accepted: 05/26/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND AND AIMS A number of health issues, including high serum uric acid (SUA) and cardiovascular disease (CVD), have been linked to obesity based on observational evidence, though it's currently unclear how these issues are causally related. In order to determine whether obesity mediates this association, we set out to investigate the causal relationship between SUA, obesity, and CVD. METHODS AND RESULTS From publicly available genome-wide association studies, we acquired instrumental variables that had a strong correlation to SUA and body mass index (BMI). We employed multiple two-step Mendelian randomization (MR) analyses, using genetic and clinical data from various publicly available biological databases. The mediating role of BMI was examined through mediation analysis. SUA was genetically correlated with BMI [OR = 1.080, 95% CI: 1.024-1.139, P = 0.005]. There was a positive causal effect of SUA on AF [OR = 0.892, 95% CI: 0.804-0.990, P = 0.032], CAD [OR = 0.942, 95% CI: 0.890-0.997, P = 0.037], and EHT [OR = 1.080, 95% CI: 1.024-1.139, P = 0.005]. Among them, BMI mediated the effects of SUA on AF (42.2%; 95% CI, 35.3%-51.9%), CAD (76.3%; 95% CI, 63.4%-92.0%), and EHT (10.0%; 95% CI, 0%-20.0%). CONCLUSION Our research revealed a causal relationship between high SUA exposure and an increased risk of obesity. Additionally, a high SUA level was linked to an increased risk of various CVDs. Given that individuals with high SUA are more likely to be susceptible to AF, CAD, and EHT, attention must be given to their weight status.
Collapse
Affiliation(s)
- Xiaohan Chen
- Department of Nursing, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Pudong New District, Shanghai, China
| | - Siyuan Cheng
- Department of Cardiology, First Affiliated Hospital of Ji'Nan University, Tianhe District, Guangzhou, Guangdong, China
| | - Lei Huang
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China
| | - Xudong Chen
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China
| | - Nake Jin
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China
| | - Jun Hong
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China
| | - Xuechen Zhao
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China
| | - Jiacheng Rong
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Qianwan New District, Ningbo 315300, Zhejiang, China.
| |
Collapse
|
4
|
Ibrahim MA, Isah MB, Inim MD, Abdullahi AD, Adamu A. The connections of sialic acids and diabetes mellitus: therapeutic or diagnostic value? Glycobiology 2024; 34:cwae053. [PMID: 39041707 DOI: 10.1093/glycob/cwae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Modulation of sialic acids is one of the important pathological consequences of both type 1 and type 2 diabetes mellitus with or without the micro- and macrovascular complications. However, the mechanistic, therapeutic and/or diagnostic implications of these observations are uncoordinated and possibly conflicting. This review critically analyses the scientific investigations connecting sialic acids with diabetes mellitus. Generally, variations in the levels and patterns of sialylation, fucosylation and galactosylation were predominant across various tissues and body systems of diabetic patients, but the immune system seemed to be most affected. These might be explored as a basis for differential diagnosis of various diabetic complications. Sialic acids are predominantly elevated in nearly all forms of diabetic conditions, particularly nephropathy and retinopathy, which suggests some diagnostic value but the mechanistic details were not unequivocal from the available data. The plausible mechanistic explanations for the elevated sialic acids are increased desialylation by sialidases, stimulation of hexosamine pathway and synthesis of acute phase proteins as well as oxidative stress. Additionally, sialic acids are also profoundly associated with glucose transport and insulin resistance in human-based studies while animal-based studies revealed that the increased desialylation of insulin receptors by sialidases, especially NEU1, might be the causal link. Interestingly, inhibition of the diabetes-associated NEU1 desialylation was beneficial in diabetes management and might be considered as a therapeutic target. It is hoped that the article will provide an informed basis for future research activities on the exploitation of sialic acids and glycobiology for therapeutic and/or diagnostic purposes against diabetes mellitus.
Collapse
Affiliation(s)
| | - Murtala Bindawa Isah
- Department of Biochemistry, Umaru Musa Yar'adua University, P.M.B. 2218, Katsina, Nigeria
| | - Mayen David Inim
- Department of Biochemistry, Ahmadu Bello University, Samaru, 80001, Zaria, Nigeria
| | | | - Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Samaru, 80001, Zaria, Nigeria
| |
Collapse
|
5
|
DeBari MK, Johnston EK, Scott JV, Ilzuka E, Sun W, Webster-Wood VA, Abbott RD. A Preliminary Study on Factors That Drive Patient Variability in Human Subcutaneous Adipose Tissues. Cells 2024; 13:1240. [PMID: 39120271 PMCID: PMC11311805 DOI: 10.3390/cells13151240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Adipose tissue is a dynamic regulatory organ that has profound effects on the overall health of patients. Unfortunately, inconsistencies in human adipose tissues are extensive and multifactorial, including large variability in cellular sizes, lipid content, inflammation, extracellular matrix components, mechanics, and cytokines secreted. Given the high human variability, and since much of what is known about adipose tissue is from animal models, we sought to establish correlations and patterns between biological, mechanical, and epidemiological properties of human adipose tissues. To do this, twenty-six independent variables were cataloged for twenty patients, which included patient demographics and factors that drive health, obesity, and fibrosis. A factorial analysis for mixed data (FAMD) was used to analyze patterns in the dataset (with BMI > 25), and a correlation matrix was used to identify interactions between quantitative variables. Vascular endothelial growth factor A (VEGFA) and actin alpha 2, smooth muscle (ACTA2) gene expression were the highest loadings in the first two dimensions of the FAMD. The number of adipocytes was also a key driver of patient-related differences, where a decrease in the density of adipocytes was associated with aging. Aging was also correlated with a decrease in overall lipid percentage of subcutaneous tissue, with lipid deposition being favored extracellularly, an increase in transforming growth factor-β1 (TGFβ1), and an increase in M1 macrophage polarization. An important finding was that self-identified race contributed to variance between patients in this study, where Black patients had significantly lower gene expression levels of TGFβ1 and ACTA2. This finding supports the urgent need to account for patient ancestry in biomedical research to develop better therapeutic strategies for all patients. Another important finding was that TGFβ induced factor homeobox 1 (TGIF1), an understudied signaling molecule, which is highly correlated with leptin signaling, was correlated with metabolic inflammation. Furthermore, this study draws attention to what we define as "extracellular lipid droplets", which were consistently found in collagen-rich regions of the obese adipose tissues evaluated here. Reduced levels of TGIF1 were correlated with higher numbers of extracellular lipid droplets and an inability to suppress fibrotic changes in adipose tissue. Finally, this study indicated that M1 and M2 macrophage markers were correlated with each other and leptin in patients with a BMI > 25. This finding supports growing evidence that macrophage polarization in obesity involves a complex, interconnecting network system rather than a full switch in activation patterns from M2 to M1 with increasing body mass. Overall, this study reinforces key findings in animal studies and identifies important areas for future research, where human and animal studies are divergent. Understanding key drivers of human patient variability is required to unravel the complex metabolic health of unique patients.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Elizabeth K. Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Jacqueline V. Scott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| | - Erica Ilzuka
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Wenhuan Sun
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Victoria A. Webster-Wood
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (M.K.D.); (E.K.J.); (J.V.S.); (E.I.); (V.A.W.-W.)
| |
Collapse
|
6
|
Sapoor S, Nageh M, Shalma NM, Sharaf R, Haroun N, Salama E, Pratama Umar T, Sharma S, Sayad R. Bidirectional relationship between pancreatic cancer and diabetes mellitus: a comprehensive literature review. Ann Med Surg (Lond) 2024; 86:3522-3529. [PMID: 38846873 PMCID: PMC11152885 DOI: 10.1097/ms9.0000000000002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024] Open
Abstract
Pancreatic cancer (PC) is a fatal malignant disease. It is well known that the relationship between PC and type 2 diabetes mellitus (T2DM) is a complicated bidirectional relationship. The most important factors causing increased risks of pancreatic cancer are hyperglycaemia, hyperinsulinemia, pancreatitis, and dyslipidemia. Genetics and the immune system also play an important role in the relationship between diabetes mellitus and pancreatic cancer. The primary contributors to this association involve insulin resistance and inflammatory processes within the tumour microenvironment. The combination of diabetes and obesity can contribute to PC by inducing hyperinsulinemia and influencing leptin and adiponectin levels. Given the heightened incidence of pancreatic cancer in diabetes patients compared to the general population, early screening for pancreatic cancer is recommended. Diabetes negatively impacts the survival of pancreatic cancer patients. Among patients receiving chemotherapy, it reduced their survival. The implementation of a healthy lifestyle, including weight management, serves as an initial preventive measure to mitigate the risk of disease development. The role of anti-diabetic drugs on survival is controversial; however, metformin may have a positive impact, especially in the early stages of cancer, while insulin therapy increases the risk of PC.
Collapse
Affiliation(s)
| | | | | | - Rana Sharaf
- Faculty of Medicine, Alexandria University, Alexandria
| | - Nooran Haroun
- Faculty of Medicine, Alexandria University, Alexandria
| | - Esraa Salama
- Faculty of Medicine, Alexandria University, Alexandria
| | | | | | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Lu S, Wang Q, Lu H, Kuang M, Zhang M, Sheng G, Zou Y, Peng X. Lipids as potential mediators linking body mass index to diabetes: evidence from a mediation analysis based on the NAGALA cohort. BMC Endocr Disord 2024; 24:66. [PMID: 38730299 PMCID: PMC11083816 DOI: 10.1186/s12902-024-01594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Body mass index (BMI) and lipid disorders are both known to be strongly associated with the development of diabetes, however, the indirect effect of lipid parameters in the BMI-related diabetes risk is currently unknown. This study aimed to investigate the mediating role of lipid parameters in the association of BMI with diabetes risk. METHODS We assessed the association of diabetes risk with BMI, as well as lipid parameters including high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-CF and LDL-CS), triglycerides(TG), total cholesterol(TC), remnant cholesterol(RC), non-HDL-C, and combined indices of lipid parameters with HDL-C (RC/HDL-C ratio, TG/HDL-C ratio, TC/HDL-C ratio, non-HDL/HDL-C ratio, LDL/HDL-C ratio) using data from 15,453 subjects in the NAGALA project. Mediation models were used to explore the mediating role of lipid parameters in the association of BMI with diabetes risk, and mediation percentages were calculated for quantifying the strength of the indirect effects. Finally, receiver operating characteristic curve (ROC) analysis was used to compare the accuracy of BMI and BMI combined with lipid parameters in predicting incident diabetes. RESULTS Multivariate regression models, adjusted for confounding factors, demonstrated robust associations of lipid parameters, BMI, with diabetes risk, with the exception of TC, LDL-CF, LDL-CS, and non-HDL-C. Mediation analysis showed that lipid parameters except TC, LDL-CF, LDL-CS, and Non-HDL-C were involved in and mediated the association of BMI with diabetes risk, with the largest mediation percentage being the RC/HDL-C ratio, which was as high as 40%; it is worth mentioning that HDL-C and HDL-C-related lipid ratio parameters also play an important mediating role in the association between BMI and diabetes, with the mediator proportion being greater than 30%. Finally, based on the ROC results, we found that the prediction performance of all lipid parameters in the current study except TC was significantly improved when combined with BMI. CONCLUSION Our fresh findings suggested that lipid parameters partially mediated the association of BMI with diabetes risk; this result indicated that in the context of diabetes risk screening and disease management, it is important to not only monitor BMI but also pay attention to lipid parameters, particularly HDL-C and HDL-C-related lipid ratio parameters.
Collapse
Affiliation(s)
- Song Lu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qun Wang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Hengcheng Lu
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Maobin Kuang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Min Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Hypertension Research Institute, Nanchang, 330006, China
| | - Guotai Sheng
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiangxi Hypertension Research Institute, Nanchang, 330006, China.
| |
Collapse
|
8
|
Dietzsch AN, Al-Hasani H, Altschmied J, Bottermann K, Brendler J, Haendeler J, Horn S, Kaczmarek I, Körner A, Krause K, Landgraf K, Le Duc D, Lehmann L, Lehr S, Pick S, Ricken A, Schnorr R, Schulz A, Strnadová M, Velluva A, Zabri H, Schöneberg T, Thor D, Prömel S. Dysfunction of the adhesion G protein-coupled receptor latrophilin 1 (ADGRL1/LPHN1) increases the risk of obesity. Signal Transduct Target Ther 2024; 9:103. [PMID: 38664368 PMCID: PMC11045723 DOI: 10.1038/s41392-024-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.
Collapse
Affiliation(s)
- André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Joachim Altschmied
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Bottermann
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Brendler
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Judith Haendeler
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology, Rheumatology, Leipzig University Medical Center, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Laura Lehmann
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Stephanie Pick
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Rene Schnorr
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Martina Strnadová
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Heba Zabri
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
9
|
Luo J, Ning T, Li X, Jiang T, Tan S, Ma D. Targeting IL-12 family cytokines: A potential strategy for type 1 and type 2 diabetes mellitus. Biomed Pharmacother 2024; 170:115958. [PMID: 38064968 DOI: 10.1016/j.biopha.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Diabetes is a common metabolic disease characterized by an imbalance in blood glucose levels. The pathogenesis of diabetes involves the essential role of cytokines, particularly the IL-12 family cytokines. These cytokines, which have a similar structure, play multiple roles in regulating the immune response. Recent studies have emphasized the importance of IL-12 family cytokines in the development of both type 1 and type 2 diabetes mellitus. As a result, they hold promise as potential therapeutic targets for the treatment of these conditions. This review focuses on the potential of targeting IL-12 family cytokines for diabetes therapy based on their roles in the pathogenesis of both types of diabetes. We have summarized various therapies that target IL-12 family cytokines, including drug therapy, combination therapy, cell therapy, gene therapy, cytokine engineering therapy, and gut microbiota modulation. By analyzing the advantages and disadvantages of these therapies, we have evaluated their feasibility for clinical application and proposed possible solutions to overcome any challenges. In conclusion, targeting IL-12 family cytokines for diabetes therapy provides updated insights into their potential benefits, such as controlling inflammation, preserving islet β cells, reversing the onset of diabetes, and impeding the development of diabetic complications.
Collapse
Affiliation(s)
- Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tingting Ning
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xing Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tao Jiang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
Bodilly L, Williamson L, Lahni P, Alder MN, Haslam DB, Kaplan JM. Obesity Alters cytokine signaling and gut microbiome in septic mice. Innate Immun 2023; 29:161-170. [PMID: 37802127 PMCID: PMC10621470 DOI: 10.1177/17534259231205959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
Sepsis is a leading cause of mortality. Plasma cytokine levels may identify those at increased risk of mortality from sepsis. Our aim was to understand how obesity alters cytokine levels during early sepsis and its correlation with survival. Six-week-old C57BL/6 male mice were randomized to control (non-obese) or high fat diet (obese) for 5-7 weeks. Sepsis was induced by cecal ligation and perforation (CLP). Cytokine levels were measured from cheek bleeds 8 h after CLP, and mice were monitored for survival. Other cohorts were sacrificed 1 h after CLP for plasma and tissue. Septic obese mice had higher survival. At 8 h after sepsis, obese mice had higher adiponectin, leptin, and resistin but lower TNFα and IL-6 compared to non-obese mice. When stratified by 24-h survival, adipokines were not significantly different in obese and non-obese mice. TNFα and IL-6 were higher in non-obese, compared to obese, mice that died within 24 h of sepsis. Diet and to sepsis significantly impacted the cecal microbiome. IL-6 is a prognostic biomarker during early sepsis in non-obese and obese mice. A plausible mechanism for the survival difference in non-obese and obese mice may be the difference in gut microbiome and its evolution during sepsis.
Collapse
Affiliation(s)
- Lauren Bodilly
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Lauren Williamson
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew N. Alder
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David B. Haslam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jennifer M. Kaplan
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Huang B, DePaolo J, Judy RL, Shakt G, Witschey WR, Levin MG, Gershuni VM. Relationships between body fat distribution and metabolic syndrome traits and outcomes: A mendelian randomization study. PLoS One 2023; 18:e0293017. [PMID: 37883456 PMCID: PMC10602264 DOI: 10.1371/journal.pone.0293017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Obesity is a complex, multifactorial disease associated with substantial morbidity and mortality worldwide. Although it is frequently assessed using BMI, many epidemiological studies have shown links between body fat distribution and obesity-related outcomes. This study examined the relationships between body fat distribution and metabolic syndrome traits using Mendelian Randomization (MR). METHODS/FINDINGS Genetic variants associated with visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (ASAT), and gluteofemoral adipose tissue (GFAT), as well as their relative ratios, were identified from a genome wide association study (GWAS) performed with the United Kingdom BioBank. GWAS summary statistics for traits and outcomes related to metabolic syndrome were obtained from the IEU Open GWAS Project. Two-sample MR and BMI-controlled multivariable MR (MVMR) were performed to examine relationships between each body fat measure and ratio with the outcomes. Increases in absolute GFAT were associated with a protective cardiometabolic profile, including lower low density lipoprotein cholesterol (β: -0.19, [95% CI: -0.28, -0.10], p < 0.001), higher high density lipoprotein cholesterol (β: 0.23, [95% CI: 0.03, 0.43], p = 0.025), lower triglycerides (β: -0.28, [95% CI: -0.45, -0.10], p = 0.0021), and decreased systolic (β: -1.65, [95% CI: -2.69, -0.61], p = 0.0019) and diastolic blood pressures (β: -0.95, [95% CI: -1.65, -0.25], p = 0.0075). These relationships were largely maintained in BMI-controlled MVMR analyses. Decreases in relative GFAT were linked with a worse cardiometabolic profile, with higher levels of detrimental lipids and increases in systolic and diastolic blood pressures. CONCLUSION A MR analysis of ASAT, GFAT, and VAT depots and their relative ratios with metabolic syndrome related traits and outcomes revealed that increased absolute and relative GFAT were associated with a favorable cardiometabolic profile independently of BMI. These associations highlight the importance of body fat distribution in obesity and more precise means to categorize obesity beyond BMI.
Collapse
Affiliation(s)
- Brian Huang
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - John DePaolo
- Department of Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Renae L. Judy
- Department of Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Gabrielle Shakt
- Department of Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Walter R. Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael G. Levin
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States of America
| | - Victoria M. Gershuni
- Department of Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, United States of America
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
12
|
Kim D, Memili A, Chen HH, Highland HM, Polikowsky HG, Anwar MY, Laing ST, Lee M, McCormick JB, Fisher-Hoch SP, Below JE, North KE, Gutierrez AD. Sex-specific associations between adipokine profiles and carotid-intima media thickness in the Cameron County Hispanic Cohort (CCHC). Cardiovasc Diabetol 2023; 22:231. [PMID: 37653519 PMCID: PMC10472619 DOI: 10.1186/s12933-023-01968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Adipokines are hormones secreted from adipose tissue and are associated with cardiometabolic diseases (CMD). Functional differences between adipokines (leptin, adiponectin, and resistin) are known, but inconsistently reported associations with CMD and lack of studies in Hispanic populations are research gaps. We investigated the relationship between subclinical atherosclerosis and multiple adipokine measures. METHODS Cross-sectional data from the Cameron County Hispanic Cohort (N = 624; mean age = 50; Female = 70.8%) were utilized to assess associations between adipokines [continuous measures of adiponectin, leptin, resistin, leptin-to-adiponectin ratio (LAR), and adiponectin-resistin index (ARI)] and early atherosclerosis [carotid-intima media thickness (cIMT)]. We adjusted for sex, age, body mass index (BMI), smoking status, cytokines, fasting blood glucose levels, blood pressure, lipid levels, and medication usage in the fully adjusted linear regression model. We conducted sexes-combined and sex-stratified analyses to account for sex-specificity and additionally tested whether stratification of participants by their metabolic status (metabolically elevated risk for CMD as defined by having two or more of the following conditions: hypertension, dyslipidemia, insulin resistance, and inflammation vs. not) influenced the relationship between adipokines and cIMT. RESULTS In the fully adjusted analyses, adiponectin, leptin, and LAR displayed significant interaction by sex (p < 0.1). Male-specific associations were between cIMT and LAR [β(SE) = 0.060 (0.016), p = 2.52 × 10-4], and female-specific associations were between cIMT and adiponectin [β(SE) = 0.010 (0.005), p = 0.043] and ARI [β(SE) = - 0.011 (0.005), p = 0.036]. When stratified by metabolic health status, the male-specific positive association between LAR and cIMT was more evident among the metabolically healthy group [β(SE) = 0.127 (0.015), p = 4.70 × 10-10] (p for interaction by metabolic health < 0.1). However, the female-specific associations between adiponectin and cIMT and ARI and cIMT were observed only among the metabolically elevated risk group [β(SE) = 0.014 (0.005), p = 0.012 for adiponectin; β(SE) = - 0.015 (0.006), p = 0.013 for ARI; p for interaction by metabolic health < 0.1]. CONCLUSION Associations between adipokines and cIMT were sex-specific, and metabolic health status influenced the relationships between adipokines and cIMT. These heterogeneities by sex and metabolic health affirm the complex relationships between adipokines and atherosclerosis.
Collapse
Affiliation(s)
- Daeeun Kim
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aylin Memili
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah G Polikowsky
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Yaser Anwar
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan T Laing
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Miryoung Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Brownsville Regional Campus, Brownsville, TX, USA
| | - Joseph B McCormick
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Brownsville Regional Campus, Brownsville, TX, USA
| | - Susan P Fisher-Hoch
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Brownsville Regional Campus, Brownsville, TX, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Absalon D Gutierrez
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
13
|
Hussein M, Saif A, Amin M, Khalafallah O, Hussien A, Aboulsoud S, Mousa S. Plasma Adiponectin and Its Correlation with Carotid Intima-Media Thickness in Obesity and in Type 2 Diabetes and Nonalcoholic Fatty Liver Disease. J Nutr Metab 2023; 2023:6661585. [PMID: 37692464 PMCID: PMC10484655 DOI: 10.1155/2023/6661585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 11/13/2022] [Accepted: 08/05/2023] [Indexed: 09/12/2023] Open
Abstract
METHODS AND RESULTS The study included 200 Egyptian subjects. They were divided into four equal groups: group 1: obese patients with NAFLD and T2DM (O+/NAFLD+/DM+), group 2: nonobese patients with NAFLD and T2DM (O-/NAFLD+/DM+), group 3: obese nondiabetic patients with NAFLD (O+/NAFLD+/DM-), and group 4: nonobese healthy control subjects. Plasma adiponectin was measured using ELISA (enzyme-linked immunosorbent assay) technique. Ultrasonography was used to diagnose NAFLD. CIMT was assessed using Doppler ultrasonography. Plasma adiponectin was significantly lower and CIMT was significantly higher in O+/NAFLD+/DM+, as compared with O-/NAFLD+/DM+, O+/NAFLD+/DM-, and control subjects (p < 0.001 for all). A significant negative correlation was found between adiponectin and CIMT in obese patients with NAFLD (p < 0.05), but not in patients with NAFLD and T2DM. The significant independent predictors of CIMT were diabetes duration, BMI (body mass index), albumin/creatinine ratio, and cholesterol. CONCLUSION Plasma adiponectin is inversely correlated with CIMT in obese patients with NAFLD, but not in patients with NAFLD and T2DM. Hypoadiponectinemia could be a good indicator of cardiovascular risk in obese patients with NAFLD, with or without T2DM, but not in nonobese patients with NAFLD.
Collapse
Affiliation(s)
- Maha Hussein
- Internal Medicine Department, Cairo University, Giza, Egypt
| | - Aasem Saif
- Internal Medicine Department, Cairo University, Giza, Egypt
| | - Mona Amin
- Internal Medicine Department, Cairo University, Giza, Egypt
| | - Osama Khalafallah
- Clinical and Chemical Pathology Department, Cairo University, Giza, Egypt
| | - Ahmed Hussien
- Internal Medicine Department, Cairo University, Giza, Egypt
| | | | - Shrook Mousa
- Internal Medicine Department, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, Jergens AE. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne) 2023; 14:1217165. [PMID: 37701897 PMCID: PMC10493311 DOI: 10.3389/fendo.2023.1217165] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI) disorder characterized by intestinal inflammation. The etiology of IBD is multifactorial and results from a complex interplay between mucosal immunity, environmental factors, and host genetics. Future therapeutics for GI disorders, including IBD, that are driven by oxidative stress require a greater understanding of the cellular and molecular mechanisms mediated by reactive oxygen species (ROS). In the GI tract, oxidative stressors include infections and pro-inflammatory responses, which boost ROS generation by promoting the production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) represent two important signaling pathways in intestinal immune cells that regulate numerous physiological processes, including anti-inflammatory and antioxidant activities. Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD treatment. In this review, we discuss various polyphenolic substances (such as resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins, anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such as berberine, storage polysaccharides such as tamarind xyloglucan, and other phytochemicals represented by isothiocyanate sulforaphane and food/spices (such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that target cellular signaling pathways to reduce intestinal inflammation occurring with IBD.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Romy M. Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
15
|
Mubtasim N, Gollahon L. Characterizing 3T3-L1 MBX Adipocyte Cell Differentiation Maintained with Fatty Acids as an In Vitro Model to Study the Effects of Obesity. Life (Basel) 2023; 13:1712. [PMID: 37629569 PMCID: PMC10455818 DOI: 10.3390/life13081712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The increasing prevalence of obesity has prompted intensive research into understanding its role in pathogenesis and designing appropriate treatments. To determine the signals generated from the interaction of fat cells with a target organ, a reliable white adipocyte model in vitro is needed. Differentiated fibroblasts are the most extensively studied using in vitro cell models of white adipocytes. However, it can be argued that differentiated fibroblasts minimally recapitulate the consequences of obesity. Here, we describe 3T3-L1 MBX cells as a culture model for studying obese adipocytes and their effects. Differentiation of 3T3-L1 MBX cells was at first optimized and then maintained in the presence of fatty acids cocktail combination to induce the obese condition. Lipid accumulation and adipokine secretion profiles were analyzed. Results showed that fatty acid-maintained, differentiated 3T3-L1 MBX cells had significantly greater accumulation of lipids and significant changes in the adipokine secretions in comparison to differentiated 3T3-L1 MBX cells maintained in medium without fatty acids. To elucidate the molecular changes associated with adipogenesis and lipid accumulation profile of 3T3-L1 MBX cells, we have also explored the expression of some of the regulatory proteins related to the development and maintenance of adipocytes from the preadipocyte lineage.
Collapse
Affiliation(s)
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA;
| |
Collapse
|
16
|
Tomaç H, Malkoç M, Angın E. A pilot study of the effects of supervised exercise training on body composition, cardiometabolic risk factors, muscle strength and functional capacity in individuals with bariatric surgery. Heliyon 2023; 9:e19032. [PMID: 37649847 PMCID: PMC10462818 DOI: 10.1016/j.heliyon.2023.e19032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
The main objective of this pilot study was to evaluate the effects of functional exercise training (FET) and home exercise training (HET) on body composition, cardiometabolic risk factors, muscle strength, and functional capacity in individuals with bariatric surgery. The sample of the study included 30 individuals who underwent bariatric surgery. The FET group had functional exercise training consisting of stretching, aerobic, strengthening, and balance exercises assigned by a physiotherapist (n = 15), and the HET group had the same exercises under supervision (n = 15). The training sessions were planned as × 3 per week for a period of 8 weeks. Body composition, cardiometabolic risk factors, cardiometabolic risk status, muscle strength, and functional capacity of all individuals were evaluated before and after training. According to the measurements, body weight (BW), body mass index (BMI), body fat mass (BFM), C-reactive protein, glycated hemoglobin, insulin resistance, cardiovascular risk total score, and ten-year cardiovascular percentage risk decreased significantly (p < 0.05), while HDL-C, leg, back, and hand grip strength (right-left), and walking distance increased significantly (p < 0.05) in the FET group. In the HET group, there were significant increases in body fat percentage (BFM %), BFM, and body muscle mass percentage (BMM %) (p < 0.05), while body muscle mass (BMM), right hand grip strength, leg and back muscle strength, and walking distance scores significantly decreased (p < 0.05). It was concluded that personalized and supervised FET has a positive effect on body composition, cardiometabolic risk factors, muscle strength, and functional capacity, and it can be recommended as a safe exercise model for bariatric surgery patients.
Collapse
Affiliation(s)
- Hayriye Tomaç
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey
| | - Mehtap Malkoç
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey
| | - Ender Angın
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey
| |
Collapse
|
17
|
Rose BD, Rimm EB, Zhang X, Sun Q, Huang T, Young RL, Ivey KL. You are What You Drink? How Associations Between Profiles of Beverage Consumption and Type 2 Diabetes Risk are Mediated by Biomarker Networks. Am J Clin Nutr 2023; 118:68-76. [PMID: 37061165 PMCID: PMC10447489 DOI: 10.1016/j.ajcnut.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Multiple studies have independently investigated the associations of the consumption of individual beverage types and specific plasma biomarkers with the risk of type 2 diabetes (T2D). However, as individuals do not consume single beverage types exclusively and plasma biomarkers do not act in isolation, it remains unclear how patterns of beverage consumption and plasma biomarker networks associate both with each other and T2D risk. OBJECTIVES We aimed to elucidate potential dietary determinants of T2D risk by defining a model that describes habitual beverage consumption profiles in relation to identified networks of circulating plasma biomarkers. METHODS This study included 1,461 case and 1,568 control participants from case-control studies of T2D nested within the Nurses' Health Study. Participants completed validated semiquantitative food frequency questionnaires that assessed habitual beverage consumption, and they provided blood samples from which 27 plasma biomarkers of cardiometabolic risk were identified. Common exploratory factor analysis (EFA) identified factors that separately described beverage consumption profiles and biomarker networks. Multivariable-adjusted regression elucidated the relationships between beverage and biomarker factors and T2D risk. RESULTS EFA revealed five factors describing unique beverage consumption profiles and seven factors describing biomarker networks. The factor describing alcoholic beverage consumption was associated with a reduced risk of T2D (odds ratio [OR]: 0.50 [0.40, 0.64], P<0.001) mediated, in part, by the factor describing increased concentrations of adiponectin biomarkers (19.9% [12.0, 31.1] P = 0.004). The factor describing low-calorie sweetened beverage (LCSBs) consumption was associated with an increased risk of T2D (OR: 1.33 [1.03, 1.72], P = 0.021), and the factor describing lower concentrations of insulin-like growth factor binding proteins 1 and 2, and soluble leptin receptor, and increased leptin concentrations (P = 0.005). CONCLUSIONS Moderate alcohol consumption was associated with reduced T2D risk, mediated in part by increased circulating adiponectin. LCSB consumption was associated with both increased T2D risk and perturbed insulin-like growth factor and leptin signaling.
Collapse
Affiliation(s)
- Braden D Rose
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Eric B Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Richard L Young
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Kerry L Ivey
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
18
|
Tural U, Sparpana A, Sullivan E, Iosifescu DV. Comparison of Adiponectin Levels in Anorexia Nervosa, Bulimia Nervosa, Binge-Eating Disorder, Obesity, Constitutional Thinness, and Healthy Controls: A Network Meta-Analysis. Life (Basel) 2023; 13:life13051181. [PMID: 37240826 DOI: 10.3390/life13051181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Adiponectin is a protein hormone that is produced and secreted primarily by adipose tissue. The levels of adiponectin in those with eating disorders, obesity, and healthy controls have been extensively studied. However, the general picture of the differences in adiponectin levels across the mentioned conditions is still unclear and fragmented. In this study, we pooled previous studies and performed a network meta-analysis to gain a global picture of comparisons of adiponectin levels across eating disorders, obesity, constitutional thinness, and healthy controls. Electronic databases were searched for anorexia nervosa, avoidant restrictive food intake disorder, binge-eating disorder, bulimia nervosa, healthy controls, night eating syndrome, obesity, and constitutional thinness in studies where adiponectin levels were measured. A total of 4262 participants from 50 published studies were included in the network meta-analysis. Adiponectin levels were significantly higher in participants with anorexia nervosa than in healthy controls (Hedges' g = 0.701, p < 0.001). However, adiponectin levels in constitutionally thin participants were not significantly different from those of healthy controls (Hedges' g = 0.470, p = 0.187). Obesity and binge-eating disorder were associated with significantly lower adiponectin levels compared to those of healthy controls (Hedges' g = -0.852, p < 0.001 and Hedges' g = -0.756, p = 0.024, respectively). The disorders characterized by excessive increases or decreases in BMI were associated with significant changes in adiponectin levels. These results suggest that adiponectin may be an important marker of severely disequilibrated homeostasis, especially in fat, glucose, and bone metabolisms. Nonetheless, an increase in adiponectin may not simply be associated with a decrease in BMI, as constitutional thinness is not associated with a significant increase in adiponectin.
Collapse
Affiliation(s)
- Umit Tural
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Allison Sparpana
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Psychiatry Department, New York University School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sullivan
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Psychiatry Department, New York University School of Medicine, New York, NY 10016, USA
| | - Dan V Iosifescu
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Psychiatry Department, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
19
|
Santillana N, Astudillo-Guerrero C, D’Espessailles A, Cruz G. White Adipose Tissue Dysfunction: Pathophysiology and Emergent Measurements. Nutrients 2023; 15:nu15071722. [PMID: 37049561 PMCID: PMC10096946 DOI: 10.3390/nu15071722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
White adipose tissue (AT) dysfunction plays an important role in the development of cardiometabolic alterations associated with obesity. AT dysfunction is characterized by the loss of the expansion capacity of the AT, an increment in adipocyte hypertrophy, and changes in the secretion profile of adipose cells, associated with accumulation of macrophages and inflammation. Since not all people with an excess of adiposity develop comorbidities, it is necessary to find simple tools that can evidence AT dysfunction and allow the detection of those people with the potential to develop metabolic alterations. This review focuses on the current pathophysiological mechanisms of white AT dysfunction and emerging measurements to assess its functionality.
Collapse
Affiliation(s)
- Natalia Santillana
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8380453, Chile
| | - Camila Astudillo-Guerrero
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Amanda D’Espessailles
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
20
|
Sun Y, Wang B, Hu Q, Zhang H, Lai X, Wang T, Zhao C, Wang J, Zhang X, Niu Q, He B, Jiang E, Shi M, Feng X, Luo Y. Loss of Lkb1 in CD11c + myeloid cells protects mice from diet-induced obesity while enhancing glucose intolerance and IL-17/IFN-γ imbalance. Cell Mol Life Sci 2023; 80:63. [PMID: 36781473 PMCID: PMC9925521 DOI: 10.1007/s00018-023-04707-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 02/15/2023]
Abstract
Adipose tissue CD11c+ myeloid cell is an independent risk factor associated with obesity and metabolic disorders. However, the underlying molecular basis remains elusive. Here, we demonstrated that liver kinase B1 (Lkb1), a key bioenergetic sensor, is involved in CD11c+ cell-mediated immune responses in diet-induced obesity. Loss of Lkb1 in CD11c+ cells results in obesity resistance but lower glucose tolerance, which accompanies tissue-specific immune abnormalities. The accumulation and CD80's expression of Lkb1 deficient adipose-tissue specific dendritic cells but not macrophages is restrained. Additionally, the balance of IL-17A and IFN-γ remarkably tips towards the latter in fat T cells and CD11c- macrophages. Mechanistically, IFN-γ promotes apoptosis of preadipocytes and inhibits their adipogenesis while IL-17A promotes the adipogenesis in vitro, which might account in part for the fat gain resistant phenotype. In summary, these findings reveal that Lkb1 is essential for fat CD11c+ dendritic cells responding to HFD exposure and provides new insights into the IL-17A/IFN-γ balance in HFD-induced obesity.
Collapse
Affiliation(s)
- Yunyan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China.,Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Bing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qianwen Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China.,Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haixiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Tier Wang
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunxiao Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jiali Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xi Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Baolin He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China.,Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Mingxia Shi
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yuechen Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China. .,Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
21
|
Johnston EK, Abbott RD. Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells 2023; 12:407. [PMID: 36766750 PMCID: PMC9913478 DOI: 10.3390/cells12030407] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity is an ever-increasing phenomenon, with 42% of Americans being considered obese (BMI ≥ 30) and 9.2% being considered morbidly obese (BMI ≥ 40) as of 2016. With obesity being characterized by an abundance of adipose tissue expansion, abnormal tissue remodeling is a typical consequence. Importantly, this pathological tissue expansion is associated with many alterations in the cellular populations and phenotypes within the tissue, lending to cellular, paracrine, mechanical, and metabolic alterations that have local and systemic effects, including diabetes and cardiovascular disease. In particular, vascular dynamics shift during the progression of obesity, providing signaling cues that drive metabolic dysfunction. In this review, paracrine-, autocrine-, and matrix-dependent signaling between adipocytes and endothelial cells is discussed in the context of the development and progression of obesity and its consequential diseases, including adipose fibrosis, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Shirakawa K, Sano M. Drastic transformation of visceral adipose tissue and peripheral CD4 T cells in obesity. Front Immunol 2023; 13:1044737. [PMID: 36685567 PMCID: PMC9846168 DOI: 10.3389/fimmu.2022.1044737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Obesity has a pronounced effect on the immune response in systemic organs that results in not only insulin resistance but also altered immune responses to infectious diseases and malignant tumors. Obesity-associated microenvironmental changes alter transcriptional expression and metabolism in T cells, leading to alterations in T-cell differentiation, proliferation, function, and survival. Adipokines, cytokines, and lipids derived from obese visceral adipose tissue (VAT) may also contribute to the systemic T-cell phenotype, resulting in obesity-specific pathogenesis. VAT T cells, which have multiple roles in regulating homeostasis and energy utilization and defending against pathogens, are most susceptible to obesity. In particular, many studies have shown that CD4 T cells are deeply involved in the homeostasis of VAT endocrine and metabolic functions and in obesity-related chronic inflammation. In obesity, macrophages and adipocytes in VAT function as antigen-presenting cells and contribute to the obesity-specific CD4 T-cell response by inducing CD4 T-cell proliferation and differentiation into inflammatory effectors via interactions between major histocompatibility complex class II and T-cell receptors. When obesity persists, prolonged stimulation by leptin and circulating free fatty acids, repetitive antigen stimulation, activating stress responses, and hypoxia induce exhaustion of CD4 T cells in VAT. T-cell exhaustion is characterized by restricted effector function, persistent expression of inhibitory receptors, and a transcriptional state distinct from functional effector and memory T cells. Moreover, obesity causes thymic regression, which may result in homeostatic proliferation of obesity-specific T-cell subsets due to changes in T-cell metabolism and gene expression in VAT. In addition to causing T-cell exhaustion, obesity also accelerates cellular senescence of CD4 T cells. Senescent CD4 T cells secrete osteopontin, which causes further VAT inflammation. The obesity-associated transformation of CD4 T cells remains a negative legacy even after weight loss, causing treatment resistance of obesity-related conditions. This review discusses the marked transformation of CD4 T cells in VAT and systemic organs as a consequence of obesity-related microenvironmental changes.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
23
|
Ahmadieh H, Arabi A. Association between vitamin D and cardiovascular health: Myth or Fact? A narrative review of the evidence. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057231158222. [PMID: 36869649 PMCID: PMC9989425 DOI: 10.1177/17455057231158222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Vitamin D deficiency is prevalent worldwide. Since the discovery of the expression of vitamin D receptor in ventricular cardiomyocytes, fibroblasts, and blood vessels, there has been a growing body of literature assessing the link between vitamin D status and cardiovascular health from one side, and the effect of vitamin D supplementation on prevention of cardiovascular diseases from the other side. In this review, we summarized studies highlighting the role of vitamin D on cardiovascular health, namely atherosclerosis, hypertension, heart failure, and metabolic syndrome, a recognized significant risk factor for cardiovascular diseases. Studies showed discrepancies between findings from cross-sectional and longitudinal cohorts and those from interventional trials, but also between one outcome and another. Cross-sectional studies found a strong association between low 25 hydroxyvitamin D (25(OH)D3) and acute coronary syndrome, and heart failure. These findings encouraged the promotion for vitamin D supplementation as a preventive measure for cardiovascular diseases in the elderly, namely in women. This fact, however, turned out into a myth with the results of large interventional trials that did not show any benefit from vitamin D supplementation in reducing ischemic events, heart failure or its outcomes, or hypertension. Although some clinical studies showed beneficial effect of vitamin D supplementation on insulin sensitivity and metabolic syndrome, this effect was not consistent across all studies.
Collapse
Affiliation(s)
- Hala Ahmadieh
- HealthPlus Diabetes and Endocrinology Center, Abu Dhabi, UAE.,College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE.,Beirut Arab University, Beirut, Lebanon
| | - Asma Arabi
- Calcium Metabolism and Osteoporosis Program, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
24
|
|
25
|
Milano W, Carizzone F, Foia M, Marchese M, Milano M, Saetta B, Capasso A. Obesity and Its Multiple Clinical Implications between Inflammatory States and Gut Microbiotic Alterations. Diseases 2022; 11:7. [PMID: 36648872 PMCID: PMC9844347 DOI: 10.3390/diseases11010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Obesity is a chronic multifactorial disease that has become a serious health problem and is currently widespread over the world. It is, in fact, strongly associated with many other conditions, including insulin resistance, type 2 diabetes, cardiovascular and neurodegenerative diseases, the onset of different types of malignant tumors and alterations in reproductive function. According to the literature, obesity is characterized by a state of low-grade chronic inflammation, with a substantial increase in immune cells, specifically macrophage infiltrates in the adipose tissue which, in turn, secrete a succession of pro-inflammatory mediators. Furthermore, recent studies on microbiota have postulated new possible mechanisms of interaction between obesity and unbalanced nutrition with inflammation. This intestinal "superorganism" complex seems to influence not only the metabolic balance of the host but also the immune response, favoring a state of systemic inflammation and insulin resistance. This review summarizes the major evidence on the interactions between the gut microbiota, energetic metabolism and host immune system, all leading to a convergence of the fields of immunology, nutrients physiology and microbiota in the context of obesity and its possible clinical complications. Finally, possible therapeutic approaches aiming to rebalance the intestinal microbial ecosystem are evaluated to improve the alteration of inflammatory and metabolic states in obesity and related diseases.
Collapse
Affiliation(s)
- Walter Milano
- UOSD Eating Disorder Unit, Mental Health Department, ASL Napoli 2 Nord, 80027 Napoli, Italy
| | - Francesca Carizzone
- UOSD Eating Disorder Unit, Mental Health Department, ASL Napoli 2 Nord, 80027 Napoli, Italy
| | | | - Magda Marchese
- Clinical Pathology Services, Santa Maria Delle Grazie Hospital Pozzuoli, Asl Napoli 2 Nord, 80027 Napoli, Italy
| | - Mariafrancesca Milano
- UOSD Eating Disorder Unit, Mental Health Department, ASL Napoli 2 Nord, 80027 Napoli, Italy
| | - Biancamaria Saetta
- UOSD Eating Disorder Unit, Mental Health Department, ASL Napoli 2 Nord, 80027 Napoli, Italy
| | - Anna Capasso
- Department of Pharmacy, University of Salerno, Fisciano, 84084 Salerno, Italy
| |
Collapse
|
26
|
Nesic J, Ljujic B, Rosic V, Djukic A, Rosic M, Petrovic I, Zornic N, Jovanovic IP, Petrovic S, Djukic S. Adiponectin and Interleukin-33: Possible Early Markers of Metabolic Syndrome. J Clin Med 2022; 12:132. [PMID: 36614933 PMCID: PMC9821697 DOI: 10.3390/jcm12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Adiponectin is one of the most important molecules in the body's compensatory response to the development of insulin resistance. By trying to maintain insulin sensitivity, increase insulin secretion and prevent inflammation, adiponectin tries to maintain glucose homeostasis. Interleukin-33, which belongs to the group of alarmins, also promotes insulin secretion. Interleukin-33 might be either pro-inflammatory or anti-inflammatory depending on the disease and the model. However, interleukin-33 has shown various protective effects in CVD, obesity and diabetes. The aim of our study was to investigate the association between adiponectin and interleukin-33 in patients with metabolic syndrome. As expected, all patients with metabolic syndrome had worse parameters that represent the hallmark of metabolic syndrome compared to the control group. In the subgroup of patients with low adiponectin, we observed less pronounced characteristics of metabolic syndrome simultaneously with significantly higher values of interleukin-33 compared to the subgroup of patients with high adiponectin. Our findings suggested that adiponectin might be an early marker of metabolic syndrome that emerges before anthropomorphic, biochemical and clinical parameters. We also suggest that both interleukin-33 and adiponectin may be used to predict the inflammatory status in the early stage of metabolic syndrome.
Collapse
Affiliation(s)
- Jelena Nesic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Human Genetics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Vesna Rosic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Djukic
- University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milenko Rosic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Institute of Cardiovascular Diseases Vojvodina, Clinic of Cardiovascular Surgery, 21208 Sremska Kamenica, Serbia
| | - Ivica Petrovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad Zornic
- University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan P Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sara Petrovic
- University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
- Department of Infectious Diseases, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Svetlana Djukic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
27
|
Yin Y, Xie Y, Ge W, Li Y. Creeping fat formation and interaction with intestinal disease in Crohn's disease. United European Gastroenterol J 2022; 10:1077-1084. [PMID: 36507842 PMCID: PMC9752293 DOI: 10.1002/ueg2.12349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Creeping fat (CrF), also known as fat wrapping, is a significant disease characteristic of Crohn's disease (CD). The transmural inflammation impairs intestinal integrity and facilitates bacteria translocation, aggravating immune response. CrF is a rich source of pro-inflammatory and pro-fibrotic cytokines with complex immune microenvironment. The inflamed and stricturing intestine is often wrapped by CrF, and CrF is associated with greater severity of CD. The large amount of innate and adaptive immune cells as well as adipocytes in CrF promote fibrosis in the affected intestine by secreting large amount of pro-fibrotic cytokines, adipokines, growth factors and fatty acids. CrF is a potential therapeutic target for CD treatment and a promising bio-marker for predicting response to drug therapy. This review aims to summarize and update the clinical manifestation and application of CrF and the underlying molecular mechanism involved in the pathogenesis of intestinal inflammation and fibrosis in CD.
Collapse
Affiliation(s)
- Yi Yin
- Department of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Ying Xie
- Department of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Wei Ge
- Department of General SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Yi Li
- Department of General SurgeryJinling HospitalMedical School of Nanjing UniversityNanjingChina
| |
Collapse
|
28
|
Hariri M, Amirkalali B, Mollanoroozy E, Gholami A. Can soy isoflavones in combination with soy protein change serum concentration of adiponectin and resistin? A systematic review and meta-analysis on randomized clinical trials. Food Sci Nutr 2022; 10:4126-4138. [PMID: 36514764 PMCID: PMC9731533 DOI: 10.1002/fsn3.3038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/12/2022] [Accepted: 08/23/2022] [Indexed: 12/16/2022] Open
Abstract
Some studies proposed the anti-inflammatory effect of soy protein and soy isoflavones by changing the serum adiponectin and resistin levels. The purpose of this research was to determine the impact of soy isoflavones and soy protein on blood adiponectin and resistin levels in adults. Scopus, PubMed, Cochrane Library, ISI Web of Science, and ClinicalTrials.gov databases were searched until April 2022. The effect size was computed by the mean changes from the beginning for intervention and comparison groups and their standard deviation. In the case of significant heterogeneity, DerSimonian and Laird random-effects model was used. Six and five clinical trials were selected for the systematic review and meta-analysis, respectively. The overall estimate indicated that soy isoflavones in combination with soy protein did not significantly change serum adiponectin level (weighted mean differences (WMD) = 0.36 μg/ml; 95% confidence interval (CI): -0.26, 0.99; p = .25), but significantly increased serum resistin level (WMD = 0.64 ng/ml, 95% CI: 0.25, 1.04; p = .001). In combination with soy protein, soy isoflavones nonsignificantly increased serum adiponectin levels, but significantly increased resistin levels. New intervention studies with a high dose of soy isoflavones and soy protein in different parts of the world and an updated meta-analysis are needed to confirm the results of our study.
Collapse
Affiliation(s)
- Mitra Hariri
- Noncommunicable Diseases Research CenterNeyshabur University of Medical SciencesNeyshaburIran
| | - Bahareh Amirkalali
- Gastrointestinal & Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| | - Ensiyeh Mollanoroozy
- Noncommunicable Diseases Research CenterNeyshabur University of Medical SciencesNeyshaburIran
| | - Ali Gholami
- Noncommunicable Diseases Research CenterNeyshabur University of Medical SciencesNeyshaburIran
- Department of Epidemiology and Biostatistics, School of Public HealthNeyshabur University of Medical SciencesNeyshaburIran
| |
Collapse
|
29
|
Does Pitavastatin Therapy for Patients with Type 2 Diabetes and Dyslipidemia Affect Serum Adiponectin Levels and Insulin Sensitivity? J Clin Med 2022; 11:jcm11226756. [PMID: 36431233 PMCID: PMC9692324 DOI: 10.3390/jcm11226756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: We aimed to demonstrate the effects of pitvastatin therapy on the serum levels of total adiponectin and high-molecular-weight (HMW) adiponectin in type 2 diabetes and the correlation with insulin sensitivity. (2) Methods: This study was designed as an open-labelled randomized trial. Patients with diabetes who were prescribed pitavastatin therapy were enrolled and randomized to either treatment with 2 mg of pitavastatin once daily (n = 44) (PITA group) or diet and exercise only, except their antidiabetic medications (n = 49), for 24 weeks. (3) Results: In lipid profiles, the reduction in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) was significantly increased in the PITA group (TC; 207.5 ± 20 vs. 195.5 ± 30.0 ng/dL, p < 0.001, LDL-C; 132.0 ± 15.8 vs. 123.1 ± 25.7 mg/dL, p < 0.001). Adiponectin and HMW adiponectin were elevated in the PITA group, compared to the control group without significance. The PITA group showed a lower level of HOMA-IR and HOMA-β levels. However, there was no significance (HOMA-IR; p = 0.5921 -at 12 weeks and p = 0.3645 at 24 weeks; HOMA-β; p = 0.8915 at 12 weeks and p = 0.7313 in 6 months). (4) Conclusions: The present study did not show a significant change in serum adiponectin or HMW adiponectin from baseline in serum adiponectin following pitavastatin therapy. Although statin has been considered as a risk for dysglycemia, pitavastatin did not affect insulin sensitivity.
Collapse
|
30
|
Mendelian randomization study reveals a causal relationship between adiponectin and LDL cholesterol in Africans. Sci Rep 2022; 12:18955. [PMID: 36347891 PMCID: PMC9643497 DOI: 10.1038/s41598-022-21922-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Adiponectin has been associated with cardiometabolic traits in observational studies across populations, yet it is unclear if these associations are causal. We performed Mendelian randomization (MR) analysis to assess the relationship between adiponectin and cardiometabolic traits in sub-Saharan Africans. We constructed a polygenic risk score (PRS) for adiponectin levels across 3354 unrelated sub-Saharan Africans. The PRS was used as the instrumental variable in two-stage least-squares MR analysis to assess its association with insulin resistance, HDL, LDL, total cholesterol, triglycerides, blood pressure, Type 2 Diabetes (T2D), and hypertension. The adiponectin PRS was causally related with LDL (β = 0.55, 95%CI 0.07-1.04, P-value = 0.024) but not the other traits. This association was observed in both overweight/obese and normal weight individuals, but only reached statistical significance among overweight/obese individuals (β = 0.55, 95%CI 0.01-1.08, P-value = 0.045). In normal weight individuals, the adiponectin PRS was associated with T2D (OR = 0.13, 95%CI 0.02-0.73, P-value = 0.021), and in men with HDL (β = 1.03, 95%CI 0.14-1.92, P-value = 0.023). The findings of this first MR study in sub-Saharan Africans support a causal relationship of adiponectin with LDL, with T2D in normal weight individuals only, and with HDL in men only. These observations add to the small but growing literature on adiponectin MR studies.
Collapse
|
31
|
Virwani PD, Cai L, Yeung PKK, Qian G, Chen Y, Zhou L, Wong JWH, Wang Y, Ho JWK, Lau KK, Qian PY, Chung SK. Deficiency of exchange protein directly activated by cAMP (EPAC)-1 in mice augments glucose intolerance, inflammation, and gut dysbiosis associated with Western diet. MICROBIOME 2022; 10:187. [PMID: 36329549 PMCID: PMC9635209 DOI: 10.1186/s40168-022-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Gut microbiota (GM) dysregulation, known as dysbiosis, has been proposed as a crucial driver of obesity associated with "Western" diet (WD) consumption. Gut dysbiosis is associated with increased gut permeability, inflammation, and insulin resistance. However, host metabolic pathways implicated in the pathophysiology of gut dysbiosis are still elusive. Exchange protein directly activated by cAMP (Epac) plays a critical role in cell-cell junction formation and insulin secretion. Here, we used homozygous Epac1-knockout (Epac1-/-), Epac2-knockout (Epac2-/-), and wild-type (WT) mice to investigate the role of Epac proteins in mediating gut dysbiosis, gut permeability, and inflammation after WD feeding. RESULTS The 16S rRNA gene sequencing of fecal DNA showed that the baseline GM of Epac2-/-, but not Epac1-/-, mice was represented by a significantly higher Firmicutes to Bacteroidetes ratio and significant alterations in several taxa compared to WT mice, suggesting that Epac2-/- mice had gut dysbiosis under physiological conditions. However, an 8-week WD led to a similar gut microbiome imbalance in mice regardless of genotype. While Epac1 deficiency modestly exacerbated the WD-induced GM dysbiosis, the WD-fed Epac2-/- mice had a more significant increase in gut permeability than corresponding WT mice. After WD feeding, Epac1-/-, but not Epac2-/-, mice had significantly higher mRNA levels of tumor necrosis factor-alpha (TNF-α) and F4/80 in the epididymal white adipose tissue (EWAT), increased circulating lipocalin-2 protein and more severe glucose intolerance, suggesting greater inflammation and insulin resistance in WD-fed Epac1-/- mice than corresponding WT mice. Consistently, Epac1 protein expression was significantly reduced in the EWAT of WD-fed WT and Epac2-/- mice. CONCLUSION Despite significantly dysregulated baseline GM and a more pronounced increase in gut permeability upon WD feeding, WD-fed Epac2-/- mice did not exhibit more severe inflammation and glucose intolerance than corresponding WT mice. These findings suggest that the role of gut dysbiosis in mediating WD-associated obesity may be context-dependent. On the contrary, we demonstrate that deficiency of host signaling protein, Epac1, drives inflammation and glucose intolerance which are the hallmarks of WD-induced obesity. Video abstract.
Collapse
Affiliation(s)
- Preeti Dinesh Virwani
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Lin Cai
- Department of Ocean Science and Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R. China
| | - Patrick Ka Kit Yeung
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Gordon Qian
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong S.A.R., China
| | - Yingxian Chen
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Joshua Wing Kei Ho
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong S.A.R., China
| | - Kui Kai Lau
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong S.A.R., China
| | - Pei-Yuan Qian
- Department of Ocean Science and Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Sookja Kim Chung
- Faculty of Medicine; Faculty of Innovation Engineering, Macau University of Science and Technology, Macau Special Administrative Region (S.A.R.), China
- School of Biomedical Sciences, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong S.A.R., China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau S.A.R., China
| |
Collapse
|
32
|
Is bariatric surgery improving mitochondrial function in the renal cells of patients with obesity-induced kidney disease? Pharmacol Res 2022; 185:106488. [DOI: 10.1016/j.phrs.2022.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
33
|
Bhaumik S, Lockett J, Saif Z, Lai A, Salomon C, Whitehead J, Clifton VL. The impact of obesity and uncontrolled asthma during pregnancy on metabolic and inflammatory pathways. J Asthma 2022; 60:1141-1152. [PMID: 36214455 DOI: 10.1080/02770903.2022.2134794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Asthma and obesity are both inflammatory complications of pregnancy and when combined contribute to an increased risk of uncontrolled asthma during pregnancy and poor perinatal outcomes. Our previous work has identified the presence of maternal asthma is associated with a proinflammatory milieu in the placenta and reduced fetal growth. The current study was designed to determine the relationships between immunomodulatory metabolic pathways and inflammation and establish whether these pathways are associated with uncontrolled asthma in obese pregnant women.Fifty-three obese (BMI >30) pregnant women were recruited prospectively. Participants were classified as having no asthma, controlled asthma, and uncontrolled asthma based on a doctor diagnosis and assessment using the Asthma Control Questionnaire (ACQ). Circulating plasma concentrations of metabolic hormones leptin, adiponectin, insulin, glucose, and extracellular vesicle (EVs) associated cytokines were measured at 18- and 36-weeks gestation.Concentrations of metabolic and inflammatory markers among obese participants with or without asthma were not significantly different throughout gestation. However total adiponectin concentrations increased as gestation progressed in obese, non-asthmatic women but did not increase in women with asthma. Plasma adiponectin and leptin levels in women with uncontrolled asthma were positively correlated with EV inflammatory markers including GM-CSF, IL-6, TNFα and IFNγ protein.This study demonstrated that most metabolic markers remain unchanged with the presence and severity of asthma in obese pregnant women. However, differences in the associations between metabolic and inflammatory pathways were observed in women with asthma and may be one of the mechanisms contributing to uncontrolled asthma in obese pregnant women.
Collapse
Affiliation(s)
- Sreeparna Bhaumik
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jack Lockett
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Brisbane, Australia
| | - Zarqa Saif
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jon Whitehead
- Department of Life Sciences, The University of Lincoln, Lincoln, United Kingdom
| | - Vicki L Clifton
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Firouzi S, Malekahmadi M, Djalali M, Javanbakht MH, Shokuhi N, Yaseri M, Abdolahi M, Zarezadeh M, Navashenaq JG, Honarvar NM, Pahlavani N. Are levels of adipokines and micronutrients different in male adult smokers and non-smokers? A case-control study. ENDOCRINOLOGIA, DIABETES Y NUTRICION 2022; 69:554-560. [PMID: 36446483 DOI: 10.1016/j.endien.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/12/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Smoking is a common public problem leading to increases in oxidative stress and decreases in the levels of some micronutrients, finally affecting adipokine levels. The aim of this study was to compare the serum levels of omentin (intelectin-1), chemerin, TNF-α, and some micronutrient intakes in male smokers and non-smokers. METHODS 40 male smokers and 40 male non-smokers with a mean age of 38.6±14.1 years were included in this study. Serum levels of omentin, chemerin, and TNF-α were measured. To calculate the daily intake of energy, carbohydrate, protein, fat, and some of the micronutrients, the 24-h recall and semi-quantitative food frequency questionnaire (FFQ) was used. RESULTS Omentin, chemerin, and TNF-α levels in male smokers were lower than non-smokers, but these differences were not statistically significant. However, after adjustment for total and saturated fat intakes and age, omentin (β=138.4, p=0.027) and TNF-α (β=144.5, p=0.015) revealed significant differences. CONCLUSION The serum levels of omentin, chemerin, TNF-α, and some micronutrient intakes were not significantly different between smokers and non-smokers. Further population studies are needed to clarify this subject.
Collapse
Affiliation(s)
- Safieh Firouzi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Malekahmadi
- Research Center for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nilufar Shokuhi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abdolahi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Obesity Institute, AmirAlam Hospital Complex, Marvasti Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Meysam Zarezadeh
- Department of Clinical Nutrition, Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Clinical Biochemistry and Nutrition, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
35
|
Firouzi S, Malekahmadi M, Djalali M, Javanbakht MH, Shokuhi N, Yaseri M, Abdolahi M, Zarezadeh M, Navashenaq JG, Honarvar NM, Pahlavani N. Are levels of adipokines and micronutrients different in male adult smokers and non-smokers? A case–control study. ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Bradley D, Smith AJ, Blaszczak A, Shantaram D, Bergin SM, Jalilvand A, Wright V, Wyne KL, Dewal RS, Baer LA, Wright KR, Stanford KI, Needleman B, Brethauer S, Noria S, Renton D, Joseph JJ, Lovett-Racke A, Liu J, Hsueh WA. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nat Commun 2022; 13:5606. [PMID: 36153324 PMCID: PMC9509397 DOI: 10.1038/s41467-022-33067-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Decreased adipose tissue regulatory T cells contribute to insulin resistance in obese mice, however, little is known about the mechanisms regulating adipose tissue regulatory T cells numbers in humans. Here we obtain adipose tissue from obese and lean volunteers. Regulatory T cell abundance is lower in obese vs. lean visceral and subcutaneous adipose tissue and associates with reduced insulin sensitivity and altered adipocyte metabolic gene expression. Regulatory T cells numbers decline following high-fat diet induction in lean volunteers. We see alteration in major histocompatibility complex II pathway in adipocytes from obese patients and after high fat ingestion, which increases T helper 1 cell numbers and decreases regulatory T cell differentiation. We also observe increased expression of inhibitory co-receptors including programmed cell death protein 1 and OX40 in visceral adipose tissue regulatory T cells from patients with obesity. In human obesity, these global effects of interferon gamma to reduce regulatory T cells and diminish their function appear to instigate adipose inflammation and suppress adipocyte metabolism, leading to insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
- Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
| | - Alan J Smith
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Alecia Blaszczak
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Stephen M Bergin
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Anahita Jalilvand
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Valerie Wright
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kathleen L Wyne
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Revati S Dewal
- Diabetes and Metabolism Research Center, Division of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lisa A Baer
- Diabetes and Metabolism Research Center, Division of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Katherine R Wright
- Diabetes and Metabolism Research Center, Division of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristin I Stanford
- Diabetes and Metabolism Research Center, Division of Physiology and Cell Biology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Bradley Needleman
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Stacy Brethauer
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Sabrena Noria
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - David Renton
- Center for Minimally Invasive Surgery, Department of General Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Joshua J Joseph
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Amy Lovett-Racke
- Department of Microbial Immunity and Infection, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Joey Liu
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
37
|
Cole RM, Angelotti A, Sparagna GC, Ni A, Belury MA. Linoleic Acid-Rich Oil Alters Circulating Cardiolipin Species and Fatty Acid Composition in Adults: A Randomized Controlled Trial. Mol Nutr Food Res 2022; 66:e2101132. [PMID: 35596730 PMCID: PMC9540417 DOI: 10.1002/mnfr.202101132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/07/2022] [Indexed: 11/08/2022]
Abstract
SCOPE Higher circulating linoleic acid (LA) and muscle-derived tetralinoleoyl-cardiolipin (LA4 CL) are each associated with decreased cardiometabolic disease risk. Mitochondrial dysfunction occurs with low LA4 CL. Whether LA-rich oil fortification can increase LA4 CL in humans is unknown. The aims of this study are to determine whether dietary fortification with LA-rich oil for 2 weeks increases: 1) LA in plasma, erythrocytes, and peripheral blood mononuclear cells (PBMC); and 2) LA4 CL in PBMC in adults. METHODS AND RESULTS In this randomized controlled trial, adults are instructed to consume one cookie per day delivering 10 g grapeseed (LA-cookie, N = 42) or high oleate (OA) safflower (OA-cookie, N = 42) oil. In the LA-cookie group, LA increases in plasma, erythrocyte, and PBMC by 6%, 7%, and 10% respectively. PBMC and erythrocyte OA increase by 7% and 4% in the OA-cookie group but is unchanged in the plasma. PBMC LA4 CL increases (5%) while LA3 OA1 CL decreases (7%) in the LA-cookie group but are unaltered in the OA-cookie group. CONCLUSIONS LA-rich oil fortification increases while OA-oil has no effect on LA4 CL in adults. Because LA-rich oil fortification reduces cardiometabolic disease risk and increases LA4 CL, determining whether mitochondrial dysfunction is repaired through dietary fortification is warranted.
Collapse
Affiliation(s)
- Rachel M. Cole
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| | - Austin Angelotti
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| | - Genevieve C. Sparagna
- Division of CardiologyThe Department of MedicineUniversity of Colorado Anschutz Medical CenterAuroraCO80045USA
| | - Ai Ni
- Division of BiostatisticsCollege of Public HealthThe Ohio State UniversityColumbusOH43210USA
| | - Martha A. Belury
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
38
|
Ryan AS, Li G. Adipose and Skeletal Muscle Expression of Adiponectin and Liver Receptor Homolog-1 With Weight Loss and Aerobic Exercise. J Endocr Soc 2022; 6:bvac095. [PMID: 35854979 PMCID: PMC9281870 DOI: 10.1210/jendso/bvac095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022] Open
Abstract
Context Adiponectin is an adipokine mainly secreted by adipocytes that regulates the metabolism of lipids and glucose. Liver receptor homolog-1 (LRH-1), also named NR5A2, is a nuclear receptor that regulates lipid metabolism and homeostasis. Objective The purpose of this study was to compare adiponectin and LRH-1 messenger RNA (mRNA) expression in adipose tissue and LRH-1 expression in skeletal muscle between men and women at baseline and to study the effects of aerobic exercise (AEX) training or weight loss (WL) on their expression. Methods This hospital and university setting study included 62 overweight and obese men (n = 23) and women (n = 39) older than 45 years, of whom 41 completed 6 months of WL (n = 21) or AEX (n = 20). Outcomes included abdominal and gluteal adipose tissue and skeletal muscle gene expression. Results Adiponectin and LRH-1 mRNA expression in adipose tissue and LRH-1 mRNA expression in skeletal muscle is higher in women than in men (P < .05). Adiponectin mRNA expression in gluteal and abdominal adipose tissue did not change significantly after AEX or WL. LRH-1 mRNA expression increased both in adipose tissue and skeletal muscle after AEX (P < .05) and the change in muscle LRH-1 was different between the groups (P < .05). Adiponectin was positively correlated to LRH-1 in adipose tissue (P < .001). The change in maximal oxygen consumption related to the change in LRH-1 mRNA (r = 0.43; P = .01). Conclusion LRH-1, as a nuclear reporter, may activate adiponectin mRNA expression in adipose tissue and increases after AEX.
Collapse
Affiliation(s)
- Alice S Ryan
- VA Research Service, VA Maryland Health Care System, Baltimore, Maryland 21201, USA
| | - Guoyan Li
- Department of Medicine, Division of Geriatric and Palliative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
39
|
Chakarov S, Blériot C, Ginhoux F. Role of adipose tissue macrophages in obesity-related disorders. J Exp Med 2022; 219:213212. [PMID: 35543703 PMCID: PMC9098652 DOI: 10.1084/jem.20211948] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/04/2022] Open
Abstract
The obesity epidemic has led researchers and clinicians to reconsider the etiology of this disease and precisely decipher its molecular mechanisms. The excessive accumulation of fat by cells, most notably adipocytes, which play a key role in this process, has many repercussions in tissue physiology. Herein, we focus on how macrophages, immune cells well known for their tissue gatekeeping functions, assume fundamental, yet ill-defined, roles in the genesis and development of obesity-related metabolic disorders. We first discuss the determinants of the biology of these cells before introducing the specifics of the adipose tissue environment, while highlighting its heterogeneity. Finally, we detail how obesity transforms both adipose tissue and local macrophage populations. Understanding macrophage diversity and their cross talk with the diverse cell types constituting the adipose tissue environment will allow us to frame the therapeutic potential of adipose tissue macrophages in obesity.
Collapse
Affiliation(s)
- Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Camille Blériot
- Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France.,Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
40
|
Larnkjær A, Grenov B, Ritz C, Michaelsen KF, Mølgaard C. Similar effects of milk protein and blends of milk and plant-based protein on appetite-related hormones in 7- to 8-year-old healthy Danish children: secondary analyses from the PROGRO randomised trial. Acta Paediatr 2022; 111:1372-1379. [PMID: 35253279 DOI: 10.1111/apa.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
AIM The effect of different protein sources on the appetite-related hormones in children is largely unknown. We investigated the effect of milk protein versus blends of milk and rapeseed protein on plasma leptin and adiponectin in children. METHODS We included 88 Danish 7- to 8-year-old children randomised to receive 35 g protein/day for 4 weeks in 2018 as either milk protein or blends of milk and rapeseed protein (ratio 54:46 or 30:70). Outcomes included absolute and fat mass-adjusted adiponectin and leptin measured at baseline, Weeks 1 and 4. RESULTS There was no difference in changes in absolute and fat mass-adjusted adiponectin and leptin after 1 or 4 weeks between the three groups (p ≥ 0.100). Leptin increased within all groups (p ≤ 0.046). Combining the three groups, leptin and fat mass-adjusted leptin increased by 23% (95% CI 11;35) and 17% (6.4;29) during the intervention respectively (both p ≤ 0.001). Adiponectin variables did not change during the intervention period. CONCLUSION There were no differences between milk protein and blends of milk and rapeseed protein on absolute and fat mass-adjusted leptin and adiponectin in healthy children with a habitual intake of milk. However, leptin increased within all three groups. Future studies should further investigate effect on appetite-related hormones of rapeseed protein alone.
Collapse
Affiliation(s)
- Anni Larnkjær
- Department of Nutrition, Exercise and Sports University of Copenhagen Frederiksberg C Denmark
| | - Benedikte Grenov
- Department of Nutrition, Exercise and Sports University of Copenhagen Frederiksberg C Denmark
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports University of Copenhagen Frederiksberg C Denmark
| | - Kim F. Michaelsen
- Department of Nutrition, Exercise and Sports University of Copenhagen Frederiksberg C Denmark
| | - Christian Mølgaard
- Department of Nutrition, Exercise and Sports University of Copenhagen Frederiksberg C Denmark
| |
Collapse
|
41
|
Mohri S, Takahashi H, Sakai M, Waki N, Takahashi S, Aizawa K, Suganuma H, Ara T, Sugawara T, Shibata D, Matsumura Y, Goto T, Kawada T. Integration of bioassay and non-target metabolite analysis of tomato reveals that β-carotene and lycopene activate the adiponectin signaling pathway, including AMPK phosphorylation. PLoS One 2022; 17:e0267248. [PMID: 35776737 PMCID: PMC9249195 DOI: 10.1371/journal.pone.0267248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Adiponectin, an adipokine, regulates glucose metabolism and insulin sensitivity through the adiponectin receptor (AdipoR). In this study, we searched for metabolites that activate the adiponectin signaling pathway from tomato (Solanum lycopersicu). Metabolites of mature tomato were separated into 55 fractions by liquid chromatography, and then each fraction was examined using the phosphorylation assay of AMP-protein kinase (AMPK) in C2C12 myotubes and in AdipoR-knockdown cells by small interfering RNA (siRNA). Several fractions showed AMPK phosphorylation in C2C12 myotubes and siRNA-mediated abrogation of the effect. Non-targeted metabolite analysis revealed the presence of 721 diverse metabolites in tomato. By integrating the activity of fractions on AMPK phosphorylation and the 721 metabolites based on their retention times of liquid chromatography, we performed a comprehensive screen for metabolites that possess adiponectin-like activity. As the screening suggested that the active fractions contained four carotenoids, we further analyzed β-carotene and lycopene, the major carotenoids of food. They induced AMPK phosphorylation via the AdipoR, Ca2+/calmodulin-dependent protein kinase kinase and Ca2+ influx, in addition to activating glucose uptake via AdipoR in C2C12 myotubes. All these events were characteristic adiponectin actions. These results indicated that the food-derived carotenoids, β-carotene and lycopene, activate the adiponectin signaling pathway, including AMPK phosphorylation.
Collapse
Affiliation(s)
- Shinsuke Mohri
- Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Laboratory of Technology of Marine Bioproducts, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- KAGOME Tomato Discoveries Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- * E-mail: (HT); (DS); (TG)
| | - Maiko Sakai
- Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoko Waki
- KAGOME Tomato Discoveries Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Innovation Division, KAGOME CO., LTD., Tochigi, Japan
| | | | - Koichi Aizawa
- Innovation Division, KAGOME CO., LTD., Tochigi, Japan
| | | | - Takeshi Ara
- KAGOME Tomato Discoveries Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tatsuya Sugawara
- Laboratory of Technology of Marine Bioproducts, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daisuke Shibata
- KAGOME Tomato Discoveries Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Kazusa DNA Research Institutes, Kazusa-Kamatari, Chiba, Japan
- * E-mail: (HT); (DS); (TG)
| | - Yasuki Matsumura
- Laboratory of Quality Analysis and Assessment, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kyoto, Japan
- * E-mail: (HT); (DS); (TG)
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Ligorio F, Zambelli L, Fucà G, Lobefaro R, Santamaria M, Zattarin E, de Braud F, Vernieri C. Prognostic impact of body mass index (BMI) in HER2+ breast cancer treated with anti-HER2 therapies: from preclinical rationale to clinical implications. Ther Adv Med Oncol 2022; 14:17588359221079123. [PMID: 35281350 PMCID: PMC8908398 DOI: 10.1177/17588359221079123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 12/03/2022] Open
Abstract
Human Epidermal growth factor Receptor 2 (HER2) overexpression or HER2 gene amplification defines a subset of breast cancers (BCs) characterized by higher biological and clinical aggressiveness. The introduction of anti-HER2 drugs has remarkably improved clinical outcomes in patients with both early-stage and advanced HER2+ BC. However, some HER2+ BC patients still have unfavorable outcomes despite optimal anti-HER2 therapies. Retrospective clinical analyses indicate that overweight and obesity can negatively affect the prognosis of patients with early-stage HER2+ BC. This association could be mediated by the interplay between overweight/obesity, alterations in systemic glucose and lipid metabolism, increased systemic inflammatory status, and the stimulation of proliferation pathways resulting in the stimulation of HER2+ BC cell growth and resistance to anti-HER2 therapies. By contrast, in the context of advanced disease, a few high-quality studies, which were included in a meta-analysis, showed an association between high body mass index (BMI) and better clinical outcomes, possibly reflecting the negative prognostic role of malnourishment and cachexia in this setting. Of note, overweight and obesity are modifiable factors. Therefore, uncovering their prognostic role in patients with early-stage or advanced HER2+ BC could have clinical relevance in terms of defining subsets of patients requiring more or less aggressive pharmacological treatments, as well as of designing clinical trials to investigate the therapeutic impact of lifestyle interventions aimed at modifying body weight and composition. In this review, we summarize and discuss the available preclinical evidence supporting the role of adiposity in modulating HER2+ BC aggressiveness and resistance to therapies, as well as clinical studies reporting on the prognostic role of BMI in patients with early-stage or advanced HER2+ BC.
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luca Zambelli
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marzia Santamaria
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Emma Zattarin
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudio Vernieri
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| |
Collapse
|
43
|
Rami AZA, Hamid AA, Anuar NNM, Aminuddin A, Ugusman A. Exploring the Relationship of Perivascular Adipose Tissue Inflammation and the Development of Vascular Pathologies. Mediators Inflamm 2022; 2022:2734321. [PMID: 35177953 PMCID: PMC8846975 DOI: 10.1155/2022/2734321] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Initially thought to only provide mechanical support for the underlying blood vessels, perivascular adipose tissue (PVAT) has now emerged as a regulator of vascular function. A healthy PVAT exerts anticontractile and anti-inflammatory actions on the underlying vasculature via the release of adipocytokines such as adiponectin, nitric oxide, and omentin. However, dysfunctional PVAT produces more proinflammatory adipocytokines such as leptin, resistin, interleukin- (IL-) 6, IL-1β, and tumor necrosis factor-alpha, thus inducing an inflammatory response that contributes to the pathogenesis of vascular diseases. In this review, current knowledge on the role of PVAT inflammation in the development of vascular pathologies such as atherosclerosis and hypertension was discussed.
Collapse
Affiliation(s)
- Afifah Zahirah Abd Rami
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Ebrahimi R, Shanaki M, Mohassel Azadi S, Bahiraee A, Radmard AR, Poustchi H, Emamgholipour S. Low level of adiponectin predicts the development of Nonalcoholic fatty liver disease: is it irrespective to visceral adiposity index, visceral adipose tissue thickness and other obesity indices? Arch Physiol Biochem 2022; 128:24-31. [PMID: 31482741 DOI: 10.1080/13813455.2019.1661496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We aimed to study the correlation of adiponectin level with insulin resistance (IR), carotid intima-media thickness (cIMT), and various obesity indices especially visceral adipose tissue (VAT) thickness, and visceral adiposity index (VAI), in patients with NAFLD (n = 41), T2D (n = 22), NAFLD + T2D (n = 41), and healthy subjects (n = 20). Results showed the median level of adiponectin in patients with NAFLD (2.97 μg/mL) and ones with NAFLD + T2D (3.21 μg/mL) is significantly lower rather than in controls (4.39 μg/mL). Moreover, VAI is the only predictor for adiponectin concentration in the combination of patient groups and also in all participants independent of IR and other obesity indices. Adiponectin level had also a positive correlation with cIMT and IR in NAFLD patients. Interestingly, lower level of adiponectin was associated with the presence of T2D, NAFLD, and NAFLD + T2D independent of IR and obesity indices. Collectively, it seems that VAI reflecting visceral adipose tissue function is a possible predictor of adiponectin level.
Collapse
Affiliation(s)
- Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shanaki
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Mohassel Azadi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Reza Radmard
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Shinohara I, Kataoka T, Mifune Y, Inui A, Sakata R, Nishimoto H, Yamaura K, Mukohara S, Yoshikawa T, Kato T, Furukawa T, Matsushita T, Kuroda R. Influence of adiponectin and inflammatory cytokines in fatty degenerative atrophic muscle. Sci Rep 2022; 12:1557. [PMID: 35091650 PMCID: PMC8799651 DOI: 10.1038/s41598-022-05608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022] Open
Abstract
Tendon rupture and nerve injury cause fatty infiltration of the skeletal muscle, and the adipokines secreted from the infiltrated adipocytes are known to contribute to chronic inflammation. Therefore, in this study, we evaluated the effects of the adipokines on chronic inflammation using a rat sciatic nerve-crushed injury model. In vitro and in vivo experiments showed that the expression of adiponectin was decreased (0.3-fold) and the expression of Il6 (~ 3.8-fold) and Tnf (~ 6.2-fold) was increased in the nerve-crushed group compared to that in the control group. It was also observed that the administration of an adiponectin receptor agonist decreased the levels of Il6 (0.38-fold) and Tnf (0.28-fold) and improved cellular viability (~ 1.9-fold) in vitro. Additionally, in the fatty infiltrated skeletal muscle, low adiponectin levels were found to be associated with chronic inflammation. Therefore, the local administration of adiponectin receptor agonists would prevent chronic inflammation.
Collapse
Affiliation(s)
- Issei Shinohara
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takeshi Kataoka
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Ryosuke Sakata
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Tomoya Yoshikawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Tatsuo Kato
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takahiro Furukawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Graduate School of Medicine, Kobe University, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| |
Collapse
|
46
|
Aye ILMH, Rosario FJ, Kramer A, Kristiansen O, Michelsen TM, Powell TL, Jansson T. Insulin Increases Adipose Adiponectin in Pregnancy by Inhibiting Ubiquitination and Degradation: Impact of Obesity. J Clin Endocrinol Metab 2022; 107:53-66. [PMID: 34519830 PMCID: PMC8684469 DOI: 10.1210/clinem/dgab680] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/12/2022]
Abstract
CONTEXT Circulating adiponectin levels are decreased in pregnant women with obesity or gestational diabetes, and this is believed to contribute to the insulin resistance and increased risk of fetal overgrowth associated with these conditions. However, the molecular mechanisms regulating adiponectin secretion from maternal adipose tissues in pregnancy are poorly understood. OBJECTIVE We tested the hypothesis that obesity in pregnancy is associated with adipose tissue insulin resistance and increased adiponectin ubiquitination and degradation, caused by inflammation and endoplasmic reticulum (ER) stress. METHODS Visceral adipose tissues were collected from lean and obese pregnant humans and mice. Total and ubiquitinated adiponectin, and markers of inflammation, ER stress, and insulin resistance were examined in adipose tissues. The role of insulin, inflammation, and ER stress in mediating adiponectin ubiquitination and degradation was examined using 3T3L-1 adipocytes. RESULTS Obesity in pregnancy is associated with adipose tissue inflammation, ER stress, insulin resistance, increased adiponectin ubiquitination, and decreased total abundance of adiponectin. Adiponectin ubiquitination was increased in visceral fat of obese pregnant women as compared to lean pregnant women. We further observed that insulin prevents, whereas ER stress and inflammation promote, adiponectin ubiquitination and degradation in differentiated 3T3-L1 adipocytes. CONCLUSION We have identified adiponectin ubiquitination as a key mechanism by which obesity diminishes adiponectin secretion in pregnancy. This information will help us better understand the mechanisms controlling maternal insulin resistance and fetal growth in pregnancy and may provide a foundation for the development of strategies aimed at improving adiponectin production in pregnant women with obesity or gestational diabetes.
Collapse
Affiliation(s)
- Irving L M H Aye
- Department of Obstetrics & Gynaecology, and Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Correspondence: Irving L. M. H. Aye, PhD, Department of Obstetrics & Gynaecology, University of Cambridge, The Rosie Hospital, Robinson Way, Cambridge CB2 0SW, UK.
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anita Kramer
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Oddrun Kristiansen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trond M Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Theresa L Powell
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
47
|
Yin Y, Zhu ZX, Li Z, Chen YS, Zhu WM. Role of mesenteric component in Crohn’s disease: A friend or foe? World J Gastrointest Surg 2021; 13:1536-1549. [PMID: 35070062 PMCID: PMC8727179 DOI: 10.4240/wjgs.v13.i12.1536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/01/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Crohn’s disease (CD) is a complex and relapsing gastrointestinal disease with mesenteric alterations. The mesenteric neural, vascular, and endocrine systems actively take part in the gut dysbiosis-adaptive immunity-mesentery-body axis, and this axis has been proven to be bidirectional. The abnormalities of morphology and function of the mesenteric component are associated with intestinal inflammation and disease progress of CD via responses to afferent signals, neuropeptides, lymphatic drainage, adipokines, and functional cytokines. The hypertrophy of mesenteric adipose tissue plays important roles in the pathogenesis of CD by secreting large amounts of adipokines and representing a rich source of proinflammatory or profibrotic cytokines. The vascular alteration, including angiogenesis and lymphangiogenesis, is concomitant in the disease course of CD. Of note, the enlarged and obstructed lymphatic vessels, which have been described in CD patients, are likely related to the early onset submucosa edema and being a cause of CD. The function of mesenteric lymphatics is influenced by endocrine of mesenteric nerves and adipocytes. Meanwhile, the structure of the mesenteric lymphatic vessels in hypertrophic mesenteric adipose tissue is mispatterned and ruptured, which can lead to lymph leakage. Leaky lymph factors can in turn stimulate adipose tissue to proliferate and effectively elicit an immune response. The identification of the role of mesentery and the crosstalk between mesenteric tissues in intestinal inflammation may shed light on understanding the underlying mechanism of CD and help explore new therapeutic targets.
Collapse
Affiliation(s)
- Yi Yin
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhen-Xing Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yu-Sheng Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Ming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
48
|
Wang N, Sun Y, Zhang H, Chen C, Wang Y, Zhang J, Xia F, Benedict C, Tan X, Lu Y. Total and regional fat-to-muscle mass ratio measured by bioelectrical impedance and risk of incident type 2 diabetes. J Cachexia Sarcopenia Muscle 2021; 12:2154-2162. [PMID: 34595832 PMCID: PMC8718017 DOI: 10.1002/jcsm.12822] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/02/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The fat-to-muscle mass ratio (FMR) might be an indicator to assess type 2 diabetes risk independent of general obesity. However, no longitudinal studies have explored the extent to which total and regional FMRs may confer risks. We aimed to measure the sex-specific associations between FMRs of the arm, leg, trunk and whole body and incident type 2 diabetes. METHODS A total of 464 817 participants (207 286 men and 257 531 women, mean age 56.5 ± 8.2 and 56.2 ± 8.0 years old, respectively) free of diabetes at baseline were included in this prospective cohort study with UK Biobank data. Fat mass and muscle mass were estimated using a bioelectrical impedance assessment device (Tanita BC 418MA). FMR was calculated as fat mass divided by muscle mass in corresponding body parts (total body, arm, leg and trunk). Cox proportional hazard models were used to estimate the aforementioned associations among men and women. Interaction analyses were performed between FMRs and body mass index (BMI) categories (BMI < 25 kg/m2 and BMI ≥ 25 kg/m2 ). RESULTS Over the median 11.0 years (5 057 534 person-years) of follow-up, we documented 11 618 cases of type 2 diabetes. There was a significantly positive association between total and regional FMR and incident type 2 diabetes, even after adjusting for BMI and other covariates. Compared with other body parts, FMRs of the whole body and leg showed the strongest relationship among men and women, respectively (hazard ratio per 1 SD, 95% confidence interval: 1.67, 1.55-1.80; 1.45, 1.39-1.53). A significant interaction (P for interaction < 0.001) between BMI category and FMRs of different body parts was observed. In the stratified analysis by BMI category and tertiles of FMRs, overweight/obese individuals with a high FMR tertile tended to have the highest hazard ratio, ranging from 5.91 to 7.94 in whole body and regional areas. CONCLUSIONS In this large prospective study, higher total and regional FMRs were associated with a higher risk of developing type 2 diabetes, independent of BMI. This association was markedly strengthened in participants with BMI ≥ 25 kg/m2 .
Collapse
Affiliation(s)
- Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Haojie Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jihui Zhang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | | | - Xiao Tan
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Hoshiko H, Zeinstra GG, Lenaerts K, Oosterink E, Ariens RMC, Mes JJ, de Wit NJW. An Observational Study to Evaluate the Association between Intestinal Permeability, Leaky Gut Related Markers, and Metabolic Health in Healthy Adults. Healthcare (Basel) 2021; 9:healthcare9111583. [PMID: 34828628 PMCID: PMC8623210 DOI: 10.3390/healthcare9111583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
We explored whether metabolic health is linked to intestinal permeability, using a multi-sugar (MS) permeability test, and whether intestinal permeability is correlated with the leaky gut-related markers (LGM) zonulin, LBP, and sCD14. Metabolically healthy (n = 15) and unhealthy subjects (n = 15) were recruited based on waist circumference, fasting glucose, and high-density lipoprotein cholesterol levels. Participants underwent an MS permeability test that assessed site-specific permeabilities of the gastroduodenum and small and large intestines. The test was performed with/without an acetylsalicylic acid challenge to measure and correlate the gut permeability, LGM, and metabolic health. At baseline, metabolic health showed no correlation with gut permeability. Significant correlations were found between the metabolic health parameters and LGM. In the acetylsalicylic acid challenged MS permeability test, low-density lipoprotein cholesterol was correlated with the sucralose/erythritol ratio, reflecting the whole intestinal permeability. Correlations between most metabolic health parameters and LGM during the acetylsalicylic acid challenge were less pronounced than at baseline. In both MS permeability tests, no significant correlations were found between LGM (plasma and serum) and gut permeability. Thus, correlations between LGM and metabolic health might not be linked with paracellular gut permeability. Transcellular translocation and/or lipoprotein-related transportation is a more likely mechanism underlying the association between LGM and metabolic health.
Collapse
Affiliation(s)
- Hiroyuki Hoshiko
- HE Center, Suntory MONOZUKURI Expert Limited, Kyoto 619-0284, Japan
- Correspondence:
| | - Gertrude G. Zeinstra
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Els Oosterink
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Renata M. C. Ariens
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Jurriaan J. Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| | - Nicole J. W. de Wit
- Wageningen Food and Biobased Research, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (G.G.Z.); (E.O.); (R.M.C.A.); (J.J.M.); (N.J.W.d.W.)
| |
Collapse
|
50
|
Ebihara T, Matsumoto H, Matsubara T, Matsuura H, Hirose T, Shimizu K, Ogura H, Kang S, Tanaka T, Shimazu T. Adipocytokine Profile Reveals Resistin Forming a Prognostic-Related Cytokine Network in the Acute Phase of Sepsis. Shock 2021; 56:718-726. [PMID: 33606478 DOI: 10.1097/shk.0000000000001756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Cytokines compose a network and play crucial roles in the pathogenesis and prognosis of sepsis. Adipose tissue is an important immune endocrine organ that releases adipocytokines. This study aimed to evaluate adipocytokines in sepsis from a network perspective. MATERIALS AND METHODS This retrospective study of 37 patients with sepsis and 12 healthy controls was conducted from February 2014 to July 2015. Blood samples were collected from patients on days 1 (within 24 h of diagnosis), 2, 4, 6, 8, 11, and 15 and from healthy controls. Adipocytokines (adiponectin, leptin, resistin, chemerin, visfatin, vaspin, CXCL-12/SDF-1, angiotensinogen), inflammatory cytokines (IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12/IL-23p40, TNF-α, monocyte chemotactic protein [MCP-1]), and plasminogen activator inhibitor-1 were measured. Acute Physiology and Chronic Health Evaluation II score was evaluated on day 1, and Sequential Organ Failure Assessment (SOFA) score and Japanese Association for Acute Medicine (JAAM) and International Society of Thrombosis and Hemostasis overt disseminated intravascular coagulation (DIC) scores were assessed at the times of blood sampling. RESULTS Hierarchical clustering analysis showed the cluster formed by resistin, IL-6, IL-8, MCP-1, and IL-10 on days 1, 2, and 4 represented the cytokine network throughout the acute phase of sepsis. Each cytokine in this network was significantly associated with SOFA and JAAM DIC scores over the acute phase. A Cox proportional hazards model focusing on the acute phase showed a significant relation of these five cytokines with patient prognosis. CONCLUSIONS Adipocytokines and an inflammatory cytokine profile assessed over time in sepsis patients showed that resistin was involved in an inflammatory cytokine network including IL-6, IL-8, IL-10, and MCP-1 in the acute phase of sepsis, and this network was associated with severity and prognosis of sepsis.
Collapse
Affiliation(s)
- Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsunehiro Matsubara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Matsuura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoya Hirose
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Toshio Tanaka
- Medical Affairs Bureau, Osaka Habikino Medical Center, Osaka, Japan
| | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|