1
|
Monaghan KL, Zheng W, Akhter H, Wang L, Ammer AG, Li P, Lin JX, Hu G, Leonard WJ, Wan ECK. Tetramerization of STAT5 regulates monocyte differentiation and the dextran sulfate sodium-induced colitis in mice. Front Immunol 2023; 14:1117828. [PMID: 37153611 PMCID: PMC10157487 DOI: 10.3389/fimmu.2023.1117828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
In response to external stimuli during immune responses, monocytes can have multifaceted roles such as pathogen clearance and tissue repair. However, aberrant control of monocyte activation can result in chronic inflammation and subsequent tissue damage. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces monocyte differentiation into a heterogenous population of monocyte-derived dendritic cells (moDCs) and macrophages. However, the downstream molecular signals that dictate the differentiation of monocytes under pathological conditions is incompletely understood. We report here that the GM-CSF-induced STAT5 tetramerization is a critical determinate of monocyte fate and function. Monocytes require STAT5 tetramers to differentiate into moDCs. Conversely, the absence of STAT5 tetramers results in a switch to a functionally distinct monocyte-derived macrophage population. In the dextran sulfate sodium (DSS) model of colitis, STAT5 tetramer-deficient monocytes exacerbate disease severity. Mechanistically, GM-CSF signaling in STAT5 tetramer-deficient monocytes results in the overexpression of arginase I and a reduction in nitric oxide synthesis following stimulation with lipopolysaccharide. Correspondingly, the inhibition of arginase I activity and sustained supplementation of nitric oxide ameliorates the worsened colitis in STAT5 tetramer-deficient mice. This study suggests that STAT5 tetramers protect against severe intestinal inflammation through the regulation of arginine metabolism.
Collapse
Affiliation(s)
- Kelly L. Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Wen Zheng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, United States
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Amanda G. Ammer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Microscope Imaging Facility, West Virginia University, Morgantown, WV, United States
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University, Morgantown, WV, United States
| | - Warren J. Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Edwin C. K. Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
2
|
Lin Y, Chen Y, Feng W, Zhang J, Hua R, Yin B, Yang X. STAT5 promotes chronic pancreatitis by enhancing GM-CSF-dependent neutrophil augmentation. J Leukoc Biol 2021; 110:293-300. [PMID: 34184320 DOI: 10.1002/jlb.3ma1020-647r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pancreatitis (CP) is a continuing or relapsing inflammatory disease of the pancreas, characterized by fibrosis of the whole tissue. The regulatory mechanisms of the immune microenvironment in the pathogenesis of CP are still not clear. Immune cells, especially myeloid cells, play an important role in the pathogenesis of pancreatitis. Understanding the regulatory mechanisms of immune infiltration has a significant impact on CP intervention. Here, we demonstrated that transcription factor STAT5 was involved in and critical for the progression of CP. Inflammatory stress could significantly increase the expression and activation of STAT5 during CP. STAT5 deficiency or inhibition contributed to alleviating pancreatic inflammation and fibrosis in CP mice. The increased neutrophil infiltration, mediated by up-regulated GM-CSF, was responsible for the pancreatitis-promoting activity of STAT5. Our investigation highlighted the importance of STAT5 in regulating the immune microenvironment of CP. Targeting STAT5 may hold distinct promise for clinical treatment to alleviate CP.
Collapse
Affiliation(s)
- Yuli Lin
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Department of Oncology, Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenxue Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuguang Yang
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
A centric view of JAK/STAT5 in intestinal homeostasis, infection, and inflammation. Cytokine 2021; 139:155392. [PMID: 33482575 PMCID: PMC8276772 DOI: 10.1016/j.cyto.2020.155392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Cytokines, growth factors or hormones take action through the JAK/STAT5 signaling pathway, which plays a critical role in regulating the intestinal response to infection and inflammation. However, the way in which STAT5 regulates intestinal epithelial compartment is largely ignored due to the lack of genetic tools for proper exploration and because the two STAT5 transcription factors (STAT5A and STAT5B) have some redundant but also distinct functions. In this review article, by focusing on STAT5 functions in the intestinal undifferentiated and differentiated epithelia, we discuss major advances of the growth factor/cytokine-JAK/STAT5 research in view of intestinal mucosal inflammation and immunity. We highlight the gap in the research of the intestinal STAT5 signaling to anticipate the gastrointestinal explorative insights. Furthermore, we address the critical questions to illuminate how STAT5 signaling influences intestinal epithelial cell differentiation and stem cell regeneration during homeostasis and injury. Overall, our article provides a centric view of the relevance of the relationship between chronic inflammatory diseases and JAK/STAT5 pathway and it also gives an example of how chronic infection and inflammation pirate STAT5 signaling to worsen intestinal injuries. Importantly, our review suggests how to protect a wound healing from gastrointestinal diseases by modulating intestinal STAT5.
Collapse
|
4
|
Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, Vetrano S, Vande Casteele N. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:323-337. [PMID: 32203403 DOI: 10.1038/s41575-020-0273-0] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Cytokines are involved in intestinal homeostasis and pathological processes associated with inflammatory bowel disease (IBD). The biological effects of cytokines, including several involved in the pathology of Crohn's disease and ulcerative colitis, occur as a result of receptor-mediated signalling through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) DNA-binding families of proteins. Although therapies targeting cytokines have revolutionized IBD therapy, they have historically targeted individual cytokines, and an unmet medical need exists for patients who do not respond to or lose response to these treatments. Several small-molecule inhibitors of JAKs that have the potential to affect multiple pro-inflammatory cytokine-dependent pathways are in clinical development for the treatment of IBD, with one agent, tofacitinib, already approved for ulcerative colitis and several other agents with demonstrated efficacy in early phase trials. This Review describes the current understanding of JAK-STAT signalling in intestinal homeostasis and disease and the rationale for targeting this pathway as a treatment for IBD. The available evidence for the efficacy, safety and pharmacokinetics of JAK inhibitors in IBD as well as the potential approaches to optimize treatment with these agents, such as localized delivery or combination therapy, are also discussed.
Collapse
Affiliation(s)
- Azucena Salas
- Department of Gastroenterology, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristian Hernandez-Rocha
- Zane Cohen Center for Digestive Diseases, Mount Sinai Hospital Inflammatory Bowel Disease Group, Toronto, Ontario, Canada
| | - Marjolijn Duijvestein
- Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - William Faubion
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MI, USA
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Severine Vermeire
- Department of Gastroenterology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IBD Center, Laboratory of Immunology in Gastroenterology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Niels Vande Casteele
- Robarts Clinical Trials, London, ON, Canada. .,Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Karrasch T, Schaeffler A. Adipokines and the role of visceral adipose tissue in inflammatory bowel disease. Ann Gastroenterol 2016; 29:424-438. [PMID: 27708507 PMCID: PMC5049548 DOI: 10.20524/aog.2016.0077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022] Open
Abstract
Recently, adipocytes have been recognized as actively participating in local and systemic immune responses via the secretion of peptides detectable in relevant levels in the systemic circulation, the so-called "adipo(cyto)kines". Multiple studies appearing within the last 10-15 years have focused on the possible impact of adipose tissue depots on inflammatory bowel disease (IBD). Consequently, various hypotheses regarding the role of different adipokines in inflammatory diseases in general and in intestinal inflammatory processes in particular have been developed and have been further refined in recent years. After a focused summary of the data reported concerning the impact of visceral adipose tissue on IBD, such as Crohn's disease and ulcerative colitis, our review focuses on recent developments indicating that adipocytes as part of the innate immune system actively participate in antimicrobial host defenses in the context of intestinal bacterial translocation, which are of utmost importance for the homeostasis of the whole organism. Modulators of adipose tissue function and regulators of adipokine secretion, as well as modifiers of adipocytic pattern recognition molecules, might represent future potential drug targets in IBD.
Collapse
Affiliation(s)
- Thomas Karrasch
- Department of Internal Medicine III, Giessen University Hospital, Germany
| | - Andreas Schaeffler
- Department of Internal Medicine III, Giessen University Hospital, Germany
| |
Collapse
|
7
|
Integrating Immunologic Signaling Networks: The JAK/STAT Pathway in Colitis and Colitis-Associated Cancer. Vaccines (Basel) 2016; 4:vaccines4010005. [PMID: 26938566 PMCID: PMC4810057 DOI: 10.3390/vaccines4010005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cytokines are believed to be crucial mediators of chronic intestinal inflammation in inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and ulcerative colitis (UC). Many of these cytokines trigger cellular effects and functions through signaling via janus kinase (JAK) and signal transducer and activator of transcription (STAT) molecules. In this way, JAK/STAT signaling controls important events like cell differentiation, secretion of cytokines or proliferation and apoptosis in IBD in both adaptive and innate immune cells. Moreover, JAK/STAT signaling, especially via the IL-6/STAT3 axis, is believed to be involved in the transition of inflammatory lesions to tumors leading to colitis-associated cancer (CAC). In this review, we will introduce the main cellular players and cytokines that contribute to pathogenesis of IBD by JAK/STAT signaling, and will highlight the integrative function that JAK/STATs exert in this context as well as their divergent role in different cells and processes. Moreover, we will explain current concepts of the implication of JAK/STAT signaling in CAC and finally discuss present and future therapies for IBD that interfere with JAK/STAT signaling.
Collapse
|
8
|
Hainzl E, Stockinger S, Rauch I, Heider S, Berry D, Lassnig C, Schwab C, Rosebrock F, Milinovich G, Schlederer M, Wagner M, Schleper C, Loy A, Urich T, Kenner L, Han X, Decker T, Strobl B, Müller M. Intestinal Epithelial Cell Tyrosine Kinase 2 Transduces IL-22 Signals To Protect from Acute Colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5011-24. [PMID: 26432894 PMCID: PMC4635564 DOI: 10.4049/jimmunol.1402565] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3.
Collapse
Affiliation(s)
- Eva Hainzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Silvia Stockinger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria;
| | - Isabella Rauch
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Susanne Heider
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - David Berry
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; Biomodels Austria, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Clarissa Schwab
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Felix Rosebrock
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gabriel Milinovich
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | | | - Michael Wagner
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Christa Schleper
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Alexander Loy
- Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria
| | - Tim Urich
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria; Institute for Clinical Pathology, Medical University Vienna, 1090 Vienna, Austria; Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; and
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria; Biomodels Austria, University of Veterinary Medicine, Vienna, 1210 Vienna, Austria;
| |
Collapse
|
9
|
Chen L, Wu HG, Shi Y. Application of gene knockout technology in research of intestinal epithelial barrier mechanism in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2015; 23:4673-4679. [DOI: 10.11569/wcjd.v23.i29.4673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial barrier permeability changes/increase caused by intestinal epithelial barrier damage play an important role in the pathogenesis of inflammatory bowel disease, and the maintenance of normal intestinal epithelial barrier permeability depends on the two aspects of the trans-epithelial cell pathway and the tight connection between the cells. In recent years, with the development of molecular biology technology and wide application of a variety of gene engineering technology, specific knocking out a particular gene through gene knockout technology to study the pathogenesis of the disease has become a hot research topic. In this paper, we review the application of gene knockout technology in the research of intestinal epithelial barrier trans-epithelial pathway and tight junction pathway in inflammatory bowel disease, in order to provide some ideas for further study of the pathogenesis of inflammatory bowel disease.
Collapse
|
10
|
Hiller F, Besselt K, Deubel S, Brigelius-Flohé R, Kipp AP. GPx2 Induction Is Mediated Through STAT Transcription Factors During Acute Colitis. Inflamm Bowel Dis 2015; 21:2078-89. [PMID: 26115075 DOI: 10.1097/mib.0000000000000464] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The selenoprotein glutathione peroxidase 2 (GPx2) is highly expressed in the gastrointestinal epithelium. During inflammatory bowel disease and colorectal cancer, GPx2 expression is enhanced. METHODS We analyzed GPx2 expression and transcriptional regulation during the different phases of dextran sulfate sodium (DSS)-induced colitis in mice and in cytokine-treated colorectal cancer cells. RESULTS In the colon of DSS-treated mice, GPx2 was upregulated during the acute and recovery phase. In the latter, it was specifically localized in regenerating ki67-positive crypts next to ulcerations. In cultured cells, endogenous GPx2 expression and GPx2 promoter activity were enhanced by the anti-inflammatory mediators 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) and interleukin-22 (IL-22), while it was unaffected by classical proinflammatory cytokines like IL-1β. Induction of GPx2 expression by 15d-PGJ2 was mediated through Nrf2. In contrast, in DSS-treated Nrf2-KO mice GPx2 expression remained upregulated during recovery, which appeared to be independent of Nrf2. IL-22 activates transcription factors of the signal transducers and activators of transcription (STAT) family. Therefore, we analyzed the GPx2 promoter for putative STAT-responsive elements and identified 4 of them. Point mutation of the binding element next to the transcription start completely abolished promoter activation after IL-22 treatment and after cotransfection of STAT expression plasmids. To show in vivo relevance of the obtained results, we performed immunohistochemistry for phospho-STAT3 and GPx2. Especially during acute colitis, GPx2 and nuclear STAT3 colocalized in inflamed areas. CONCLUSIONS GPx2 is a novel target of STAT transcription factors. The upregulation of GPx2 by IL-22 indicates that GPx2 might be important for the resolution of inflammation.
Collapse
Affiliation(s)
- Franziska Hiller
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam, Germany
| | | | | | | | | |
Collapse
|
11
|
Kuo B, Bhasin M, Jacquart J, Scult MA, Slipp L, Riklin EIK, Lepoutre V, Comosa N, Norton BA, Dassatti A, Rosenblum J, Thurler AH, Surjanhata BC, Hasheminejad NN, Kagan L, Slawsby E, Rao SR, Macklin EA, Fricchione GL, Benson H, Libermann TA, Korzenik J, Denninger JW. Genomic and clinical effects associated with a relaxation response mind-body intervention in patients with irritable bowel syndrome and inflammatory bowel disease. PLoS One 2015; 10:e0123861. [PMID: 25927528 PMCID: PMC4415769 DOI: 10.1371/journal.pone.0123861] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD) can profoundly affect quality of life and are influenced by stress and resiliency. The impact of mind-body interventions (MBIs) on IBS and IBD patients has not previously been examined. Methods Nineteen IBS and 29 IBD patients were enrolled in a 9-week relaxation response based mind-body group intervention (RR-MBI), focusing on elicitation of the RR and cognitive skill building. Symptom questionnaires and inflammatory markers were assessed pre- and post-intervention, and at short-term follow-up. Peripheral blood transcriptome analysis was performed to identify genomic correlates of the RR-MBI. Results Pain Catastrophizing Scale scores improved significantly post-intervention for IBD and at short-term follow-up for IBS and IBD. Trait Anxiety scores, IBS Quality of Life, IBS Symptom Severity Index, and IBD Questionnaire scores improved significantly post-intervention and at short-term follow-up for IBS and IBD, respectively. RR-MBI altered expression of more genes in IBD (1059 genes) than in IBS (119 genes). In IBD, reduced expression of RR-MBI response genes was most significantly linked to inflammatory response, cell growth, proliferation, and oxidative stress-related pathways. In IBS, cell cycle regulation and DNA damage related gene sets were significantly upregulated after RR-MBI. Interactive network analysis of RR-affected pathways identified TNF, AKT and NF-κB as top focus molecules in IBS, while in IBD kinases (e.g. MAPK, P38 MAPK), inflammation (e.g. VEGF-C, NF-κB) and cell cycle and proliferation (e.g. UBC, APP) related genes emerged as top focus molecules. Conclusions In this uncontrolled pilot study, participation in an RR-MBI was associated with improvements in disease-specific measures, trait anxiety, and pain catastrophizing in IBS and IBD patients. Moreover, observed gene expression changes suggest that NF-κB is a target focus molecule in both IBS and IBD—and that its regulation may contribute to counteracting the harmful effects of stress in both diseases. Larger, controlled studies are needed to confirm this preliminary finding. Trial Registration ClinicalTrials.Gov NCT02136745
Collapse
Affiliation(s)
- Braden Kuo
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Manoj Bhasin
- Division of Interdisciplinary Medicine & Biotechnology, and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jolene Jacquart
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Matthew A. Scult
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Lauren Slipp
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eric Isaac Kagan Riklin
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Veronique Lepoutre
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nicole Comosa
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Beth-Ann Norton
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Allison Dassatti
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jessica Rosenblum
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Andrea H. Thurler
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Brian C. Surjanhata
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nicole N. Hasheminejad
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Leslee Kagan
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ellen Slawsby
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sowmya R. Rao
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Center for Healthcare Organization and Implementation Research (CHOIR), Bedford VA Medical Center, Bedford, Massachusetts, United States of America
| | - Eric A. Macklin
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory L. Fricchione
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Herbert Benson
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine & Biotechnology, and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Joshua Korzenik
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - John W. Denninger
- Benson-Henry Institute for Mind Body Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Coffee polyphenols change the expression of STAT5B and ATF-2 modifying cyclin D1 levels in cancer cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:390385. [PMID: 22919439 PMCID: PMC3424007 DOI: 10.1155/2012/390385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 12/31/2022]
Abstract
Background. Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. Objective. To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC) or caffeic acid (CA) using whole-genome microarrays. Results. ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were downregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. Conclusions. Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2.
Collapse
|
13
|
Gilbert S, Zhang R, Denson L, Moriggl R, Steinbrecher K, Shroyer N, Lin J, Han X. Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain kinase-mediated loss of barrier function and inflammation. EMBO Mol Med 2012; 4:109-24. [PMID: 22228679 PMCID: PMC3306555 DOI: 10.1002/emmm.201100192] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 12/18/2022] Open
Abstract
Epithelial myosin light chain kinase (MLCK)-dependent barrier dysfunction contributes to the pathogenesis of inflammatory bowel diseases (IBD). We reported that epithelial GM-CSF–STAT5 signalling is essential for intestinal homeostatic response to gut injury. However, mechanism, redundancy by STAT5 or cell types involved remained foggy. We here generated intestinal epithelial cell (IEC)-specific STAT5 knockout mice, these mice exhibited a delayed mucosal wound healing and dysfunctional intestinal barrier characterized by elevated levels of NF-κB activation and MLCK, and a reduction of zonula occludens expression in IECs. Deletion of MLCK restored intestinal barrier function in STAT5 knockout mice, and facilitated mucosal wound healing. Consistently, knockdown of stat5 in IEC monolayers led to increased NF-κB DNA binding to MLCK promoter, myosin light chain phosphorylation and tight junction (TJ) permeability, which were potentiated by administration of tumour necrosis factor-α (TNF-α), and prevented by concurrent NF-κB knockdown. Collectively, enterocyte STAT5 signalling protects against TJ barrier dysfunction and promotes intestinal mucosal wound healing via an interaction with NF-κB to suppress MLCK. Targeting IEC STAT5 signalling may be a novel therapeutic approach for treating intestinal barrier dysfunction in IBD.
Collapse
Affiliation(s)
- Shila Gilbert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kaplan JM, Zingarelli B. Novel Therapeutic Agents in Pediatric Sepsis: Peroxisome Proliferator Receptor γ (PPAR γ) Agonists. ACTA ACUST UNITED AC 2011; 4:120-124. [PMID: 22259643 DOI: 10.2174/1875041901104010120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jennifer M Kaplan
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
15
|
Han X, Mann E, Gilbert S, Guan Y, Steinbrecher KA, Montrose MH, Cohen MB. Loss of guanylyl cyclase C (GCC) signaling leads to dysfunctional intestinal barrier. PLoS One 2011; 6:e16139. [PMID: 21305056 PMCID: PMC3031533 DOI: 10.1371/journal.pone.0016139] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/11/2010] [Indexed: 12/12/2022] Open
Abstract
Background Guanylyl Cyclase C (GCC) signaling via uroguanylin (UGN) and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function. Methodology/Principal Findings Paracellular permeability of intestinal segments was assessed in wild type (WT) and GCC deficient (GCC−/−) mice with and without lipopolysaccharide (LPS) challenge, as well as in UGN deficient (UGN−/−) mice. IFNγ and myosin light chain kinase (MLCK) levels were determined by real time PCR. Expression of tight junction proteins (TJPs), phosphorylation of myosin II regulatory light chain (MLC), and STAT1 activation were examined in intestinal epithelial cells (IECs) and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi). We found that intestinal permeability was increased in GCC−/− and UGN−/− mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC−/− mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC−/− and UGN−/− mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability. Conclusions/Significance GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury.
Collapse
Affiliation(s)
- Xiaonan Han
- Division of Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.
| | | | | | | | | | | | | |
Collapse
|
16
|
Han X, Gilbert S, Groschwitz K, Hogan S, Jurickova I, Trapnell B, Samson C, Gully J. Loss of GM-CSF signalling in non-haematopoietic cells increases NSAID ileal injury. Gut 2010; 59:1066-78. [PMID: 20584783 PMCID: PMC4296557 DOI: 10.1136/gut.2009.203893] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Administration of granulocyte-macrophage colony stimulating factor (GM-CSF) relieves symptoms in Crohn's disease (CD). It has been reported that reduced GM-CSF bioactivity is associated with more aggressive ileal behaviour and that GM-CSF-null mice exhibit ileal barrier dysfunction and develop a transmural ileitis following exposure to non-steroidal anti-inflammatory drugs (NSAIDs). STAT5 signalling is central to GM-CSF action. It was therefore hypothesised that GM-CSF signalling in non-haematopoietic cells is required for ileal homeostasis. METHODS Bone marrow (BM) chimeras were generated by reconstituting irradiated GM-CSF receptor (gm-csfr) beta chain or GM-CSF (gm-csf) deficient mice with wild type BM (WTBM-->GMRKO and WTBM-->GMKO). Intestinal barrier function and the response to NSAID-induced ileal injury were examined. Expression of gm-csf, gm-csfr or stat5 in Caco-2 and HT-29 intestinal epithelial cell (IEC) lines was knocked down and the effect of GM-CSF signalling on IEC survival and proliferation was determined. RESULTS Elevated levels of GM-CSF autoantibodies in ileal CD were found to be associated with dysregulation of IEC survival and proliferation. GM-CSF receptor-deficient mice and WTBM-->GMRKO chimeras exhibited ileal hyperpermeability. NSAID exposure induced a transmural ileitis in GM-CSF receptor-deficient mice and WTBM-->GMRKO chimeras. Transplantation of wild type BM into GM-CSF-deficient mice prevented NSAID ileal injury and restored ileal barrier function. Ileal crypt IEC proliferation was reduced in WTBM-->GMRKO chimeras, while STAT5 activation in ileal IEC following NSAID exposure was abrogated in WTBM-->GMRKO chimeras. Following knock down of gm-csf, gm-csfr alpha or beta chain or stat5a/b expression in Caco-2 cells, basal proliferation was suppressed. GM-CSF normalised proliferation of Caco-2 cells exposed to NSAID, which was blocked by stat5a/b RNA interference. CONCLUSIONS Loss of GM-CSF signalling in non-haematopoietic cells increases NSAID ileal injury; furthermore, GM-CSF signalling in non-haematopoietic cells regulates ileal epithelial homeostasis via the STAT5 pathway. The therapeutic use of GM-CSF may therefore be beneficial in chronic ileitis associated with CD.
Collapse
Affiliation(s)
- Xiaonan Han
- Division of Gastroenterology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, MLC 2010, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA.
| | - Shila Gilbert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine Groschwitz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ingrid Jurickova
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bruce Trapnell
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Charles Samson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jonathan Gully
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Pasternak BA, D’Mello S, Jurickova II, Han X, Willson T, Flick L, Petiniot L, Uozumi N, Divanovic S, Traurnicht A, Bonkowski E, Kugathasan S, Karp CL, Denson LA. Lipopolysaccharide exposure is linked to activation of the acute phase response and growth failure in pediatric Crohn's disease and murine colitis. Inflamm Bowel Dis 2010; 16:856-69. [PMID: 19924809 PMCID: PMC3052288 DOI: 10.1002/ibd.21132] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Systemic exposure to lipopolysaccharide (LPS) has been linked to clinical disease activity in adults with inflammatory bowel disease (IBD). We hypothesized that markers of LPS exposure and the acute phase response (APR) would be increased in pediatric IBD patients with growth failure, and that LPS signaling would be required for induction of the APR in murine colitis. METHODS Serum markers of LPS exposure, endotoxin core IgA antibody (EndoCAb), and the APR, LPS binding protein (LBP) were quantified in pediatric IBD patients and controls. LBP and cytokine production were determined after administration of trinitrobenzene sulfonic acid (TNBS) enemas to mice with genetic deletion of Toll-Like receptor 4 (TLR4), and wildtype (WT) controls. RESULTS Serum EndoCAb and LBP were significantly elevated in patients with Crohn's disease (CD), compared to disease controls with ulcerative colitis (UC) and healthy controls (P < 0.001). This was independent of disease activity or location. CD patients with elevated serum EndoCAb and LBP exhibited linear growth failure which persisted during therapy. Serum LBP increased in WT mice following TNBS administration, in conjunction with increased serum TNF-alpha, IL-6, and IL-10, and expansion of regulatory T-cell numbers. Both the APR and expansion of foxp3+ T cells were abrogated in TLR4-deficient mice, in conjunction with a reduction in acute weight loss. CONCLUSIONS LPS exposure and a persistent APR are associated with growth failure in pediatric CD. LPS signaling is required for the APR in murine colitis. Therapies targeting this pathway may benefit the subset of patients with refractory growth failure.
Collapse
Affiliation(s)
- Brad A. Pasternak
- Department of Pediatric Gastroenterology, Phoenix Children’s Hospital, Phoenix, AZ 85016
| | - Sharon D’Mello
- Division of Pediatric Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Ingrid I. Jurickova
- Division of Pediatric Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Xiaonan Han
- Division of Pediatric Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Tara Willson
- Division of Pediatric Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Leah Flick
- Division of Molecular Immunology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Lisa Petiniot
- Division of Molecular Immunology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Naonori Uozumi
- Division of Molecular Immunology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Senad Divanovic
- Division of Molecular Immunology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Anna Traurnicht
- Division of Pediatric Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Erin Bonkowski
- Division of Pediatric Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Christopher L. Karp
- Division of Molecular Immunology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Lee A. Denson
- Division of Pediatric Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
18
|
Kaplan JM, Denenberg A, Monaco M, Nowell M, Wong H, Zingarelli B. Changes in peroxisome proliferator-activated receptor-gamma activity in children with septic shock. Intensive Care Med 2009; 36:123-30. [PMID: 19760394 DOI: 10.1007/s00134-009-1654-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/29/2009] [Indexed: 12/30/2022]
Abstract
PURPOSE To assess changes in peroxisome proliferator-activated receptor-gamma (PPARgamma) in peripheral blood mononuclear cells (PBMC) from critically ill children with sepsis. Additionally, to investigate the effects of sepsis on the endogenous activator of PPARgamma, 15-deoxy-(12,14)-PGJ(2) (15d-PGJ(2)), and the downstream targets of PPARgamma activity, adiponectin and resistin. METHODS Single-center, prospective case-control study in critically ill children with systemic inflammatory response syndrome, sepsis or septic shock. RESULTS PPARgamma nuclear protein expression was decreased but PPARgamma activity was increased in PBMC from children with septic shock compared with controls. PPARgamma activity on day 1 was significantly higher in patients with higher pediatric risk of mortality (PRISM) score compared with controls [mean 0.22 optical density (OD) +/- standard error of the mean (SEM) 0.03 versus 0.12 OD +/- 0.02; p < 0.001]. Patients with resolved sepsis had increased levels of the endogenous PPARgamma ligand, 15d-PGJ(2), compared with patients with systemic inflammatory response syndrome (SIRS) and septic shock (77.7 +/- 21.7 versus 58 +/- 16.5 pg/ml; p = 0.03). Plasma high-molecular-weight adiponectin (HMWA) and resistin levels were increased in patients with septic shock on day 1 and were significantly higher in patients with higher PRISM scores. Nonsurvivors from sepsis had higher resistin levels on the first day of hospitalization compared with survivors from septic shock [660 ng/ml, interquartile range (IQR) 585-833 ng/ml versus 143 ng/ml, IQR 66-342 ng/ml; p < 0.05]. CONCLUSIONS Sepsis is associated with altered PPARgamma expression and activity in PBMC. Plasma adipokines correlate with risk of mortality scores in sepsis and may be useful biomarkers. Further studies are needed to understand the mechanisms underlying changes in PPARgamma in sepsis.
Collapse
Affiliation(s)
- Jennifer M Kaplan
- Cincinnati Children's Hospital Medical Center, The University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Slonim AE, Grovit M, Bulone L. Effect of Exclusion Diet with Nutraceutical Therapy in Juvenile Crohn's Disease. J Am Coll Nutr 2009; 28:277-85. [DOI: 10.1080/07315724.2009.10719782] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Han X, Ren X, Jurickova I, Groschwitz K, Pasternak BA, Xu H, Wilson TA, Hogan SP, Denson LA. Regulation of intestinal barrier function by signal transducer and activator of transcription 5b. Gut 2009; 58:49-58. [PMID: 18687707 PMCID: PMC4041491 DOI: 10.1136/gut.2007.145094] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Colon epithelial cell (CEC) apoptosis and nuclear factor-kappaB (NF-kappaB) activation may compromise barrier function, and it has been reported that signal transducer and activator of transcription 5b (STAT5b)-deficient mice exhibit increased susceptibility to colitis. It is hypothesised that the growth hormone (GH) target STAT5b maintains mucosal barrier integrity by promoting CEC survival and inhibiting NF-kappaB activation. METHODS The GH effect upon mucosal injury due to 2,4,6-trinitro-benzenesulfonic acid (TNBS) administration was determined in STAT5b-deficient mice and wild-type (WT) controls. The effect of STAT5b deficiency upon CEC survival and NF-kappaB activation was determined and related to differences in intestinal permeability and bacterial translocation. RNA interference (RNAi) was used to knock down STAT5b expression in the T84 CEC line, and the effect upon basal and GH-dependent regulation of proapoptotic and inflammatory pathways induced by tumour necrosis factor alpha (TNFalpha) was determined. RESULTS GH suppression of mucosal inflammation in TNBS colitis was abrogated in STAT5b-deficient mice. STAT5b deficiency led to activation of a proapoptotic pattern of gene expression in the colon, and increased mucosal permeability. The frequency of apoptotic CECs was increased in STAT5b-deficient mice while tight junction protein abundance was reduced. This was associated with upregulation of CEC Toll-like receptor 2 expression and NF-kappaB activation. STAT5b knockdown in T84 CEC increased TNFalpha-dependent NF-kappaB and caspase-3 activation. GH inhibition of TNFalpha signalling was prevented by STAT5b knockdown. CONCLUSION STAT5b maintains colonic barrier integrity by modulating CEC survival and NF-kappaB activation. STAT5b activation may therefore represent a novel therapeutic target in inflammatory bowel disease.
Collapse
Affiliation(s)
- X Han
- Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - X Ren
- Immunobiology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - I Jurickova
- Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - K Groschwitz
- Immunobiology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - B A Pasternak
- Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - H Xu
- Biomedical Informatics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - T A Wilson
- Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - S P Hogan
- Allergy and Immunology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - L A Denson
- Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Kawada M, Arihiro A, Mizoguchi E. Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease. World J Gastroenterol 2007; 13:5581-93. [PMID: 17948932 PMCID: PMC4172737 DOI: 10.3748/wjg.v13.i42.5581] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD), the most important being Crohn's disease and ulcerative colitis, results from chronic dysregulation of the mucosal immune system in the gastrointestinal tract. Although the pathogenesis of IBD remains unclear, it is widely accepted that genetic, environmental, and immunological factors are involved. Recent studies suggest that intestinal epithelial defenses are important to prevent inflammation by protecting against microbial pathogens and oxidative stresses. To investigate the etiology of IBD, animal models of experimental colitis have been developed and are frequently used to evaluate new anti-inflammatory treatments for IBD. Several models of experimental colitis that demonstrate various pathophysiological aspects of the human disease have been described. In this manuscript, we review the characteristic features of IBD through a discussion of the various chemically induced experimental models of colitis (e.g., dextran sodium sulfate-, 2,4,6-trinitrobenzene sulfonic acid-, oxazolone-, acetic acid-, and indomethacin-induced models). We also summarize some regulatory and pathogenic factors demonstrated by these models that can, hopefully, be exploited to develop future therapeutic strategies against IBD.
Collapse
|
22
|
Bibliography. Current world literature. Cardiovascular medicine. Curr Opin Pediatr 2007; 19:601-6. [PMID: 17885483 DOI: 10.1097/mop.0b013e3282f12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|