1
|
Sun X, Liu B, Yuan Y, Rong Y, Pang R, Li Q. Neural and hormonal mechanisms of appetite regulation during eating. Front Nutr 2025; 12:1484827. [PMID: 40201582 PMCID: PMC11977392 DOI: 10.3389/fnut.2025.1484827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Numerous animal and clinical studies have demonstrated that the arcuate nucleus of the hypothalamus, a central regulator of appetite, plays a significant role in modulating feeding behavior. However, current research primarily focuses on long-term dietary changes and their effects on the body, with limited investigation into neuroendocrine dynamics during individual meals across diverse populations. In contrast to long-term dietary adjustments, directives for dietary behavior during a specific meal are more actionable, potentially enhancing patient adherence and achieving better outcomes in dietary behavior interventions. This review aimed to explore the neural pathways and endocrine changes activated by gastrointestinal expansion and variations in blood nutrient levels during a single meal, with the goal of informing dietary behavior guidance.
Collapse
Affiliation(s)
- Xurui Sun
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Binghan Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Yuan
- Department of Clinical Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Rong
- Department of Clinical Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rui Pang
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiu Li
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Zhang SQ, Jia S, Li X, Hu RR, Luo Z, Wang J, Xi H. Adverse events associated with aromatase inhibitors: an analysis of real-world datasets and drug-gene interaction network. Expert Opin Drug Saf 2025; 24:315-324. [PMID: 39497024 DOI: 10.1080/14740338.2024.2424443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Aromatase inhibitors (AIs) are commonly used to treat postmenopausal hormone receptor positive breast cancer, but there is currently a lack of comprehensive safety reports on AIs in large-scale cohorts. RESEARCH DESIGN AND METHODS We conducted a retrospective pharmacovigilance survey based on the FDA Adverse Event Reporting System, retrieving relevant reports from the 2004 to the 2023, aiming to conduct a comprehensive comparative analysis of adverse reactions associated with AIs. In addition, we elucidated the potential toxicological mechanisms of AIs related adverse events through functional enrichment analysis. RESULTS A total of 7,933 adverse event reports related to AIs were collected, and there were 642 positive signals at the preferred term level. The top three signal intensities for anastrozole are: antiphospholipid syndrome, plantar fasciitis and autoimmune pancreatitis. The top three signal intensities for letrozole are: androgenetic alopecia and myosclerosis, pneumonic herpes virus. The top three signal intensities for exemestane are: infection reactivation, thyroxine free decreased and dilatation atrial. In terms of onset time, letrozole has the earliest onset time overall, followed by exemestane, and finally anastrozole. CONCLUSIONS Our research corroborates the typical adverse events linked to AIs while highlighting potential safety concerns in their real-world clinical application.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Department of Clinical Laboratory, Handan First Hospital, Handan, China
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shujing Jia
- Department of Clinical Laboratory, Handan First Hospital, Handan, China
| | - Xiang Li
- Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rui-Rui Hu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhanyang Luo
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Junhai Wang
- Department of Clinical Laboratory, Handan First Hospital, Handan, China
| | - Hongyan Xi
- Department of Obstetrics and Gynecology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine; Yancheng TCM Hospital, Jiangsu, China
| |
Collapse
|
3
|
Dreux V, Lefebvre C, Breemeersch CE, Salaün C, Bôle-Feysot C, Guérin C, Déchelotte P, Goichon A, Coëffier M, Langlois L. Sex-dependent effects of a high-fat diet on the hypothalamic response in mice. Biol Sex Differ 2025; 16:17. [PMID: 40001261 PMCID: PMC11854408 DOI: 10.1186/s13293-025-00699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Sex differences in rodent models of diet-induced obesity are still poorly documented, particularly regarding how central mechanisms vary between sexes in response to an obesogenic diet. Here, we wanted to determine whether obese phenotype and hypothalamic response to a high-fat diet (HFD) differed between male and female C57Bl/6J mice. Mice were exposed to either a 60% HFD or a standard diet first for both a long- (14 weeks) and shorter-periods of time (3, 7, 14 and 28 days). Analysis of the expression profile of key neuronal, glial and inflammatory hypothalamic markers was performed using RT-qPCR. In addition, astrocytic and microglial morphology was examined in the arcuate nucleus. Monitoring of body weight and composition revealed that body weight and fat mass gain appeared earlier and was more pronounced in male mice. After 14 weeks of HFD exposure, normalized increase of body weight reached similar levels between male and female mice. Overall, both sexes under HFD displayed a decrease of orexigenic neuropeptides expression while an increase in Pomc gene expression was observed only in female mice. In addition, changes in the expression of hypothalamic inflammatory markers were relatively modest. We also reported that the glial cell markers expression and morphology were affected by HFD in a sex- and time dependent manner, suggesting a more pronounced glial cell activation in female mice. Taken together, these data show that male and female mice responded differently to HFD exposure, both on short- and long-term and suggest that a strong inflammatory hypothalamic profile is not systematically present in diet-induced obesity models. Nevertheless, in addition to these present data, the underlying mechanisms should be deciphered in further investigations.
Collapse
Affiliation(s)
- Virginie Dreux
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis, F-76000, Rouen, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), F-76000, Rouen, France
| | - Candice Lefebvre
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis, F-76000, Rouen, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), F-76000, Rouen, France
| | - Charles-Edward Breemeersch
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis, F-76000, Rouen, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), F-76000, Rouen, France
| | - Colin Salaün
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis, F-76000, Rouen, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), F-76000, Rouen, France
| | - Christine Bôle-Feysot
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis, F-76000, Rouen, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), F-76000, Rouen, France
| | - Charlène Guérin
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis, F-76000, Rouen, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), F-76000, Rouen, France
| | - Pierre Déchelotte
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis, F-76000, Rouen, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), F-76000, Rouen, France
- Department of Nutrition, CHU Rouen, F-76000, Rouen, France
| | - Alexis Goichon
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis, F-76000, Rouen, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), F-76000, Rouen, France
| | - Moïse Coëffier
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis, F-76000, Rouen, France
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), F-76000, Rouen, France
- Department of Nutrition, CHU Rouen, F-76000, Rouen, France
| | - Ludovic Langlois
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis, F-76000, Rouen, France.
- Univ Rouen Normandie, Institute for Research and Innovation in Biomedicine (IRIB), F-76000, Rouen, France.
| |
Collapse
|
4
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2025; 22:127-145. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Börchers S, Skibicka KP. GLP-1 and Its Analogs: Does Sex Matter? Endocrinology 2025; 166:bqae165. [PMID: 39715341 PMCID: PMC11733500 DOI: 10.1210/endocr/bqae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/22/2024] [Indexed: 12/25/2024]
Abstract
While obesity and diabetes are prevalent in both men and women, some aspects of these diseases differ by sex. A new blockbuster class of therapeutics, glucagon-like peptide 1 (GLP-1) analogs (eg, semaglutide), shows promise at curbing both diseases. This review addresses the topic of sex differences in the endogenous and therapeutic actions of GLP-1 and its analogs. Work on sex differences in human studies and animal research is reviewed. Preclinical data on the mechanisms of potential sex differences in the endogenous GLP-1 system as well as the therapeutic effect of GLP-1 analogs, focusing on the effects of the drugs on the brain and behavior relating to appetite and metabolism, are highlighted. Moreover, recent clinical evidence of sex differences in the therapeutic effects of GLP-1 analogs in obesity, diabetes, and cardiovascular disease are discussed. Lastly, we review evidence for the role of GLP-1 analogs in mood and reproductive function, with particular attention to sex differences. Overall, while we did not find evidence for many qualitative sex differences in the therapeutic effect of clinically approved GLP-1 analogs, a growing body of literature highlights quantitative sex differences in the response to GLP-1 and its analogs as well as an interaction of these therapeutics with estrogens. What also clearly emerges is the paucity of data in female animal models or women in very basic aspects of the science of GLP-1-gaps that should be urgently mended, given the growing popularity of these medications, especially in women.
Collapse
Affiliation(s)
- Stina Börchers
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
- Nutritional Sciences Department, The Pennsylvania State University, University Park, PA 16803, USA
- Huck Institutes of Life Science, The Pennsylvania State University, University Park, PA 16803, USA
| |
Collapse
|
6
|
Dyachenko EI, Bel’skaya LV. Transmembrane Amino Acid Transporters in Shaping the Metabolic Profile of Breast Cancer Cell Lines: The Focus on Molecular Biological Subtype. Curr Issues Mol Biol 2024; 47:4. [PMID: 39852119 PMCID: PMC11763447 DOI: 10.3390/cimb47010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Amino acid metabolism in breast cancer cells is unique for each molecular biological subtype of breast cancer. In this review, the features of breast cancer cell metabolism are considered in terms of changes in the amino acid composition due to the activity of transmembrane amino acid transporters. In addition to the main signaling pathway PI3K/Akt/mTOR, the activity of the oncogene c-Myc, HIF, p53, GATA2, NF-kB and MAT2A have a direct effect on the amino acid metabolism of cancer cells, their growth and proliferation, as well as the maintenance of homeostatic equilibrium. A distinctive feature of luminal subtypes of breast cancer from TNBC is the ability to perform gluconeogenesis. Breast cancers with a positive expression of the HER2 receptor, in contrast to TNBC and luminal A subtype, have a distinctive active synthesis and consumption of fatty acids. It is interesting to note that amino acid transporters exhibit their activity depending on the pH level inside the cell. In the most aggressive forms of breast cancer or with the gradual progression of the disease, pH will also change, which will directly affect the metabolism of amino acids. Using the cell lines presented in this review, we can trace the characteristic features inherent in each of the molecular biological subtypes of breast cancer and develop the most optimal therapeutic targets.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
7
|
Martínez-Cignoni MR, González-Vicens A, Morán-Costoya A, Amengual-Cladera E, Gianotti M, Valle A, Proenza AM, Lladó I. Diabesity alters the protective effects of estrogens on endothelial function through adipose tissue secretome. Free Radic Biol Med 2024; 224:574-587. [PMID: 39241985 DOI: 10.1016/j.freeradbiomed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Estrogens have a well-known protective role in the development of the metabolic syndrome. Nevertheless, recent epidemiological data question the cardioprotective effect of estrogens in obese and diabetic women. In this context, white adipose tissue (WAT) becomes dysfunctional, which has an impact on the cardiovascular system. The aim of the study was to elucidate the role of 17β-estradiol (E2) in the interplay between adipose tissue and endothelial function in an animal model of diabesity. We used ZDF (fa/fa) female rats subjected to ovariectomy (OVA), OVA + E2 or sham operated, as well as non-obese non-diabetic ZDF (fa/+) rats. Endothelial function and vascular remodeling markers were assessed in the aorta, while mitochondrial function, oxidative stress, and adiponectin production were analyzed in gonadal WAT. Conditioned media from gonadal WAT explants were used to assess the effects of WAT secretome on HUVEC. Additionally, the adiponectin receptor agonist AdipoRON and E2 were utilized to examine potential interactions. Ovariectomy ameliorated the WAT dysfunction associated to the obese and diabetic state and promoted adiponectin secretion, effects that were linked to a reduction of endothelial dysfunction and inflammatory markers in the aorta of OVA rats and in HUVEC treated with OVA-conditioned media. Our findings provide evidence supporting the idea that in the context of obesity and diabetes, ovariectomy improves WAT secretome and positively impacts endothelial function, suggesting a detrimental role for E2. Additionally, our results point to adiponectin as the primary driver of the effects exerted by ovariectomy on the adipovascular axis.
Collapse
Affiliation(s)
- Melanie Raquel Martínez-Cignoni
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain
| | - Agustí González-Vicens
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain
| | - Andrea Morán-Costoya
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain; Institut d'Investigació Sanitària de les Illes Baleares (IdISBa), Hospital Universitari Son Espases, E-07120, Palma, Balearic Islands, Spain
| | - Emilia Amengual-Cladera
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain; Institut d'Investigació Sanitària de les Illes Baleares (IdISBa), Hospital Universitari Son Espases, E-07120, Palma, Balearic Islands, Spain
| | - Magdalena Gianotti
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain
| | - Adamo Valle
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain; Institut d'Investigació Sanitària de les Illes Baleares (IdISBa), Hospital Universitari Son Espases, E-07120, Palma, Balearic Islands, Spain; Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/0043), Instituto de Salud Carlos III, E- 28029, Madrid, Spain
| | - Ana María Proenza
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain; Institut d'Investigació Sanitària de les Illes Baleares (IdISBa), Hospital Universitari Son Espases, E-07120, Palma, Balearic Islands, Spain; Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/0043), Instituto de Salud Carlos III, E- 28029, Madrid, Spain.
| | - Isabel Lladó
- Grup de Metabolisme Energètic i Nutrició (GMEIN), Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Baleares, Ctra. Valldemossa, km 7.5, E-07122, Palma, Balearic Islands, Spain; Institut d'Investigació Sanitària de les Illes Baleares (IdISBa), Hospital Universitari Son Espases, E-07120, Palma, Balearic Islands, Spain; Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/0043), Instituto de Salud Carlos III, E- 28029, Madrid, Spain
| |
Collapse
|
8
|
Moradi K, Mohajer B, Mohammadi S, Guermazi A, Ibad HA, Roemer FW, Cao X, Link TM, Demehri S. Thigh muscle composition changes in knee osteoarthritis patients during weight loss: Sex-specific analysis using data from osteoarthritis initiative. Osteoarthritis Cartilage 2024; 32:1154-1162. [PMID: 38851527 DOI: 10.1016/j.joca.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES Sex of patients with knee osteoarthritis (KOA) may impact changes in thigh muscle composition during weight loss, the most well-known disease-modifying intervention. We investigated longitudinal sex-based changes in thigh muscle quality during weight loss in participants with KOA. METHODS Using Osteoarthritis Initiative (OAI) cohort data, we included females and males with baseline radiographic KOA who experienced > 5 % reduction in Body Mass Index (BMI) over four years. Using a previously validated deep-learning algorithm, we measured Magnetic Resonance Imaging (MRI)-derived biomarkers of thigh muscles at baseline and year-4. Outcomes were the intra- and inter-muscular adipose tissue (Intra-MAT and Inter-MAT) and contractile percentage of thigh muscles between females and males. The analysis adjusted for potential confounders, such as demographics, risk factors, BMI change, physical activity, diet, and KOA status. RESULTS A retrospective selection of available thigh MRIs from KOA participants who also had a 4-year weight loss (>5 % of BMI) yielded a sample comprising 313 thighs (192 females and 121 males). Female and male participants exhibited a comparable degree of weight loss (females: -9.72 ± 4.38, males: -8.83 ± 3.64, P-value=0.060). However, the changes in thigh muscle quality were less beneficial for females compared to males, as shown by a less degree of longitudinal decrease in Intra-MAT (change difference,95 %CI: 783.44 mm2/4-year, 505.70 to 1061.19, P-value<0.001) and longitudinal increase in contractile percentage (change difference,95 %CI: -3.9 %/4-year, -6.5 to -1.4, P-value=0.019). CONCLUSIONS In participants with KOA and 4-year weight loss, the longitudinal changes in thigh muscle quality were overall beneficial but to a less degree in females compared to males. Further research is warranted to investigate the underlying mechanisms and develop sex-specific interventions to optimize muscle quality during weight loss.
Collapse
Affiliation(s)
- Kamyar Moradi
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Bahram Mohajer
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Guermazi
- Department of Radiology, Chobanian & Avedisian Boston University School of Medicine, Boston, MA, USA.
| | - Hamza Ahmed Ibad
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Frank W Roemer
- Department of Radiology, Chobanian & Avedisian Boston University School of Medicine, Boston, MA, USA; Department of Radiology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA.
| | - Shadpour Demehri
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Das C, Bhattacharya A, Adhikari S, Mondal A, Mondal P, Adhikary S, Roy S, Ramos K, Yadav KK, Tainer JA, Pandita TK. A prismatic view of the epigenetic-metabolic regulatory axis in breast cancer therapy resistance. Oncogene 2024; 43:1727-1741. [PMID: 38719949 PMCID: PMC11161412 DOI: 10.1038/s41388-024-03054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Epigenetic regulation established during development to maintain patterns of transcriptional expression and silencing for metabolism and other fundamental cell processes can be reprogrammed in cancer, providing a molecular mechanism for persistent alterations in phenotype. Metabolic deregulation and reprogramming are thus an emerging hallmark of cancer with opportunities for molecular classification as a critical preliminary step for precision therapeutic intervention. Yet, acquisition of therapy resistance against most conventional treatment regimens coupled with tumor relapse, continue to pose unsolved problems for precision healthcare, as exemplified in breast cancer where existing data informs both cancer genotype and phenotype. Furthermore, epigenetic reprograming of the metabolic milieu of cancer cells is among the most crucial determinants of therapeutic resistance and cancer relapse. Importantly, subtype-specific epigenetic-metabolic interplay profoundly affects malignant transformation, resistance to chemotherapy, and response to targeted therapies. In this review, we therefore prismatically dissect interconnected epigenetic and metabolic regulatory pathways and then integrate them into an observable cancer metabolism-therapy-resistance axis that may inform clinical intervention. Optimally coupling genome-wide analysis with an understanding of metabolic elements, epigenetic reprogramming, and their integration by metabolic profiling may decode missing molecular mechanisms at the level of individual tumors. The proposed approach of linking metabolic biochemistry back to genotype, epigenetics, and phenotype for specific tumors and their microenvironment may thus enable successful mechanistic targeting of epigenetic modifiers and oncometabolites despite tumor metabolic heterogeneity.
Collapse
Affiliation(s)
- Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Kenneth Ramos
- Center for Genomics and Precision Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA
| | - Kamlesh K Yadav
- Center for Genomics and Precision Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA
- School of Engineering Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA
| | - John A Tainer
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M University, School of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Suba Z. DNA Damage Responses in Tumors Are Not Proliferative Stimuli, but Rather They Are DNA Repair Actions Requiring Supportive Medical Care. Cancers (Basel) 2024; 16:1573. [PMID: 38672654 PMCID: PMC11049279 DOI: 10.3390/cancers16081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In tumors, somatic mutagenesis presumably drives the DNA damage response (DDR) via altered regulatory pathways, increasing genomic instability and proliferative activity. These considerations led to the standard therapeutic strategy against cancer: the disruption of mutation-activated DNA repair pathways of tumors. PURPOSE Justifying that cancer cells are not enemies to be killed, but rather that they are ill human cells which have the remnants of physiologic regulatory pathways. RESULTS 1. Genomic instability and cancer development may be originated from a flaw in estrogen signaling rather than excessive estrogen signaling; 2. Healthy cells with genomic instability exhibit somatic mutations, helping DNA restitution; 3. Somatic mutations in tumor cells aim for the restoration of DNA damage, rather than further genomic derangement; 4. In tumors, estrogen signaling drives the pathways of DNA stabilization, leading to apoptotic death; 5. In peritumoral cellular infiltration, the genomic damage of the tumor induces inflammatory cytokine secretion and increased estrogen synthesis. In the inflammatory cells, an increased growth factor receptor (GFR) signaling confers the unliganded activation of estrogen receptors (ERs); 6. In breast cancer cells responsive to genotoxic therapy, constitutive mutations help the upregulation of estrogen signaling and consequential apoptosis. In breast tumors non-responsive to genotoxic therapy, the possibilities for ER activation via either liganded or unliganded pathways are exhausted, leading to farther genomic instability and unrestrained proliferation. CONCLUSIONS Understanding the real character and behavior of human tumors at the molecular level suggests that we should learn the genome repairing methods of tumors and follow them by supportive therapy, rather than provoking additional genomic damages.
Collapse
Affiliation(s)
- Zsuzsanna Suba
- Department of Molecular Pathology, National Institute of Oncology, Ráth György Str. 7-9, H-1122 Budapest, Hungary
| |
Collapse
|
11
|
Higuchi S, Matsumoto H, Masaki R, Hirano T, Fuse S, Tanisawa H, Masuda T, Mochizuki Y, Maruta K, Kondo S, Omoto T, Aoki A, Shinke T. Potential confounders of the obesity paradox in older patients following transcatheter aortic valve replacement. Eur Geriatr Med 2024; 15:179-187. [PMID: 37660344 DOI: 10.1007/s41999-023-00855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE A higher body mass index (BMI) is associated with lower mortality in older patients following transcatheter aortic valve replacement (TAVR) for severe aortic valve stenosis. The current study aimed to investigate potential confounders of association between BMI and prognosis. METHODS The retrospective single-center study included consecutive patients following TAVR and excluded those in whom subcutaneous fat accumulation (SFA), visceral fat accumulation (VFA), and major psoas muscle (MPM) volume were not assessed by computed tomography. Cachexia was defined as a combination of BMI < 20 kg/m2 and any biochemical abnormalities. RESULTS After 2 patients were excluded, 234 (age, 86 ± 5 years; male, 77 [33%]; BMI, 22.4 ± 3.8 kg/m2; SFA, 109 (54-156) cm2; VFA, 71 (35-115) cm2; MPM, 202 (161-267) cm3; cachexia, 49 [21%]) were evaluated. SFA and VFA were strongly correlated with BMI (ρ = 0.734 and ρ = 0.712, respectively), whereas MPM was weakly correlated (ρ = 0.346). Two-year all-cause mortality was observed in 31 patients (13%). Higher BMI was associated with lower mortality (adjusted hazard ratio [aHR], 0.86; 95% confidence interval [CI], 0.77-0.95). A similar result was observed in the multivariate model including SFA (aHR in an increase of 20 cm2, 0.87; 95% CI, 0.77-0.98) instead of BMI, whereas VFA was not significant. Cachexia was a worse predictor (aHR, 2.51; 95% CI 1.11-5.65). CONCLUSIONS Association of higher BMI with lower mortality may be confounded by SFA in older patients following TAVR. Cachexia might reflect higher mortality in patients with lower BMI.
Collapse
Affiliation(s)
- Satoshi Higuchi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Hidenari Matsumoto
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Ryota Masaki
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Takaho Hirano
- Department of Radiological Technology, Showa University Hospital, Tokyo, Japan
| | - Shiori Fuse
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Hiroki Tanisawa
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Tomoaki Masuda
- Division of Cardiovascular Surgery, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Yasuhide Mochizuki
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kazuto Maruta
- Division of Cardiovascular Surgery, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Seita Kondo
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Tadashi Omoto
- Division of Cardiovascular Surgery, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Atsushi Aoki
- Division of Cardiovascular Surgery, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Toshiro Shinke
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
12
|
Zhu J, Zhou Y, Jin B, Shu J. Role of estrogen in the regulation of central and peripheral energy homeostasis: from a menopausal perspective. Ther Adv Endocrinol Metab 2023; 14:20420188231199359. [PMID: 37719789 PMCID: PMC10504839 DOI: 10.1177/20420188231199359] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Estrogen plays a prominent role in regulating and coordinating energy homeostasis throughout the growth, development, reproduction, and aging of women. Estrogen receptors (ERs) are widely expressed in the brain and nearly all tissues of the body. Within the brain, central estrogen via ER regulates appetite and energy expenditure and maintains cell glucose metabolism, including glucose transport, aerobic glycolysis, and mitochondrial function. In the whole body, estrogen has shown beneficial effects on weight control, fat distribution, glucose and insulin resistance, and adipokine secretion. As demonstrated by multiple in vitro and in vivo studies, menopause-related decline of circulating estrogen may induce the disturbance of metabolic signals and a significant decrease in bioenergetics, which could trigger an increased incidence of late-onset Alzheimer's disease, type 2 diabetes mellitus, hypertension, and cardiovascular diseases in postmenopausal women. In this article, we have systematically reviewed the role of estrogen and ERs in body composition and lipid/glucose profile variation occurring with menopause, which may provide a better insight into the efficacy of hormone therapy in maintaining energy metabolic homeostasis and hold a clue for development of novel therapeutic approaches for target tissue diseases.
Collapse
Affiliation(s)
- Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yier Zhou
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Shu
- Reproductive Medicine Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
13
|
Smith A, Hyland L, Al-Ansari H, Watts B, Silver Z, Wang L, Dahir M, Akgun A, Telfer A, Abizaid A. Metabolic, neuroendocrine and behavioral effects of social defeat in male and female mice using the chronic non-discriminatory social defeat stress model. Horm Behav 2023; 155:105412. [PMID: 37633226 DOI: 10.1016/j.yhbeh.2023.105412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Stress-related disorders predominately affect females, yet preclinical models of chronic stress exclusively use males especially in models where social stressors are studied. Here, we implemented a 21-day novel social defeat paradigm in which a female and male C57 intruder are simultaneously placed in the cage of a territorial, resident CD-1 male mouse, and the resident proceeds to attack both intruders. Mice were given access to a regular laboratory diet, high in carbohydrates, and a palatable diet, high in fat. Chronic social defeat stress using this paradigm resulted in increased caloric intake in male and female mice, with the effects being more pronounced in females. We observed sex differences in high fat diet intake in response to stress, which was correlated with higher levels of plasma ghrelin observed in female mice but not male mice. Furthermore, females exposed to chronic stress displayed changes in growth hormone secretatogue receptor (ghsr) and neuropeptide-y (npy) expression in the arcuate nucleus of the hypothalamus, potentially increasing ghrelin sensitivity and inducing changes in diet choice and caloric intake. Behavioral results show that females tended to spend more time interacting during the social interaction test, compared to males who displayed higher vigilance towards the stranger mouse. Overall, our results highlight unique neurometabolic alterations in female mice in response to stress that is not present in male mice and may be important for coping with chronic stress and sustaining reproductive function.
Collapse
Affiliation(s)
- Andrea Smith
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Lindsay Hyland
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Hiyam Al-Ansari
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Bethany Watts
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Zachary Silver
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Longfei Wang
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Miski Dahir
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Aleyna Akgun
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Andre Telfer
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada
| | - Alfonso Abizaid
- Department of Neuroscience and Stress, Trauma and Resilience Work Group (STAR), Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Wittekind DA, Kratzsch J, Mergl R, Baber R, Wirkner K, Schroeter ML, Witte AV, Villringer A, Kluge M. Leptin, but not ghrelin, is associated with food addiction scores in a population-based subject sample. Front Psychiatry 2023; 14:1200021. [PMID: 37559914 PMCID: PMC10407557 DOI: 10.3389/fpsyt.2023.1200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Ghrelin and leptin are both peptide hormones and act as opposing players in the regulation of hunger, satiety and energy expenditure. Leptin reduces appetite and feelings of hunger and is secreted mainly by adipocytes, while ghrelin increases appetite and food intake and reduces metabolic rate. Both hormones have been implicated in addictive disorders. Ghrelin was shown to have pro-addictive effects while leptin's role in addiction yields more conflicting results. Their involvement in the regulation of both food intake and addictive behaviors make them interesting candidates when investigating the regulation of food addiction. However, only few human studies have been performed and large-scale studies are lacking to date. We aimed to investigate the association between total ghrelin and leptin serum levels with scores in the Yale Food Addiction Scale (YFAS). METHODS Subjects were recruited in the LIFE Adult cohort. 909 subjects were included in the analysis and we performed univariate multiple linear regression models, adjusted for age, sex (in total group analyses only), alcohol consumption, smoking status, BMI scores, cortisol concentrations, Center for Epidemiological Studies Depression Scale (CES-D) and the 7-item Generalized Anxiety Disorder Scale (GAD-7) sum scores. The dependent variable was the YFAS score. RESULTS In men, leptin serum levels showed a significant positive association (standardized β = 0.146; p = 0.012) with the YFAS score. This finding was confirmed in an extreme-group comparison: men in the highest quartile of leptin levels had significantly higher YFAS sum scores than men in the lowest quartile (1.55 vs. 1.18; p = 0.00014). There was no association with YFAS sum score in the total group (standardized β = -0.002; p = 0.974) or in women (standardized β = -0.034; p = 0.674). Total serum ghrelin showed no association with YFAS sum score neither in the total group (standardized β = -0.043; p = 0.196) nor in men (n = 530; standardized β = -0.063; p = 0.135) or women (n = 379; standardized β = -0.035; p = 0.494). CONCLUSION Our findings are in line with previous literature and suggest that total ghrelin serum levels are not associated with food addiction scores. Leptin had been previously shown to be associated with food addiction and we confirmed this finding for men in a large, population-based approach.
Collapse
Affiliation(s)
- Dirk Alexander Wittekind
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Roland Mergl
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Kerstin Wirkner
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Matthias L. Schroeter
- Department of Neurology, Clinic of Cognitive Neurology, Max Planck Institute for Cognitive and Brain Sciences, University of Leipzig, Leipzig, Germany
| | - A. Veronica Witte
- Department of Neurology, Clinic of Cognitive Neurology, Max Planck Institute for Cognitive and Brain Sciences, University of Leipzig, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Clinic of Cognitive Neurology, Max Planck Institute for Cognitive and Brain Sciences, University of Leipzig, Leipzig, Germany
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
- Department of Psychiatry, Rudolf-Virchow-Klinikum Glauchau, Glauchau, Germany
| |
Collapse
|
15
|
Saavedra-Peña RDM, Taylor N, Flannery C, Rodeheffer MS. Estradiol cycling drives female obesogenic adipocyte hyperplasia. Cell Rep 2023; 42:112390. [PMID: 37053070 PMCID: PMC10567995 DOI: 10.1016/j.celrep.2023.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/21/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
White adipose tissue (WAT) distribution is sex dependent. Adipocyte hyperplasia contributes to WAT distribution in mice driven by cues in the tissue microenvironment, with females displaying hyperplasia in subcutaneous and visceral WAT, while males and ovariectomized females have visceral WAT (VWAT)-specific hyperplasia. However, the mechanism underlying sex-specific hyperplasia remains elusive. Here, transcriptome analysis in female mice shows that high-fat diet (HFD) induces estrogen signaling in adipocyte precursor cells (APCs). Analysis of APCs throughout the estrous cycle demonstrates increased proliferation only when proestrus (high estrogen) coincides with the onset of HFD feeding. We further show that estrogen receptor α (ERα) is required for this proliferation and that estradiol treatment at the onset of HFD feeding is sufficient to drive it. This estrous influence on APC proliferation leads to increased obesity driven by adipocyte hyperplasia. These data indicate that estrogen drives ERα-dependent obesogenic adipocyte hyperplasia in females, exacerbating obesity and contributing to the differential fat distribution between the sexes.
Collapse
Affiliation(s)
- Rocío Del M Saavedra-Peña
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Natalia Taylor
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Clare Flannery
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA; Section of Endocrinology and Metabolism, Yale University, New Haven, CT 06520, USA
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Yale Center for Molecular and Systems Metabolism, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Lutz TA. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat Rev Endocrinol 2023; 19:350-360. [PMID: 36941447 DOI: 10.1038/s41574-023-00818-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Although no single animal model replicates all aspects of diabetes mellitus in humans, animal models are essential for the study of energy balance and metabolism control as well as to investigate the reasons for their imbalance that could eventually lead to overt metabolic diseases such as type 2 diabetes mellitus. The most frequently used animal models in diabetes mellitus research are small rodents that harbour spontaneous genetic mutations or that can be manipulated genetically or by other means to influence their nutrient metabolism and nutrient handling. Non-rodent species, including pigs, cats and dogs, are also useful models in diabetes mellitus research. This Review will outline the advantages and disadvantages of selected animal models of diabetes mellitus to build a basis for their most appropriate use in biomedical research.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
González-García I, García-Clavé E, Cebrian-Serrano A, Le Thuc O, Contreras RE, Xu Y, Gruber T, Schriever SC, Legutko B, Lintelmann J, Adamski J, Wurst W, Müller TD, Woods SC, Pfluger PT, Tschöp MH, Fisette A, García-Cáceres C. Estradiol regulates leptin sensitivity to control feeding via hypothalamic Cited1. Cell Metab 2023; 35:438-455.e7. [PMID: 36889283 PMCID: PMC10028007 DOI: 10.1016/j.cmet.2023.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clavé
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yanjun Xu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jutta Lintelmann
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive 8, Singapore 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, LudwigMaximilians Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, 80333 Munich, Germany
| | - Alexandre Fisette
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
18
|
Kuckuck S, van der Valk ES, Scheurink AJW, van der Voorn B, Iyer AM, Visser JA, Delhanty PJD, van den Berg SAA, van Rossum EFC. Glucocorticoids, stress and eating: The mediating role of appetite-regulating hormones. Obes Rev 2023; 24:e13539. [PMID: 36480471 PMCID: PMC10077914 DOI: 10.1111/obr.13539] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Disrupted hormonal appetite signaling plays a crucial role in obesity as it may lead to uncontrolled reward-related eating. Such disturbances can be induced not only by weight gain itself but also by glucocorticoid overexposure, for example, due to chronic stress, disease, or medication use. However, the exact pathways are just starting to be understood. Here, we present a conceptual framework of how glucocorticoid excess may impair hormonal appetite signaling and, consequently, eating control in the context of obesity. The evidence we present suggests that counteracting glucocorticoid excess can lead to improvements in appetite signaling and may therefore pose a crucial target for obesity prevention and treatment. In turn, targeting hormonal appetite signals may not only improve weight management and eating behavior but may also decrease detrimental effects of glucocorticoid excess on cardio-metabolic outcomes and mood. We conclude that gaining a better understanding of the relationship between glucocorticoid excess and circulating appetite signals will contribute greatly to improvements in personalized obesity prevention and treatment.
Collapse
Affiliation(s)
- Susanne Kuckuck
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Eline S van der Valk
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Anton J W Scheurink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Bibian van der Voorn
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Patric J D Delhanty
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Sjoerd A A van den Berg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Department of Clinical Chemistry, Erasmus MC, Rotterdam, Netherlands
| | - Elisabeth F C van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| |
Collapse
|
19
|
Abedi A, Foroutan T, Mohaghegh Shalmani L, Dargahi L. Sex-specific effects of high-fat diet on rat brain glucose metabolism and early-onset dementia symptoms. Mech Ageing Dev 2023; 211:111795. [PMID: 36828273 DOI: 10.1016/j.mad.2023.111795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Peripheral metabolic disturbances are associated with a variety of clinical health consequences and may contribute to the development of neurocognitive disorders. This study investigates whether long-term high-fat diet (HFD) consumption changes the brain glucose metabolism and impairs memory performance in a sex-dependent manner. Male and female rats, after weaning, were fed HFD or normal chow diet (NCD) for 16 weeks. Behavioral tests for spatial memory and an 18 F-FDG-PET scan were performed. Also, the expression of brain insulin resistance markers and Alzheimer's pathology-related genes was assessed by qPCR. The Morris water maze and Y-maze results showed, respectively, that memory retrieval and spatial working memory were impaired only in HFD male rats compared to NCD controls. In addition, measuring whole brain 18 F-FDG uptake indicated a significant reduction in glucose metabolism in male but not female HFD rats. Analysis of 15 genes related to glucose metabolism and Alzheimer's pathology, in the hippocampus, showed that expression of GLUT3, IRS2, and IDE is significantly reduced in HFD male rats. Our results suggest that sex affects the HFD-induced dysregulation of brain glucose metabolism and cognitive performance.
Collapse
Affiliation(s)
- Azam Abedi
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Tahereh Foroutan
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Leila Mohaghegh Shalmani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
De Jesus AN, Henry BA. The role of oestrogen in determining sexual dimorphism in energy balance. J Physiol 2023; 601:435-449. [PMID: 36117117 PMCID: PMC10092637 DOI: 10.1113/jp279501] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/26/2022] [Indexed: 02/03/2023] Open
Abstract
Energy balance is determined by caloric intake and the rate at which energy is expended, with the latter comprising resting energy expenditure, physical activity and adaptive thermogenesis. The regulation of both energy intake and expenditure exhibits clear sexual dimorphism, with young women being relatively protected against weight gain and the development of cardiometabolic diseases. Preclinical studies have indicated that females are more sensitive to the satiety effects of leptin and insulin compared to males. Furthermore, females have greater thermogenic activity than males, whereas resting energy expenditure is generally higher in males than females. In addition to this, in post-menopausal women, the decline in sex steroid concentration, particularly in oestrogen, is associated with a shift in the distribution of adipose tissue and overall increased propensity to gain weight. Oestrogens are known to regulate energy balance and weight homeostasis via effects on both food intake and energy expenditure. Indeed, 17β-oestradiol treatment increases melanocortin signalling in the hypothalamus to cause satiety. Furthermore, oestrogenic action at the ventromedial hypothalamus has been linked with increased energy expenditure in female mice. We propose that oestrogen action on energy balance is multi-faceted and is fundamental to determining sexual dimorphism in weight control. Furthermore, evidence suggests that the decline in oestrogen levels leads to increased risk of weight gain and development of cardiometabolic disease in women across the menopausal transition.
Collapse
Affiliation(s)
- Anne Nicole De Jesus
- Metabolism, Obesity and Diabetes Program, Biomedicine, Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Belinda A Henry
- Metabolism, Obesity and Diabetes Program, Biomedicine, Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Leptin Increases: Physiological Roles in the Control of Sympathetic Nerve Activity, Energy Balance, and the Hypothalamic-Pituitary-Thyroid Axis. Int J Mol Sci 2023; 24:ijms24032684. [PMID: 36769012 PMCID: PMC9917048 DOI: 10.3390/ijms24032684] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
It is well established that decreases in plasma leptin levels, as with fasting, signal starvation and elicit appropriate physiological responses, such as increasing the drive to eat and decreasing energy expenditure. These responses are mediated largely by suppression of the actions of leptin in the hypothalamus, most notably on arcuate nucleus (ArcN) orexigenic neuropeptide Y neurons and anorexic pro-opiomelanocortin neurons. However, the question addressed in this review is whether the effects of increased leptin levels are also significant on the long-term control of energy balance, despite conventional wisdom to the contrary. We focus on leptin's actions (in both lean and obese individuals) to decrease food intake, increase sympathetic nerve activity, and support the hypothalamic-pituitary-thyroid axis, with particular attention to sex differences. We also elaborate on obesity-induced inflammation and its role in the altered actions of leptin during obesity.
Collapse
|
22
|
Santiago JA, Potashkin JA. Biological and Clinical Implications of Sex-Specific Differences in Alzheimer's Disease. Handb Exp Pharmacol 2023; 282:181-197. [PMID: 37460661 DOI: 10.1007/164_2023_672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Mounting evidence indicates that the female sex is a risk factor for Alzheimer's disease (AD), the most common cause of dementia worldwide. Decades of research suggest that sex-specific differences in genetics, environmental factors, hormones, comorbidities, and brain structure and function may contribute to AD development. However, although significant progress has been made in uncovering specific genetic factors and biological pathways, the precise mechanisms underlying sex-biased differences are not fully characterized. Here, we review several lines of evidence, including epidemiological, clinical, and molecular studies addressing sex differences in AD. In addition, we discuss the challenges and future directions in advancing personalized treatments for AD.
Collapse
Affiliation(s)
| | - Judith A Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
23
|
Arioglu-Inan E, Kayki-Mutlu G. Sex Differences in Glucose Homeostasis. Handb Exp Pharmacol 2023; 282:219-239. [PMID: 37439847 DOI: 10.1007/164_2023_664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Sexual dimorphism has been demonstrated to have an effect on various physiological functions. In this regard, researchers have investigated its impact on glucose homeostasis in both preclinical and clinical studies. Sex differences mainly arise from physiological factors such as sex hormones, body fat and muscle distribution, and sex chromosomes. The sexual dimorphism has also been studied in the context of diabetes. Reflecting the prevalence of the disease among the population, studies focusing on the sex difference in type 1 diabetes (T1D) are not common as the ones in type 2 diabetes (T2D). T1D is reported as the only major specific autoimmune disease that exhibits a male predominance. Clinical studies have demonstrated that impaired fasting glucose is more frequent in men whereas women more commonly exhibit impaired glucose tolerance. Understanding the sex difference in glucose homeostasis becomes more attractive when focusing on the findings that highlight sexual dimorphism on the efficacy or adverse effect profile of antidiabetic medications. Thus, in this chapter, we aimed to discuss the impact of sex on the glucose homeostasis both in health and in diabetes.
Collapse
Affiliation(s)
- Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
24
|
Chen S, Ma X, Zhou X, Wang Y, Liang W, Zheng L, Zang X, Mei X, Qi Y, Jiang Y, Zhang S, Li J, Chen H, Shi Y, Hu Y, Tao M, Zhuang S, Liu N. An updated clinical prediction model of protein-energy wasting for hemodialysis patients. Front Nutr 2022; 9:933745. [PMID: 36562038 PMCID: PMC9764006 DOI: 10.3389/fnut.2022.933745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background and aim Protein-energy wasting (PEW) is critically associated with the reduced quality of life and poor prognosis of hemodialysis patients. However, the diagnosis criteria of PEW are complex, characterized by difficulty in estimating dietary intake and assessing muscle mass loss objectively. We performed a cross-sectional study in hemodialysis patients to propose a novel PEW prediction model. Materials and methods A total of 380 patients who underwent maintenance hemodialysis were enrolled in this cross-sectional study. The data were analyzed with univariate and multivariable logistic regression to identify influencing factors of PEW. The PEW prediction model was presented as a nomogram by using the results of logistic regression. Furthermore, receiver operating characteristic (ROC) and decision curve analysis (DCA) were used to test the prediction and discrimination ability of the novel model. Results Binary logistic regression was used to identify four independent influencing factors, namely, sex (P = 0.03), triglycerides (P = 0.009), vitamin D (P = 0.029), and NT-proBNP (P = 0.029). The nomogram was applied to display the value of each influencing factor contributed to PEW. Then, we built a novel prediction model of PEW (model 3) by combining these four independent variables with part of the International Society of Renal Nutrition and Metabolism (ISRNM) diagnostic criteria including albumin, total cholesterol, and BMI, while the ISRNM diagnostic criteria served as model 1 and model 2. ROC analysis of model 3 showed that the area under the curve was 0.851 (95%CI: 0.799-0.904), and there was no significant difference between model 3 and model 1 or model 2 (all P > 0.05). DCA revealed that the novel prediction model resulted in clinical net benefit as well as the other two models. Conclusion In this research, we proposed a novel PEW prediction model, which could effectively identify PEW in hemodialysis patients and was more convenient and objective than traditional diagnostic criteria.
Collapse
Affiliation(s)
- Si Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - WeiWei Liang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Zheng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Xiaobin Mei
- Department of Nephrology, Shanghai Gongli Hospital, Shanghai, China
| | - Yinghui Qi
- Department of Nephrology, Shanghai Punan Hospital, Shanghai, China
| | - Yan Jiang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Shanbao Zhang
- Department of Nephrology, Shanghai Punan Hospital, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Na Liu,
| |
Collapse
|
25
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
26
|
Vigil P, Meléndez J, Petkovic G, Del Río JP. The importance of estradiol for body weight regulation in women. Front Endocrinol (Lausanne) 2022; 13:951186. [PMID: 36419765 PMCID: PMC9677105 DOI: 10.3389/fendo.2022.951186] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity in women of reproductive age has a number of adverse metabolic effects, including Type II Diabetes (T2D), dyslipidemia, and cardiovascular disease. It is associated with increased menstrual irregularity, ovulatory dysfunction, development of insulin resistance and infertility. In women, estradiol is not only critical for reproductive function, but they also control food intake and energy expenditure. Food intake is known to change during the menstrual cycle in humans. This change in food intake is largely mediated by estradiol, which acts directly upon anorexigenic and orexigenic neurons, largely in the hypothalamus. Estradiol also acts indirectly with peripheral mediators such as glucagon like peptide-1 (GLP-1). Like estradiol, GLP-1 acts on receptors at the hypothalamus. This review describes the physiological and pathophysiological mechanisms governing the actions of estradiol during the menstrual cycle on food intake and energy expenditure and how estradiol acts with other weight-controlling molecules such as GLP-1. GLP-1 analogs have proven to be effective both to manage obesity and T2D in women. This review also highlights the relationship between steroid hormones and women's mental health. It explains how a decline or imbalance in estradiol levels affects insulin sensitivity in the brain. This can cause cerebral insulin resistance, which contributes to the development of conditions such as Parkinson's or Alzheimer's disease. The proper use of both estradiol and GLP-1 analogs can help to manage obesity and preserve an optimal mental health in women by reducing the mechanisms that trigger neurodegenerative disorders.
Collapse
Affiliation(s)
- Pilar Vigil
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Jaime Meléndez
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Grace Petkovic
- Arrowe Park Hospital, Department of Paediatrics, Wirral CH49 5PE, Merseyside, United Kingdom
| | - Juan Pablo Del Río
- Unidad de Psiquiatría Infantil y del Adolescente, Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago, Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Millennium Science Initiative, Santiago, Chile
| |
Collapse
|
27
|
Fonseca PAS, Alonso-García M, Pelayo R, Marina H, Esteban-Blanco C, Mateo J, Gutiérrez-Gil B, Arranz JJ, Suárez-Vega A. Integrated analyses of the methylome and transcriptome to unravel sex differences in the perirenal fat from suckling lambs. Front Genet 2022; 13:1035063. [PMID: 36386829 PMCID: PMC9663842 DOI: 10.3389/fgene.2022.1035063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
In sheep, differences were observed regarding fat accumulation and fatty acid (FA) composition between males and females, which may impact the quality and organoleptic characteristics of the meat. The integration of different omics technologies is a relevant approach for investigating biological and genetic mechanisms associated with complex traits. Here, the perirenal tissue of six male and six female Assaf suckling lambs was evaluated using RNA sequencing and whole-genome bisulfite sequencing (WGBS). A multiomic discriminant analysis using multiblock (s)PLS-DA allowed the identification of 314 genes and 627 differentially methylated regions (within these genes), which perfectly discriminate between males and females. These candidate genes overlapped with previously reported QTLs for carcass fat volume and percentage of different FAs in milk and meat from sheep. Additionally, differentially coexpressed (DcoExp) modules of genes between males (nine) and females (three) were identified that harbour 22 of these selected genes. Interestingly, these DcoExp were significantly correlated with fat percentage in different deposits (renal, pelvic, subcutaneous and intramuscular) and were associated with relevant biological processes for adipogenesis, adipocyte differentiation, fat volume and FA composition. Consequently, these genes may potentially impact adiposity and meat quality traits in a sex-specific manner, such as juiciness, tenderness and flavour.
Collapse
Affiliation(s)
- Pablo A. S. Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rocio Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Hector Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Javier Mateo
- Departamento de Higiene y Tecnología de Los Alimentos, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain,*Correspondence: Juan-José Arranz,
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
28
|
Duderstadt EL, Samuelson DJ. Rat Mammary carcinoma susceptibility 3 (Mcs3) pleiotropy, socioenvironmental interaction, and comparative genomics with orthologous human 15q25.1-25.2. G3 (BETHESDA, MD.) 2022; 13:6782958. [PMID: 36315068 PMCID: PMC9836357 DOI: 10.1093/g3journal/jkac288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022]
Abstract
Genome-wide association studies of breast cancer susceptibility have revealed risk-associated genetic variants and nominated candidate genes; however, the identification of causal variants and genes is often undetermined by genome-wide association studies. Comparative genomics, utilizing Rattus norvegicus strains differing in susceptibility to mammary tumor development, is a complimentary approach to identify breast cancer susceptibility genes. Mammary carcinoma susceptibility 3 (Mcs3) is a Copenhagen (COP/NHsd) allele that confers resistance to mammary carcinomas when introgressed into a mammary carcinoma susceptible Wistar Furth (WF/NHsd) genome. Here, Mcs3 was positionally mapped to a 7.2-Mb region of RNO1 spanning rs8149408 to rs107402736 (chr1:143700228-150929594, build 6.0/rn6) using WF.COP congenic strains and 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis. Male and female WF.COP-Mcs3 rats had significantly lower body mass compared to the Wistar Furth strain. The effect on female body mass was observed only when females were raised in the absence of males indicating a socioenvironmental interaction. Furthermore, female WF.COP-Mcs3 rats, raised in the absence of males, did not develop enhanced lobuloalveolar morphologies compared to those observed in the Wistar Furth strain. Human 15q25.1-25.2 was determined to be orthologous to rat Mcs3 (chr15:80005820-82285404 and chr15:83134545-84130720, build GRCh38/hg38). A public database search of 15q25.1-25.2 revealed genome-wide significant and nominally significant associations for body mass traits and breast cancer risk. These results support the existence of a breast cancer risk-associated allele at human 15q25.1-25.2 and warrant ultrafine mapping of rat Mcs3 and human 15q25.1-25.2 to discover novel causal genes and variants.
Collapse
Affiliation(s)
- Emily L Duderstadt
- Present address for Emily L. Duderstadt: Procter and Gamble (P&G), 8700 Mason-Montgomery Road, Mason, OH 45040, USA
| | - David J Samuelson
- Corresponding author: Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, 319 Abraham Flexner Way, Louisville, KY 40202, USA.
| |
Collapse
|
29
|
Chen Y, Kim M, Paye S, Benayoun BA. Sex as a Biological Variable in Nutrition Research: From Human Studies to Animal Models. Annu Rev Nutr 2022; 42:227-250. [PMID: 35417195 PMCID: PMC9398923 DOI: 10.1146/annurev-nutr-062220-105852] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biological sex is a fundamental source of phenotypic variability across species. Males and females have different nutritional needs and exhibit differences in nutrient digestion and utilization, leading to different health outcomes throughout life. With personalized nutrition gaining popularity in scientific research and clinical practice, it is important to understand the fundamentals of sex differences in nutrition research. Here, we review key studies that investigate sex dimorphism in nutrition research: sex differences in nutrient intake and metabolism, sex-dimorphic response in nutrient-restricted conditions, and sex differences in diet and gut microbiome interactions. Within each area above, factors from sex chromosomes, sex hormones, and sex-specific loci are highlighted.
Collapse
Affiliation(s)
- Yilin Chen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA;
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA;
| | - Sanjana Paye
- Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA;
- Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Epigenetics and Gene Regulation Program, USC Norris Comprehensive Cancer Center, Los Angeles, California, USA
- USC Stem Cell Initiative, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
30
|
Downregulation of peripheral lipopolysaccharide binding protein impacts on perigonadal adipose tissue only in female mice. Biomed Pharmacother 2022; 151:113156. [PMID: 35643066 DOI: 10.1016/j.biopha.2022.113156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND AIMS The sexual dimorphism in fat-mass distribution and circulating leptin and insulin levels is well known, influencing the progression of obesity-associated metabolic disease. Here, we aimed to investigate the possible role of lipopolysaccharide-binding protein (LBP) in this sexual dimorphism. METHODS The relationship between plasma LBP and fat mass was evaluated in 145 subjects. The effects of Lbp downregulation, using lipid encapsulated unlocked nucleomonomer agent containing chemically modified-siRNA delivery system, were evaluated in mice. RESULTS Plasma LBP levels were associated with fat mass and leptin levels in women with obesity, but not in men with obesity. In mice, plasma LBP downregulation led to reduced weight, fat mass and leptin gain after a high-fat and high-sucrose diet (HFHS) in females, in parallel to increased expression of adipogenic and thermogenic genes in visceral adipose tissue. This was not observed in males. Plasma LBP downregulation avoided the increase in serum LPS levels in HFHS-fed male and female mice. Serum LPS levels were positively correlated with body weight and fat mass gain, and negatively with markers of adipose tissue function only in female mice. The sexually dimorphic effects were replicated in mice with established obesity. Of note, LBP downregulation led to recovery of estrogen receptor alpha (Esr1) mRNA levels in females but not in males. CONCLUSION LBP seems to exert a negative feedback on ERα-mediated estrogen action, impacting on genes involved in thermogenesis. The known decreased estrogen action and negative effects of metabolic endotoxemia may be targeted through LBP downregulation.
Collapse
|
31
|
Ghosh-Swaby OR, Reichelt AC, Sheppard PAS, Davies J, Bussey TJ, Saksida LM. Metabolic hormones mediate cognition. Front Neuroendocrinol 2022; 66:101009. [PMID: 35679900 DOI: 10.1016/j.yfrne.2022.101009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Recent biochemical and behavioural evidence indicates that metabolic hormones not only regulate energy intake and nutrient content, but also modulate plasticity and cognition in the central nervous system. Disruptions in metabolic hormone signalling may provide a link between metabolic syndromes like obesity and diabetes, and cognitive impairment. For example, altered metabolic homeostasis in obesity is a strong determinant of the severity of age-related cognitive decline and neurodegenerative disease. Here we review the evidence that eating behaviours and metabolic hormones-particularly ghrelin, leptin, and insulin-are key players in the delicate regulation of neural plasticity and cognition. Caloric restriction and antidiabetic therapies, both of which affect metabolic hormone levels can restore metabolic homeostasis and enhance cognitive function. Thus, metabolic hormone pathways provide a promising target for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Olivia R Ghosh-Swaby
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada
| | - Amy C Reichelt
- Faculty of Health and Medical Sciences, Adelaide Medical School, Adelaide, Australia
| | - Paul A S Sheppard
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Jeffrey Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Timothy J Bussey
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Lisa M Saksida
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada.
| |
Collapse
|
32
|
Pavanello A, Martins IP, Tófolo LP, Previate C, Matiusso CCI, Francisco FA, Prates KV, Alves VS, de Almeida DL, Ribeiro TA, Malta A, Mathias PCDF. Fecal Microbiota Transplantation During Lactation Programs the Metabolism of Adult Wistar Rats in a Sex-specific Way. Arch Med Res 2022; 53:492-500. [PMID: 35840468 DOI: 10.1016/j.arcmed.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND The intestinal microbiota is involved in many physiological processes. However, the effects of microbiota in metabolic programming still unknow. We evaluated whether the transplantation of fecal microbiota during early life can program health or disease during adulthood in a model of lean and obese male and female Wistar rats. METHODS Parental obesity were induced using a small litter (SL, 3 pups/dam) model. At 90 d old, normal litter (NL, 9 pups/dam) and SL males and females (parents) from different litters were mated: NL male vs. NL female; SL male vs. SL female. After birth, male and female offspring rats were also standardized in normal litters or small litters . From the 10th until 25th d of life, the NL and SL male and female offspring received via gavage of a solution containing the diluted feces of the opposite dam (fecal microbiota, M) or saline solution (S). At 90 d of age, biometric and biochemical parameters were assessed. RESULTS NLM male rats transplanted with obese microbiota showed increased body weight, and fat pad deposition, hyperinsulinemia, glucose intolerance and dyslipidemia. SLM male rats transplanted with lean microbiota had decreased retroperitoneal and mesenteric fat, triglycerides and VLDL levels and improvement of glucose tolerance. Despite SLM female rats showed higher visceral fat, microbiota transplantation in female rats caused no changes in these parameters compared with control groups. CONCLUSION Fecal microbiota transplantation during lactation induces long-term effects on the metabolism of male Wistar rats. However, female rats were resistant to metabolic alterations caused by the treatment.
Collapse
Affiliation(s)
- Audrei Pavanello
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Isabela Peixoto Martins
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil; Departament of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Laize Peron Tófolo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Carina Previate
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | | | - Flávio Andrade Francisco
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Kelly Valério Prates
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Vander Silva Alves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Douglas Lopes de Almeida
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil
| | - Tatiane Aparecida Ribeiro
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil; Department of Biochemistry and Biomedical Science, McMaster University-Hamilton ON Canada
| | - Ananda Malta
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, PR, Brazil.
| | | |
Collapse
|
33
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
34
|
Balcázar-Hernández L, Mendoza-Zubieta V, González-Virla B, González-García B, Osorio-Olvera M, Peñaloza-Juarez JU, Irisson-Mora I, Cruz-López M, Rodríguez-Gómez R, Espinoza-Pérez R, Vargas-Ortega G. Distúrbio do eixo hipotálamo-hipófise-gonadal e sua associação com resistência à insulina em receptores de transplante renal. J Bras Nefrol 2022. [DOI: 10.1590/2175-8239-jbn-2021-0250pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo Objetivo: Avaliar as alterações do eixo hipotálamo-hipófise-gonadal (HHG) em 1 e 12 meses após transplante renal (TR) e sua associação com a resistência à insulina. Métodos: Foi realizado um estudo clínico retrospectivo em um centro de cuidados terciários em receptores de transplante renal (RTR) com idade entre 18-50 anos com doença renal primária e função do enxerto renal estável. LH, FSH, E2/T e HOMA-IR foram avaliados em 1 e 12 meses após o TR. Resultados: foram incluídos 25 RTR; 53% eram homens e a média de idade foi de 30,6±7,7 anos. O IMC foi de 22,3 (20,4-24,6) kg/m2 e 36% apresentaram hipogonadismo em 1 mês vs 8% aos 12 meses (p=0,001). A remissão do hipogonadismo foi observada em todos os homens, enquanto nas mulheres, o hipogonadismo hipogonadotrófico persistiu em dois RTR aos 12 meses. Ficou evidente uma correlação positiva entre gonadotrofinas e idade em 1 e 12 meses. Cinquenta e seis por cento dos pacientes apresentaram resistência à insulina (RI) em 1 mês e 36% aos 12 meses (p=0,256). O HOMA-IR mostrou uma correlação negativa com E2 (r=-0,60; p=0,050) e T (r=-0,709; p=0,049) em 1 mês, sem correlação em 12 meses. O HOMA-IR aos 12 meses após TR correlacionou-se positivamente com o IMC (r=0,52; p=0,011) e a dose de tacrolimus (r=0,53; p=0,016). Conclusão: O TR bem-sucedido restaura o eixo HHG no primeiro ano. O hipogonadismo apresentou uma correlação negativa com a RI no período inicial após o TR, mas essa correlação não foi significativa aos 12 meses.
Collapse
Affiliation(s)
- Lourdes Balcázar-Hernández
- Hospital de Especialidades, Endocrinology Department, Mexico; Universidad Nacional Autónoma de México, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Balcázar-Hernández L, Mendoza-Zubieta V, González-Virla B, González-García B, Osorio-Olvera M, Peñaloza-Juarez JU, Irisson-Mora I, Cruz-López M, Rodríguez-Gómez R, Espinoza-Pérez R, Vargas-Ortega G. Hypothalamic-pituitary-gonadal axis disturbance and its association with insulin resistance in kidney transplant recipients. J Bras Nefrol 2022; 45:77-83. [PMID: 35608374 PMCID: PMC10139721 DOI: 10.1590/2175-8239-jbn-2021-0250en] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/13/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To evaluate hypothalamic-pi- tuitary-gonadal (HPG) axis alterations at 1 and 12 months after kidney transplan- tation (KT) and their association with in- sulin resistance. METHODS A retrospective clinical study was conducted in a tertiary care center in kidney transplantation recipients (KTRs) aged 18- 50 years with primary kidney disease and stable renal graft function. LH, FSH, E2/T, and HOMA-IR were assessed at 1 and 12 months after KT. RESULTS Twenty-five KTRs were included; 53% were men, and the mean age was 30.6±7.7 years. BMI was 22.3 (20.4-24.6) kg/m2, and 36% had hypogonadism at 1 month vs 8% at 12 months (p=0.001). Re- mission of hypogonadism was observed in all men, while in women, hypogonadotropic hypogonadism persisted in two KTRs at 12 months. A positive correlation between go- nadotrophins and age at 1 and 12 months was evident. Fifty-six percent of patients had insulin resistance (IR) at 1 month and 36% at 12 months (p=0.256). HOMA-IR showed a negative correlation with E2 (r=- 0.60; p=0.050) and T (r=-0.709; p=0.049) at 1 month, with no correlation at 12 months. HOMA-IR at 12 months after KT correlated positively with BMI (r=0.52; p=0.011) and tacrolimus dose (r=0.53; p=0.016). CONCLUSION Successful KT restores the HPG axis in the first year. Hypogonadism had a negative correlation with IR in the early pe- riod after KT, but it was not significant at 12 months.
Collapse
Affiliation(s)
- Lourdes Balcázar-Hernández
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Endocrinology Department, México City, Mexico.,Universidad Nacional Autónoma de México, Facultad de Medicina, Mexico City, Mexico
| | - Victoria Mendoza-Zubieta
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Endocrinology Department, México City, Mexico
| | - Baldomero González-Virla
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Endocrinology Department, México City, Mexico
| | | | | | | | - Irene Irisson-Mora
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Endocrinology Department, México City, Mexico
| | - Martha Cruz-López
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Kidney Transplant Unit, México City, Mexico
| | - Raúl Rodríguez-Gómez
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Kidney Transplant Unit, México City, Mexico
| | - Ramón Espinoza-Pérez
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Kidney Transplant Unit, México City, Mexico
| | - Guadalupe Vargas-Ortega
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Endocrinology Department, México City, Mexico
| |
Collapse
|
36
|
Iljin A, Antoszewski B, Szewczyk T, Sitek A. The 2D:4D index is associated with the development of excess body weight in adults, but not with the rate of weight loss following bariatric surgery. Sci Rep 2022; 12:8078. [PMID: 35578001 PMCID: PMC9110364 DOI: 10.1038/s41598-022-12306-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/09/2022] [Indexed: 01/17/2023] Open
Abstract
2D:4D finger length ratio is a proxy of prenatal sex hormone exposure. Prenatal testosterone decreases and prenatal estrogens increase this index. In the current study we investigated whether the 2D:4D index, as a marker of the prenatal hormonal environment, is associated with the development of overweight and obesity in adults, and whether is it correlated with the rate of weight loss in patients after bariatric surgery. We tested 125 adults with obesity (BMI ≥ 30.0 kg/m2), 125 adults with overweight (BMI 25.0–29.9 kg/m2) and 153 persons with normal body weight (BMI < 25 kg/m2) of both sexes. We have found that the development of excessive body weight in men and women, and fat accumulation in the upper arms, thighs and lower legs in women with obesity (but not men) are associated with increased prenatal estrogen exposure. This relationship indicates a new area of activity in the field of obesity prevention. Moreover, it seems that the 2D:4D index (especially of the right hand) may be a useful factor in early prediction of the risk of developing excessive body weight in humans. The rate of weight loss after bariatric surgery is independent of prenatal exposure to sex hormones.
Collapse
Affiliation(s)
- Aleksandra Iljin
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Lodz, ul. Kopcińskiego 22, 90-153, Łódź, Poland
| | - Bogusław Antoszewski
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Lodz, ul. Kopcińskiego 22, 90-153, Łódź, Poland
| | - Tomasz Szewczyk
- Clinical Department of Gastroenterology, Oncology and General Surgery, USK No. 1, ul. Kopcińskiego 22, 90-153, Łódź, Poland.,Department of General Surgery, Regional Health Center, ul. Gen. Józefa Bema 5-6, 59-300, Lubin, Poland
| | - Aneta Sitek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
37
|
de Souza GO, Wasinski F, Donato J. Characterization of the metabolic differences between male and female C57BL/6 mice. Life Sci 2022; 301:120636. [PMID: 35568227 DOI: 10.1016/j.lfs.2022.120636] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/22/2023]
Abstract
AIMS The present study aims to compare the responses between male and female C57BL/6 mice to multiple metabolic challenges to understand the importance of sex in the control of energy homeostasis. MAIN METHODS Male and female C57BL/6 mice were subjected to nutritional and hormonal challenges, such as food restriction and refeeding, diet-induced obesity, feeding response to ghrelin and leptin, ghrelin-induced growth hormone secretion, and central responsiveness to ghrelin and leptin. The hypothalamic expression of transcripts that control energy homeostasis was also evaluated. KEY FINDINGS Male mice lost more weight and lean body mass in response to food restriction, compared to females. During refeeding, males accumulated more body fat and exhibited lower energy expenditure and glycemia, as compared to females. Additionally, female mice exhibited a higher protection against diet-induced obesity and related metabolic imbalances in comparison to males. Low dose ghrelin injection elicited higher food intake and growth hormone secretion in male mice, whereas the acute anorexigenic effect of leptin was more robust in females. However, the sex differences in the feeding responses to ghrelin and leptin were not explained by variations in the central responsiveness to these hormones nor by differences in the fiber density from arcuate nucleus neurons. Female, but not male, mice exhibited compensatory increases in hypothalamic Pomc mRNA levels in response to diet-induced obesity. SIGNIFICANCE Our findings revealed several sexually differentiated responses to metabolic challenges in C57BL/6 mice, highlighting the importance of taking into account sex differences in metabolic studies.
Collapse
Affiliation(s)
- Gabriel O de Souza
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil..
| |
Collapse
|
38
|
Lv Y, Wang F, Sheng Y, Xia F, Jin Y, Ding G, Wang X, Yu J. Estrogen supplementation deteriorates visceral adipose function in aged postmenopausal subjects via Gas5 targeting IGF2BP1. Exp Gerontol 2022; 163:111796. [DOI: 10.1016/j.exger.2022.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
|
39
|
Abi N, Xu X, Yang Z, Ma T, Dong J. Association of Serum Adipokines and Resting Energy Expenditure in Patients With Chronic Kidney Disease. Front Nutr 2022; 9:828341. [PMID: 35369060 PMCID: PMC8965443 DOI: 10.3389/fnut.2022.828341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background and Aim Metabolic disorders are prevalent in patients with chronic kidney disease (CKD) and may lead to protein energy wasting (PEW). Adipokines improve connections between PEW and energy metabolism. We aimed to determine the relationship between adipokine levels and resting energy expenditure (REE) in patients with CKD. Methods A total of 208 patients in non-dialyzed CKD stages 3–5 were enrolled in this cross-sectional study. Serum adipokines (leptin, adiponectin, and interleukin 6 (IL-6) were measured using enzyme-linked immunosorbent assay. Patient's REE was measured using indirect calorimetry. Fat mass (FM) and lean tissue mass (LTM) were measured using multiple-frequency bioimpedance analysis. Spearman correlation analyses and multivariate linear regression models were used to assess the association between serum adipokines and REE. Results The mean age was 52.7 ± 14.6 years, and 26.9, 26.4, and 46.7% of our participants had CKD stages 3, 4, and 5, respectively. The median values of serum adiponectin, leptin, and IL-6 were 470.4 (range, 291.1–802.2), 238.1 (range, 187.9–418.4), and 4.0 (range, 2.4–9.5) pg/mL, respectively. The male participants had significantly lower FM% (P = 0.001) and lower leptin levels (P < 0.001) than the female participants. After adjusting for age, diabetes, high-sensitivity C-reactive protein, intact parathyroid hormone, LTM, and FM, multiple linear regression analysis revealed that serum leptin levels were significantly positively associated with REE in men rather than in women (P < 0.05). Serum adiponectin levels were inversely associated with REE in men, but this association disappeared while FM was additionally adjusted. Adiponectin levels in women were not correlated with REE (P > 0.05). IL-6 was not significantly associated with REE in either men or women. Conclusions A sex-specific relationship between serum adipokines (leptin and adiponectin) and REE was observed in patients with CKD stages 3–5, which was partly confounded by FM.
Collapse
Affiliation(s)
- Nanzha Abi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Xu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhikai Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Tiantian Ma
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Dong
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Jie Dong
| |
Collapse
|
40
|
Maric I, Krieger JP, van der Velden P, Börchers S, Asker M, Vujicic M, Wernstedt Asterholm I, Skibicka KP. Sex and Species Differences in the Development of Diet-Induced Obesity and Metabolic Disturbances in Rodents. Front Nutr 2022; 9:828522. [PMID: 35284452 PMCID: PMC8908889 DOI: 10.3389/fnut.2022.828522] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Prevalence and health consequences of obesity differ between men and women. Yet, most preclinical studies investigating the etiology of obesity have, to date, been conducted in male rodents. Notably, diet is a major determinant of obesity, but sex differences in rodent models of diet-induced obesity, and the mechanisms that underlie such differences, are still understudied. Here, we aim to determine whether time course and characteristics of diet-induced obesity differ between sexes in rats and mice, and to investigate the potential causes of the observed divergence. To achieve this, we offered the most commonly tested rodents of both sexes, SD rats and C57BL/6 mice, a free choice of 60 % high-fat diet (HFD) and regular chow; body weight, food intake, fat mass, brown adipose responses, locomotor activity and glucose tolerance were assessed in a similar manner in both species. Our results indicate that overall diet-induced hyperphagia is greater in males but that females display a higher preference for the HFD, irrespective of species. Female rats, compared to males, showed a delay in diet-induced weight gain and less metabolic complications. Although male rats increased brown adipose tissue thermogenesis in response to the HFD challenge, this was not sufficient to counteract increased adiposity. In contrast to rats, female and male mice presented with a dramatic adiposity and impaired glucose tolerance, and a decreased energy expenditure. Female mice showed a 5-fold increase in visceral fat, compared to 2-fold increase seen in male mice. Overall, we found that male and female rodents responded very differently to HFD challenge, and engaged different compensatory energy expenditure mechanisms. In addition, these sex differences are divergent in rats and mice. We conclude that SD rats have a better face validity for the lower prevalence of overweight in women, while C57BL/6 mice may better model the increased prevalence of morbid obesity in women.
Collapse
Affiliation(s)
- Ivana Maric
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jean-Philippe Krieger
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Pauline van der Velden
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Milica Vujicic
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Karolina P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
41
|
Delaney KZ, Santosa S. Sex differences in regional adipose tissue depots pose different threats for the development of Type 2 diabetes in males and females. Obes Rev 2022; 23:e13393. [PMID: 34985183 DOI: 10.1111/obr.13393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) affects males and females disproportionately. In midlife, more males have T2DM than females. The sex difference in T2DM prevalence is, in part, explained by differences in regional adipose tissue characteristics. With obesity, changes to regional adipokine and cytokine release increases the risk of T2DM in both males and females with males having greater levels of TNFα and females having greater levels of leptin, CRP, and adiponectin. Regional immune cell infiltration appears to be pathogenic in both sexes via different routes as males with obesity have greater VAT ATM and a decrease in the protective Treg cells, whereas females have greater SAT ATM and T cells. Lastly, the ability of female adipose tissue to expand all regions through hyperplasia, rather than hypertrophy, protects them against the development of large insulin-resistant adipocytes that dominate male adipose tissue. The objective of this review is to discuss how sex may affect regional differences in adipose tissue characteristics and how these differences may distinguish the development of T2DM in males and females. In doing so, we will show that the origins of T2DM development differ between males and females.
Collapse
Affiliation(s)
- Kerri Z Delaney
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Metabolism, Obesity and Nutrition Lab, PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, Québec, Canada.,Metabolism, Obesity and Nutrition Lab, PERFORM Centre, Concordia University, Montréal, Québec, Canada.,Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| |
Collapse
|
42
|
Burch KE, McCracken K, Buck DJ, Davis RL, Sloan DK, Curtis KS. Relationship Between Circulating Metabolic Hormones and Their Central Receptors During Ovariectomy-Induced Weight Gain in Rats. Front Physiol 2022; 12:800266. [PMID: 35069259 PMCID: PMC8766843 DOI: 10.3389/fphys.2021.800266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Although increasing research focuses on the phenomenon of body weight gain in women after menopause, the complexity of body weight regulation and the array of models used to investigate it has proven to be challenging. Here, we used ovariectomized (OVX) rats, which rapidly gain weight, to determine if receptors for ghrelin, insulin, or leptin in the dorsal vagal complex (DVC), arcuate nucleus (ARC), or paraventricular nucleus (PVN) change during post-ovariectomy weight gain. Female Sprague-Dawley rats with ad libitum access to standard laboratory chow were bilaterally OVX or sham OVX. Subgroups were weighed and then terminated on day 5, 33, or 54 post-operatively; blood and brains were collected. ELISA kits were used to measure receptors for ghrelin, insulin, and leptin in the DVC, ARC, and PVN, as well as plasma ghrelin, insulin, and leptin. As expected, body weight increased rapidly after ovariectomy. However, ghrelin receptors did not change in any of the areas for either group, nor did circulating ghrelin. Thus, the receptor:hormone ratio indicated comparable ghrelin signaling in these CNS areas for both groups. Insulin receptors in the DVC and PVN decreased in the OVX group over time, increased in the PVN of the Sham group, and were unchanged in the ARC. These changes were accompanied by elevated circulating insulin in the OVX group. Thus, the receptor:hormone ratio indicated reduced insulin signaling in the DVC and PVN of OVX rats. Leptin receptors were unchanged in the DVC and ARC, but increased over time in the PVN of the Sham group. These changes were accompanied by elevated circulating leptin in both groups that was more pronounced in the OVX group. Thus, the receptor:hormone ratio indicated reduced leptin signaling in the DVC and PVN of both groups, but only in the OVX group for the ARC. Together, these data suggest that weight gain that occurs after removal of ovarian hormones by ovariectomy is associated with selective changes in metabolic hormone signaling in the CNS. While these changes may reflect behavioral or physiological alterations, it remains to be determined whether they cause post-ovariectomy weight gain or result from it.
Collapse
Affiliation(s)
- Kaitlin E Burch
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Kelly McCracken
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Daniel J Buck
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Randall L Davis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Dusti K Sloan
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Kathleen S Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| |
Collapse
|
43
|
Krug R, Beier L, Lämmerhofer M, Hallschmid M. Distinct and Convergent Beneficial Effects of Estrogen and Insulin on Cognitive Function in Healthy Young Men. J Clin Endocrinol Metab 2022; 107:e582-e593. [PMID: 34534317 PMCID: PMC8764344 DOI: 10.1210/clinem/dgab689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Systematic investigations into the cognitive impact of estradiol and insulin in male individuals are sparse, and it is unclear whether the 2 hormones interact to benefit specific cognitive functions in humans. OBJECTIVE We investigated the acute effect of estradiol and insulin and of their combined administration on divergent (creative) and convergent (arithmetical) thinking as well as short-term and working verbal memory in healthy young men. METHODS According to a 2 × 2 design, 2 groups of men (each n = 16) received a 3-day transdermal estradiol (100 µg/24 h) or placebo pretreatment and on 2 separate mornings were intranasally administered 160 IU regular human insulin and, respectively, placebo before completing a battery of cognitive tests; we also determined relevant blood parameters. RESULTS Estrogen compared with placebo treatment induced a 3.5-fold increase in serum estradiol and suppressed serum testosterone concentrations by 70%. Estrogen in comparison to placebo improved creative performance, that is, verbal fluency and flexibility, but not arithmetical thinking, as well as verbal short-term memory, but not visuospatial memory. The combination of estrogen and insulin enhanced recognition discriminability at delayed verbal memory recall; insulin alone remained without effect. CONCLUSION Estrogen specifically enhances core aspects of creativity and verbal memory in young male individuals; delayed recognition memory benefits from the combined administration of estradiol and insulin. Our results indicate that insulin's acute cognitive impact in young men is limited and not robustly potentiated by estradiol. Estradiol per se exerts a beneficial acute effect on creative and verbal performance in healthy young men.
Collapse
Affiliation(s)
- Rosemarie Krug
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Laura Beier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, University of Tübingen, 72076 Tübingen, Germany
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), 72076 Tübingen, Germany
- Correspondence: Manfred Hallschmid, PhD, University of Tübingen, Institute of Medical Psychology and Behavioral Neurobiology, Otfried-Müller-Straße 25, 72076 Tübingen, Germany.
| |
Collapse
|
44
|
Leptin enhances social motivation and reverses chronic unpredictable stress-induced social anhedonia during adolescence. Mol Psychiatry 2022; 27:4948-4958. [PMID: 36138127 PMCID: PMC9763124 DOI: 10.1038/s41380-022-01778-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 01/19/2023]
Abstract
Social anhedonia, a loss of interest and pleasure in social interactions, is a common symptom of major depression as well as other psychiatric disorders. Depression can occur at any age, but typically emerges in adolescence or early adulthood, which represents a sensitive period for social interaction that is vulnerable to stress. In this study, we evaluated social interaction reward using a conditioned place preference (CPP) paradigm in adolescent male and female mice. Adolescent mice of both sexes exhibited a preference for the social interaction-associated context. Chronic unpredictable stress (CUS) impaired the development of CPP for social interaction, mimicking social anhedonia in depressed adolescents. Conversely, administration of leptin, an adipocyte-derived hormone, enhanced social interaction-induced CPP in non-stressed control mice and reversed social anhedonia in CUS mice. By dissecting the motivational processes of social CPP into social approach and isolation avoidance components, we demonstrated that leptin treatment increased isolation aversion without overt social reward effect. Further mechanistic exploration revealed that leptin stimulated oxytocin gene transcription in the paraventricular nucleus of the hypothalamus, while oxytocin receptor blockade abolished the leptin-induced enhancement of socially-induced CPP. These results establish that chronic unpredictable stress can be used to study social anhedonia in adolescent mice and provide evidence that leptin modulates social motivation possibly via increasing oxytocin synthesis and oxytocin receptor activation.
Collapse
|
45
|
Metz L, Isacco L, Redman LM. Effect of oral contraceptives on energy balance in women: A review of current knowledge and potential cellular mechanisms. Metabolism 2022; 126:154919. [PMID: 34715118 DOI: 10.1016/j.metabol.2021.154919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022]
Abstract
Body weight management is currently of major concern as the obesity epidemic is still a worldwide challenge. As women face more difficulties to lose weight than men, there is an urgent need to better understand the underlying reasons and mechanisms. Recent data have suggested that the use of oral contraceptive (OC) could be involved. The necessity of utilization and development of contraceptive strategies for birth regulation is undeniable and contraceptive pills appear as a quite easy approach. Moreover, OC also represent a strategy for the management of premenstrual symptoms, acne or bulimia nervosa. The exact impact of OC on body weight remains not clearly established. Thus, after exploring the potential underlying mechanisms by which OC could influence the two side of energy balance, we then provide an overview of the available evidence regarding the effects of OC on energy balance (i.e. energy expenditure and energy intake). Finally, we highlight the necessity for future research to clarify the cellular effects of OC and how the individualization of OC prescriptions can improve long-term weight loss management.
Collapse
Affiliation(s)
- Lore Metz
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France.
| | - Laurie Isacco
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions, (AME2P), UE3533, Clermont Auvergne University, 63170 Aubiere CEDEX, France; Auvergne Research Center for Human Nutrition (CRNH), 63000 Clermont-Ferrand, France
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
46
|
Lizcano F. Roles of estrogens, estrogen-like compounds, and endocrine disruptors in adipocytes. Front Endocrinol (Lausanne) 2022; 13:921504. [PMID: 36213285 PMCID: PMC9533025 DOI: 10.3389/fendo.2022.921504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Women are subject to constitutional changes after menopause, which increases conditions and diseases prone to cardiovascular risks such as obesity and diabetes mellitus. Both estrogens and androgens influence the individual's metabolic mechanism, which controls the fat distribution and the hypothalamic organization of the regulatory centers of hunger and satiety. While androgens tend to accumulate fat in the splanchnic and the visceral region with an increase in cardiovascular risk, estrogens generate more subcutaneous and extremity distribution of adipose tissue. The absence of estrogen during menopause seems to be the main factor that gives rise to the greater predisposition of women to suffer cardiovascular alterations. However, the mechanisms by which estrogens regulate the energy condition of people are not recognized. Estrogens have several mechanisms of action, which mainly include the modification of specific receptors that belong to the steroid receptor superfamily. The alpha estrogen receptors (ERα) and the beta receptors (ERβ) have a fundamental role in the metabolic control of the individual, with a very characteristic corporal distribution that exerts an influence on the metabolism of lipids and glucose. Despite the significant amount of knowledge in this field, many of the regulatory mechanisms exerted by estrogens and ER continue to be clarified. This review will discuss the role of estrogens and their receptors on the central regulation of caloric expenditure and the influence they exert on the differentiation and function of adipocytes. Furthermore, chemical substances with a hormonal activity that cause endocrine disruption with affectation on estrogen receptors will be considered. Finally, the different medical therapies for the vasomotor manifestations of menopause and their role in reducing obesity, diabetes, and cardiovascular risk will be analyzed.
Collapse
|
47
|
Bjune JI, Strømland PP, Jersin RÅ, Mellgren G, Dankel SN. Metabolic and Epigenetic Regulation by Estrogen in Adipocytes. Front Endocrinol (Lausanne) 2022; 13:828780. [PMID: 35273571 PMCID: PMC8901598 DOI: 10.3389/fendo.2022.828780] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Sex hormones contribute to differences between males and females in body fat distribution and associated disease risk. Higher concentrations of estrogens are associated with a more gynoid body shape and with more fat storage on hips and thighs rather than in visceral depots. Estrogen-mediated protection against visceral adiposity is shown in post-menopausal women with lower levels of estrogens and the reduction in central body fat observed after treatment with hormone-replacement therapy. Estrogen exerts its physiological effects via the estrogen receptors (ERα, ERβ and GPR30) in target cells, including adipocytes. Studies in mice indicate that estrogen protects against adipose inflammation and fibrosis also before the onset of obesity. The mechanisms involved in estrogen-dependent body fat distribution are incompletely understood, but involve, e.g., increased mTOR signaling and suppression of autophagy and adipogenesis/lipid storage. Estrogen plays a key role in epigenetic regulation of adipogenic genes by interacting with enzymes that remodel DNA methylation and histone tail post-translational modifications. However, more studies are needed to map the differential epigenetic effects of ER in different adipocyte subtypes, including those in subcutaneous and visceral adipose tissues. We here review recent discoveries of ER-mediated transcriptional and epigenetic regulation in adipocytes, which may explain sexual dimorphisms in body fat distribution and obesity-related disease risk.
Collapse
Affiliation(s)
- Jan-Inge Bjune
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pouda Panahandeh Strømland
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Regine Åsen Jersin
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon Nitter Dankel
- Hormone Laboratory, Department of Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- *Correspondence: Simon Nitter Dankel,
| |
Collapse
|
48
|
de Alencar AKN, Wang H, de Oliveira GMM, Sun X, Zapata-Sudo G, Groban L. Crossroads between Estrogen Loss, Obesity, and Heart Failure with Preserved Ejection Fraction. Arq Bras Cardiol 2021; 117:1191-1201. [PMID: 34644788 PMCID: PMC8757160 DOI: 10.36660/abc.20200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/16/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity and heart failure with preserved ejection fraction (HFpEF) increases significantly in postmenopausal women. Although obesity is a risk factor for left ventricular diastolic dysfunction (LVDD), the mechanisms that link the cessation of ovarian hormone production, and particularly estrogens, to the development of obesity, LVDD, and HFpEF in aging females are unclear. Clinical, and epidemiologic studies show that postmenopausal women with abdominal obesity (defined by waist circumference) are at greater risk for developing HFpEF than men or women without abdominal obesity. The study presents a review of clinical data that support a mechanistic link between estrogen loss plus obesity and left ventricular remodeling with LVDD. It also seeks to discuss potential cell and molecular mechanisms for estrogen-mediated protection against adverse adipocyte cell types, tissue depots, function, and metabolism that may contribute to LVDD and HFpEF.
Collapse
Affiliation(s)
| | - Hao Wang
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
- Wake Forest School of MedicineWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Internal Medicine-Section of Molecular Medicine, Winston-Salem, North Carolina - Estados Unidos da América
| | - Gláucia Maria Moraes de Oliveira
- Universidade Federal do Rio de JaneiroDepartamento de Clínica MédicaFaculdade de MedicinaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Departamento de Clínica Médica, Faculdade de Medicina, Rio de Janeiro, RJ - Brasil
| | - Xuming Sun
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
| | - Gisele Zapata-Sudo
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Instituto de Ciências Biomédicas, Rio de Janeiro, RJ - Brasil
- Universidade Federal do Rio de JaneiroInstituto de Cardiologia Edson SaadFaculdade de MedicinaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Rio de Janeiro, RJ - Brasil
| | - Leanne Groban
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
- Wake Forest School of MedicineWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Internal Medicine-Section of Molecular Medicine, Winston-Salem, North Carolina - Estados Unidos da América
| |
Collapse
|
49
|
Singh P, Covassin N, Sert‐Kuniyoshi FH, Marlatt KL, Romero‐Corral A, Davison DE, Singh RJ, Jensen MD, Somers VK. Overfeeding-induced weight gain elicits decreases in sex hormone-binding globulin in healthy males-Implications for body fat distribution. Physiol Rep 2021; 9:e15127. [PMID: 34877821 PMCID: PMC8652402 DOI: 10.14814/phy2.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Obesity and upper-body fat elevates cardiometabolic risk. However, mechanisms predisposing to upper-body fat accumulation are not completely understood. In males, low testosterone (T) frequently associates with obesity, and estrogen deficiency may contribute to upper-body adiposity. This study examines the effects of overfeeding-induced weight gain on changes in gonadal hormones in healthy males and its association with regional fat depots. METHODS Twenty-five males (age: 29.7 ± 6.9 years; BMI: 24.7 ± 3.1 kg/m2 ) were overfed for 8 weeks to gain approximately 5% body weight. Changes in total and regional fat depots were assessed using dual-energy x-ray absorptiometry and abdominal computed tomography scans. Circulating T, estrone (E1), 17-β estradiol (E2), and sex hormone-binding globulin (SHBG) concentrations were measured at baseline and after weight gain. RESULTS Overfeeding resulted in 3.8 (3.3, 4.9) kg weight gain with increased total body fat. Weight gain did not alter circulating T (p = 0.82), E1 (p = 0.52), or E2 (p = 0.28). However, SHBG decreased (p = 0.04) along with consequent increases in T/SHBG (p = 0.02) and E2/SHBG (p = 0.03) ratios. Importantly, baseline E2/SHBG ratio was inversely associated with increases in upper-body fat mass (ρ = -0.43, p = 0.03). CONCLUSIONS Modest weight gain does not alter circulating gonadal hormones in males but may increase bioavailability of T and E2 via decreases in SHBG. The association between baseline E2/SHBG and regional fat mass suggests that higher levels of bioavailable E2 may protect from upper-body fat accumulation during overfeeding-induced modest weight gain in healthy males. Our study suggests a complex relationship between adipose tissue, gonadal hormones, and fat accumulation in males.
Collapse
Affiliation(s)
- Prachi Singh
- Department of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
- Pennington Biomedical Research CenterLouisiana State University SystemBaton RougeLouisinaUSA
| | - Naima Covassin
- Department of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Kara L. Marlatt
- Pennington Biomedical Research CenterLouisiana State University SystemBaton RougeLouisinaUSA
| | | | - Diane E. Davison
- Department of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | - Ravinder J. Singh
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | | | - Virend K. Somers
- Department of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
50
|
Galal A, El-Bakly WM, El-Kilany SS, Ali AA, El-Demerdash E. Fenofibrate ameliorates olanzapine's side effects without altering its central effect: emphasis on FGF-21-adiponectin axis. Behav Pharmacol 2021; 32:615-629. [PMID: 34637209 DOI: 10.1097/fbp.0000000000000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present work was designed to investigate whether fenofibrate could ameliorate olanzapine deleterious effect on insulin resistance via its effect on fibroblast growth factor-21 (FGF-21)-adiponectin axis without affecting olanzapine antipsychotic effect in postweaning socially isolated reared female rats. Treatment with olanzapine (6 mg/kg, intraperitoneally) or fenofibrate (100 mg/kg, orally) have been started 5 weeks after isolation, then behavioral tests, hippocampal content of neurotransmitters, and brain-derived neurotrophic factor (BDNF) were assessed. Moreover, insulin resistance, lipid profile, FGF-21, adiponectin, inflammatory, and oxidative stress markers of adipose tissue were assessed. Treatment of isolated-reared animals with olanzapine, or fenofibrate significantly ameliorated the behavioral and biochemical changes induced by postweaning social isolation. Co-treatment showed additive effects in improving hippocampal BDNF level. Besides, fenofibrate reduced the elevation in weight gain, adiposity index, insulin resistance, lipid profile, and FGF-21 level induced by olanzapine treatment. Also, fenofibrate increased adiponectin level which was reduced upon olanzapine treatment. Moreover, fenofibrate improved both adipose tissue oxidative stress and inflammatory markers elevation as a result of olanzapine treatment. Fenofibrate could ameliorate olanzapine-induced insulin resistance without affecting its central effect in isolated reared rats via its action on FGF-21-adiponectin axis.
Collapse
Affiliation(s)
- Aya Galal
- Cardiac Surgery Hospital, Ain Shams University
| | | | - Sara S El-Kilany
- Department of Anatomy, Faculty of Medicine, Ain Shams University
| | - Azza A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar university (Girls Branch)
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|