1
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. eLife 2024; 12:RP91876. [PMID: 38856718 PMCID: PMC11164533 DOI: 10.7554/elife.91876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Martin Kolb
- Department of Medicine, McMaster UniversityHamiltonCanada
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan-Ann ArborAnn ArborUnited States
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
2
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559527. [PMID: 37808788 PMCID: PMC10557633 DOI: 10.1101/2023.09.26.559527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study, we dissected the roles of BMP receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan H. Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, ON, Canada L8N 4A6
| | - Michael S. Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Wan L, Hu X, Xia T, Li F, Chi Q, Ma H, Yan S, Li W, Huang W. Disruption of Cdyl gene impairs mouse lung epithelium differentiation and maturation. Gene 2023; 853:147088. [PMID: 36464171 DOI: 10.1016/j.gene.2022.147088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
CDYL is a chromodomain protein that has been identified as a transcriptional co-repressor that is primarily involved in the formation of repressor complexes which coordinate histone modifications to repress gene transcription. However, most functions and mechanisms of action of the CDYL protein are unknown. In this study, we show that Cdyl-/- mice died of respiratory distress immediately at birth because of distinct abnormalities in distal lung morphogenesis which was characterized by thickened septal and expiratory alveolus atelectasis. Furthermore, Cdyl deletion in mice led to excessive proliferation of immature epithelial cells and an arrest in alveolar epithelium cell differentiation in late gestation which were associated with decreased secretion of mature surfactant proteins in alveolus. Microarray analysis showed that Cdyl gene deletion influenced the expression of genes regulating neuroactive ligand-receptor interactions, cell adhesion, and cell cycle. We validated that Cdyl repressed the transcriptional activity of Cks1 in vitro. In conclusion, Cdyl gene participates in the perinatal respiratory epithelium differentiation and maturation that is important for normal lung function at birth.
Collapse
Affiliation(s)
- Li Wan
- Clinical Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaojun Hu
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Tian Xia
- Department of Hematology and Oncology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310005, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Qiong Chi
- Clinical Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Hongmei Ma
- Clinical Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Sunxing Yan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Witten MR, Wu L, Lai CT, Kapilashrami K, Pusey M, Gallagher K, Chen Y, Yao W. Inhibition of ALK2 with bicyclic pyridyllactams. Bioorg Med Chem Lett 2021; 55:128452. [PMID: 34780900 DOI: 10.1016/j.bmcl.2021.128452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/02/2022]
Abstract
Activin receptor-like kinase 2 (ALK2) has been implicated as a key target in multiple rare diseases. Herein, we describe the design of a novel bicyclic lactam series of potent and selective ALK2 inhibitors. This manuscript details an improvement in potency of two orders of magnitude from the initial bicyclic structure as well as a two-fold improvement in cellular potency from the original monocyclic inhibitor. Furthermore, we provide a detailed strategy for progressing this project in the future.
Collapse
Affiliation(s)
- Michael R Witten
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States.
| | - Liangxing Wu
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Cheng-Tsung Lai
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Kanishk Kapilashrami
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Michelle Pusey
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Karen Gallagher
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Yaoyu Chen
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| | - Wenqing Yao
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Cut-Off, Wilmington, DE 19803, United States
| |
Collapse
|
5
|
Miao Q, Chen H, Luo Y, Chiu J, Chu L, Thornton ME, Grubbs BH, Kolb M, Lou J, Shi W. Abrogation of mesenchyme-specific TGF-β signaling results in lung malformation with prenatal pulmonary cysts in mice. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1158-L1168. [PMID: 33881909 DOI: 10.1152/ajplung.00299.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The TGF-β signaling pathway plays a pivotal role in controlling organogenesis during fetal development. Although the role of TGF-β signaling in promoting lung alveolar epithelial growth has been determined, mesenchymal TGF-β signaling in regulating lung development has not been studied in vivo due to a lack of genetic tools for specifically manipulating gene expression in lung mesenchymal cells. Therefore, the integral roles of TGF-β signaling in regulating lung development and congenital lung diseases are not completely understood. Using a Tbx4 lung enhancer-driven Tet-On inducible Cre transgenic mouse system, we have developed a mouse model in which lung mesenchyme-specific deletion of TGF-β receptor 2 gene (Tgfbr2) is achieved. Reduced airway branching accompanied by defective airway smooth muscle growth and later peripheral cystic lesions occurred when lung mesenchymal Tgfbr2 was deleted from embryonic day 13.5 to 15.5, resulting in postnatal death due to respiratory insufficiency. Although cell proliferation in both lung epithelium and mesenchyme was reduced, epithelial differentiation was not significantly affected. Tgfbr2 downstream Smad-independent ERK1/2 may mediate these mesenchymal effects of TGF-β signaling through the GSK3β-β-catenin-Wnt canonical pathway in fetal mouse lung. Our study suggests that Tgfbr2-mediated TGF-β signaling in prenatal lung mesenchyme is essential for lung development and maturation, and defective TGF-β signaling in lung mesenchyme may be related to abnormal airway branching morphogenesis and congenital airway cystic lesions.
Collapse
Affiliation(s)
- Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Allergy, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ling Chu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin Kolb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jianlin Lou
- Institute of Occupational Diseases, Hangzhou Medical College (Zhejiang Academy of Medical Science), Hangzhou, People's Republic of China
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
6
|
Shafiquzzaman M, Biswas S, Li P, Mishina Y, Li B, Liu H. The noncanonical BMP signaling pathway plays an important role in club cell regeneration. Stem Cells 2019; 38:437-450. [PMID: 31758827 DOI: 10.1002/stem.3125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/19/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
The bronchiole is a major site for the development of several life-threatening disorders, including chronic obstructive pulmonary disease and lung adenocarcinomas. The bronchiolar epithelium is composed of club cells and ciliated epithelial cells, with club cells serving as progenitor cells. Presently, the identity of the cells involved in regeneration of bronchiolar epithelium and the underlying mechanisms remain incompletely understood. Here, we show that Prrx1, a homeobox transcription factor, can mark club cells in adult mice during homeostasis and regeneration. We further show that the noncanonical signaling pathway of BMPs, BMPR1A-Tak1-p38MAPK, plays a critical role in club cell regeneration. Ablation of Bmpr1a, Tak1, or Mapk14 (encoding p38α) in Prrx1+ club cells caused minimal effect on bronchiolar epithelium homeostasis, yet it resulted in severe defects in club cell regeneration and bronchiole repair in adult mice. We further show that this pathway supports proliferation and expansion of the regenerating club cells. Our findings thus identify a marker for club cells and reveal a critical role for the BMP noncanonical pathway in club cell regeneration.
Collapse
Affiliation(s)
- Md Shafiquzzaman
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Metabolic Bone Disease and Genetics Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China.,National Institute of Biotechnology, Ministry of Science and Technology, Dhaka, Bangladesh
| | - Soma Biswas
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Center for Traditional Chinese Medicine and Stem Cell Research, The Chengdu University of Traditional Chinese Medicine, Sichuan, People's Republic of China
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Metabolic Bone Disease and Genetics Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Sivakumar A, Frank DB. Paradigms that define lung epithelial progenitor cell fate in development and regeneration. CURRENT STEM CELL REPORTS 2019; 5:133-144. [PMID: 32587809 DOI: 10.1007/s40778-019-00166-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Throughout the lifespan, lung injury impedes the primary critical function essential for life-respiration. To repair quickly and efficiently is critical and is orchestrated by a diverse repertoire of progenitor cells and their niche. This review incorporates knowledge gained from early studies in lung epithelial morphogenesis and cell fate and explores its relevance to more recent findings of lung progenitor and stem cells in development and regeneration. Recent Findings Cell fate in the lung is organized into an early specification phase and progressive differentiation phase in lung development. The advent of single cell analysis combined with lineage analysis and projections is uncovering new functional cell types in the lung providing a topographical atlas for progenitor cell lineage commitment during development, homeostasis, and regeneration. Summary Lineage commitment of lung progenitor cells is spatiotemporally regulated during development. Single cell sequencing technologies have significantly advanced our understanding of the similarities and differences between developmental and regenerative cell fate trajectories. Subsequent unraveling of the molecular mechanisms underlying these cell fate decisions will be essential to manipulating progenitor cells for regeneration.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David B Frank
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
9
|
Sun YF, Kan Q, Yang Y, Zhang YH, Shen JX, Zhang C, Zhou XY. Knockout of microRNA‑26a promotes lung development and pulmonary surfactant synthesis. Mol Med Rep 2018; 17:5988-5995. [PMID: 29436664 DOI: 10.3892/mmr.2018.8602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/22/2018] [Indexed: 11/05/2022] Open
Abstract
Normal formation and function of the lungs are essential for the transition of the fetus to an air‑breathing environment at birth. The synthesis of pulmonary surfactant (PS), which is produced by type II alveolar epithelial cells (AECIIs), is required for proper lung development. Previous in vitro studies have suggested that PS synthesis is regulated by microRNA (miR)‑26a in fetal rat AECIIs. The present study explored the potential role of miR‑26a in lung development and PS synthesis by using a miR‑26a‑1/miR‑26a‑2 double knockout mouse model. Hematoxylin and eosin staining and transmission electron microscopy were used to observe the morphology of fetal lungs. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were performed to examine the mRNA and protein levels of surfactant‑associated proteins. The results demonstrated that the lung formation in the knockout mice was more mature, and that there were more mature lamellar bodies inside AECIIs in miR‑26a knockout mice at late stages of lung development. The findings further demonstrated that knockout of miR‑26a increased surfactant‑associated mRNA and protein expression levels. The results indicated that knockout of miR‑26a promotes lung development and PS synthesis.
Collapse
Affiliation(s)
- Yi-Fan Sun
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Qing Kan
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yang Yang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ying-Hui Zhang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jin-Xin Shen
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Cun Zhang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Yu Zhou
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
10
|
Luo Y, Chen H, Ren S, Li N, Mishina Y, Shi W. BMP signaling is essential in neonatal surfactant production during respiratory adaptation. Am J Physiol Lung Cell Mol Physiol 2016; 311:L29-38. [PMID: 27190064 DOI: 10.1152/ajplung.00391.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/17/2016] [Indexed: 01/08/2023] Open
Abstract
Deficiency in pulmonary surfactant results in neonatal respiratory distress, and the known genetic mutations in key components of surfactant only account for a small number of cases. Therefore, determining the regulatory mechanisms of surfactant production and secretion, particularly during the transition from prenatal to neonatal stages, is essential for better understanding of the pathogenesis of human neonatal respiratory distress. We have observed significant increase of bone morphogenetic protein (BMP) signaling in neonatal mouse lungs immediately after birth. Using genetically manipulated mice, we then studied the relationship between BMP signaling and surfactant production in neonates. Blockade of endogenous BMP signaling by deleting Bmpr1a (Alk3) or Smad1 in embryonic day 18.5 in perinatal lung epithelial cells resulted in severe neonatal respiratory distress and death, accompanied by atelectasis in histopathology and significant reductions of surfactant protein B and C, as well as Abca3, whereas prenatal lung development was not significantly affected. We then identified a new BMP-Smad1 downstream target, Nfatc3, which is known as an important transcription activator for surfactant proteins and Abca3. Furthermore, activation of BMP signaling in cultured lung epithelial cells was able to promote endogenous Nfatc3 expression and also stimulate the activity of an Nfatc3 promoter that contains a Smad1-binding site. Therefore, our study suggests that the BMP-Alk3-Smad1-Nfatc3 regulatory loop plays an important role in enhancing surfactant production in neonates, possibly helping neonatal respiratory adaptation from prenatal amniotic fluid environment to neonatal air breathing.
Collapse
Affiliation(s)
- Yongfeng Luo
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hui Chen
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Siying Ren
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, People's Republic of China
| | - Nan Li
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan, Ann Arbor, Michigan
| | - Wei Shi
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California;
| |
Collapse
|
11
|
Zou W, Liu S, Hu J, Sheng Q, He F, Li B, Ran P. Nicotine reduces the levels of surfactant proteins A and D via Wnt/β-catenin and PKC signaling in human airway epithelial cells. Respir Physiol Neurobiol 2016; 221:1-10. [DOI: 10.1016/j.resp.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
|
12
|
Gui YS, Wang L, Tian X, Li X, Ma A, Zhou W, Zeng N, Zhang J, Cai B, Zhang H, Chen JY, Xu KF. mTOR Overactivation and Compromised Autophagy in the Pathogenesis of Pulmonary Fibrosis. PLoS One 2015; 10:e0138625. [PMID: 26382847 PMCID: PMC4575195 DOI: 10.1371/journal.pone.0138625] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/31/2015] [Indexed: 01/13/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway in pulmonary fibrosis was investigated in cell and animal models. mTOR overactivation in alveolar epithelial cells (AECs) was achieved in the conditional and inducible Tsc1 knock-down mice SPC-rtTA/TetO-Cre/Tsc1fx/+ (STT). Doxycycline caused Tsc1 knock-down and consequently mTOR activation in AECs for the STT mice. Mice treated with bleomycin exhibited increased mortality and pulmonary fibrosis compared with control mice. In wild-type C57BL/6J mice, pretreatment with rapamycin attenuated the bleomycin-mediated mortality and fibrosis. Rapamycin-mediated mouse survival benefit was inhibited by chloroquine, an autophagy inhibitor. Autophagosomes were decreased in the lungs after bleomycin exposure. Rapamycin induced the production of autophagosomes and diminished p62. We concluded that mTOR overactivation in AECs and compromised autophagy in the lungs are involved in the pathogenesis of pulmonary fibrosis. The suppression of mTOR and enhancement of autophagy may be used for treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yao-Song Gui
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lianmei Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinlun Tian
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Aiping Ma
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ni Zeng
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Zhang
- Department of Thoracic Surgery, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Baiqiang Cai
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing-Yu Chen
- Department of Thoracic Surgery, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
- * E-mail: (JYC); (KFX)
| | - Kai-Feng Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- * E-mail: (JYC); (KFX)
| |
Collapse
|
13
|
Verhamme FM, Bracke KR, Joos GF, Brusselle GG. Transforming growth factor-β superfamily in obstructive lung diseases. more suspects than TGF-β alone. Am J Respir Cell Mol Biol 2015; 52:653-62. [PMID: 25396302 DOI: 10.1165/rcmb.2014-0282rt] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Asthma and chronic obstructive pulmonary disease are respiratory disorders and a major global health problem with increasing incidence and severity. Genes originally associated with lung development could be relevant in the pathogenesis of chronic obstructive pulmonary disease/asthma, owing to either an early-life origin of adult complex diseases or their dysregulation in adulthood upon exposure to environmental stressors (e.g., smoking). The transforming growth factor (TGF)-β superfamily is conserved through evolution and is involved in a range of biological processes, both during development and in adult tissue homeostasis. TGF-β1 has emerged as an important regulator of lung and immune system development. However, considerable evidence has been presented for a role of many of the other ligands of the TGF-β superfamily in lung pathology, including activins, bone morphogenetic proteins, and growth differentiation factors. In this review, we summarize the current knowledge on the mechanisms by which activin, bone morphogenetic protein, and growth differentiation factor signaling contribute to the pathogenesis of obstructive airway diseases.
Collapse
Affiliation(s)
- Fien M Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|
14
|
Luo Y, El Agha E, Turcatel G, Chen H, Chiu J, Warburton D, Bellusci S, Qian BP, Menke DB, Shi W. Mesenchymal adenomatous polyposis coli plays critical and diverse roles in regulating lung development. BMC Biol 2015; 13:42. [PMID: 26092405 PMCID: PMC4702410 DOI: 10.1186/s12915-015-0153-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/11/2015] [Indexed: 01/07/2023] Open
Abstract
Background Adenomatous polyposis coli (Apc) is a tumor suppressor that inhibits Wnt/Ctnnb1. Mutations of Apc will not only lead to familial adenomatous polyposis with associated epithelial lesions, but will also cause aggressive fibromatosis in mesenchymal cells. However, the roles of Apc in regulating mesenchymal cell biology and organogenesis during development are unknown. Results We have specifically deleted the Apc gene in lung mesenchymal cells during early lung development in mice. Loss of Apc function resulted in immediate mesenchymal cell hyperproliferation through abnormal activation of Wnt/Ctnnb1, followed by a subsequent inhibition of cell proliferation due to cell cycle arrest at G0/G1, which was caused by a mechanism independent of Wnt/Ctnnb1. Meanwhile, abrogation of Apc also disrupted lung mesenchymal cell differentiation, including decreased airway and vascular smooth muscle cells, the presence of Sox9-positive mesenchymal cells in the peripheral lung, and excessive versican production. Moreover, lung epithelial branching morphogenesis was drastically inhibited due to disrupted Bmp4-Fgf10 morphogen production and regulation in surrounding lung mesenchyme. Lastly, lung mesenchyme-specific Apc conditional knockout also resulted in altered lung vasculogenesis and disrupted pulmonary vascular continuity through a paracrine mechanism, leading to massive pulmonary hemorrhage and lethality at mid-gestation when the pulmonary circulation should have started. Conclusions Our study suggests that Apc in lung mesenchyme plays central roles in coordinating the proper development of several quite different cellular compartments including lung epithelial branching and pulmonary vascular circulation during lung organogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0153-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongfeng Luo
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Elie El Agha
- Excellence Cluster Cardio-Pulmonary System, Justus Liebig University Giessen, 35392, Giessen, Hessen, Germany
| | - Gianluca Turcatel
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Hui Chen
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Joanne Chiu
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - David Warburton
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System, Justus Liebig University Giessen, 35392, Giessen, Hessen, Germany.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russian Federation
| | - Bang-Ping Qian
- Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Wei Shi
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA. .,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
| |
Collapse
|
15
|
Luo Y, Xu W, Chen H, Warburton D, Dong R, Qian B, Selman M, Gauldie J, Kolb M, Shi W. A novel profibrotic mechanism mediated by TGFβ-stimulated collagen prolyl hydroxylase expression in fibrotic lung mesenchymal cells. J Pathol 2015; 236:384-94. [PMID: 25779936 DOI: 10.1002/path.4530] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/09/2015] [Accepted: 03/03/2015] [Indexed: 01/13/2023]
Abstract
Idiopathic pulmonary fibrosis is a severe chronic lung disease with a high mortality rate. Excessive TGFβ signalling is recognized as a central player in lung fibrosis. However, the related mechanisms remain unclear. Herein we used a novel Tbx4 lung enhancer-driven Tet-On transgenic system to inhibit TGFβ signalling in mouse lung-resident mesenchymal cells at different stages of bleomycin-induced fibrosis, by conditionally knocking out TGFβ receptor II or expressing a dominant-negative TGFβ receptor II. Abrogation of mesenchymal TGFβ signalling markedly attenuated bleomycin-induced fibrotic pathology, which was independent of altered early inflammation. Furthermore, a novel TGFβ downstream target gene P4HA3 (an α-subunit of collagen prolyl hydroxylase) was identified, and its expression was significantly increased in fibroblastic foci of both bleomycin-induced fibrotic mouse lungs and idiopathic pulmonary fibrosis patients' lungs. The relationship between activated TGFβ signalling, up-regulation of P4HA3 and increased hydroxyproline/collagen production was further verified in cultured lung fibroblasts. Moreover, inhibition of collagen prolyl hydroxylase by pyridine-2,5-dicarboxylate attenuated TGFβ-stimulated collagen production in both cultured fibroblasts and bleomycin-induced mouse lung fibrosis. These data indicate that increased expression and activity of collagen prolyl hydroxylase is one of the important mechanisms underlying TGFβ-mediated profibrotic effects. Inhibition of collagen prolyl hydroxylase may be a new, promising approach for preventing and treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yongfeng Luo
- Saban Research Institute, Children's Hospital, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wei Xu
- Saban Research Institute, Children's Hospital, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Chen
- Saban Research Institute, Children's Hospital, Los Angeles, CA, USA
| | - David Warburton
- Saban Research Institute, Children's Hospital, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rachel Dong
- Saban Research Institute, Children's Hospital, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bangping Qian
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Nanjing, People's Republic of China
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias 'Ismael Cosío Villegas', México, DF, México
| | - Jack Gauldie
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Kolb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Wei Shi
- Saban Research Institute, Children's Hospital, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn 2014; 244:342-66. [PMID: 25470458 DOI: 10.1002/dvdy.24234] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The adaptation to terrestrial life required the development of an organ capable of efficient air-blood gas exchange. To meet the metabolic load of cellular respiration, the mammalian respiratory system has evolved from a relatively simple structure, similar to the two-tube amphibian lung, to a highly complex tree-like system of branched epithelial airways connected to a vast network of gas exchanging units called alveoli. The development of such an elaborate organ in a relatively short time window is therefore an extraordinary feat and involves an intimate crosstalk between mesodermal and endodermal cell lineages. RESULTS This review describes the molecular processes governing lung development with an emphasis on the current knowledge on the role of Wnt and FGF signaling in lung epithelial differentiation. CONCLUSIONS The Wnt and FGF signaling pathways are crucial for the dynamic and reciprocal communication between epithelium and mesenchyme during lung development. In addition, some of this developmental crosstalk is reemployed in the adult lung after injury to drive regeneration, and may, when aberrantly or chronically activated, result in chronic lung diseases. Novel insights into how the Wnt and FGF pathways interact and are integrated into a complex gene regulatory network will not only provide us with essential information about how the lung regenerates itself, but also enhance our understanding of the pathogenesis of chronic lung diseases, as well as improve the controlled differentiation of lung epithelium from pluripotent stem cells.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colorado; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | | |
Collapse
|
17
|
Alcázar MAA, Dinger K, Rother E, Östreicher I, Vohlen C, Plank C, Dötsch J. Prevention of early postnatal hyperalimentation protects against activation of transforming growth factor-β/bone morphogenetic protein and interleukin-6 signaling in rat lungs after intrauterine growth restriction. J Nutr 2014; 144:1943-51. [PMID: 25411031 DOI: 10.3945/jn.114.197657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is intimately linked with postnatal catch-up growth, leading to impaired lung structure and function. However, the impact of catch-up growth induced by early postnatal hyperalimentation (HA) on the lung has not been addressed to date. OBJECTIVE The aim of this study was to investigate whether prevention of HA subsequent to IUGR protects the lung from 1) deregulation of the transforming growth factor-β(TGF-β)/bone morphogenetic protein (BMP) pathway, 2) activation of interleukin (IL)-6 signaling, and 3) profibrotic processes. METHODS IUGR was induced in Wistar rats by isocaloric protein restriction during gestation by feeding a control (Co) or a low-protein diet with 17% or 8% casein, respectively. On postnatal day 1 (P1), litters from both groups were randomly reduced to 6 pups per dam to induce HA or adjusted to 10 pups and fed with standard diet: Co, Co with HA (Co-HA), IUGR, and IUGR with HA (IUGR-HA). RESULTS Birth weights in rats after IUGR were lower than in Co rats (P < 0.05). HA during lactation led to accelerated body weight gain from P1 to P23 (Co vs. Co-HA, IUGR vs. IUGR-HA; P < 0.05). At P70, prevention of HA after IUGR protected against the following: 1) activation of both TGF-β [phosphorylated SMAD (pSMAD) 2; plasminogen activator inhibitor 1 (Pai1)] and BMP signaling [pSMAD1; inhibitor of differentiation (Id1)] compared with Co (P < 0.05) and Co or IUGR (P < 0.05) rats, respectively; 2) greater mRNA expression of interleukin (Il) 6 and Il13 (P < 0.05) as well as activation of signal transducer and activator of transcription 3 (STAT3) signaling (P < 0.05) after IUGR-HA; and 3) greater gene expression of collagen Iα1 and osteopontin (P < 0.05) and increased deposition of bronchial subepithelial connective tissue in IUGR-HA compared with Co and IUGR rats. Moreover, HA had a significant additive effect (P < 0.05) on the increased enhanced pause (indicator of airway resistance) in the IUGR group (P < 0.05) at P70. CONCLUSIONS This study demonstrates a dual mechanism in IUGR-associated lung disease that is 1) IUGR-dependent and 2) HA-mediated and thereby offers new avenues to develop innovative preventive strategies for perinatal programming of adult lung diseases.
Collapse
Affiliation(s)
| | - Katharina Dinger
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| | - Eva Rother
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| | - Iris Östreicher
- Department of Pediatrics and Adolescent Medicine, University of Erlangen, Erlangen, Germany
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| | - Christian Plank
- Department of Pediatrics and Adolescent Medicine, University of Erlangen, Erlangen, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany; and
| |
Collapse
|
18
|
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 2014; 1:87-105. [PMID: 25401122 PMCID: PMC4232216 DOI: 10.1016/j.gendis.2014.07.005] [Citation(s) in RCA: 733] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
Collapse
Affiliation(s)
- Richard N. Wang
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jordan Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Michael Peabody
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Sahitya Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Christine Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alan Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - James Mok
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue L. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Omori A, Miyagawa S, Ogino Y, Harada M, Ishii K, Sugimura Y, Ogino H, Nakagata N, Yamada G. Essential roles of epithelial bone morphogenetic protein signaling during prostatic development. Endocrinology 2014; 155:2534-44. [PMID: 24731097 PMCID: PMC4060178 DOI: 10.1210/en.2013-2054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prostate is a male sex-accessory organ. The prostatic epithelia consist primarily of basal and luminal cells that differentiate from embryonic urogenital sinus epithelia. Prostate tumors are believed to originate in the basal and luminal cells. However, factors that promote normal epithelial differentiation have not been well elucidated, particularly for bone morphogenetic protein (Bmp) signaling. This study shows that Bmp signaling prominently increases during prostatic differentiation in the luminal epithelia, which is monitored by the expression of phosphorylated Smad1/5/8. To elucidate the mechanism of epithelial differentiation and the function of Bmp signaling during prostatic development, conditional male mutant mouse analysis for the epithelial-specific Bmp receptor 1a (Bmpr1a) was performed. We demonstrate that Bmp signaling is indispensable for luminal cell maturation, which regulates basal cell proliferation. Expression of the prostatic epithelial regulatory gene Nkx3.1 was significantly reduced in the Bmpr1a mutants. These results indicate that Bmp signaling is a key factor for prostatic epithelial differentiation, possibly by controlling the prostatic regulatory gene Nkx3.1.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type I/metabolism
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Proliferation
- Epithelium/metabolism
- Epithelium/pathology
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Hyperplasia
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Knockout
- Mice, Transgenic
- Mutation
- Phosphorylation
- Prostate/metabolism
- Prostate/pathology
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Smad Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Akiko Omori
- Department of Developmental Genetics (A.O., G.Y.), Institute of Advanced Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan; Okazaki Institute for Integrative Bioscience (S.M., Y.O.), National Institute for Basic Biology, National Institutes of Natural Science, Okazaki, 444-8787, Japan; Department of Clinical Anatomy (M.H.), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8591, Japan; Department of Oncologic Pathology (K.I.), and Nephro-Urologic Surgery and Andrology (Y.S.), Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan; Department of Animal Bioscience (H.O.), Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan; and Division of Reproductive Engineering (N.N.), Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol 2014; 50:233-45. [PMID: 24024524 DOI: 10.1165/rcmb.2013-0014tr] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal chronic lung disease, also known as bronchopulmonary dysplasia (BPD), is the most common complication of premature birth, affecting up to 30% of very low birth weight infants. Improved medical care has allowed for the survival of the most premature infants and has significantly changed the pathology of BPD from a disease marked by severe lung injury to the "new" form characterized by alveolar hypoplasia and impaired vascular development. However, increased patient survival has led to a paucity of pathologic specimens available from infants with BPD. This, combined with the lack of a system to model alveolarization in vitro, has resulted in a great need for animal models that mimic key features of the disease. To this end, a number of animal models have been created by exposing the immature lung to injuries induced by hyperoxia, mechanical stretch, and inflammation and most recently by the genetic modification of mice. These animal studies have 1) allowed insight into the mechanisms that determine alveolar growth, 2) delineated factors central to the pathogenesis of neonatal chronic lung disease, and 3) informed the development of new therapies. In this review, we summarize the key findings and limitations of the most common animal models of BPD and discuss how knowledge obtained from these studies has informed clinical care. Future studies should aim to provide a more complete understanding of the pathways that preserve and repair alveolar growth during injury, which might be translated into novel strategies to treat lung diseases in infants and adults.
Collapse
Affiliation(s)
- Anne Hilgendorff
- 1 Department of Perinatology Grosshadern, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | |
Collapse
|
21
|
Zhang W, Menke DB, Jiang M, Chen H, Warburton D, Turcatel G, Lu CH, Xu W, Luo Y, Shi W. Spatial-temporal targeting of lung-specific mesenchyme by a Tbx4 enhancer. BMC Biol 2013; 11:111. [PMID: 24225400 PMCID: PMC3907025 DOI: 10.1186/1741-7007-11-111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022] Open
Abstract
Background Reciprocal interactions between lung mesenchymal and epithelial cells play essential roles in lung organogenesis and homeostasis. Although the molecular markers and related animal models that target lung epithelial cells are relatively well studied, molecular markers of lung mesenchymal cells and the genetic tools to target and/or manipulate gene expression in a lung mesenchyme-specific manner are not available, which becomes a critical barrier to the study of lung mesenchymal biology and the related pulmonary diseases. Results We have identified a mouse Tbx4 gene enhancer that contains conserved DNA sequences across many vertebrate species with lung or lung-like gas exchange organ. We then generate a mouse line to express rtTA/LacZ under the control of the Tbx4 lung enhancer, and therefore a Tet-On inducible transgenic system to target lung mesenchymal cells at different developmental stages. By combining a Tbx4-rtTA driven Tet-On inducible Cre expression mouse line with a Cre reporter mouse line, the spatial-temporal patterns of Tbx4 lung enhancer targeted lung mesenchymal cells were defined. Pulmonary endothelial cells and vascular smooth muscle cells were targeted by the Tbx4-rtTA driver line prior to E11.5 and E15.5, respectively, while other subtypes of lung mesenchymal cells including airway smooth muscle cells, fibroblasts, pericytes could be targeted during the entire developmental stage. Conclusions Developmental lung mesenchymal cells can be specifically marked by Tbx4 lung enhancer activity. With our newly created Tbx4 lung enhancer-driven Tet-On inducible system, lung mesenchymal cells can be specifically and differentially targeted in vivo for the first time by controlling the doxycycline induction time window. This novel system provides a unique tool to study lung mesenchymal cell lineages and gene functions in lung mesenchymal development, injury repair, and regeneration in mice.
Collapse
Affiliation(s)
- Wenming Zhang
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd,, MS 35, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xu W, Liu C, Kaartinen V, Chen H, Lu CH, Zhang W, Luo Y, Shi W. TACE in perinatal mouse lung epithelial cells promotes lung saccular formation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L953-63. [PMID: 24142516 DOI: 10.1152/ajplung.00189.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tumor necrosis factor-α converting enzyme (TACE) is a cell membrane sheddase, expressed in both developmental lung epithelia and mesenchyme. Global abrogation of TACE results in neonatal lethality and multiple organ developmental abnormalities, including dysplastic lung. To further define the roles of TACE in regulating lung development, lung epithelial and/or mesenchymal specific TACE conditional knockout mice were generated. Blockade of TACE function in developing lung epithelial cells caused reduced saccular formation, decreased cell proliferation, and reduced mid-distal lung epithelial cell differentiation. In contrast, mesenchymal TACE knockout did not have any phenotypic change in developing lung. Simultaneous abrogation of TACE in both lung epithelial and mesenchymal cells did not result in a more severe lung abnormality. Interestingly, these lung-specific TACE conditional knockout mice were not neonatal lethal, and their lung structures were essentially normal after alveolarization. In addition, TACE conditional knockout in developing cardiomyocytes resulted in noncompaction of ventricular myocardium, as seen in TACE conventional knockout mice. However, these mice were also not neonatal lethal. In conclusion, lung epithelial TACE is essential for promoting fetal lung saccular formation, but not postnatal lung alveolarization in mice. Because the developmental abnormality of either lung or heart induced by TACE deficiency does not directly lead to neonatal lethality, the neonatal death of TACE conventional knockout mice is likely a result of synergistic effects of multiple organ abnormalities.
Collapse
Affiliation(s)
- Wei Xu
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Mailstop 35, Los Angeles, CA 90027.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Makanga M, Dewachter C, Maruyama H, Vuckovic A, Rondelet B, Naeije R, Dewachter L. Downregulated bone morphogenetic protein signaling in nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 2013; 29:823-34. [PMID: 23832098 DOI: 10.1007/s00383-013-3340-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2013] [Indexed: 12/14/2022]
Abstract
PURPOSE Bone morphogenetic proteins (BMP) have been shown to play crucial roles in not only lung and heart development, but also in the pathogenesis of pulmonary vascular remodeling in pulmonary hypertension (PH). We therefore hypothesized that BMP signaling could be altered in nitrofen-induced congenital diaphragmatic hernia (CDH) and associated PH. METHODS Pregnant rats were exposed to either 100 mg nitrofen or vehicle on embryonic day (E) 9.5. On E17 and E21, fetuses were delivered by cesarean section, killed and checked for left-sided CDH. The tissue was then harvested for pathobiological evaluation. RESULTS In nitrofen-induced CDH, pulmonary expressions of BMP4, BMP receptor (BMPR) type 2 and Id1 decreased on E17 and E21. On E17, pulmonary gremlin-1 expression increased, while BMP7 decreased. In the lungs, Id1 expression was correlated to BMP4 and BMPR2 and inversely correlated to gremlin-1 expression. Myocardial expressions of BMPR2, BMPR1A, BMP7 and SERCA-2A decreased, while gremlin-1 and noggin expressions increased on E17. On E21, myocardial expressions of Id1 and SERCA-2A decreased, while gremlin-1 expression increased. Moreover, BMPR2 and BMPR1A expressions were correlated to SERCA-2A expression and inversely correlated to pro-apoptotic Bax/Bcl2 ratio within the myocardium. CONCLUSION Downregulation of BMP signaling seems to contribute to pulmonary and myocardial anomalies observed in nitrofen-induced CDH.
Collapse
Affiliation(s)
- Martine Makanga
- Laboratory of Physiology and Physiopathology, Faculty of Medicine, Université Libre de Bruxelles, 808, Lennik Road, 1070, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhao L, Yee M, O'Reilly MA. Transdifferentiation of alveolar epithelial type II to type I cells is controlled by opposing TGF-β and BMP signaling. Am J Physiol Lung Cell Mol Physiol 2013; 305:L409-18. [PMID: 23831617 DOI: 10.1152/ajplung.00032.2013] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alveolar epithelial type II (ATII) cells are essential for maintaining normal lung homeostasis because they produce surfactant, express innate immune proteins, and can function as progenitors for alveolar epithelial type I (ATI) cells. Although autocrine production of transforming growth factor (TGF)-β1 has been shown to promote the transdifferentiation of primary rat ATII to ATI cells in vitro, mechanisms controlling this process still remain poorly defined. Here, evidence is provided that Tgf-β1, -2, -3 mRNA and phosphorylated SMAD2 and SMAD3 significantly increase as primary cultures of mouse ATII cells transdifferentiate to ATI cells. Concomitantly, bone morphogenetic protein (Bmp)-2 and -4 mRNA, and phosphorylated SMAD1/5/8 expression decrease. Exogenously supplied recombinant human TGF-β1 inhibited BMP signaling and enhanced transdifferentiation by promoting the loss of ATII cell-specific gene expression and weakly stimulating ATI cell-specific gene expression. On the other hand, exogenously supplied recombinant human BMP-4 inhibited TGF-β signaling and delayed transdifferentiation by inhibiting the gain in ATI cell-specific gene expression and weakly delaying the loss of ATII cell-specific gene expression. In mouse lung epithelial (MLE15) cells, small-interfering RNA (siRNA) knockdown of TGF-β receptor type-1 enhanced basal expression of ATII genes while siRNA RNA knockdown of BMP receptors type-1a and -1b enhanced basal expression of ATI genes. Together, these results suggest that the rate of ATII cell transdifferentiation is controlled by the opposing actions of BMP and TGF-β signaling that switch during the process of transdifferentiation.
Collapse
Affiliation(s)
- Lan Zhao
- Dept. of Pediatrics, Box 850, The Univ. of Rochester, School of Medicine and Dentistry, 601 Elmwood Ave., Rochester NY 14642.
| | | | | |
Collapse
|
25
|
Gui YS, Wang L, Tian X, Feng R, Ma A, Cai B, Zhang H, Xu KF. SPC-Cre-ERT2 transgenic mouse for temporal gene deletion in alveolar epithelial cells. PLoS One 2012; 7:e46076. [PMID: 23049940 PMCID: PMC3457936 DOI: 10.1371/journal.pone.0046076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/27/2012] [Indexed: 11/18/2022] Open
Abstract
Although several Cre-loxP-based gene knockout mouse models have been generated for the study of gene function in alveolar epithelia in the lung, their applications are still limited. In this study, we developed a SPC-Cre-ERT2 mouse model, in which a tamoxifen-inducible Cre recombinase (Cre-ERT2) is under the control of the human surfactant protein C (SPC) promoter. The specificity and efficiency of Cre-ERT2 activity was first evaluated by crossing SPC-Cre-ERT2 mouse with ROSA26R mouse, a β-galactosidase reporter strain. We found that Cre-ERT2 was expressed in 30.7% type II alveolar epithelial cells of SPC-Cre-ERT2/ROSA26R mouse lung tissues in the presence of tamoxifen. We then tested the tamoxifen-inducible recombinase activity of Cre-ERT2 in a mouse strain bearing TSC1 conditional knockout alleles (TSC1fx/fx). TSC1 deletion was detected in the lungs of tamoxifen treated SPC-Cre-ERT2/TSC1fx/fx mice. Therefore this SPC-Cre-ERT2 mouse model may be a valuable tool to investigate functions of genes in lung development, physiology and disease.
Collapse
Affiliation(s)
- Yao-Song Gui
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Herriges JC, Yi L, Hines EA, Harvey JF, Xu G, Gray P, Ma Q, Sun X. Genome-scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012; 241:1432-53. [PMID: 22711520 PMCID: PMC3529173 DOI: 10.1002/dvdy.23823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.
Collapse
Affiliation(s)
- John C. Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Lan Yi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Elizabeth A. Hines
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie F. Harvey
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China 200031
| | - Paul Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
| | - Qiufu Ma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
27
|
Sountoulidis A, Stavropoulos A, Giaglis S, Apostolou E, Monteiro R, Chuva de Sousa Lopes SM, Chen H, Stripp BR, Mummery C, Andreakos E, Sideras P. Activation of the canonical bone morphogenetic protein (BMP) pathway during lung morphogenesis and adult lung tissue repair. PLoS One 2012; 7:e41460. [PMID: 22916109 PMCID: PMC3423416 DOI: 10.1371/journal.pone.0041460] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/22/2012] [Indexed: 02/05/2023] Open
Abstract
Signaling by Bone Morphogenetic Proteins (BMP) has been implicated in early lung development, adult lung homeostasis and tissue-injury repair. However, the precise mechanism of action and the spatio-temporal pattern of BMP-signaling during these processes remains inadequately described. To address this, we have utilized a transgenic line harboring a BMP-responsive eGFP-reporter allele (BRE-eGFP) to construct the first detailed spatiotemporal map of canonical BMP-pathway activation during lung development, homeostasis and adult-lung injury repair. We demonstrate that during the pseudoglandular stage, when branching morphogenesis progresses in the developing lung, canonical BMP-pathway is active mainly in the vascular network and the sub-epithelial smooth muscle layer of the proximal airways. Activation of the BMP-pathway becomes evident in epithelial compartments only after embryonic day (E) 14.5 primarily in cells negative for epithelial-lineage markers, located in the proximal portion of the airway-tree, clusters adjacent to neuro-epithelial-bodies (NEBs) and in a substantial portion of alveolar epithelial cells. The pathway becomes activated in isolated E12.5 mesenchyme-free distal epithelial buds cultured in Matrigel suggesting that absence of reporter activity in these regions stems from a dynamic cross-talk between endoderm and mesenchyme. Epithelial cells with activated BMP-pathway are enriched in progenitors capable of forming colonies in three-dimensional Matrigel cultures.As lung morphogenesis approaches completion, eGFP-expression declines and in adult lung its expression is barely detectable. However, upon tissue-injury, either with naphthalene or bleomycin, the canonical BMP-pathways is re-activated, in bronchial or alveolar epithelial cells respectively, in a manner reminiscent to early lung development and in tissue areas where reparatory progenitor cells reside. Our studies illustrate the dynamic activation of canonical BMP-pathway during lung development and adult lung tissue-repair and highlight its involvement in two important processes, namely, the early development of the pulmonary vasculature and the management of epithelial progenitor pools both during lung development and repair of adult lung tissue-injury.
Collapse
Affiliation(s)
- Alexandros Sountoulidis
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| | - Athanasios Stavropoulos
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| | - Stavros Giaglis
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| | - Eirini Apostolou
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| | - Rui Monteiro
- Dept Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Huaiyong Chen
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Barry R. Stripp
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Centre, Durham, North Carolina, United States of America
| | - Christine Mummery
- Dept Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Evangelos Andreakos
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| | - Paschalis Sideras
- Biomedical Research Foundation of Academy of Athens, Centre for Immunology & Transplantations, Athens, Greece
| |
Collapse
|
28
|
Maina JN. Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool 2012; 9:16. [PMID: 22871018 PMCID: PMC3502106 DOI: 10.1186/1742-9994-9-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023] Open
Abstract
Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times and particular places in the developing organ. Coordinated expression of growth-instructing factors determines sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating molecular factors determine the ultimate phenotype. From the primeval time when the transformation of unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly employed within and across species, tissues, and stages of development. While much still remain to be elucidated and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has in recent times been made in understanding the mechanism of BM. By identifying and characterizing the morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the molecular factors which are involved in the development of the lung (and other branched organs) is a classic example of nature's astuteness in economically utilizing finite resources. Once purposefully formed, well-tested and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes. The material and time costs of developing utterly new instruments and routines with every drastic biological change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and therefore functions, ensuring survival and evolutionary success.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park 2006, P,O, Box 524, Johannesburg, South Africa.
| |
Collapse
|
29
|
Rankin SA, Gallas AL, Neto A, Gómez-Skarmeta JL, Zorn AM. Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/β-catenin-mediated lung specification in Xenopus. Development 2012; 139:3010-20. [PMID: 22791896 DOI: 10.1242/dev.078220] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Embryonic development of the respiratory system is regulated by a series of mesenchymal-epithelial interactions that are only partially understood. Mesenchymal FGF and Wnt2/Wnt2b signaling are implicated in specification of mammalian pulmonary progenitors from the ventral foregut endoderm, but their epistatic relationship and downstream targets are largely unknown. In addition, how wnt2 and wnt2b are regulated in the developing foregut mesenchyme is unknown. We show that the Odd-skipped-related (Osr) zinc-finger transcriptional repressors Osr1 and Osr2 are redundantly required for Xenopus lung specification in a molecular pathway linking foregut pattering by FGFs to Wnt-mediated lung specification and RA-regulated lung bud growth. FGF and RA signals are required for robust osr1 and osr2 expression in the foregut endoderm and surrounding lateral plate mesoderm (lpm) prior to respiratory specification. Depletion of both Osr1 and Osr2 (Osr1/Osr2) results in agenesis of the lungs, trachea and esophagus. The foregut lpm of Osr1/Osr2-depleted embryos fails to express wnt2, wnt2b and raldh2, and consequently Nkx2.1(+) progenitors are not specified. Our data suggest that Osr1/Osr2 normally repress bmp4 expression in the lpm, and that BMP signaling negatively regulates the wnt2b domain. These results significantly advance our understanding of early lung development and may impact strategies to differentiate respiratory tissue from stem cells.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
30
|
Ornitz DM, Yin Y. Signaling networks regulating development of the lower respiratory tract. Cold Spring Harb Perspect Biol 2012; 4:4/5/a008318. [PMID: 22550231 DOI: 10.1101/cshperspect.a008318] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lungs serve the primary function of air-blood gas exchange in all mammals and in terrestrial vertebrates. Efficient gas exchange requires a large surface area that provides intimate contact between the atmosphere and the circulatory system. To achieve this, the lung contains a branched conducting system (the bronchial tree) and specialized air-blood gas exchange units (the alveoli). The conducting system brings air from the external environment to the alveoli and functions to protect the lung from debris that could obstruct airways, from entry of pathogens, and from excessive loss of fluids. The distal lung enables efficient exchange of gas between the alveoli and the conducting system and between the alveoli and the circulatory system. In this article, we highlight developmental and physiological mechanisms that specify, pattern, and regulate morphogenesis of this complex and essential organ. Recent advances have begun to define molecular mechanisms that control many of the important processes required for lung organogenesis; however, many questions remain. A deeper understanding of these molecular mechanisms will aid in the diagnosis and treatment of congenital lung disease and in the development of strategies to enhance the reparative response of the lung to injury and eventually permit regeneration of functional lung tissue.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
31
|
Yin Y, Wang F, Ornitz DM. Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development 2011; 138:3169-77. [PMID: 21750028 DOI: 10.1242/dev.065110] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor (FGF) 9 is a secreted signaling molecule that is expressed in lung mesothelium and epithelium and is required for lung development. Embryos lacking FGF9 show mesenchymal hypoplasia, decreased epithelial branching and, by the end of gestation, hypoplastic lungs that cannot support life. Mesenchymal FGF signaling interacts with β-catenin-mediated WNT signaling in a feed-forward loop that functions to sustain mesenchymal FGF responsiveness and mesenchymal WNT/β-catenin signaling. During pseudoglandular stages of lung development, Wnt2a and Wnt7b are the canonical WNT ligands that activate mesenchymal WNT/β-catenin signaling, whereas FGF9 is the only known ligand that signals to mesenchymal FGF receptors (FGFRs). Here, we demonstrate that mesothelial- and epithelial-derived FGF9, mesenchymal Wnt2a and epithelial Wnt7b have unique functions in lung development in mouse. Mesothelial FGF9 and mesenchymal WNT2A are principally responsible for maintaining mesenchymal FGF-WNT/β-catenin signaling, whereas epithelial FGF9 primarily affects epithelial branching. We show that FGF signaling is primarily responsible for regulating mesenchymal proliferation, whereas β-catenin signaling is a required permissive factor for mesenchymal FGF signaling.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
32
|
Omori A, Harada M, Ohta S, Villacorte M, Sugimura Y, Shiraishi T, Suzuki K, Nakagata N, Ito T, Yamada G. Epithelial Bmp (Bone morphogenetic protein) signaling for bulbourethral gland development: a mouse model for congenital cystic dilation. Congenit Anom (Kyoto) 2011; 51:102-9. [PMID: 21848994 DOI: 10.1111/j.1741-4520.2011.00318.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The bulbourethral gland (BUG) is a male-specific organ, which secretes part of the semen fluid. As the BUG is located in the deep pelvic floor, its developmental process is still unclear. Bone morphogenetic protein (Bmp) signaling plays pivotal roles in various organs. However, the function of Bmp signaling for BUG development is still unclear. The present study aimed to elucidate the role of Bmp signaling in the development of the BUG. We observed the prominent nuclear accumulation of phosphorylated (p) SMAD1/5/8, the downstream molecules of Bmp signaling, during BUG epithelial development. These results suggest that Bmp signaling contributes to BUG development. Bmp receptor1a (Bmpr1a) is known as the major type 1 signal transducer in some organogeneses. To analyze the Bmp signaling function for BUG development, we examined epithelial cell-specific Bmpr1a gene conditional mutant mice utilizing the tamoxifen-inducible Cre recombinase system. We observed cystic dilation and epithelial hyperplasia of the BUG in the Bmpr1a conditional knockout mice. The mutant cystic BUG specimens also showed inflammatory lesions. These BUG abnormalities resembled some of the BUG malformations observed in human congenital syndromes. The current study suggests that Bmp signaling possesses an essential role in BUG development and homeostasis. This would be the first report showing that the mutation of the Bmpr1a gene in the BUG epithelia phenocopied some abnormalities of human congenital syndromes affecting the BUG duct.
Collapse
Affiliation(s)
- Akiko Omori
- Department of Organ Formation, Institute of Molecular Embryology and Genetics (IMEG) and Graduate School of Medical and Pharmaceutical Sciences, Kumanmoto University, Honjo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Neonatal hyperoxia causes pulmonary vascular disease and shortens life span in aging mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2601-10. [PMID: 21550015 DOI: 10.1016/j.ajpath.2011.02.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/04/2011] [Accepted: 02/24/2011] [Indexed: 11/22/2022]
Abstract
Bronchopulmonary dysplasia is a chronic lung disease observed in premature infants requiring oxygen supplementation and ventilation. Although the use of exogenous surfactant and protective ventilation strategies has improved survival, the long-term pulmonary consequences of neonatal hyperoxia are unknown. Here, we investigate whether neonatal hyperoxia alters pulmonary function in aging mice. By 67 weeks of age, mice exposed to 100% oxygen between postnatal days 1 to 4 showed significantly a shortened life span (56.6% survival, n = 53) compared to siblings exposed to room air as neonates (100% survival, n = 47). Survivors had increased lung compliance and decreased elastance. There was also right ventricular hypertrophy and pathological evidence for pulmonary hypertension, defined by reduction of the distal microvasculature and the presence of numerous dilated arterioles expressing von Willebrand factor and α-smooth muscle actin. Consistent with recent literature implicating bone morphogenetic protein (BMP) signaling in pulmonary vascular disease, BMP receptors and downstream phospho-Smad1/5/8 were reduced in lungs of aging mice exposed to neonatal oxygen. BMP signaling alterations were not observed in 8-week-old mice. These data suggest that loss of BMP signaling in aged mice exposed to neonatal oxygen is associated with a shortened life span, pulmonary vascular disease, and associated cardiac failure. People exposed to hyperoxia as neonates may be at increased risk for pulmonary hypertension.
Collapse
|
34
|
Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development 2011; 138:971-81. [PMID: 21303850 DOI: 10.1242/dev.053694] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian foregut gives rise to the dorsally located esophagus and stomach and the ventrally located trachea and lung. Proper patterning and morphogenesis of the common foregut tube and its derived organs is essential for viability of the organism at birth. Here, we show that conditional inactivation of BMP type I receptor genes Bmpr1a and Bmpr1b (Bmpr1a;b) in the ventral endoderm leads to tracheal agenesis and ectopic primary bronchi. Molecular analyses of these mutants reveal a reduction of ventral endoderm marker NKX2-1 and an expansion of dorsal markers SOX2 and P63 into the prospective trachea and primary bronchi. Subsequent genetic experiments show that activation of canonical WNT signaling, previously shown to induce ectopic respiratory fate in otherwise wild-type mice, is incapable of promoting respiratory fate in the absence of Bmpr1a;b. Furthermore, we find that inactivation of Sox2 in Bmpr1a;b mutants does not suppress ectopic lung budding but does rescue trachea formation and NKX2-1 expression. Together, our data suggest that signaling through BMPR1A;B performs at least two roles in early respiratory development: first, it promotes tracheal formation through repression of Sox2; and second, it restricts the site of lung bud initiation.
Collapse
Affiliation(s)
- Eric T Domyan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The mammalian respiratory lineage, consisting of the trachea and lung, originates from the ventral foregut in an early embryo. Reciprocal signaling interactions between the foregut epithelium and its associated mesenchyme guide development of the respiratory endoderm, from a naive sheet of cells to multiple cell types that line a functional organ. This review synthesizes current understanding of the early events in respiratory system development, focusing on three main topics: (1) specification of the respiratory system as a distinct organ of the endoderm, (2) patterning and differentiation of the nascent respiratory epithelium along its proximal-distal axis, and (3) plasticity of the respiratory cells during the process of development. This review also highlights areas in need of further study, including determining how early endoderm cells rapidly switch their responses to the same signaling cues during development, and how the general proximal-distal pattern of the lung is converted to fine-scale organization of multiple cell types along this axis.
Collapse
Affiliation(s)
- Eric T. Domyan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
36
|
Xu B, Chen C, Chen H, Zheng SG, Bringas P, Xu M, Zhou X, Chen D, Umans L, Zwijsen A, Shi W. Smad1 and its target gene Wif1 coordinate BMP and Wnt signaling activities to regulate fetal lung development. Development 2011; 138:925-35. [PMID: 21270055 DOI: 10.1242/dev.062687] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bone morphogenetic protein 4 (Bmp4) is essential for lung development. To define the intracellular signaling mechanisms by which Bmp4 regulates lung development, BMP-specific Smad1 or Smad5 was selectively knocked out in fetal mouse lung epithelial cells. Abrogation of lung epithelial-specific Smad1, but not Smad5, resulted in retardation of lung branching morphogenesis and reduced sacculation, accompanied by altered distal lung epithelial cell proliferation and differentiation and, consequently, severe neonatal respiratory failure. By combining cDNA microarray with ChIP-chip analyses, Wnt inhibitory factor 1 (Wif1) was identified as a novel target gene of Smad1 in the developing mouse lung epithelial cells. Loss of Smad1 transcriptional activation of Wif1 was associated with reduced Wif1 expression and increased Wnt/β-catenin signaling activity in lung epithelia, resulting in specific fetal lung abnormalities. This suggests a novel regulatory loop of Bmp4-Smad1-Wif1-Wnt/β-catenin in coordinating BMP and Wnt pathways to control fetal lung development.
Collapse
Affiliation(s)
- Bing Xu
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jonigk D, Theophile K, Hussein K, Bock O, Lehmann U, Bockmeyer CL, Gottlieb J, Fischer S, Simon A, Welte T, Maegel L, Kreipe H, Laenger F. Obliterative airway remodelling in transplanted and non-transplanted lungs. Virchows Arch 2010; 457:369-80. [PMID: 20632031 DOI: 10.1007/s00428-010-0949-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/28/2010] [Accepted: 07/06/2010] [Indexed: 02/06/2023]
Abstract
Obliterative airway remodelling is a morphological sequence in a variety of pulmonary diseases. Notably, bronchiolitis obliterans represents one of the key complications of lung transplantation, induced by (immigrating) myofibroblasts. A comparative expression analysis of obliterative airway remodelling in transplanted and non-transplanted patients has not been reported so far. Obliterated and unremodelled airways from explanted lungs (n = 19) from patients suffering from chronic allograft dysfunction, infection, graft-versus-host disease and toxic exposure were isolated by laser-assisted microdissection. Airways from lung allografts harvested shortly before and after transplantation (n = 4) as well as fibroblastic foci from lungs with interstitial pulmonary fibrosis (n = 4) served as references. Pre-amplified cDNA was analysed by quantitative real-time RT-PCR for expression of fibrosis, inflammation and apoptosis-associated genes. Composition of infiltrating cells and protein expression were assessed by conventional histology and immunohistochemistry. Bronchiolitis obliterans in transplanted patients showed a significant increase of BMP-7 expression (p = 0.0141 compared with controls), while TGF-beta1 and FGF-2 as well as BMP-4 and BMP-7 were up-regulated in fibroblastic foci in interstitial pulmonary fibrosis (p < 0.0424 compared with controls). Regarding other fibrosis-associated genes (BMP-6, SMAD-3, CASP-3 and CASP-9, FASLG, NF-KB1, IL-1 and IL-2) as well as cellularity and cellular composition, no significant differences between obliterative airway remodelling in transplanted and non-transplanted patients could be shown. Obliterative airway remodelling in lung allografts and in non-transplanted patients share many morphological and genetic traits. BMPs, especially BMP-7, warrant further investigation as possible markers for the aggravation of airway remodelling.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Minoo P, Li C. Cross-talk between transforming growth factor-beta and Wingless/Int pathways in lung development and disease. Int J Biochem Cell Biol 2010; 42:809-12. [PMID: 20219694 PMCID: PMC2862795 DOI: 10.1016/j.biocel.2010.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/10/2010] [Accepted: 02/18/2010] [Indexed: 12/20/2022]
Abstract
Lung development depends on accurate and precise patterning of a pulmonary anlagen, consisting of both endodermally and mesodermally derived progenitor cells. In this process, the need to establish communication and control among individual cells is paramount. Transforming growth factor-beta (TGFbeta) and Wingless/int (Wnt) signaling pathways serve this need. The individual functional repertoire of the two pathways is further expanded by cross-talk and integration of signaling at multiple levels taking advantage of their hard-wired multi-component signal transduction platforms. Cross-talk creates the possibility for both specificity and versatility in signaling during development and during repair of injured tissue. Understanding the mechanics and the physiological implications of this cross-talk is necessary for therapeutic or preventive targeting of either TGFbeta or Wnt signaling pathways.
Collapse
Affiliation(s)
- Parviz Minoo
- Division of Neonatology, Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
39
|
Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E. Lung organogenesis. Curr Top Dev Biol 2010; 90:73-158. [PMID: 20691848 PMCID: PMC3340128 DOI: 10.1016/s0070-2153(10)90003-3] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental lung biology is a field that has the potential for significant human impact: lung disease at the extremes of age continues to cause major morbidity and mortality worldwide. Understanding how the lung develops holds the promise that investigators can use this knowledge to aid lung repair and regeneration. In the decade since the "molecular embryology" of the lung was first comprehensively reviewed, new challenges have emerged-and it is on these that we focus the current review. Firstly, there is a critical need to understand the progenitor cell biology of the lung in order to exploit the potential of stem cells for the treatment of lung disease. Secondly, the current familiar descriptions of lung morphogenesis governed by growth and transcription factors need to be elaborated upon with the reinclusion and reconsideration of other factors, such as mechanics, in lung growth. Thirdly, efforts to parse the finer detail of lung bud signaling may need to be combined with broader consideration of overarching mechanisms that may be therapeutically easier to target: in this arena, we advance the proposal that looking at the lung in general (and branching in particular) in terms of clocks may yield unexpected benefits.
Collapse
Affiliation(s)
- David Warburton
- The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sharma S, Tantisira K, Carey V, Murphy AJ, Lasky-Su J, Celedón JC, Lazarus R, Klanderman B, Rogers A, Soto-Quirós M, Avila L, Mariani T, Gaedigk R, Leeder S, Torday J, Warburton D, Raby B, Weiss ST. A role for Wnt signaling genes in the pathogenesis of impaired lung function in asthma. Am J Respir Crit Care Med 2009; 181:328-36. [PMID: 19926868 DOI: 10.1164/rccm.200907-1009oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Animal models demonstrate that aberrant gene expression in utero can result in abnormal pulmonary phenotypes. OBJECTIVES We sought to identify genes that are differentially expressed during in utero airway development and test the hypothesis that variants in these genes influence lung function in patients with asthma. METHODS Stage 1 (Gene Expression): Differential gene expression analysis across the pseudoglandular (n = 27) and canalicular (n = 9) stages of human lung development was performed using regularized t tests with multiple comparison adjustments. Stage 2 (Genetic Association): Genetic association analyses of lung function (FEV(1), FVC, and FEV(1)/FVC) for variants in five differentially expressed genes were conducted in 403 parent-child trios from the Childhood Asthma Management Program (CAMP). Associations were replicated in 583 parent-child trios from the Genetics of Asthma in Costa Rica study. MEASUREMENTS AND MAIN RESULTS Of the 1,776 differentially expressed genes between the pseudoglandular (gestational age: 7-16 wk) and the canalicular (gestational age: 17-26 wk) stages, we selected 5 genes in the Wnt pathway for association testing. Thirteen single nucleotide polymorphisms in three genes demonstrated association with lung function in CAMP (P < 0.05), and associations for two of these genes were replicated in the Costa Ricans: Wnt1-inducible signaling pathway protein 1 with FEV(1) (combined P = 0.0005) and FVC (combined P = 0.0004), and Wnt inhibitory factor 1 with FVC (combined P = 0.003) and FEV(1)/FVC (combined P = 0.003). CONCLUSIONS Wnt signaling genes are associated with impaired lung function in two childhood asthma cohorts. Furthermore, gene expression profiling of human fetal lung development can be used to identify genes implicated in the pathogenesis of lung function impairment in individuals with asthma.
Collapse
Affiliation(s)
- Sunita Sharma
- Channing Laboratory, Center for Genomic Medicine, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The complex structure of the lung is developed sequentially, initially by epithelial tube branching and later by septation of terminal air sacs with accompanying coordinated growth of a variety of lung epithelial and mesenchymal cells. Groups of transcriptional factors, peptide growth factors and their intracellular signaling regulators, as well as extracellular matrix proteins are programmed to be expressed at appropriate levels in the right place at the right time to control normal lung formation. Studies of lung development and lung repair/fibrosis to date have discovered that many of the same factors that control normal development are also key players in lung injury repair and fibrosis. Transforming growth factor-beta (TGF-beta) family peptide signaling is a prime example. Lack of TGF-beta signaling results in abnormal lung branching morphogenesis and alveolarization during development, whereas excessive amounts of TGF-beta signaling cause severe hypoplasia in the immature lung and fibrosis in mature lung. This leads us to propose the 'Goldilocks' hypothesis of regulatory signaling in lung development and injury repair that everything must be done just right!
Collapse
Affiliation(s)
- Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, 4650 Sunset Blvd., MS 35, Los Angeles, CA 90027, USA.
| | | | | |
Collapse
|