1
|
Mázala DA, Chen D, Chin ER. SERCA1 Overexpression in Skeletal Muscle Attenuates Muscle Atrophy and Improves Motor Function in a Mouse Model of ALS. J Neuromuscul Dis 2024; 11:315-326. [PMID: 38217607 PMCID: PMC10977371 DOI: 10.3233/jnd-230123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/15/2024]
Abstract
Background Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of muscle mass and muscle function. Previous work from our lab demonstrated that skeletal muscles from a mouse model of ALS show elevated intracellular calcium (Ca2+) levels and heightened endoplasmic reticulum (ER) stress. Objective To investigate whether overexpression of sarcoplasmic reticulum (SR) Ca2+ ATPase 1 (SERCA1) in skeletal muscle would improve intracellular Ca2+ handling, attenuate ER stress, and improve motor function ALS transgenic mice. Methods B6SJL-Tg (SOD1*G93A)1Gur/J (ALS-Tg) mice were bred with skeletal muscle α-actinin SERCA1 overexpressing mice to generate wild type (WT), SERCA1 overexpression (WT/+SERCA1), ALS-Tg, and SERCA1 overexpressing ALS-Tg (ALS-Tg/+SERCA1) mice. Motor function (grip test) was assessed weekly and skeletal muscles were harvested at 16 weeks of age to evaluate muscle mass, SR-Ca2+ ATPase activity, levels of SERCA1 and ER stress proteins - protein disulfide isomerase (PDI), Grp78/BiP, and C/EBP homologous protein (CHOP). Single muscle fibers were also isolated from the flexor digitorum brevis muscle to assess changes in resting and peak Fura-2 ratios. Results ALS-Tg/+SERCA1 mice showed improved motor function, delayed onset of disease, and improved muscle mass compared to ALS-Tg. Further, ALS-Tg/+SERCA1 mice returned levels of SERCA1 protein and SR-Ca2+ ATPase activity back to levels in WT mice. Unexpectedly, SERCA-1 overexpression increased levels of the ER stress maker Grp78/BiP in both WT and ALS-Tg mice, while not altering protein levels of PDI or CHOP. Lastly, single muscle fibers from ALS-Tg/+SERCA1 had similar resting but lower peak Fura-2 levels (at 30 Hz and 100 Hz) compared to ALS-Tg mice. Conclusions These data indicate that SERCA1 overexpression attenuates the progressive loss of muscle mass and maintains motor function in ALS-Tg mice while not lowering resting Ca2+ levels or ER stress.
Collapse
Affiliation(s)
- Davi A.G. Mázala
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, USA
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Dapeng Chen
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
- Zeteo Tech, Inc., Sykesville, MD, USA
| | - Eva R. Chin
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
- Solve FSHD, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Wang Q, Yan Y, Tao Y, Lu S, Xu P, Qiang J. Transcriptional Knock-down of mstn Encoding Myostatin Improves Muscle Quality of Nile Tilapia (Oreochromis niloticus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:951-965. [PMID: 37755584 DOI: 10.1007/s10126-023-10252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Myostatin (encoded by mstn) negatively regulates skeletal muscle mass and affects lipid metabolism. To explore the regulatory effects of mstn on muscle development and lipid metabolism in Nile tilapia (Oreochromis niloticus), we used antisense RNA to transcriptionally knock-down mstn. At 180 days, the body weight and body length were significantly higher in the mstn-knock-down group than in the control group (p < 0.05). Additionally, fish with mstn-knock-down exhibited myofiber hyperplasia but not hypertrophy. Oil red O staining revealed a remarkable increase in the area of lipid droplets in muscle in the mstn-knockdown group (p < 0.05). Nutrient composition analyses of muscle tissue showed that the crude fat content was significantly increased in the mstn-knock-down group (p < 0.05). The contents of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids were all significantly increased in the mstn-knock-down group (p < 0.05). Comparative transcriptome analyses revealed 2420 significant differentially expressed genes between the mstn-knock-down group and the control group. KEGG analysis indicates that disruptions to fatty acid degradation, glycerolipid metabolism, and the PPAR signaling pathway affect muscle development and lipid metabolism in mstn-knock-down Nile tilapia: acaa2, eci1, and lepr were remarkably up-regulated, and acadvl, lpl, foxo3, myod1, myog, and myf5 were significantly down-regulated (p < 0.05). These results show that knock-down of mstn results in abnormal lipid metabolism, acceleration of skeletal muscle development, and increased adipogenesis and weight gain in Nile tilapia.
Collapse
Affiliation(s)
- Qingchun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yue Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Siqi Lu
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fishes and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
3
|
Sandonà M, Cavioli G, Renzini A, Cedola A, Gigli G, Coletti D, McKinsey TA, Moresi V, Saccone V. Histone Deacetylases: Molecular Mechanisms and Therapeutic Implications for Muscular Dystrophies. Int J Mol Sci 2023; 24:4306. [PMID: 36901738 PMCID: PMC10002075 DOI: 10.3390/ijms24054306] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.
Collapse
Affiliation(s)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), 73100 Lecce, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
- CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Aging B2A, Sorbonne Université, 75005 Paris, France
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Valentina Saccone
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
4
|
Morita-Tanaka S, Yamada T, Takayama K. The landscape of cancer cachexia in advanced non-small cell lung cancer: a narrative review. Transl Lung Cancer Res 2023; 12:168-180. [PMID: 36762058 PMCID: PMC9903087 DOI: 10.21037/tlcr-22-561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Background and Objective Cancer cachexia presents with weight loss, anorexia, and fatigue and worsens the prognosis and quality of life of cancer patients. We aimed to summarize the current relevant discourse in the literature about cancer cachexia in the setting of non-small cell lung carcinoma and the possible current and future treatments. Methods We conduct a narrative review of the literature on the landscape of cancer cachexia in the context of non-small cell lung cancer, multimodality therapy, markers, imaging, tumor biology, pathology, chemoprevention, and technical advances. Key Content and Findings The need for appropriate intervention for cancer cachexia is increasing as the prognosis of patients with advanced non-small cell lung cancer is improving with advances in treatment. Tumor cells play a role in the pathogenesis of cachexia, where they release factors that elicit the production of inflammatory cytokines by the immune system resulting in decreased appetite, abnormal energy metabolism, and skeletal muscle degeneration. Comorbid chronic lung diseases are associated with pulmonary cachexia and sarcopenia and commonly occur in the context of lung cancer, further contributing to the increased incidence of cachexia in patients with lung cancer. Currently, a ghrelin-like agonist, anamorelin, is approved for the treatment of cancer cachexia and is used in clinical practice in Japan. The role that nutritional and exercise therapies can play as added treatments must be further explored. Conclusions Cancer cachexia remains a poorly understood phenomenon, and awareness must be raised through educational activities for health care providers and patient family members. In addition, new therapeutics targeting cancer cachexia, such as GDF-15 antibodies, are in development, and further progress is expected.
Collapse
Affiliation(s)
- Satomi Morita-Tanaka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Xu K, Zhou H, Han C, Xu Z, Ding J, Zhu J, Qin C, Luo H, Chen K, Jiang S, Liu J, Zhu W, Meng H. Transcriptomic Analysis of MSTN Knockout in the Early Differentiation of Chicken Fetal Myoblasts. Genes (Basel) 2021; 13:genes13010058. [PMID: 35052399 PMCID: PMC8774668 DOI: 10.3390/genes13010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
In mammals, Myostatin (MSTN) is a known negative regulator of muscle growth and development, but its role in birds is poorly understood. To investigate the molecular mechanism of MSTN on muscle growth and development in chickens, we knocked out MSTN in chicken fetal myoblasts (CFMs) and sequenced the mRNA transcriptomes. The amplicon sequencing results show that the editing efficiency of the cells was 76%. The transcriptomic results showed that 296 differentially expressed genes were generated after down-regulation of MSTN, including angiotensin I converting enzyme (ACE), extracellular fatty acid-binding protein (EXFABP) and troponin T1, slow skeletal type (TNNT1). These genes are closely associated with myoblast differentiation, muscle growth and energy metabolism. Subsequent enrichment analysis showed that DEGs of CFMs were related to MAPK, Pl3K/Akt, and STAT3 signaling pathways. The MAPK and Pl3K/Akt signaling pathways are two of the three known signaling pathways involved in the biological effects of MSTN in mammals, and the STAT3 pathway is also significantly enriched in MSTN knock out chicken leg muscles. The results of this study will help to understand the possible molecular mechanism of MSTN regulating the early differentiation of CFMs and lay a foundation for further research on the molecular mechanism of MSTN involvement in muscle growth and development.
Collapse
Affiliation(s)
- Ke Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Hao Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Chengxiao Han
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan 430072, China;
| | - Jinmei Ding
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Jianshen Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Chao Qin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Huaixi Luo
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Kangchun Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Shengyao Jiang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Jiajia Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - Wenqi Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
| | - He Meng
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (K.X.); (H.Z.); (C.H.); (J.D.); (J.Z.); (C.Q.); (H.L.); (K.C.); (S.J.); (J.L.); (W.Z.)
- Correspondence:
| |
Collapse
|
6
|
Chou IC, Chang AC, Chen CJ, Liang WM, Chiou JS, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Li TM, Lin YJ. Effect of Chinese herbal medicines on the overall survival of patients with muscular dystrophies in Taiwan. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114359. [PMID: 34174374 DOI: 10.1016/j.jep.2021.114359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Muscular dystrophies are a rare, severe, and genetically inherited group of disorders characterized by progressive loss of muscle fibers, leading to muscle weakness. The current treatment plan for muscular dystrophies includes the use of steroids to slow muscle deterioration by dampening the inflammatory response. AIM OF THE STUDY Chinese herbal medicine (CHM) has been offered as an adjunctive therapy in Taiwan's medical healthcare plan, making it possible to track CHM usage in patients with muscular dystrophic disease. Therefore, we explored the long-term effects of CHM use on the overall mortality of patients with muscular dystrophies. MATERIALS AND METHODS A total of 581 patients with muscular dystrophies were identified from the database of Registry for Catastrophic Illness Patients in Taiwan. Among them, 80 and 201 patients were CHM users and non-CHM users, respectively. Student's t-test, chi-squared test, Cox proportional hazard model, and Kaplan-Meier curve (log-rank test) were used for evaluation. Association rules and network analyses were performed to explore the combination of CHMs used in muscular dystrophies. RESULTS Compared to non-CHM users, there were more female patients, more comorbidities, including chronic pulmonary disease and peptic ulcer disease in the CHM user group. Patients with prednisolone usage exhibited a lower risk of overall mortality than those who did not, after adjusting for age, sex, use of CHM, and comorbidities. CHM users showed a lower risk of overall mortality after adjusting for age, sex, prednisolone use, and comorbidities. The cumulative incidence of the overall survival was significantly higher in CHM users. Association rule and network analysis showed that one main CHM cluster was commonly used to treat patients with muscular dystrophies in Taiwan. The cluster includes Yin-Qiao-San, Ban-Xia-Bai-Zhu-Tian-Ma-Tang, Zhi-Ke (Citrus aurantium L.), Yu-Xing-Cao (Houttuynia cordata Thunb.), Che-Qian-Zi (Plantago asiatica L.), and Da-Huang (Rheum palmatum L.). CONCLUSIONS Our data suggest that adjunctive therapy with CHM may help to reduce the overall mortality among patients with muscular dystrophies. The identification of the CHM cluster allows us to narrow down the key active compounds and may enable future therapeutic developments and clinical trial designs to improve overall survival in these patients.
Collapse
Affiliation(s)
- I-Ching Chou
- Department of Pediatrics, Children's Hospital of China Medical University, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| | - Alex Cy Chang
- Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan.
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan.
| | - Fuu-Jen Tsai
- Department of Pediatrics, Children's Hospital of China Medical University, Taichung, Taiwan; Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| | - Ting-Hsu Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Chiu-Chu Liao
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Shao-Mei Huang
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| | - Ying-Ju Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Recent terminations of clinical trials of myostatin inhibitors in muscular dystrophy have raised questions about the predictiveness of mouse models for this therapeutic strategy. RECENT FINDINGS A variety of myostatin inhibitors have been developed for preclinical and clinical studies. These inhibitors have ameliorated the phenotype of many but not all mouse models of muscular dystrophy. However, randomized double-blinded placebo controlled trials in both pediatric and adult muscular dystrophies have, as of yet, not demonstrated functional improvement. SUMMARY The present article will review the preclinical promise of myostatin inhibitors, the clinical trial experience to date of these inhibitors in muscular dystrophy, and the potential reasons for the lack of observed translation.
Collapse
|
8
|
Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells 2021; 10:cells10030533. [PMID: 33802348 PMCID: PMC8001237 DOI: 10.3390/cells10030533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the past 20 years, myostatin, a negative regulator of muscle mass, has attracted attention as a potential therapeutic target in muscular dystrophies and other conditions. Preclinical studies have shown potential for increasing muscular mass and ameliorating the pathological features of dystrophic muscle by the inhibition of myostatin in various ways. However, hardly any clinical trials have proven to translate the promising results from the animal models into patient populations. We present the background for myostatin regulation, clinical and preclinical results and discuss why translation from animal models to patients is difficult. Based on this, we put the clinical relevance of future antimyostatin treatment into perspective.
Collapse
|
9
|
Xu K, Han CX, Zhou H, Ding JM, Xu Z, Yang LY, He C, Akinyemi F, Zheng YM, Qin C, Luo HX, Meng H. Effective MSTN Gene Knockout by AdV-Delivered CRISPR/Cas9 in Postnatal Chick Leg Muscle. Int J Mol Sci 2020; 21:ijms21072584. [PMID: 32276422 PMCID: PMC7177447 DOI: 10.3390/ijms21072584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Muscle growth and development are important aspects of chicken meat production, but the underlying regulatory mechanisms remain unclear and need further exploration. CRISPR has been used for gene editing to study gene function in mice, but less has been done in chick muscles. To verify whether postnatal gene editing could be achieved in chick muscles and determine the transcriptomic changes, we knocked out Myostatin (MSTN), a potential inhibitor of muscle growth and development, in chicks and performed transcriptome analysis on knock-out (KO) muscles and wild-type (WT) muscles at two post-natal days: 3d (3-day-old) and 14d (14-day-old). Large fragment deletions of MSTN (>5 kb) were achieved in all KO muscles, and the MSTN gene expression was significantly downregulated at 14d. The transcriptomic results indicated the presence of 1339 differentially expressed genes (DEGs) between the 3d KO and 3d WT muscles, as well as 597 DEGs between 14d KO and 14d WT muscles. Many DEGs were found to be related to cell differentiation and proliferation, muscle growth and energy metabolism. This method provides a potential means of postnatal gene editing in chicks, and the results presented here could provide a basis for further investigation of the mechanisms involved in muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - He Meng
- Correspondence: ; Tel.: +86-021-34206146
| |
Collapse
|
10
|
Siddiqui JA, Pothuraju R, Jain M, Batra SK, Nasser MW. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochim Biophys Acta Rev Cancer 2020; 1873:188359. [PMID: 32222610 DOI: 10.1016/j.bbcan.2020.188359] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Advanced cancer patients exhibit cachexia, a condition characterized by a significant reduction in the body weight predominantly from loss of skeletal muscle and adipose tissue. Cachexia is one of the major causes of morbidity and mortality in cancer patients. Decreased food intake and multi-organ energy imbalance in cancer patients worsen the cachexia syndrome. Cachectic cancer patients have a low tolerance for chemo- and radiation therapies and also have a reduced quality of life. The presence of tumors and the current treatment options for cancer further exacerbate the cachexia condition, which remains an unmet medical need. The onset of cachexia involves crosstalk between different organs leading to muscle wasting. Recent advancements in understanding the molecular mechanisms of skeletal muscle atrophy/hypertrophy and adipose tissue wasting/browning provide a platform for the development of new targeted therapies. Therefore, a better understanding of this multifactorial disorder will help to improve the quality of life of cachectic patients. In this review, we summarize the metabolic mediators of cachexia, their molecular functions, affected organs especially with respect to muscle atrophy and adipose browning and then discuss advanced therapeutic approaches to cancer cachexia.
Collapse
Affiliation(s)
- Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Harper SC, Johnson J, Borghetti G, Zhao H, Wang T, Wallner M, Kubo H, Feldsott EA, Yang Y, Joo Y, Gou X, Sabri AK, Gupta P, Myzithras M, Khalil A, Franti M, Houser SR. GDF11 Decreases Pressure Overload-Induced Hypertrophy, but Can Cause Severe Cachexia and Premature Death. Circ Res 2019; 123:1220-1231. [PMID: 30571461 DOI: 10.1161/circresaha.118.312955] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Possible beneficial effects of GDF11 (growth differentiation factor 11) on the normal, diseased, and aging heart have been reported, including reversing aging-induced hypertrophy. These effects have not been well validated. High levels of GDF11 have also been shown to cause cardiac and skeletal muscle wasting. These controversies could be resolved if dose-dependent effects of GDF11 were defined in normal and aged animals as well as in pressure overload-induced pathological hypertrophy. OBJECTIVE To determine dose-dependent effects of GDF11 on normal hearts and those with pressure overload-induced cardiac hypertrophy. METHODS AND RESULTS Twelve- to 13-week-old C57BL/6 mice underwent transverse aortic constriction (TAC) surgery. One-week post-TAC, these mice received rGDF11 (recombinant GDF11) at 1 of 3 doses: 0.5, 1.0, or 5.0 mg/kg for up to 14 days. Treatment with GDF11 increased plasma concentrations of GDF11 and p-SMAD2 in the heart. There were no significant differences in the peak pressure gradients across the aortic constriction between treatment groups at 1 week post-TAC. Two weeks of GDF11 treatment caused dose-dependent decreases in cardiac hypertrophy as measured by heart weight/tibia length ratio, myocyte cross-sectional area, and left ventricular mass. GDF11 improved cardiac pump function while preventing TAC-induced ventricular dilation and caused a dose-dependent decrease in interstitial fibrosis (in vivo), despite increasing markers of fibroblast activation and myofibroblast transdifferentiation (in vitro). Treatment with the highest dose (5.0 mg/kg) of GDF11 caused severe body weight loss, with significant decreases in both muscle and organ weights and death in both sham and TAC mice. CONCLUSIONS Although GDF11 treatment can reduce pathological cardiac hypertrophy and associated fibrosis while improving cardiac pump function in pressure overload, high doses of GDF11 cause severe cachexia and death. Use of GDF11 as a therapy could have potentially devastating actions on the heart and other tissues.
Collapse
Affiliation(s)
- Shavonn C Harper
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jaslyn Johnson
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Giulia Borghetti
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Huaqing Zhao
- Department of Clinical Sciences (H.Z.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Tao Wang
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Markus Wallner
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Division of Cardiology, Medical University of Graz, Austria (M.W.)
| | - Hajime Kubo
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Eric A Feldsott
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Yijun Yang
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Yunichel Joo
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Xinji Gou
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Abdel Karim Sabri
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Priyanka Gupta
- Biotherapeutics Discovery Research (P.G., M.M.), Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT
| | - Maria Myzithras
- Biotherapeutics Discovery Research (P.G., M.M.), Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT
| | - Ashraf Khalil
- Research Beyond Borders (A.K., M.F.), Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT
| | - Michael Franti
- Research Beyond Borders (A.K., M.F.), Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT
| | - Steven R Houser
- From the Cardiovascular Research Center (S.C.H., J.J., G.B., T.W., M.W., H.K., E.A.F., Y.Y., Y.J., X.G., A.K.S., S.R.H.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
12
|
Intravoxel incoherent motion MRI-derived parameters and T2* relaxation time for noninvasive assessment of renal fibrosis: An experimental study in a rabbit model of unilateral ureter obstruction. Magn Reson Imaging 2018; 51:104-112. [DOI: 10.1016/j.mri.2018.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/29/2018] [Accepted: 04/29/2018] [Indexed: 12/20/2022]
|
13
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Desgeorges MM, Devillard X, Toutain J, Castells J, Divoux D, Arnould DF, Haqq C, Bernaudin M, Durieux AC, Touzani O, Freyssenet DG. Pharmacological inhibition of myostatin improves skeletal muscle mass and function in a mouse model of stroke. Sci Rep 2017; 7:14000. [PMID: 29070788 PMCID: PMC5656661 DOI: 10.1038/s41598-017-13912-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/29/2017] [Indexed: 01/25/2023] Open
Abstract
In stroke patients, loss of skeletal muscle mass leads to prolonged weakness and less efficient rehabilitation. We previously showed that expression of myostatin, a master negative regulator of skeletal muscle mass, was strongly increased in skeletal muscle in a mouse model of stroke. We therefore tested the hypothesis that myostatin inhibition would improve recovery of skeletal muscle mass and function after cerebral ischemia. Cerebral ischemia (45 minutes) was induced by intraluminal right middle cerebral artery occlusion (MCAO). Swiss male mice were randomly assigned to Sham-operated mice (n = 10), MCAO mice receiving the vehicle (n = 15) and MCAO mice receiving an anti-myostatin PINTA745 (n = 12; subcutaneous injection of 7.5 mg.kg-1 PINTA745 immediately after surgery, 3, 7 and 10 days after MCAO). PINTA745 reduced body weight loss and improved body weight recovery after cerebral ischemia, as well as muscle strength and motor function. PINTA745 also increased muscle weight recovery 15 days after cerebral ischemia. Mechanistically, the better recovery of skeletal muscle mass in PINTA745-MCAO mice involved an increased expression of genes encoding myofibrillar proteins. Therefore, an anti-myostatin strategy can improve skeletal muscle recovery after cerebral ischemia and may thus represent an interesting strategy to combat skeletal muscle loss and weakness in stroke patients.
Collapse
Affiliation(s)
- Marine Maud Desgeorges
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France
| | - Xavier Devillard
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France
| | - Jérome Toutain
- Normandie Univ, Unicaen, Cea, Cnrs, Istct/Cervoxy Group, Caen, F-14000, France
| | - Josiane Castells
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France
| | - Didier Divoux
- Normandie Univ, Unicaen, Cea, Cnrs, Istct/Cervoxy Group, Caen, F-14000, France
| | - David Frédéric Arnould
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France
| | - Christopher Haqq
- Atara Biotherapeutics, Inc., South San, Francisco, CA, 94080, USA
| | - Myriam Bernaudin
- Normandie Univ, Unicaen, Cea, Cnrs, Istct/Cervoxy Group, Caen, F-14000, France
| | - Anne-Cécile Durieux
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France
| | - Omar Touzani
- Normandie Univ, Unicaen, Cea, Cnrs, Istct/Cervoxy Group, Caen, F-14000, France
| | - Damien Gilles Freyssenet
- Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint Etienne, F-42023, Lyon, France.
| |
Collapse
|
15
|
Barbé C, Bray F, Gueugneau M, Devassine S, Lause P, Tokarski C, Rolando C, Thissen JP. Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy. J Proteome Res 2017; 16:3477-3490. [PMID: 28810121 DOI: 10.1021/acs.jproteome.7b00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.
Collapse
Affiliation(s)
- Caroline Barbé
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Fabrice Bray
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Marine Gueugneau
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Stéphanie Devassine
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Pascale Lause
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Caroline Tokarski
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| |
Collapse
|
16
|
Meng Q, Bhandary B, Osinska H, James J, Xu N, Shay-Winkler K, Gulick J, Willis MS, Lander C, Robbins J. MMI-0100 Inhibits Cardiac Fibrosis in a Mouse Model Overexpressing Cardiac Myosin Binding Protein C. J Am Heart Assoc 2017; 6:JAHA.117.006590. [PMID: 28871043 PMCID: PMC5634300 DOI: 10.1161/jaha.117.006590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Cardiac stress can trigger production of a 40‐kDa peptide fragment derived from the amino terminus of the cardiac myosin‐binding protein C. Cardiac stress, as well as cMyBP‐C mutations, can trigger production of 1 such truncated protein fragment, a 40‐kDa peptide fragment derived from the amino terminus of cMyBP‐C. Genetic expression of this 40‐kDa fragment in mouse cardiomyocytes (cMyBP‐C40k) leads to cardiac disease, fibrosis, and death within the first year. Fibrosis can occur in many cardiovascular diseases, and mitogen‐activated protein kinase––activated protein kinase‐2 signaling has been implicated in a variety of fibrotic processes. Recent studies demonstrated that mitogen‐activated protein kinase––activated protein kinase‐2 inhibition using the cell‐permeant peptide inhibitor MMI‐0100 is protective in the setting of acute myocardial infarction. We hypothesized that MMI‐0100 might also be protective in a chronic model of fibrosis, produced as a result of cMyBP‐C40k cardiomyocyte expression. Methods and Results Nontransgenic and cMyBP‐C40k inducible transgenic mice were given MMI‐0100 or PBS daily for 30 weeks. In control groups, long‐term MMI‐0100 was benign, with no measurable effects on cardiac anatomy, function, cell viability, hypertrophy, or probability of survival. In the inducible transgenic group, MMI‐0100 treatment reduced cardiac fibrosis, decreased cardiac hypertrophy, and prolonged survival. Conclusions Pharmaceutical inhibition of mitogen‐activated protein kinase––activated protein kinase‐2 signaling via MMI‐0100 treatment is beneficial in the context of fibrotic cMyBPC40k disease.
Collapse
Affiliation(s)
- Qinghang Meng
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - Bidur Bhandary
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - Hanna Osinska
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - Jeanne James
- Children's Hospital of Wisconsin-Milwaukee Campus, Milwaukee, WI
| | - Na Xu
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - Kritton Shay-Winkler
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - James Gulick
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC
| | | | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, The Heart Institute Cincinnati Children's Hospital, Cincinnati, OH
| |
Collapse
|
17
|
Natural disease history of mouse models for limb girdle muscular dystrophy types 2D and 2F. PLoS One 2017; 12:e0182704. [PMID: 28797108 PMCID: PMC5552258 DOI: 10.1371/journal.pone.0182704] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022] Open
Abstract
Limb-girdle muscular dystrophy types 2D and 2F (LGMD 2D and 2F) are autosomal recessive disorders caused by mutations in the alpha- and delta sarcoglycan genes, respectively, leading to severe muscle weakness and degeneration. The cause of the disease has been well characterized and a number of animal models are available for pre-clinical studies to test potential therapeutic interventions. To facilitate transition from drug discovery to clinical trials, standardized procedures and natural disease history data were collected for these mouse models. Implementing the TREAD-NMD standardized operating procedures, we here subjected LGMD2D (SGCA-null), LGMD2F (SGCD-null) and wild type (C57BL/6J) mice to five functional tests from the age of 4 to 32 weeks. To assess whether the functional test regime interfered with disease pathology, sedentary groups were taken along. Muscle physiology testing of tibialis anterior muscle was performed at the age of 34 weeks. Muscle histopathology and gene expression was analysed in skeletal muscles and heart. Muscle histopathology and gene expression was analysed in skeletal muscles and heart. Mice successfully accomplished the functional tests, which did not interfere with disease pathology. Muscle function of SGCA- and SGCD-null mice was impaired and declined over time. Interestingly, female SGCD-null mice outperformed males in the two and four limb hanging tests, which proved the most suitable non-invasive tests to assess muscle function. Muscle physiology testing of tibialis anterior muscle revealed lower specific force and higher susceptibility to eccentric-induced damage in LGMD mice. Analyzing muscle histopathology and gene expression, we identified the diaphragm as the most affected muscle in LGMD strains. Cardiac fibrosis was found in SGCD-null mice, being more severe in males than in females. Our study offers a comprehensive natural history dataset which will be useful to design standardized tests and future pre-clinical studies in LGMD2D and 2F mice.
Collapse
|
18
|
|
19
|
Nielsen C, Potter RM, Borowy C, Jacinto K, Kumar R, Carlson CG. Postnatal Hyperplasic Effects of ActRIIB Blockade in a Severely Dystrophic Muscle. J Cell Physiol 2017; 232:1774-1793. [PMID: 27859236 DOI: 10.1002/jcp.25694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023]
Abstract
The efficacy of two ActRIIB ligand-trapping agents (RAP-031 and RAP-435) in treating muscular dystrophy was examined by determining their morphological effects on the severely dystrophic triangularis sterni (TS) muscle of the mdx mouse, a model for Duchenne muscular dystrophy. These agents trap all endogenous ligands to the ActRIIB receptor and thereby block myostatin signaling in a highly selective manner. Short-term (1 month) and long-term (3 months) in vivo treatment of 1-month-old mdx mice increased myonuclei and fiber cross section (FCS) density but did not alter individual fiber size. Vehicle-treated mdx mice exhibited age-dependent increases in myonuclei and FCS density, and age-dependent reductions in centronucleation that were each enhanced by treatment with RAP-435. Distributions of FCS area (FCSA) in the mdx TS were 90% identical to those from untreated age-matched nondystrophic mice and were unaltered by the substantial fiber hyperplasia observed with age and RAP-435 treatment. These results were inconsistent with injury-induced fiber regeneration which produces altered FCSA distributions characterized by a distinct class of smaller regenerated fibers. Nondystrophic mice exhibited a constant postnatal density of fiber cross sections and myonuclei, and RAP-435 treatment of nondystrophic mice increased TS mean FCSA but had no effects on myonuclei or FCS density. These results demonstrating a continual postnatal proliferation and fusion of satellite cells and a response to myostatin blockade characteristic of developing prenatal muscle suggest that the lack of dystrophin directly results in unrestrained postnatal satellite cell activation that is not necessarily dependent upon prior fiber degeneration. J. Cell. Physiol. 232: 1774-1793, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cory Nielsen
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| | - Ross M Potter
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| | - Christopher Borowy
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| | - Kimberly Jacinto
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| | - Ravi Kumar
- Acceleron Pharma, Inc., Cambridge, Massachusetts
| | - C George Carlson
- Department of Physiology, Midwestern University Glendale, Glendale, Arizona
| |
Collapse
|
20
|
Kornegay JN, Bogan DJ, Bogan JR, Dow JL, Wang J, Fan Z, Liu N, Warsing LC, Grange RW, Ahn M, Balog-Alvarez CJ, Cotten SW, Willis MS, Brinkmeyer-Langford C, Zhu H, Palandra J, Morris CA, Styner MA, Wagner KR. Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures. Skelet Muscle 2016; 6:14. [PMID: 27047655 PMCID: PMC4819282 DOI: 10.1186/s13395-016-0085-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/24/2016] [Indexed: 09/02/2023] Open
Abstract
Background Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. Methods To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn+/−) whippets. A total of four GRippets (dystrophic and Mstn+/−), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. Results Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no differential expression between GRMD and GRippet dogs. Satellite cell exhaustion was not observed in GRippets up to 3 years of age. Conclusions Partial myostatin loss may exaggerate selective muscle hypertrophy or atrophy/hypoplasia in GRMD dogs and worsen contractures. While muscle imbalance is not a feature of myostatin inhibition in mdx mice, findings in a larger animal model could translate to human experience with myostatin inhibitors. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0085-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Daniel J Bogan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Janet R Bogan
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Jennifer L Dow
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Jiahui Wang
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Zheng Fan
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Naili Liu
- The Hugo W. Moser Research Institute at Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Leigh C Warsing
- The Hugo W. Moser Research Institute at Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Robert W Grange
- Department of Human Nutrition, Foods and Exercise, Virginia Tech University, Blacksburg, VA 24061 USA
| | - Mihye Ahn
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Cynthia J Balog-Alvarez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Steven W Cotten
- Department of Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Joe Palandra
- Rare Disease Research Unit, Pfizer, Inc., Cambridge Park Drive, Cambridge, MA USA
| | - Carl A Morris
- Rare Disease Research Unit, Pfizer, Inc., Cambridge Park Drive, Cambridge, MA USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Kathryn R Wagner
- The Hugo W. Moser Research Institute at Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
21
|
Guo W, Miller AD, Pencina K, Wong S, Lee A, Yee M, Toraldo G, Jasuja R, Bhasin S. Joint dysfunction and functional decline in middle age myostatin null mice. Bone 2016; 83:141-148. [PMID: 26549246 PMCID: PMC5461924 DOI: 10.1016/j.bone.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway.
Collapse
Affiliation(s)
- Wen Guo
- Research Program in Men's Health, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Andrew D Miller
- Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Karol Pencina
- Research Program in Men's Health, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Siu Wong
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Amanda Lee
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Michael Yee
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Gianluca Toraldo
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Ravi Jasuja
- Research Program in Men's Health, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Shalender Bhasin
- Research Program in Men's Health, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
22
|
Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs 2015; 4:169-183. [PMID: 27340611 DOI: 10.1517/21678707.2016.1124039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cardiac involvement is a common feature in muscular dystrophies. It presents as heart failure and/or arrhythmia. Traditionally, dystrophic cardiomyopathy is treated with symptom-relieving medications. Identification of disease-causing genes and investigation on pathogenic mechanisms have opened new opportunities to treat dystrophic cardiomyopathy with gene therapy. Replacing/repairing the mutated gene and/or targeting the pathogenic process/mechanisms using alternative genes may attenuate heart disease in muscular dystrophies. AREAS COVERED Duchenne muscular dystrophy is the most common muscular dystrophy. Duchenne cardiomyopathy has been the primary focus of ongoing dystrophic cardiomyopathy gene therapy studies. Here, we use Duchenne cardiomyopathy gene therapy to showcase recent developments and to outline the path forward. We also discuss gene therapy status for cardiomyopathy associated with limb-girdle and congenital muscular dystrophies, and myotonic dystrophy. EXPERT OPINION Gene therapy for dystrophic cardiomyopathy has taken a slow but steady path forward. Preclinical studies over the last decades have addressed many fundamental questions. Adeno-associated virus-mediated gene therapy has significantly improved the outcomes in rodent models of Duchenne and limb girdle muscular dystrophies. Validation of these encouraging results in large animal models will pave the way to future human trials.
Collapse
Affiliation(s)
- Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri
| | | | - Stacey B Leach
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri
| | - Timothy L Domeier
- Department of Medical Physiology and Pharmacology, School of Medicine, University of Missouri
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri; Department of Neurology, School of Medicine, University of Missouri
| |
Collapse
|
23
|
Smith SC, Zhang X, Zhang X, Gross P, Starosta T, Mohsin S, Franti M, Gupta P, Hayes D, Myzithras M, Kahn J, Tanner J, Weldon SM, Khalil A, Guo X, Sabri A, Chen X, MacDonnell S, Houser SR. GDF11 does not rescue aging-related pathological hypertrophy. Circ Res 2015; 117:926-32. [PMID: 26383970 DOI: 10.1161/circresaha.115.307527] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/17/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family of secreted factors. A recent study showed that reduced GDF11 blood levels with aging was associated with pathological cardiac hypertrophy (PCH) and restoring GDF11 to normal levels in old mice rescued PCH. OBJECTIVE To determine whether and by what mechanism GDF11 rescues aging dependent PCH. METHODS AND RESULTS Twenty-four-month-old C57BL/6 mice were given a daily injection of either recombinant (r) GDF11 at 0.1 mg/kg or vehicle for 28 days. rGDF11 bioactivity was confirmed in vitro. After treatment, rGDF11 levels were significantly increased, but there was no significant effect on either heart weight or body weight. Heart weight/body weight ratios of old mice were not different from 8- or 12-week-old animals, and the PCH marker atrial natriuretic peptide was not different in young versus old mice. Ejection fraction, internal ventricular dimension, and septal wall thickness were not significantly different between rGDF11 and vehicle-treated animals at baseline and remained unchanged at 1, 2, and 4 weeks of treatment. There was no difference in myocyte cross-sectional area rGDF11 versus vehicle-treated old animals. In vitro studies using phenylephrine-treated neonatal rat ventricular myocytes, to explore the putative antihypertrophic effects of GDF11, showed that GDF11 did not reduce neonatal rat ventricular myocytes hypertrophy, but instead induced hypertrophy. CONCLUSIONS Our studies show that there is no age-related PCH in disease-free 24-month-old C57BL/6 mice and that restoring GDF11 in old mice has no effect on cardiac structure or function.
Collapse
Affiliation(s)
- Shavonn C Smith
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Xiaoxiao Zhang
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Xiaoying Zhang
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Polina Gross
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Timothy Starosta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Sadia Mohsin
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Michael Franti
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Priyanka Gupta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - David Hayes
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Maria Myzithras
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Julius Kahn
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - James Tanner
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Steven M Weldon
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Ashraf Khalil
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Xinji Guo
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Abdelkarim Sabri
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Xiongwen Chen
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Scott MacDonnell
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell)
| | - Steven R Houser
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.C.S., Xiaoxiao Zhang, Xiaoying Zhang, P.G., T.S., S Mohsin, X.G., A.S., X.C., S.R.H.); and Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (M.F., P.G., D.H., M.M., J.K., J.T., S.M.W., A.K., S. MacDonnell).
| |
Collapse
|
24
|
Swiderski K, Lynch GS. Therapeutic potential of orphan drugs for the rare skeletal muscle diseases. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1085858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Miao Y, Yang J, Xu Z, Jing L, Zhao S, Li X. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide. Int J Mol Sci 2015; 16:7976-94. [PMID: 25860951 PMCID: PMC4425062 DOI: 10.3390/ijms16047976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/18/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.
Collapse
Affiliation(s)
- Yuanxin Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Zhong Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Lu Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
26
|
Meriggioli MN, Roubenoff R. Prospect for pharmacological therapies to treat skeletal muscle dysfunction. Calcif Tissue Int 2015; 96:234-42. [PMID: 25363509 DOI: 10.1007/s00223-014-9926-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022]
Abstract
Skeletal muscle weakness is a leading cause of mobility disability in the elderly (sarcopenia), as a complication of acute or chronic illness (cachexia), and due to inherited or acquired muscle diseases (muscular dystrophies, myositides, etc.). As of now, there are no approved drugs that can reliably increase muscle strength and function. However, with our understanding of the regulation of myocyte signaling and homeostasis evolving rapidly, experimental treatments are now entering the clinic. We review the current status of clinical research in pharmacological therapies for muscle disorders.
Collapse
Affiliation(s)
- Matthew N Meriggioli
- Department of Musculoskeletal Translational Medicine, Novartis Institutes for Biomedical Research, 220 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | | |
Collapse
|
27
|
Wissing ER, Boyer JG, Kwong JQ, Sargent MA, Karch J, McNally EM, Otsu K, Molkentin JD. P38α MAPK underlies muscular dystrophy and myofiber death through a Bax-dependent mechanism. Hum Mol Genet 2014; 23:5452-63. [PMID: 24876160 DOI: 10.1093/hmg/ddu270] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscular dystrophies are a group of genetic diseases that lead to muscle wasting and, in most cases, premature death. Cytokines and inflammatory factors are released during the disease process where they promote deleterious signaling events that directly participate in myofiber death. Here, we show that p38α, a kinase in the greater mitogen-activated protein kinase (MAPK)-signaling network, serves as a nodal regulator of disease signaling in dystrophic muscle. Deletion of Mapk14 (p38α-encoding gene) in the skeletal muscle of mdx- (lacking dystrophin) or sgcd- (δ-sarcoglycan-encoding gene) null mice resulted in a significant reduction in pathology up to 6 months of age. We also generated MAPK kinase 6 (MKK6) muscle-specific transgenic mice to model heightened p38α disease signaling that occurs in dystrophic muscle, which resulted in severe myofiber necrosis and many hallmarks of muscular dystrophy. Mechanistically, we show that p38α directly induces myofiber death through a mitochondrial-dependent pathway involving direct phosphorylation and activation of the pro-death Bcl-2 family member Bax. Indeed, muscle-specific deletion of Bax, but not the apoptosis regulatory gene Tp53 (encoding p53), significantly reduced dystrophic pathology in the muscles of MKK6 transgenic mice. Moreover, use of a p38 MAPK pharmacologic inhibitor reduced dystrophic disease in Sgcd(-/-) mice suggesting a future therapeutic approach to delay disease.
Collapse
Affiliation(s)
- Erin R Wissing
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Justin G Boyer
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Jennifer Q Kwong
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Jason Karch
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Elizabeth M McNally
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S. Maryland, MC 6088, Chicago, IL 60637, USA
| | - Kinya Otsu
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK and
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA, Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| |
Collapse
|
28
|
Yaden BC, Wang YX, Wilson JM, Culver AE, Milner A, Datta-Mannan A, Shetler P, Croy JE, Dai G, Krishnan V. Inhibition of Activin A Ameliorates Skeletal Muscle Injury and Rescues Contractile Properties by Inducing Efficient Remodeling in Female Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1152-66. [DOI: 10.1016/j.ajpath.2013.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/26/2013] [Accepted: 12/12/2013] [Indexed: 01/05/2023]
|
29
|
Mahmood OA, Jiang XM. Limb-girdle muscular dystrophies: where next after six decades from the first proposal (Review). Mol Med Rep 2014; 9:1515-32. [PMID: 24626787 PMCID: PMC4020495 DOI: 10.3892/mmr.2014.2048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 01/27/2014] [Indexed: 12/13/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of disorders, which has led to certain investigators disputing its rationality. The mutual feature of LGMD is limb-girdle affection. Magnetic resonance imaging (MRI), perioral skin biopsies, blood-based assays, reverse-protein arrays, proteomic analyses, gene chips and next generation sequencing are the leading diagnostic techniques for LGMD and gene, cell and pharmaceutical treatments are the mainstay therapies for these genetic disorders. Recently, more highlights have been shed on disease biomarkers to follow up disease progression and to monitor therapeutic responsiveness in future trials. In this study, we review LGMD from a variety of aspects, paying specific attention to newly evolving research, with the purpose of bringing this information into the clinical setting to aid the development of novel therapeutic strategies for this hereditary disease. In conclusion, substantial progress in our ability to diagnose and treat LGMD has been made in recent decades, however enhancing our understanding of the detailed pathophysiology of LGMD may enhance our ability to improve disease outcome in subsequent years.
Collapse
Affiliation(s)
- Omar A Mahmood
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xin Mei Jiang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
30
|
Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int J Biochem Cell Biol 2013; 45:2333-47. [DOI: 10.1016/j.biocel.2013.05.019] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 11/21/2022]
|
31
|
Xu L, Zhao P, Mariano A, Han R. Targeted Myostatin Gene Editing in Multiple Mammalian Species Directed by a Single Pair of TALE Nucleases. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e112. [PMID: 23900226 PMCID: PMC3731890 DOI: 10.1038/mtna.2013.39] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/12/2013] [Indexed: 01/18/2023]
Abstract
Myostatin (MSTN) is a negative regulator of skeletal muscle mass. Strategies to block myostatin signaling pathway have been extensively pursued to increase muscle mass in various disease settings including muscular dystrophy. Here, we report a new class of reagents based on transcription activator-like effector nucleases (TALENs) to disrupt myostatin expression at the genome level. We designed a pair of MSTN TALENs to target a highly conserved sequence in the coding region of the myostatin gene. We demonstrate that codelivery of these MSTN TALENs induce highly specific and efficient gene disruption in a variety of human, cattle, and mouse cells. Based upon sequence analysis, this pair of TALENs is expected to be functional in many other mammalian species. Moreover, we demonstrate that these MSTN TALENs can facilitate targeted integration of a mCherry expression cassette or a larger muscular dystrophy gene (dysferlin) expression cassette into the MSTN locus in mouse or human cells. Therefore, targeted editing of the myostatin gene using our highly specific and efficient TALEN pair would facilitate cell engineering, allowing potential use in translational research for cell-based therapy.
Collapse
Affiliation(s)
- Li Xu
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, Illinois
| | | | | | | |
Collapse
|
32
|
Rodino-Klapac LR, Janssen PML, Shontz KM, Canan B, Montgomery CL, Griffin D, Heller K, Schmelzer L, Handy C, Clark KR, Sahenk Z, Mendell JR, Kaspar BK. Micro-dystrophin and follistatin co-delivery restores muscle function in aged DMD model. Hum Mol Genet 2013; 22:4929-37. [PMID: 23863459 DOI: 10.1093/hmg/ddt342] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pharmacologic strategies have provided modest improvement in the devastating muscle-wasting disease, Duchenne muscular dystrophy (DMD). Pre-clinical gene therapy studies have shown promise in the mdx mouse model; however, studies conducted after disease onset fall short of fully correcting muscle strength or protecting against contraction-induced injury. Here we examine the treatment effect on muscle physiology in aged dystrophic mice with significant disease pathology by combining two promising therapies: micro-dystrophin gene replacement and muscle enhancement with follistatin, a potent myostatin inhibitor. Individual treatments with micro-dystrophin and follistatin demonstrated marked improvement in mdx mice but were insufficient to fully restore muscle strength and response to injury to wild-type levels. Strikingly, when combined, micro-dystrophin/follistatin treatment restored force generation and conferred resistance to contraction-induced injury in aged mdx mice. Pre-clinical studies with miniature dystrophins have failed to demonstrate full correction of the physiological defects seen in mdx mice. Importantly, the addition of a muscle enhancement strategy with delivery of follistatin in combination with micro-dystrophin gene therapy completely restored resistance to eccentric contraction-induced injury and improved force. Eccentric contraction-induced injury is a pre-clinical parameter relevant to the exercise induced injury that occurs in DMD patients, and herein, we demonstrate compelling evidence for the therapeutic potential of micro-dystrophin/follistatin combinatorial therapy.
Collapse
|
33
|
Bo Li Z, Zhang J, Wagner KR. Inhibition of myostatin reverses muscle fibrosis through apoptosis. J Cell Sci 2012; 125:3957-65. [PMID: 22685331 DOI: 10.1242/jcs.090365] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscle fibrosis is a defining feature of the muscular dystrophies in which contractile myofibers are replaced by fibroblasts, adipocytes and extracellular matrix. This maladaptive response of muscle to repetitive injury is progressive, self-perpetuating and thus far, has been considered irreversible. We have previously shown that myostatin, a known endogenous modulator of muscle growth, stimulates normal muscle fibroblasts to proliferate. Here, we demonstrate that myostatin also regulates the proliferation of dystrophic muscle fibroblasts, and increases resistance of fibroblasts to apoptosis through Smad and MAPK signaling. Inhibition of myostatin signaling pathways with a soluble activin IIB receptor (ActRIIB.Fc) reduces resistance of muscle fibroblasts to apoptosis in vitro. Systemic administration of ActRIIB.Fc in senescent mdx mice, a model of muscular dystrophy, significantly increases the number of muscle fibroblasts undergoing apoptosis. This leads to the reversal of pre-existing muscle fibrosis as determined by histological, biochemical and radiographical criteria. These results demonstrate that skeletal muscle fibrosis can be pharmacologically reversed through induction of fibroblast apoptosis.
Collapse
Affiliation(s)
- Zhao Bo Li
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
34
|
Kornegay JN, Childers MK, Bogan DJ, Bogan JR, Nghiem P, Wang J, Fan Z, Howard JF, Schatzberg SJ, Dow JL, Grange RW, Styner MA, Hoffman EP, Wagner KR. The paradox of muscle hypertrophy in muscular dystrophy. Phys Med Rehabil Clin N Am 2012; 23:149-72, xii. [PMID: 22239881 DOI: 10.1016/j.pmr.2011.11.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans and syndromes in mice, dogs, and cats. Affected humans and dogs have progressive disease that leads primarily to muscle atrophy. Mdx mice progress through an initial phase of muscle hypertrophy followed by atrophy. Cats have persistent muscle hypertrophy. Hypertrophy in humans has been attributed to deposition of fat and connective tissue (pseudohypertrophy). Increased muscle mass (true hypertrophy) has been documented in animal models. Muscle hypertrophy can exaggerate postural instability and joint contractures. Deleterious consequences of muscle hypertrophy should be considered when developing treatments for muscular dystrophy.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Transgenic inactivation of murine myostatin does not decrease the severity of disease in a model of Spinal Muscular Atrophy. Neuromuscul Disord 2012; 22:277-85. [DOI: 10.1016/j.nmd.2011.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/08/2011] [Accepted: 10/11/2011] [Indexed: 01/26/2023]
|
36
|
Nguyen MAT, Joya JE, Kee AJ, Domazetovska A, Yang N, Hook JW, Lemckert FA, Kettle E, Valova VA, Robinson PJ, North KN, Gunning PW, Mitchell CA, Hardeman EC. Hypertrophy and dietary tyrosine ameliorate the phenotypes of a mouse model of severe nemaline myopathy. ACTA ACUST UNITED AC 2011; 134:3516-29. [PMID: 22067542 DOI: 10.1093/brain/awr274] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nemaline myopathy, the most common congenital myopathy, is caused by mutations in genes encoding thin filament and thin filament-associated proteins in skeletal muscles. Severely affected patients fail to survive beyond the first year of life due to severe muscle weakness. There are no specific therapies to combat this muscle weakness. We have generated the first knock-in mouse model for severe nemaline myopathy by replacing a normal allele of the α-skeletal actin gene with a mutated form (H40Y), which causes severe nemaline myopathy in humans. The Acta1(H40Y) mouse has severe muscle weakness manifested as shortened lifespan, significant forearm and isolated muscle weakness and decreased mobility. Muscle pathologies present in the human patients (e.g. nemaline rods, fibre atrophy and increase in slow fibres) were detected in the Acta1(H40Y) mouse, indicating that it is an excellent model for severe nemaline myopathy. Mating of the Acta1(H40Y) mouse with hypertrophic four and a half LIM domains protein 1 and insulin-like growth factor-1 transgenic mice models increased forearm strength and mobility, and decreased nemaline pathologies. Dietary L-tyrosine supplements also alleviated the mobility deficit and decreased the chronic repair and nemaline rod pathologies. These results suggest that L-tyrosine may be an effective treatment for muscle weakness and immobility in nemaline myopathy.
Collapse
Affiliation(s)
- Mai-Anh T Nguyen
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nutritional support: we have failed in our ability to support patients with sepsis and cancer. Surg Clin North Am 2011; 91:641-51. [PMID: 21621701 DOI: 10.1016/j.suc.2011.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite the success of both parenteral and enteral nutrition in supporting patients who cannot eat, patients with either sepsis or cancer cannot be adequately supported. A proposed mechanism by which aerobic glycolysis leads to a shortage of energy production in the liver is discussed. According to this hypothesis, the proximity of sodium-potassium ATPase and glycogen, its fuel source, leads to the continuation of gluconeogenesis with continued proteolysis and muscle wasting. Myostatin and lipokine, newly discovered factors, may also play a role.
Collapse
|
38
|
Carnac G, Vernus B, Bonnieu A. Myostatin in the pathophysiology of skeletal muscle. Curr Genomics 2011; 8:415-22. [PMID: 19412331 PMCID: PMC2647158 DOI: 10.2174/138920207783591672] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/12/2007] [Accepted: 10/14/2007] [Indexed: 11/22/2022] Open
Abstract
Myostatin is an endogenous, negative regulator of muscle growth determining both muscle fiber number and size. The myostatin pathway is conserved across diverse species ranging from zebrafish to humans. Experimental models of muscle growth and regeneration have implicated myostatin as an important mediator of catabolic pathways in muscle cells. Inhibition of this pathway has emerged as a promising therapy for muscle wasting. Here we discuss the recent developments and the controversies in myostatin research, focusing on the molecular and cellular mechanisms underlying the actions of myostatin on skeletal muscle and the potential therapeutic role of myostatin on muscle-related disorders.
Collapse
Affiliation(s)
- Gilles Carnac
- INSERM, ERI 25-Muscle et Pathologies, Hôpital Arnaud de Villeneuve, Bât. A Craste de Paulet, 34295 Montpellier Cedex 5, France
| | | | | |
Collapse
|
39
|
Follistatin improves skeletal muscle healing after injury and disease through an interaction with muscle regeneration, angiogenesis, and fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:915-30. [PMID: 21689628 DOI: 10.1016/j.ajpath.2011.04.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 03/25/2011] [Accepted: 04/05/2011] [Indexed: 01/05/2023]
Abstract
Recovery from skeletal muscle injury is often incomplete because of the formation of fibrosis and inadequate myofiber regeneration; therefore, injured muscle could benefit significantly from therapies that both stimulate muscle regeneration and inhibit fibrosis. To this end, we focused on blocking myostatin, a member of the transforming growth factor-β superfamily and a negative regulator of muscle regeneration, with the myostatin antagonist follistatin. In vivo, follistatin-overexpressing transgenic mice underwent significantly greater myofiber regeneration and had less fibrosis formation compared with wild-type mice after skeletal muscle injury. Follistatin's mode of action is likely due to its ability to block myostatin and enhance neovacularization. Furthermore, muscle progenitor cells isolated from follistatin-overexpressing mice were significantly superior to muscle progenitors isolated from wild-type mice at regenerating dystrophin-positive myofibers when transplanted into the skeletal muscle of dystrophic mdx/severe combined immunodeficiency mice. In vitro, follistatin stimulated myoblasts to express MyoD, Myf5, and myogenin, which are myogenic transcription factors that promote myogenic differentiation. Moreover, follistatin's ability to enhance muscle differentiation is at least partially due to its ability to block myostatin, activin A, and transforming growth factor-β1, all of which are negative regulators of muscle cell differentiation. The findings of this study suggest that follistatin is a promising agent for improving skeletal muscle healing after injury and muscle diseases, such as the muscular dystrophies.
Collapse
|
40
|
Burks TN, Cohn RD. Role of TGF-β signaling in inherited and acquired myopathies. Skelet Muscle 2011; 1:19. [PMID: 21798096 PMCID: PMC3156642 DOI: 10.1186/2044-5040-1-19] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/04/2011] [Indexed: 01/25/2023] Open
Abstract
The transforming growth factor-beta (TGF-β) superfamily consists of a variety of cytokines expressed in many different cell types including skeletal muscle. Members of this superfamily that are of particular importance in skeletal muscle are TGF-β1, mitogen-activated protein kinases (MAPKs), and myostatin. These signaling molecules play important roles in skeletal muscle homeostasis and in a variety of inherited and acquired neuromuscular disorders. Expression of these molecules is linked to normal processes in skeletal muscle such as growth, differentiation, regeneration, and stress response. However, chronic elevation of TGF-β1, MAPKs, and myostatin is linked to various features of muscle pathology, including impaired regeneration and atrophy. In this review, we focus on the aberrant signaling of TGF-β in various disorders such as Marfan syndrome, muscular dystrophies, sarcopenia, and critical illness myopathy. We also discuss how the inhibition of several members of the TGF-β signaling pathway has been implicated in ameliorating disease phenotypes, opening up novel therapeutic avenues for a large group of neuromuscular disorders.
Collapse
Affiliation(s)
- Tyesha N Burks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
41
|
Breitbart A, Auger-Messier M, Molkentin JD, Heineke J. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol 2011; 300:H1973-82. [PMID: 21421824 DOI: 10.1152/ajpheart.00200.2011] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future.
Collapse
Affiliation(s)
- Astrid Breitbart
- Medizinische Hochschule Hannover, Klinik für Kardiologie und Angiologie, Rebirth-Cluster of Excellence, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
42
|
Morine KJ, Bish LT, Selsby JT, Gazzara JA, Pendrak K, Sleeper MM, Barton ER, Lee SJ, Sweeney HL. Activin IIB receptor blockade attenuates dystrophic pathology in a mouse model of Duchenne muscular dystrophy. Muscle Nerve 2010; 42:722-30. [PMID: 20730876 DOI: 10.1002/mus.21743] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Modulation of transforming growth factor-β (TGF-β) signaling to promote muscle growth holds tremendous promise for the muscular dystrophies and other disorders involving the loss of functional muscle mass. Previous studies have focused on the TGF-β family member myostatin and demonstrated that inhibition of myostatin leads to muscle growth in normal and dystrophic mice. We describe a unique method of systemic inhibition of activin IIB receptor signaling via adeno-associated virus (AAV)-mediated gene transfer of a soluble form of the extracellular domain of the activin IIB receptor to the liver. Treatment of mdx mice with activin IIB receptor blockade led to increased skeletal muscle mass, increased force production in the extensor digitorum longus (EDL), and reduced serum creatine kinase. No effect on heart mass or function was observed. Our results indicate that activin IIB receptor blockade represents a novel and effective therapeutic strategy for the muscular dystrophies.
Collapse
Affiliation(s)
- Kevin J Morine
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wissing ER, Millay DP, Vuagniaux G, Molkentin JD. Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscul Disord 2010; 20:753-60. [PMID: 20637615 PMCID: PMC2980760 DOI: 10.1016/j.nmd.2010.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 11/29/2022]
Abstract
Muscular dystrophy results in the progressive wasting and necrosis of skeletal muscle. Glucocorticoids such as prednisone have emerged as a front-line treatment for many forms of this disease. Recently, Debio-025, a cyclophilin inhibitor that desensitizes the mitochondrial permeability pore and subsequent cellular necrosis, was shown to improve pathology in three different mouse models of muscular dystrophy. However it is not known if Debio-025 can work in conjunction with prednisone, or how it compares against prednisone in mitigating disease in dystrophic mouse models. Here we show that Debio-025 reduced the variations in myofiber cross-sectional areas, decreased fibrosis, and decreased infiltration of activated macrophages more efficiently than prednisone. However the use of prednisone and Debio-025 together had no additional effect on these histopathological indexes. Orally administered Debio-025 also reduced creatine kinase blood levels and improved grip strength in mdx mice after 6 weeks of treatment, and the combination of Debio-025 with prednisone increased muscle function slightly better than prednisone alone. Thus, our results suggest that Debio-025 is as, effective as or slightly better than, prednisone in mitigating muscular dystrophy in the mdx mouse model of disease.
Collapse
Affiliation(s)
- Erin R Wissing
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
44
|
Abstract
The growth factor myostatin (Mstn) is a negative regulator of skeletal muscle mass. Mstn(-/-) muscles are hypertrophied, stronger, and more glycolytic than Mstn(+/+) muscles, suggesting that they might not perform endurance exercise as well as Mstn(+/+) mice. Indeed, it has previously been shown that treadmill exercise training reduces triceps weight in Mstn(-/-) mice. To analyze the response of Mstn(-/-) muscle to endurance exercise in detail, we carried out endurance training over 4 weeks to examine muscle mass, histology, and oxidative enzyme activity. We found that muscle mass was reduced with training in several muscles from both genotypes, with no evidence of muscle damage. Citrate synthase activity was increased with training in control and mutant mice. Non-trained Mstn(-/-) mice did, however, have lower maximal exercise capacity compared with Mstn(+/+) mice. These results show that Mstn(-/-) muscle retains the metabolic plasticity necessary to adapt normally to endurance training.
Collapse
Affiliation(s)
- Kathleen J. Savage
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Alexandra C. McPherron
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| |
Collapse
|
45
|
Heineke J, Auger-Messier M, Correll RN, Xu J, Benard MJ, Yuan W, Drexler H, Parise LV, Molkentin JD. CIB1 is a regulator of pathological cardiac hypertrophy. Nat Med 2010; 16:872-9. [PMID: 20639889 PMCID: PMC2917617 DOI: 10.1038/nm.2181] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 06/15/2010] [Indexed: 11/30/2022]
Abstract
Hypertrophic heart disease is a leading health problem in Western countries. Here we identified the small EF hand domain-containing protein Ca(2+) and integrin-binding protein-1 (CIB1) in a screen for previously unknown regulators of cardiomyocyte hypertrophy. Yeast two-hybrid screening for CIB1-interacting partners identified a related EF hand domain-containing protein, calcineurin B, the regulatory subunit of the prohypertrophic protein phosphatase calcineurin. CIB1 localizes primarily to the sarcolemma in mouse and human myocardium, where it anchors calcineurin to control its activation in coordination with the L-type Ca(2+) channel. CIB1 protein amounts and membrane association were enhanced in cardiac pathological hypertrophy, but not in physiological hypertrophy. Consistent with these observations, Cib1-deleted mice showed a marked reduction in myocardial hypertrophy, fibrosis, cardiac dysfunction and calcineurin-nuclear factor of activated T cells (NFAT) activity after pressure overload, whereas the degree of physiologic hypertrophy after swimming exercise was not altered. Transgenic mice with inducible and cardiac-specific overexpression of CIB1 showed enhanced cardiac hypertrophy in response to pressure overload or calcineurin signaling. Moreover, mice lacking Ppp3cb (encoding calcineurin A, beta isozyme) showed no enhancement in cardiac hypertrophy associated with CIB1 overexpression. Thus, CIB1 functions as a previously undescribed regulator of cardiac hypertrophy through its ability to regulate the association of calcineurin with the sarcolemma and its activation.
Collapse
Affiliation(s)
- Joerg Heineke
- Howard Hughes Medical Institute, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Evaluation of systemic follistatin as an adjuvant to stimulate muscle repair and improve motor function in Pompe mice. Mol Ther 2010; 18:1584-91. [PMID: 20551907 DOI: 10.1038/mt.2010.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Due to the lack of acid alpha-glucosidase (GAA) activity, Pompe mice develop glycogen storage pathology and progressive skeletal muscle dysfunction with age. Applying either gene or enzyme therapy to reconstitute GAA levels in older, symptomatic Pompe mice effectively reduces glycogen storage in skeletal muscle but provides only modest improvements in motor function. As strategies to stimulate muscle hypertrophy, such as by myostatin inhibition, have been shown to improve muscle pathology and strength in mouse models of muscular dystrophy, we sought to determine whether these benefits might be similarly realized in Pompe mice. Administration of a recombinant adeno-associated virus serotype 8 vector encoding follistatin, an inhibitor of myostatin, increased muscle mass and strength but only in Pompe mice that were treated before 10 months of age. Younger Pompe mice showed significant muscle fiber hypertrophy in response to treatment with follistatin, but maximal gains in muscle strength were achieved only when concomitant GAA administration reduced glycogen storage in the affected muscles. Despite increased grip strength, follistatin treatment failed to improve rotarod performance. These findings highlight the importance of treating Pompe skeletal muscle before pathology becomes irreversible, and suggest that adjunctive therapies may not be effective without first clearing skeletal muscle glycogen storage with GAA.
Collapse
|
47
|
Murphy KT, Ryall JG, Snell SM, Nair L, Koopman R, Krasney PA, Ibebunjo C, Holden KS, Loria PM, Salatto CT, Lynch GS. Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2425-34. [PMID: 20363926 DOI: 10.2353/ajpath.2010.090932] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle wasting and weakness, leading to premature death from respiratory and/or cardiac failure. A clinically relevant question is whether myostatin inhibition can improve function of the diaphragm, which exhibits a severe and progressive pathology comparable with that in DMD. We hypothesized that antibody-directed myostatin inhibition would improve the pathophysiology of diaphragm muscle strips from young mdx mice (when the pathology is mild) and adult mdx mice (when the pathology is quite marked). Five weeks treatment with a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg/week) increased muscle mass (P < 0.05) and increased diaphragm median fiber cross-sectional area (CSA, P < 0.05) in young C57BL/10 and mdx mice, compared with saline-treated controls. PF-354 had no effect on specific force (sPo, maximum force normalized to muscle CSA) of diaphragm muscle strips from young C57BL/10 mice, but increased sPo by 84% (P < 0.05) in young mdx mice. In contrast, 8 weeks of PF-354 treatment did not improve muscle mass, median fiber CSA, collagen infiltration, or sPo of diaphragm muscle strips from adult mdx mice. PF-354 antibody-directed myostatin inhibition completely restored the functional capacity of diaphragm strips to control levels when treatment was initiated early, but not in the later stages of disease progression, suggesting that such therapies may only have a limited window of efficacy for DMD and related conditions.
Collapse
Affiliation(s)
- Kate T Murphy
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Systemic myostatin inhibition via liver-targeted gene transfer in normal and dystrophic mice. PLoS One 2010; 5:e9176. [PMID: 20161803 PMCID: PMC2820101 DOI: 10.1371/journal.pone.0009176] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 12/28/2009] [Indexed: 11/19/2022] Open
Abstract
Background Myostatin inhibition is a promising therapeutic strategy to maintain muscle mass in a variety of disorders, including the muscular dystrophies, cachexia, and sarcopenia. Previously described approaches to blocking myostatin signaling include injection delivery of inhibitory propeptide domain or neutralizing antibodies. Methodology/Principal Findings Here we describe a unique method of myostatin inhibition utilizing recombinant adeno-associated virus to overexpress a secretable dominant negative myostatin exclusively in the liver of mice. Systemic myostatin inhibition led to increased skeletal muscle mass and strength in control C57 Bl/6 mice and in the dystrophin-deficient mdx model of Duchenne muscular dystrophy. The mdx soleus, a mouse muscle more representative of human fiber type composition, demonstrated the most profound improvement in force production and a shift toward faster myosin-heavy chain isoforms. Unexpectedly, the 11-month-old mdx diaphragm was not rescued by long-term myostatin inhibition. Further, mdx mice treated for 11 months exhibited cardiac hypertrophy and impaired function in an inhibitor dose–dependent manner. Conclusions/Significance Liver-targeted gene transfer of a myostatin inhibitor is a valuable tool for preclinical investigation of myostatin blockade and provides novel insights into the long-term effects and shortcomings of myostatin inhibition on striated muscle.
Collapse
|
49
|
Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, Molkentin JD. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation 2010; 121:419-25. [PMID: 20065166 DOI: 10.1161/circulationaha.109.882068] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cardiac cachexia is characterized by an exaggerated loss of skeletal muscle, weakness, and exercise intolerance, although the cause of these effects remains unknown. Here, we hypothesized that the heart functions as an endocrine organ in promoting systemic cachexia by secreting peptide factors such as myostatin. Myostatin is a cytokine of the transforming growth factor-beta superfamily that is known to control muscle wasting. METHODS AND RESULTS We used a Cre/loxP system to ablate myostatin (Mstn gene) expression in a cell type-specific manner. As expected, elimination of Mstn selectively in skeletal muscle with a myosin light chain 1f (MLC1f)-cre allele induced robust hypertrophy in all skeletal muscle. However, heart-specific deletion of Mstn with an Nkx2.5-cre allele did not alter baseline heart size or secondarily affect skeletal muscle size, but the characteristic wasting and atrophy of skeletal muscle that typify heart failure were not observed in these heart-specific null mice, indicating that myocardial myostatin expression controls muscle atrophy in heart failure. Indeed, myostatin levels in the plasma were significantly increased in wild-type mice subjected to pressure overload-induced cardiac hypertrophy but not in Mstn heart-specific deleted mice. Moreover, cardiac-specific overexpression of myostatin, which increased circulating levels of myostatin by 3- to 4-fold, caused a reduction in weight of the quadriceps, gastrocnemius, soleus, and even the heart itself. Finally, to investigate myostatin as a potential therapeutic target for the treatment of muscle wasting in heart failure, we infused a myostatin blocking antibody (JA-16), which promoted greater maintenance of muscle mass in heart failure. CONCLUSIONS Myostatin released from cardiomyocytes induces skeletal muscle wasting in heart failure. Targeted inhibition of myostatin in cardiac cachexia might be a therapeutic option in the future.
Collapse
Affiliation(s)
- Joerg Heineke
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The muscular dystrophies are a group of neuromuscular disorders associated with muscle weakness and wasting, which in many forms can lead to loss of ambulation and premature death. A number of muscular dystrophies are associated with loss of proteins required for the maintenance of muscle membrane integrity, in particular with proteins that comprise the dystrophin-associated glycoprotein (DAG) complex. Proper glycosylation of O-linked mannose chains on alpha-dystroglycan, a DAG member, is required for the binding of the extracellular matrix to dystroglycan and for proper DAG function. A number of congenital disorders of glycosylation have now been described where alpha-dystroglycan glycosylation is altered and where muscular dystrophy is a predominant phenotype. Glycosylation is also increasingly being appreciated as a genetic modifier of disease phenotypes in many forms of muscular dystrophy and as a target for the development of new therapies. Here we will review the mouse models available for the study of this group of diseases and outline the methodologies required to describe disease phenotypes.
Collapse
|