1
|
El Mammeri N, Duan P, Hong M. Structures of ΔD421 Truncated Tau Fibrils. J Mol Biol 2025; 437:169051. [PMID: 40021051 DOI: 10.1016/j.jmb.2025.169051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The microtubule-associated protein tau aggregates into pathological β-sheet amyloid fibrils in Alzheimer's disease (AD) and other neurodegenerative diseases. In these aggregates, tau is chemically modified, including abnormal hyperphosphorylation and truncation. Truncation after D421 in the C-terminal domain occurs at early stages of AD. Here we investigate the structures of ΔD421-truncated 0N4R tau fibrils assembled in vitro in the absence of anionic cofactors. Using solid-state NMR spectroscopy and cryoelectron microscopy, we show that ΔD421-truncated 0N4R tau forms homogeneous fibrils whose rigid core adopts a three-layered β-sheet structure that spans R2, R3 and R4 repeats. This structure is essentially identical to that of full-length tau containing phospho-mimetic mutations at the PHF1 epitope in the C-terminal domain. In comparison, a ΔD421-truncated tau that additionally contains three phospho-mimetic mutations at the AT8 epitope in the proline-rich region forms a fibril core that includes the first half of the C-terminal domain, which is excluded from all known pathological tau fibril cores. These results indicate that the posttranslational modification code of tau contains redundancy: both charge modification and truncation of the C-terminal domain promote a three-layered β-sheet structure, which resembles pathological four-repeat tau structures in several tauopathies. In comparison, reducing the positive charges at the AT8 epitope in ΔD421-truncated tau promotes a fibril core that includes an immobilized C-terminal domain. The absence of this structure in tauopathy brains implies that ΔD421 truncation does not occur in conjunction with AT8 phosphorylation in diseased brains.
Collapse
Affiliation(s)
- Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States.
| |
Collapse
|
2
|
Wu Y, Li T, Jiang X, Ling J, Zhao Z, Zhu J, Chen C, Liu Q, Yang X, Shen X, Ma R, Li G, Liu G. (-)-Epicatechin Rescues Memory Deficits by Activation of Autophagy in a Mouse Model of Tauopathies. MedComm (Beijing) 2025; 6:e70144. [PMID: 40135197 PMCID: PMC11933444 DOI: 10.1002/mco2.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/23/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
In tauopathies, defects in autophagy-lysosomal protein degradation are thought to contribute to the abnormal accumulation of aggregated tau. Recent studies have shown that (-)-Epicatechin (Epi), a dietary flavonoid belonging to the flavan-3-ol subgroup, improves blood flow, modulates metabolic profiles, and prevents oxidative damage. However, less research has explored the effects of Epi on tauopathies. Here, we found that Epi rescued cognitive deficits in P301S tau transgenic mice, a model exhibiting characteristics of tauopathies like frontotemporal dementia and Alzheimer's disease, and attenuated tau pathology through autophagy activation. Proteomic and biochemical analyses revealed that P301S mice exhibit deficits in autophagosome formation via modulating mTOR, consequently inhibiting autophagy. Epi inhibited the mTOR signaling pathway to promote autophagosome formation, which is essential for the clearance of tau aggregation. By using chloroquine (CQ) to inhibit autophagy in vivo, we further confirmed that Epi induced tau degradation via the autophagy pathway. Lastly, Epi administration was also found to improve cognition by reversing spine decrease and neuron loss, as well as attenuating neuroinflammation. Our findings suggest that Epi promoted tau clearance by activating autophagy, indicating its potential as a promising therapeutic candidate for tauopathies.
Collapse
Affiliation(s)
- Yanqing Wu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Health Management CenterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ting Li
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Ministry of Education of China and Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xingjun Jiang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jianmin Ling
- Department of Emergency MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Critical Care MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zaihua Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational EnvironmentSchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Jiahui Zhu
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chongyang Chen
- Key Laboratory of Nuclear MedicineMinistry of HealthJiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Qian Liu
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Ministry of Education of China and Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of ShenzhenShenzhen Center for Disease Control and PreventionShenzhenChina
| | - Xuefeng Shen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational EnvironmentSchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Rong Ma
- Department of PharmacologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gang Li
- Department of NeurologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gongping Liu
- Department of PathophysiologySchool of Basic MedicineKey Laboratory of Ministry of Education of China and Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Modern Toxicology of ShenzhenShenzhen Center for Disease Control and PreventionShenzhenChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
3
|
Chu D, Yang X, Wang J, Zhou Y, Gu JH, Miao J, Wu F, Liu F. Tau truncation in the pathogenesis of Alzheimer's disease: a narrative review. Neural Regen Res 2024; 19:1221-1232. [PMID: 37905868 PMCID: PMC11467920 DOI: 10.4103/1673-5374.385853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Alzheimer's disease is characterized by two major neuropathological hallmarks-the extracellular β-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein. Recent studies suggest that dysregulation of the microtubule-associated protein Tau, especially specific proteolysis, could be a driving force for Alzheimer's disease neurodegeneration. Tau physiologically promotes the assembly and stabilization of microtubules, whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers, resulting in them gaining prion-like characteristics. In addition, Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner. This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments, investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease, and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xingyue Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| | - Jin Miao
- Laboratory of Animal Center, Nantong University, Nantong, Jiangsu Province, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
4
|
Schweighauser M, Murzin AG, Macdonald J, Lavenir I, Crowther RA, Scheres SHW, Goedert M. Cryo-EM structures of tau filaments from the brains of mice transgenic for human mutant P301S Tau. Acta Neuropathol Commun 2023; 11:160. [PMID: 37798679 PMCID: PMC10552433 DOI: 10.1186/s40478-023-01658-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Mice transgenic for human mutant P301S tau are widely used as models for human tauopathies. They develop neurodegeneration and abundant filamentous inclusions made of human mutant four-repeat tau. Here we used electron cryo-microscopy (cryo-EM) to determine the structures of tau filaments from the brains of Tg2541 and PS19 mice. Both lines express human P301S tau (0N4R for Tg2541 and 1N4R for PS19) on mixed genetic backgrounds and downstream of different promoters (murine Thy1 for Tg2541 and murine Prnp for PS19). The structures of tau filaments from Tg2541 and PS19 mice differ from each other and those of wild-type tau filaments from human brains. The structures of tau filaments from the brains of humans with mutations P301L, P301S or P301T in MAPT are not known. Filaments from the brains of Tg2541 and PS19 mice share a substructure at the junction of repeats 2 and 3, which comprises residues I297-V312 of tau and includes the P301S mutation. The filament core from the brainstem of Tg2541 mice consists of residues K274-H329 of tau and two disconnected protein densities. Two non-proteinaceous densities are also in evidence. The filament core from the cerebral cortex of line PS19 extends from residues G271-P364 of tau. One strong non-proteinaceous density is also present. Unlike the tau filaments from human brains, the sequences following repeat 4 are missing from the cores of tau filaments from the brains of Tg2541 and PS19 mice.
Collapse
Affiliation(s)
| | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Isabelle Lavenir
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
5
|
Yu F, Iacono D, Perl DP, Lai C, Gill J, Le TQ, Lee P, Sukumar G, Armstrong RC. Neuronal tau pathology worsens late-phase white matter degeneration after traumatic brain injury in transgenic mice. Acta Neuropathol 2023; 146:585-610. [PMID: 37578550 PMCID: PMC10499978 DOI: 10.1007/s00401-023-02622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Traumatic brain injury (TBI) causes diffuse axonal injury which can produce chronic white matter pathology and subsequent post-traumatic neurodegeneration with poor patient outcomes. Tau modulates axon cytoskeletal functions and undergoes phosphorylation and mis-localization in neurodegenerative disorders. The effects of tau pathology on neurodegeneration after TBI are unclear. We used mice with neuronal expression of human mutant tau to examine effects of pathological tau on white matter pathology after TBI. Adult male and female hTau.P301S (Tg2541) transgenic and wild-type (Wt) mice received either moderate single TBI (s-TBI) or repetitive mild TBI (r-mTBI; once daily × 5), or sham procedures. Acutely, s-TBI produced more extensive axon damage in the corpus callosum (CC) as compared to r-mTBI. After s-TBI, significant CC thinning was present at 6 weeks and 4 months post-injury in Wt and transgenic mice, with homozygous tau expression producing additional pathology of late demyelination. In contrast, r-mTBI did not produce significant CC thinning except at the chronic time point of 4 months in homozygous mice, which exhibited significant CC atrophy (- 29.7%) with increased microgliosis. Serum neurofilament light quantification detected traumatic axonal injury at 1 day post-TBI in Wt and homozygous mice. At 4 months, high tau and neurofilament in homozygous mice implicated tau in chronic axon pathology. These findings did not have sex differences detected. Conclusions: Neuronal tau pathology differentially exacerbated CC pathology based on injury severity and chronicity. Ongoing CC atrophy from s-TBI became accompanied by late demyelination. Pathological tau significantly worsened CC atrophy during the chronic phase after r-mTBI.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Diego Iacono
- Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chen Lai
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Tuan Q Le
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Patricia Lee
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA.
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
6
|
Carosi JM, Sargeant TJ. Rapamycin and Alzheimer disease: a hypothesis for the effective use of rapamycin for treatment of neurodegenerative disease. Autophagy 2023; 19:2386-2390. [PMID: 36727410 PMCID: PMC10351443 DOI: 10.1080/15548627.2023.2175569] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
In 2019 we summarized work relating to the potential use of rapamycin for treating Alzheimer disease (AD). We considered the commentary necessary because use of rapamycin in people with AD is a very real prospect and we wanted to present a balanced view of the likely consequences of MTOR (mechanistic target of rapamycin kinase) inhibition in the AD brain. We concluded that use of rapamycin, an MTOR inhibitor that increases macroautophagy/autophagy, could hold promise for prevention of AD if used early enough. However, MTOR inhibition appeared ineffectual in resolving existing amyloid pathology in AD mouse models. In this View article, we update these observations with new studies that have used rapamycin in AD models and provide evidence both for and against its use in AD. We also discuss rapamycin in the light of new research that describes rapamycin-induced autophagic stress in the aging brain and autophagic stress as the origin of the amyloid plaque itself. We conclude that rapamycin will have complex effects on the brain in AD. Further, we hypothesize that lysosomal degradative capacity in the brain will likely determine how effective or detrimental rapamycin will be as a treatment of AD.Abbreviations: AD: Alzheimer disease; APP: amyloid beta precursor protein; MAPT/tau: microtubule associated protein tau; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1.
Collapse
Affiliation(s)
- Julian M Carosi
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
7
|
Increase in Tau Pathology in P290S Mapt Knock-In Mice Crossed with App NL-G-F Mice. eNeuro 2022; 9:ENEURO.0247-22.2022. [PMID: 36635241 PMCID: PMC9770019 DOI: 10.1523/eneuro.0247-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is characterized by the pathologic assembly of amyloid β (Aβ) peptide, which deposits into extracellular plaques, and tau, which accumulates in intraneuronal inclusions. To investigate the link between Aβ and tau pathologies, experimental models featuring both pathologies are needed. We developed a mouse model featuring both tau and Aβ pathologies by knocking the P290S mutation into murine Mapt and crossing these Mapt P290S knock-in (KI) mice with the App NL-G-F KI line. Mapt P290S KI mice developed a small number of tau inclusions, which increased with age. The amount of tau pathology was significantly larger in App NL-G-F xMapt P290S KI mice from 18 months of age onward. Tau pathology was higher in limbic areas, including hippocampus, amygdala, and piriform/entorhinal cortex. We also observed AT100-positive and Gallyas-Braak-silver-positive dystrophic neurites containing assembled filamentous tau, as visualized by in situ electron microscopy. Using a cell-based tau seeding assay, we showed that Sarkosyl-insoluble brain extracts from both 18-month-old Mapt P290S KI and App NL-G-F xMapt P290S KI mice were seed competent, with brain extracts from double-KI mice seeding significantly more than those from the Mapt P290S KI mice. Finally, we showed that App NL-G-F xMapt P290S KI mice had neurodegeneration in the piriform cortex from 18 months of age. We suggest that App NL-G-F xMapt P290S KI mice provide a good model for studying the interactions of aggregation-prone tau, Aβ, neuritic plaques, neurodegeneration, and aging.
Collapse
|
8
|
Zaki MO, El-Desouky S, Elsherbiny DA, Salama M, Azab SS. Glimepiride mitigates tauopathy and neuroinflammation in P301S transgenic mice: role of AKT/GSK3β signaling. Inflammopharmacology 2022; 30:1871-1890. [PMID: 35922737 PMCID: PMC9499917 DOI: 10.1007/s10787-022-01023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Tauopathy is a group of neurodegenerative diseases in which the pathogenesis processes are related to tau protein. The imbalances between the activities of kinases and phosphatases of tau protein lead to tau hyperphosphorylation and subsequent neurodegeneration. Numerous studies suggest a strong linkage between type 2 diabetes mellitus (T2D) and neurodegenerative diseases. Therefore, finding a drug with a dual therapeutic activity against T2D and neuroprotective will be a promising idea. Hence, the potential neuroprotective effect of Glimepiride (GPD) against tauopathy was evaluated in the current study. METHODS P301S mice model was employed for tauopathy and C57BL/6 wild type mice (WT) was used as control. Phosphorylated and acetylated tau protein levels was assessed in cortex and hippocampus by western blot. Effect of GPD on tauopathy related enzymes, neuroinflammation, apoptotic markers were evaluated. Furthermore, the neuroprotective effects against anxiety like behavior and motor impairment was analyzed using Parallel rod floor and Open field tests. RESULTS GPD significantly ameliorates motor impairment, anxiety like behavior and neurodegeneration in P301S mice. Phosphorylated tau and acetylated tau were significantly decreased in both cortex and hippocampus of P301S mice via decreasing GSK3β, increasing ratio of phosphorylated-AKT to total-AKT, increasing PP2A and normalization of CDK5 levels. Furthermore, GPD treatment also decreased neuroinflammation and apoptosis by reducing NF-kB, TNF-α and caspase 3 levels. CONCLUSION The current data suggests that GPD exerts a protective effect against tauopathy, behavioural consequences, neurodegeneration, neuroinflammation and apoptosis. GPD is therefore a promising agent for the treatment of neurodegenerative diseases associated with tauopathy.
Collapse
Affiliation(s)
- Mennatallah O Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - S El-Desouky
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed Salama
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
9
|
Parekh P, Mu Q, Badachhape A, Bhavane R, Srivastava M, Devkota L, Sun X, Bhandari P, Eriksen JL, Tanifum E, Ghaghada K, Annapragada A. A surrogate marker for very early-stage tau pathology is detectable by molecular magnetic resonance imaging. Theranostics 2022; 12:5504-5521. [PMID: 35910789 PMCID: PMC9330526 DOI: 10.7150/thno.72258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/02/2022] [Indexed: 01/30/2023] Open
Abstract
The abnormal phosphorylation of tau is a necessary precursor to the formation of tau fibrils, a marker of Alzheimer's disease. We hypothesize that hyperphosphorylative conditions may result in unique cell surface markers. We identify and demonstrate the utility of such surrogate markers to identify the hyperphosphorylative state. Methods: Cell SELEX was used to identify novel thioaptamers specifically binding hyperphosphorylative cells. Cell surface vimentin was identified as a potential binding target of the aptamer. Novel molecular magnetic resonance imaging (M-MRI) probes using these aptamers and a small molecule ligand to vimentin were used for in vivo detection of this pre-pathological state. Results: In a mouse model of pathological tau, we demonstrated in vivo visualization of the hyperphosphorylative state by M-MRI, enabling the identification at a pre-pathological stage of mice that develop frank tau pathology several months later. In vivo visualization of the hyperphosphorylative state by M-MRI was further validated in a second mouse model (APP/PS1) of Alzheimer's disease again identifying the mutants at a pre-pathological stage. Conclusions: M-MRI of the hyperphosphorylative state identifies future tau pathology and could enable extremely early-stage diagnosis of Alzheimer's disease, at a pre-patholgical stage.
Collapse
Affiliation(s)
| | - Qingshan Mu
- Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | - Xianwei Sun
- Baylor College of Medicine, Houston, TX, USA
| | | | | | - Eric Tanifum
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Ketan Ghaghada
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Ananth Annapragada
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA,✉ Corresponding author:
| |
Collapse
|
10
|
Theofilas P, Piergies AMH, Oh I, Lee YB, Li SH, Pereira FL, Petersen C, Ehrenberg AJ, Eser RA, Ambrose AJ, Chin B, Yang T, Khan S, Ng R, Spina S, Seeley WW, Miller BL, Arkin MR, Grinberg LT. Caspase-6-cleaved tau is relevant in Alzheimer's disease and marginal in four-repeat tauopathies: diagnostic and therapeutic implications. Neuropathol Appl Neurobiol 2022; 48:e12819. [PMID: 35508761 PMCID: PMC9472770 DOI: 10.1111/nan.12819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
AIM Tau truncation (tr-tau) by active caspase-6 (aCasp-6) generates tau fragments that may be toxic. Yet, the relationship between aCasp-6, different forms of tr-tau, and hyperphosphorylated tau (p-tau) accumulation in human brains with Alzheimer's disease (AD) and other tauopathies remains unclear. METHODS We generated two neoepitope monoclonal antibodies against tr-tau sites (D402 and D13) targeted by aCasp-6. Then, we used 5-plex immunofluorescence to quantify the neuronal and astroglial burden of aCasp-6, tr-tau, p-tau, and their co-occurrence in healthy controls, AD, and primary tauopathies. RESULTS Casp-6 activation was strongest in AD and Pick's disease (PiD), but almost absent in 4-repeat (4R) tauopathies. In neurons, the tr-tau burden was much more abundant in AD and PiD than in 4R tauopathies and disproportionally higher when normalizing by p-tau pathology. Tr-tau astrogliopathy was detected in low numbers in 4R tauopathies. Unexpectedly, about half of tr-tau positive neurons in AD and PiD lacked p-tau aggregates, a finding we confirmed using several p-tau antibodies. CONCLUSIONS Early modulation of aCasp-6 to reduce tr-tau pathology is a promising therapeutic strategy for AD and PiD, but is unlikely to benefit 4R tauopathies. The large percentage of tr-tau-positive neurons lacking p-tau suggests that many vulnerable neurons to tau pathology go undetected when using conventional p-tau antibodies. Therapeutic strategies against tr-tau pathology could be necessary to modulate the extent of tau abnormalities in AD. The disproportionally higher burden of tr-tau in AD and PiD supports the development of biofluid biomarkers against tr-tau to detect AD and PiD and differentiate them from 4R tauopathies at a patient level.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Antonia M H Piergies
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ian Oh
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Yoo Bin Lee
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Song Hua Li
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Felipe L Pereira
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Cathrine Petersen
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alexander J Ehrenberg
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Rana A Eser
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Andrew J Ambrose
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA
| | | | | | - Shireen Khan
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Raymond Ng
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Salvatore Spina
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.,Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
11
|
Permanne B, Sand A, Ousson S, Nény M, Hantson J, Schubert R, Wiessner C, Quattropani A, Beher D. O-GlcNAcase Inhibitor ASN90 is a Multimodal Drug Candidate for Tau and α-Synuclein Proteinopathies. ACS Chem Neurosci 2022; 13:1296-1314. [PMID: 35357812 PMCID: PMC9026285 DOI: 10.1021/acschemneuro.2c00057] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by the intracellular formation of insoluble and toxic protein aggregates in the brain that are closely linked to disease progression. In Alzheimer's disease and in rare tauopathies, aggregation of the microtubule-associated tau protein leads to the formation of neurofibrillary tangles (NFT). In Parkinson's disease (PD) and other α-synucleinopathies, intracellular Lewy bodies containing aggregates of α-synuclein constitute the pathological hallmark. Inhibition of the glycoside hydrolase O-GlcNAcase (OGA) prevents the removal of O-linked N-acetyl-d-glucosamine (O-GlcNAc) moieties from intracellular proteins and has emerged as an attractive therapeutic approach to prevent the formation of tau pathology. Like tau, α-synuclein is known to be modified with O-GlcNAc moieties and in vitro these have been shown to prevent its aggregation and toxicity. Here, we report the preclinical discovery and development of a novel small molecule OGA inhibitor, ASN90. Consistent with the substantial exposure of the drug and demonstrating target engagement in the brain, the clinical OGA inhibitor ASN90 promoted the O-GlcNAcylation of tau and α-synuclein in brains of transgenic mice after daily oral dosing. Across human tauopathy mouse models, oral administration of ASN90 prevented the development of tau pathology (NFT formation), functional deficits in motor behavior and breathing, and increased survival. In addition, ASN90 slowed the progression of motor impairment and reduced astrogliosis in a frequently utilized α-synuclein-dependent preclinical rodent model of PD. These findings provide a strong rationale for the development of OGA inhibitors as disease-modifying agents in both tauopathies and α-synucleinopathies. Since tau and α-synuclein pathologies frequently co-exist in neurodegenerative diseases, OGA inhibitors represent unique, multimodal drug candidates for further clinical development.
Collapse
Affiliation(s)
- Bruno Permanne
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Astrid Sand
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Solenne Ousson
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Maud Nény
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Jennifer Hantson
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Ryan Schubert
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Christoph Wiessner
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Anna Quattropani
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Dirk Beher
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Kindler D, Maschio C, Ni R, Zerbi V, Razansky D, Klohs J. Arterial spin labeling demonstrates preserved regional cerebral blood flow in the P301L mouse model of tauopathy. J Cereb Blood Flow Metab 2022; 42:686-693. [PMID: 34822744 PMCID: PMC8943618 DOI: 10.1177/0271678x211062274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is growing evidence for the vascular contribution to cognitive impairment and dementia in Alzheimer's disease (AD) and other neurodegenerative diseases. While perfusion deficits have been observed in patients with Alzheimer's disease and tauopaties, little is known about the role of tau in vascular dysfunction. In the present study, regional cerebral blood (rCBF) was characterized in P301L mice with arterial spin labeling. No differences in rCBF in P301L mice compared to their age-matched non-transgenic littermates at mid (10-12 months of age) and advanced (19-21 months of age) disease stages. This was concomitant with preservation of cortical brain structure as assessed with structural T2-weighted magnetic resonance imaging. These results show that hypoperfusion and neurodegeneration are not a phenotype of P301L mice. More studies are thus needed to understand the relationship of tau, neurodegeneration and vascular dysfunction and its modulators in AD and primary tauopathies.
Collapse
Affiliation(s)
- Diana Kindler
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland
| | - Cinzia Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Valerio Zerbi
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, 27219ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 27219ETH Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
13
|
Tau aggregation and its relation to selected forms of neuronal cell death. Essays Biochem 2021; 65:847-857. [PMID: 34897457 PMCID: PMC8709892 DOI: 10.1042/ebc20210030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
How neurons die in neurodegenerative diseases is still unknown. The distinction between apoptosis as a genetically controlled mechanism, and necrosis, which was viewed as an unregulated process, has blurred with the ever-increasing number of necrotic-like death subroutines underpinned by genetically defined pathways. It is therefore pertinent to ask whether any of them apply to neuronal cell death in tauopathies. Although Alzheimer's disease (AD) is the most prevalent tauopathy, tauopathies comprise an array of over 30 diseases in which the cytoplasmic protein tau aggregates in neurons, and also, in some diseases, in glia. Animal models have sought to distil the contribution of tau aggregation to the cell death process but despite intensive research, no one mechanism of cell death has been unequivocally defined. The process of tau aggregation, and the fibrillar structures that form, touch on so many cellular functions that there is unlikely to be a simple linear pathway of death; as one is blocked another is likely to take the lead. It is timely to ask how far we have advanced into defining whether any of the molecular players in the new death subroutines participate in the death process. Here we briefly review the currently known cell death routines and explore what is known about their participation in tau aggregation-related cell death. We highlight the involvement of cell autonomous and the more recent non-cell autonomous pathways that may enhance tau-aggregate toxicity, and discuss recent findings that implicate microglial phagocytosis of live neurons with tau aggregates as a mechanism of death.
Collapse
|
14
|
McMurray L, Macdonald JA, Ramakrishnan NK, Zhao Y, Williamson DW, Tietz O, Zhou X, Kealey S, Fagan SG, Smolek T, Cubinkova V, Žilka N, Spillantini MG, Tolkovsky AM, Goedert M, Aigbirhio FI. Synthesis and Assessment of Novel Probes for Imaging Tau Pathology in Transgenic Mouse and Rat Models. ACS Chem Neurosci 2021; 12:1885-1893. [PMID: 33689290 PMCID: PMC8176454 DOI: 10.1021/acschemneuro.0c00790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aggregated tau protein is a core pathology present in several neurodegenerative diseases. Therefore, the development and application of positron emission tomography (PET) imaging radiotracers that selectively bind to aggregated tau in fibril form is of importance in furthering the understanding of these disorders. While radiotracers used in human PET studies offer invaluable insight, radiotracers that are also capable of visualizing tau fibrils in animal models are important tools for translational research into these diseases. Herein, we report the synthesis and characterization of a novel library of compounds based on the phenyl/pyridinylbutadienylbenzothiazoles/benzothiazolium (PBB3) backbone developed for this application. From this library, we selected the compound LM229, which binds to recombinant tau fibrils with high affinity (Kd = 3.6 nM) and detects with high specificity (a) pathological 4R tau aggregates in living cultured neurons and mouse brain sections from transgenic human P301S tau mice, (b) truncated human 151-351 3R (SHR24) and 4R (SHR72) tau aggregates in transgenic rat brain sections, and (c) tau neurofibrillary tangles in brain sections from Alzheimer's disease (3R/4R tau) and progressive supranuclear palsy (4R tau). With LM229 also shown to cross the blood-brain barrier in vivo and its effective radiolabeling with the radioisotope carbon-11, we have established a novel platform for PET translational studies using rodent transgenic tau models.
Collapse
Affiliation(s)
- Lindsay McMurray
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | | | - Nisha Kuzhuppilly Ramakrishnan
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Yanyan Zhao
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - David W. Williamson
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Ole Tietz
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Xiaoyun Zhou
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Steven Kealey
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Steven G. Fagan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Tomáš Smolek
- Axon Neuroscience R&D Services SE, Bratislava, Slovak Republic 811 02
| | | | - Norbert Žilka
- Axon Neuroscience R&D Services SE, Bratislava, Slovak Republic 811 02
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Aviva M. Tolkovsky
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Franklin I. Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
15
|
Martinisi A, Flach M, Sprenger F, Frank S, Tolnay M, Winkler DT. Severe oligomeric tau toxicity can be reversed without long-term sequelae. Brain 2021; 144:963-974. [PMID: 33484116 PMCID: PMC8041046 DOI: 10.1093/brain/awaa445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tau is a microtubule stabilizing protein that forms abnormal aggregates in many neurodegenerative disorders, including Alzheimer's disease. We have previously shown that co-expression of fragmented and full-length tau in P301SxTAU62on tau transgenic mice results in the formation of oligomeric tau species and causes severe paralysis. This paralysis is fully reversible once expression of the tau fragment is halted, even though P301S tau expression is maintained. Whereas various strategies to target tau aggregation have been developed, little is known about the long-term consequences of reverted tau toxicity. Therefore, we studied the long-term motor fitness of recovered, formerly paralysed P301SxTAU62on-off mice. To assess the seeding competence of oligomeric toxic tau species, we also inoculated ALZ17 mice with brainstem homogenates from paralysed P301SxTAU62on mice. Counter-intuitively, after recovery from paralysis due to oligomeric tau species expression, ageing P301SxTAU62on-off mice did not develop more motor impairment or tau pathology when compared to heterozygous P301S tau transgenic littermates. Thus, toxic tau species causing extensive neuronal dysfunction can be cleared without inducing seeding effects. Moreover, these toxic tau species also lack long-term tau seeding effects upon intrahippocampal inoculation into ALZ17 mice. In conclusion, tau species can be neurotoxic in the absence of seeding-competent tau aggregates, and mice can clear these tau forms permanently without tau seeding or spreading effects. These observations suggest that early targeting of non-fibrillar tau species may represent a therapeutically effective intervention in tauopathies. On the other hand, the absent seeding competence of early toxic tau species also warrants caution when using seeding-based tests for preclinical tauopathy diagnostics.
Collapse
Affiliation(s)
- Alfonso Martinisi
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
- Department of Neurology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Martin Flach
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
- Department of Neurology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Frederik Sprenger
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
- Department of Neurology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Stephan Frank
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Markus Tolnay
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - David T Winkler
- Institute of Medical Genetics and Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
- Department of Neurology, University Hospital Basel, CH-4031 Basel, Switzerland
- Neurology, Medical University Clinic, Kantonsspital Baselland, 4410 Liestal, Switzerland
| |
Collapse
|
16
|
Noël A, Foveau B, LeBlanc AC. Caspase-6-cleaved Tau fails to induce Tau hyperphosphorylation and aggregation, neurodegeneration, glial inflammation, and cognitive deficits. Cell Death Dis 2021; 12:227. [PMID: 33649324 PMCID: PMC7921451 DOI: 10.1038/s41419-021-03506-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/09/2023]
Abstract
Active Caspase-6 (Casp6) and Tau cleaved by Casp6 at amino acids 402 (Tau∆D402) and 421 (Tau∆D421) are present in early Alzheimer disease intraneuronal neurofibrillary tangles, which are made primarily of filamentous Tau aggregates. To assess whether Casp6 cleavage of Tau contributes to Tau pathology and Casp6-mediated age-dependent cognitive impairment, we generated transgenic knock-in mouse models that conditionally express full-length human Tau (hTau) 0N4R only (CTO) or together with human Casp6 (hCasp6) (CTC). Region-specific hippocampal and cortical hCasp6 and hTau expression were confirmed with western blot and immunohistochemistry in 2-25-month-old brains. Casp6 activity was confirmed with Tau∆D421 and Tubulin cleaved by Casp6 immunopositivity in 3-25-month-old CTC, but not in CTO, brains. Immunoprecipitated Tau∆D402 was detected in both CTC and CTO brains, but was more abundant in CTC brains. Intraneuronal hippocampal Tau hyperphosphorylation at S202/T205, S422, and T231, and Tau conformational change were absent in both CTC and CTO brains. A slight accumulation of Tau phosphorylated at S396/404 and S202 was observed in Cornu Ammonis 1 (CA1) hippocampal neuron soma of CTC compared to CTO brains. Eighteen-month-old CTC brains showed rare argentophilic deposits that increased by 25 months, whereas CTO brains only displayed them sparsely at 25 months. Tau microtubule binding was equivalent in CTC and CTO hippocampi. Episodic and spatial memory measured with novel object recognition and Barnes maze, respectively, remained normal in 3-25-month-old CTC and CTO mice, in contrast to previously observed impairments in ACL mice expressing equivalent levels of hCasp6 only. Consistently, the CTC and CTO hippocampal CA1 region displayed equivalent dendritic spine density and no glial inflammation. Together, these results reveal that active hCasp6 co-expression with hTau generates Tau cleavage and rare age-dependent argentophilic deposits but fails to induce cognitive deficits, neuroinflammation, and Tau pathology.
Collapse
Affiliation(s)
- Anastasia Noël
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bénédicte Foveau
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Andréa C LeBlanc
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Aberrant role of ALK in tau proteinopathy through autophagosomal dysregulation. Mol Psychiatry 2021; 26:5542-5556. [PMID: 33452442 PMCID: PMC8758490 DOI: 10.1038/s41380-020-01003-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023]
Abstract
Proteinopathy in neurodegenerative diseases is typically characterized by deteriorating activity of specific protein aggregates. In tauopathies, including Alzheimer's disease (AD), tau protein abnormally accumulates and induces dysfunction of the affected neurons. Despite active identification of tau modifications responsible for tau aggregation, a critical modulator inducing tau proteinopathy by affecting its protein degradation flux is not known. Here, we report that anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase, is crucial for the tau-mediated AD pathology. ALK caused abnormal accumulation of highly phosphorylated tau in the somatodendritic region of neurons through its tyrosine kinase activity. ALK-induced LC3-positive axon swelling and loss of spine density, leading to tau-dependent neuronal degeneration. Notably, ALK activation in neurons impaired Stx17-dependent autophagosome maturation and this defect was reversed by a dominant-negative Grb2. In a Drosophila melanogaster model, transgenic flies neuronally expressing active Drosophila Alk exhibited the aggravated tau rough eye phenotype with retinal degeneration and shortened lifespan. In contrast, expression of kinase-dead Alk blocked these phenotypes. Consistent with the previous RNAseq analysis showing upregulation of ALK expression in AD [1], ALK levels were significantly elevated in the brains of AD patients showing autophagosomal defects. Injection of an ALK.Fc-lentivirus exacerbated memory impairment in 3xTg-AD mice. Conversely, pharmacologic inhibition of ALK activity with inhibitors reversed the memory impairment and tau accumulation in both 3xTg-AD and tauC3 (caspase-cleaved tau) transgenic mice. Together, we propose that aberrantly activated ALK is a bona fide mediator of tau proteinopathy that disrupts autophagosome maturation and causes tau accumulation and aggregation, leading to neuronal dysfunction in AD.
Collapse
|
18
|
Oakley SS, Maina MB, Marshall KE, Al-Hilaly YK, Harrington CR, Wischik CM, Serpell LC. Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Front Neurol 2020; 11:590754. [PMID: 33281730 PMCID: PMC7688747 DOI: 10.3389/fneur.2020.590754] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors.
Collapse
Affiliation(s)
- Sebastian S. Oakley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mahmoud B. Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - Karen E. Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Youssra K. Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Charlie R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Louise C. Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
19
|
Ni R, Chen Z, Gerez JA, Shi G, Zhou Q, Riek R, Nilsson KPR, Razansky D, Klohs J. Detection of cerebral tauopathy in P301L mice using high-resolution large-field multifocal illumination fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4989-5002. [PMID: 33014595 PMCID: PMC7510859 DOI: 10.1364/boe.395803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Current intravital microscopy techniques visualize tauopathy with high-resolution, but have a small field-of-view and depth-of-focus. Herein, we report a transcranial detection of tauopathy over the entire cortex of P301L tauopathy mice using large-field multifocal illumination (LMI) fluorescence microscopy technique and luminescent conjugated oligothiophenes. In vitro assays revealed that fluorescent ligand h-FTAA is optimal for in vivo tau imaging, which was confirmed by observing elevated probe retention in the cortex of P301L mice compared to non-transgenic littermates. Immunohistochemical staining further verified the specificity of h-FTAA to detect tauopathy in P301L mice. The new imaging platform can be leveraged in pre-clinical mechanistic studies of tau spreading and clearance as well as longitudinal monitoring of tau targeting therapeutics.
Collapse
Affiliation(s)
- Ruiqing Ni
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
- University of Zurich, Zurich Neuroscience Center, Zurich, Switzerland
| | - Zhenyue Chen
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
- University of Zurich, Faculty of Medicine and Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Juan A. Gerez
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Gloria Shi
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
| | - Quanyu Zhou
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
- University of Zurich, Faculty of Medicine and Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Roland Riek
- ETH Zurich, Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - K. Peter R. Nilsson
- Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping, Sweden
| | - Daniel Razansky
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
- University of Zurich, Zurich Neuroscience Center, Zurich, Switzerland
- University of Zurich, Faculty of Medicine and Institute of Pharmacology and Toxicology, Zurich, Switzerland
| | - Jan Klohs
- University of Zurich & ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Wolfgang-Pauli-strasse 27 HIT E22.4, 8093, Zurich, Switzerland
- University of Zurich, Zurich Neuroscience Center, Zurich, Switzerland
| |
Collapse
|
20
|
Chi H, Sun L, Shiu RH, Han R, Hsieh CP, Wei TM, Lo CC, Chang HY, Sang TK. Cleavage of human tau at Asp421 inhibits hyperphosphorylated tau induced pathology in a Drosophila model. Sci Rep 2020; 10:13482. [PMID: 32778728 PMCID: PMC7417559 DOI: 10.1038/s41598-020-70423-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022] Open
Abstract
Hyperphosphorylated and truncated tau variants are enriched in neuropathological aggregates in diseases known as tauopathies. However, whether the interaction of these posttranslational modifications affects tau toxicity as a whole remains unresolved. By expressing human tau with disease-related Ser/Thr residues to simulate hyperphosphorylation, we show that despite severe neurodegeneration in full-length tau, with the truncation at Asp421, the toxicity is ameliorated. Cytological and biochemical analyses reveal that hyperphosphorylated full-length tau distributes in the soma, the axon, and the axonal terminal without evident distinction, whereas the Asp421-truncated version is mostly restricted from the axonal terminal. This discrepancy is correlated with the fact that fly expressing hyperphosphorylated full-length tau, but not Asp421-cleaved one, develops axonopathy lesions, including axonal spheroids and aberrant actin accumulations. The reduced presence of hyperphosphorylated tau in the axonal terminal is corroborated with the observation that flies expressing Asp421-truncated variants showed less motor deficit, suggesting synaptic function is preserved. The Asp421 cleavage of tau is a proteolytic product commonly found in the neurofibrillary tangles. Our finding suggests the coordination of different posttranslational modifications on tau may have an unexpected impact on the protein subcellular localization and cytotoxicity, which may be valuable when considering tau for therapeutic purposes.
Collapse
Affiliation(s)
- Hao Chi
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Lee Sun
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ren-Huei Shiu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Rui Han
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chien-Ping Hsieh
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Min Wei
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chung-Chuan Lo
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hui-Yun Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Kang Sang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
21
|
SWI and phase imaging reveal intracranial calcifications in the P301L mouse model of human tauopathy. MAGMA (NEW YORK, N.Y.) 2020; 33:769-781. [PMID: 32468149 PMCID: PMC7669813 DOI: 10.1007/s10334-020-00855-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Objective Brain calcifications are associated with several neurodegenerative diseases. Here, we describe the occurrence of intracranial calcifications as a new phenotype in transgenic P301L mice overexpressing four repeat tau, a model of human tauopathy. Materials and methods Thirty-six P301L mice (Thy1.2) and ten age-matched non-transgenic littermates of different ages were assessed. Gradient echo data were acquired in vivo and ex vivo at 7 T and 9.4 T for susceptibility-weighted imaging (SWI) and phase imaging. In addition, ex vivo micro-computed tomography (μCT) was performed. Histochemistry and immunohistochemistry were used to investigate the nature of the imaging lesions. Results SW images revealed regional hypointensities in the hippocampus, cortex, caudate nucleus, and thalamus of P301L mice, which in corresponding phase images indicated diamagnetic lesions. Concomitantly, µCT detected hyperdense lesions, though fewer lesions were observed compared to MRI. Diamagnetic susceptibility lesions in the hippocampus increased with age. The immunochemical staining of brain sections revealed osteocalcin-positive deposits. Furthermore, intra-neuronal and vessel-associated osteocalcin-containing nodules co-localized with phosphorylated-tau (AT8 and AT100) in the hippocampus, while vascular osteocalcin-containing nodules were detected in the thalamus in the absence of phosphorylated-tau deposition. Discussion SWI and phase imaging sensitively detected intracranial calcifications in the P301L mouse model of human tauopathy. Electronic supplementary material The online version of this article (10.1007/s10334-020-00855-3) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Arena JD, Smith DH, Lee EB, Gibbons GS, Irwin DJ, Robinson JL, Lee VMY, Trojanowski JQ, Stewart W, Johnson VE. Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer's disease. Brain 2020; 143:1572-1587. [PMID: 32390044 PMCID: PMC7241956 DOI: 10.1093/brain/awaa071] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a risk factor for neurodegenerative disease, including chronic traumatic encephalopathy (CTE). Preliminary consensus criteria define the pathognomonic lesion of CTE as patchy tau pathology within neurons and astrocytes at the depths of cortical sulci. However, the specific tau isoform composition and post-translational modifications in CTE remain largely unexplored. Using immunohistochemistry, we performed tau phenotyping of CTE neuropathologies and compared this to a range of tau pathologies, including Alzheimer's disease, primary age-related tauopathy, ageing-related tau astrogliopathy and multiple subtypes of frontotemporal lobar degeneration with tau inclusions. Cases satisfying preliminary consensus diagnostic criteria for CTE neuropathological change (CTE-NC) were identified (athletes, n = 10; long-term survivors of moderate or severe TBI, n = 4) from the Glasgow TBI Archive and Penn Neurodegenerative Disease Brain Bank. In addition, material from a range of autopsy-proven ageing-associated and primary tauopathies in which there was no known history of exposure to TBI was selected as non-injured controls (n = 32). Each case was then stained with a panel of tau antibodies specific for phospho-epitopes (PHF1, CP13, AT100, pS262), microtubule-binding repeat domains (3R, 4R), truncation (Tau-C3) or conformation (GT-7, GT-38) and the extent and distribution of staining assessed. Cell types were confirmed with double immunofluorescent labelling. Results demonstrate that astroglial tau pathology in CTE is composed of 4R-immunoreactive thorn-shaped astrocytes, echoing the morphology and immunophenotype of astrocytes encountered in ageing-related tau astrogliopathy. In contrast, neurofibrillary tangles of CTE contain both 3R and 4R tau, with post-translational modifications and conformations consistent with Alzheimer's disease and primary age-related tauopathy. Our observations establish that the astroglial and neurofibrillary tau pathologies of CTE are phenotypically distinct from each other and recapitulate the tau immunophenotypes encountered in ageing and Alzheimer's disease. As such, the immunohistochemical distinction of CTE neuropathology from other mixed 3R/4R tauopathies of Alzheimer's disease and ageing may rest solely on the pattern and distribution of pathology.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Virginia M -Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Brelstaff J, Tolkovsky AM, Ghetti B, Goedert M, Spillantini MG. Living Neurons with Tau Filaments Aberrantly Expose Phosphatidylserine and Are Phagocytosed by Microglia. Cell Rep 2020; 24:1939-1948.e4. [PMID: 30134156 PMCID: PMC6161320 DOI: 10.1016/j.celrep.2018.07.072] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/23/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022] Open
Abstract
Tau protein forms insoluble filamentous inclusions that are closely associated with nerve cell death in many neurodegenerative diseases. How neurons die in these tauopathies is unclear. We report that living neurons with tau inclusions from P301S-tau mice expose abnormally high amounts of phosphatidylserine because of the production of reactive oxygen species (ROS). Consequently, co-cultured phagocytes (BV2 cells or primary microglia) identify and phagocytose the living neurons, thereby engulfing insoluble tau inclusions. To facilitate engulfment, neurons induce contacting microglia to secrete the opsonin milk-fat-globule EGF-factor-8 (MFGE8) and nitric oxide (NO), whereas neurons with tau inclusions are rescued when MFGE8 or NO production is prevented. MFGE8 expression is elevated in transgenic P301S-tau mouse brains with tau inclusions and in tau inclusion-rich brain regions of several human tauopathies, indicating shared mechanisms of disease. Preventing phagocytosis of living neurons will preserve them for treatments that inhibit tau aggregation and toxicity.
Collapse
Affiliation(s)
- Jack Brelstaff
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Aviva M Tolkovsky
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, CB2 0AH, UK.
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
24
|
Marinković P, Blumenstock S, Goltstein PM, Korzhova V, Peters F, Knebl A, Herms J. In vivo imaging reveals reduced activity of neuronal circuits in a mouse tauopathy model. Brain 2019; 142:1051-1062. [PMID: 30847469 DOI: 10.1093/brain/awz035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 01/30/2023] Open
Abstract
Pathological alterations of tau protein play a significant role in the emergence and progression of neurodegenerative disorders. Tauopathies are characterized by detachment of the tau protein from neuronal microtubules, and its subsequent aberrant hyperphosphorylation, aggregation and cellular distribution. The exact nature of tau protein species causing neuronal malfunction and degeneration is still unknown. In the present study, we used mice transgenic for human tau with the frontotemporal dementia with parkinsonism-associated P301S mutation. These mice are prone to develop fibrillar tau inclusions, especially in the spinal cord and brainstem. At the same time, cortical neurons are not as strongly affected by fibrillar tau forms, but rather by soluble tau forms. We took advantage of the possibility to induce formation of neurofibrillary tangles in a subset of these cortical neurons by local injection of preformed synthetic tau fibrils. By using chronic in vivo two-photon calcium imaging in awake mice, we were able for the first time to follow the activity of individual tangle-bearing neurons and compare it to the activity of tangle-free neurons over the disease course. Our results revealed strong reduction of calcium transient frequency in layer 2/3 cortical neurons of P301S mice, independent of neurofibrillary tangle presence. These results clearly point to the impairing role of soluble, mutated tau protein species present in the majority of the neurons investigated in this study.
Collapse
Affiliation(s)
- Petar Marinković
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sonja Blumenstock
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Viktoria Korzhova
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Finn Peters
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Knebl
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jochen Herms
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University Munich, Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
25
|
Macdonald JA, Bronner IF, Drynan L, Fan J, Curry A, Fraser G, Lavenir I, Goedert M. Assembly of transgenic human P301S Tau is necessary for neurodegeneration in murine spinal cord. Acta Neuropathol Commun 2019; 7:44. [PMID: 30885267 PMCID: PMC6421678 DOI: 10.1186/s40478-019-0695-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 11/10/2022] Open
Abstract
A pathological pathway leading from soluble monomeric to insoluble filamentous Tau is characteristic of many human neurodegenerative diseases, which also exhibit dysfunction and death of brain cells. However, it is unknown how the assembly of Tau into filaments relates to cell loss. To study this, we first used a mouse line transgenic for full-length human mutant P301S Tau to investigate the temporal relationship between Tau assembly into filaments, assessed using anti-Tau antibody AT100, and motor neuron numbers, in the lumbar spinal cord. AT100 immunoreactivity preceded nerve cell loss. Murine Tau did not contribute significantly to either Tau aggregation or neurodegeneration. To further study the relevance of filament formation for neurodegeneration, we deleted hexapeptides 275VQIINK280 and 306VQIVYK311, either singly or in combination, from human 0N4R Tau with the P301S mutation. These hexapeptides are essential for the assembly of Tau into filaments. Homozygous mice transgenic for P301S Tau with the hexapeptide deletions, which expressed Tau at a similar level to the heterozygous line transgenic for P301S Tau, had a normal lifespan, unlike mice from the P301S Tau line. The latter had significant levels of sarkosyl-insoluble Tau in brain and spinal cord, and exhibited neurodegeneration. Mice transgenic for P301S Tau with the hexapeptide deletions failed to show significant levels of sarkosyl-insoluble Tau or neurodegeneration. Recombinant P301S Tau with the hexapeptide deletions failed to form β-sheet structure and filaments following incubation with heparin. Taken together, we conclude that β-sheet assembly of human P301S Tau is necessary for neurodegeneration in transgenic mice.
Collapse
|
26
|
Midani-Kurçak JS, Dinekov M, Puladi B, Arzberger T, Köhler C. Effect of tau-pathology on charged multivesicular body protein 2b (CHMP2B). Brain Res 2019; 1706:224-236. [DOI: 10.1016/j.brainres.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
|
27
|
Rosenberg RN, Fu M, Lambracht-Washington D. Active full-length DNA Aβ 42 immunization in 3xTg-AD mice reduces not only amyloid deposition but also tau pathology. ALZHEIMERS RESEARCH & THERAPY 2018; 10:115. [PMID: 30454039 PMCID: PMC6245829 DOI: 10.1186/s13195-018-0441-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
Background Alzheimer’s disease (AD) is the most well-known and most common type of age-related dementia. Amyloid deposition and hyperphosphorylation of tau protein are both pathological hallmarks of AD. Using a triple-transgenic mouse model (3xTg-AD) that develops plaques and tangles in the brain similar to human AD, we provide evidence that active full-length DNA amyloid-β peptide 1–42 (Aβ42) trimer immunization leads to reduction of both amyloid and tau aggregation and accumulation. Methods Immune responses were monitored by enzyme-linked immunosorbent assay (ELISA) (antibody production) and enzyme-linked immunospot (cellular activation, cytokine production). Brains from 20-month-old 3x Tg-AD mice that had received DNA Aβ42 immunotherapy were compared with brains from age- and gender-matched transgenic Aβ42 peptide-immunized and control mice by histology, Western blot analysis, and ELISA. Protein kinase activation and kinase levels were studied in Western blots from mouse hemibrain lysates. Results Quantitative ELISA showed a 40% reduction of Aβ42 peptide and a 25–50% reduction of total tau and different phosphorylated tau molecules in the DNA Aβ42 trimer-immunized 3xTg-AD mice compared with nonimmunized 3xTg-AD control animals. Plaque and Aβ peptide reductions in the brain were due to the anti-Aβ antibodies generated following the immunizations. Reductions of tau were likely due to indirect actions such as less Aβ in the brain resulting in less tau kinase activation. Conclusions The significance of these findings is that DNA Aβ42 trimer immunotherapy targets two major pathologies in AD—amyloid plaques and neurofibrillary tangles—in one vaccine without inducing inflammatory T-cell responses, which carry the danger of autoimmune inflammation, as found in a clinical trial using active Aβ42 peptide immunization in patients with AD (AN1792).
Collapse
Affiliation(s)
- Roger N Rosenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA
| | - Min Fu
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA
| | - Doris Lambracht-Washington
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8813, USA.
| |
Collapse
|
28
|
Koss DJ, Dubini M, Buchanan H, Hull C, Platt B. Distinctive temporal profiles of detergent-soluble and -insoluble tau and Aβ species in human Alzheimer's disease. Brain Res 2018; 1699:121-134. [PMID: 30102892 DOI: 10.1016/j.brainres.2018.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) pathology relevant proteins tau and beta-amyloid (Aβ) exist as an array of post-translationally modified and conformationally altered species with varying abundance, solubility and toxicity. Insoluble neurofibrillary tau tangles and Aβ plaques are end-stage AD hallmarks, yet may carry less disease significance compared to soluble species. At present, it is unclear how soluble and insoluble tau and Aβ relate to each other as well as to disease progression. Here, detergent soluble and insoluble fractions generated from post-mortem human temporal lobe samples (Brodmann area 21) were probed for tau and Aβ markers in immuno-dot assays. Measures were quantified according to diagnosis (AD cf. Non-AD), neuropathological severity, and correlated with disease progression (Braak stages). All markers were elevated within AD cases cf. non-AD controls (p < 0.05) independent of solubility. However, when considered according to neuropathological severity, phospho-tau (detected via CP13 and AT8 antibodies) was elevated early within the soluble fraction (p < 0.05 intermediate cf. low severity) and emerged only later within the insoluble fraction (p < 0.05 high cf. low severity). In contrast, PHF1 phospho-tau, TOC1 reactive tau oligomers and amyloid markers rose within the two fractions simultaneously. Independent of solubility, cognitive correlations were observed for tau makers and for fibrillary amyloid (OC), however only soluble total Aβ was significantly correlated with intellectual impairment. Following the exclusion of end-stage cases, only soluble total Aβ remained correlated with cognition. The data indicate differential rates of protein aggregation during AD progression and confirm the disease relevance of early emerging soluble Aβ species.
Collapse
Affiliation(s)
- David J Koss
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Marina Dubini
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather Buchanan
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Claire Hull
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Bettina Platt
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
29
|
Liu D, Lu H, Stein E, Zhou Z, Yang Y, Mattson MP. Brain regional synchronous activity predicts tauopathy in 3×TgAD mice. Neurobiol Aging 2018; 70:160-169. [PMID: 30015035 DOI: 10.1016/j.neurobiolaging.2018.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/20/2018] [Accepted: 06/10/2018] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive impairment and by extensive neuronal loss associated with extracellular amyloid β-peptide (Aβ) plaques and intraneuronal tau pathology in temporal and parietal lobes. AD patients are at increased risk for epileptic seizures, and data from experimental models of AD suggest that aberrant neuronal network activity occurs early in the disease process before cognitive deficits and neuronal degeneration. The contributions of Aβ and/or tau pathologies to dysregulation of neuronal network activity are unclear. Using a transgenic mouse model of AD (3×TgAD mice) in which there occurs differential age-dependent development of tau and Aβ plaque pathologies, we applied analysis of resting state functional magnetic resonance imaging regional homogeneity, a measure of local synchronous activity, to discriminate the effects of Aβ and tau on neuronal network activity throughout the brain. Compared to age-matched wild-type mice, 6- to 8-month-old 3×TgAD mice exhibited increased regional homogeneity in the hippocampus and parietal and temporal cortices, regions with tau pathology but not Aβ pathology at this age. By 18-24 months of age, 3×TgAD mice exhibited extensive tau and Aβ pathologies involving the hippocampus and multiple functionally related brain regions, with a spatial expansion of increased local synchronous activity to include those regions. Our findings demonstrate that age-related brain regional hypersynchronous activity is associated with early tau pathology in a mouse model, consistent with a role for early tau pathology in the neuronal circuit hyperexcitability that is believed to precede and contribute to neuronal degeneration in AD.
Collapse
Affiliation(s)
- Dong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Elliot Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, USA.
| |
Collapse
|
30
|
Ji M, Xie XX, Liu DQ, Yu XL, Zhang Y, Zhang LX, Wang SW, Huang YR, Liu RT. Hepatitis B core VLP-based mis-disordered tau vaccine elicits strong immune response and alleviates cognitive deficits and neuropathology progression in Tau.P301S mouse model of Alzheimer's disease and frontotemporal dementia. ALZHEIMERS RESEARCH & THERAPY 2018; 10:55. [PMID: 29914543 PMCID: PMC6006857 DOI: 10.1186/s13195-018-0378-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022]
Abstract
Background Truncated mis-disordered tau protein plays an important role in the pathogenesis of Alzheimer’s disease (AD) and frontotemporal dementia (FTD). Tau294–305, an epitope in the truncated tau, is essential for pathological tau-tau interaction and aggregation. A tau294–305-targeted approach may have beneficial effects in the treatment of AD and FTD. Methods In this study, we genetically fused tau294–305 epitope to the hepatitis B virus core protein (HBc) major immunodominant region (MIR) (with the resultant protein termed T294-HBc), and we subcutaneously immunized a Tau.P301S transgenic mouse model of FTD and AD with T294-HBc four times. The levels and characteristics of antibodies induced by T294-HBc were determined by enzyme-linked immunosorbent assay. The effect of T294-HBc on the cognitive deficits of Tau.P301S mice was tested using the Morris water maze test, novel object recognition, and a Y-maze test. Western blot analysis and IHC were applied to measure the effect of T294-HBc on tau pathologies and neuroinflammation in the mouse brains. Results The results showed that T294-HBc self-assembled into HBc chimeric virus-like particles (VLPs) with tau294–305 displayed on the surface and that it induced high antibody titers specifically against the mis-disordered truncated tau. Further investigation showed that these antibodies simultaneously bound to microtubule-binding regions 1–4 (MTBR1–4) [tau263–274, tau294–305, tau325–336, tau357–368 and tau294–305(P301S)]. Moreover, T294-HBc VLP vaccination significantly ameliorated memory and cognitive decline; reduced the levels of AT8-positive tau, truncated tau monomer, and oligomer; attenuated microgliosis and astrogliosis; and rescued synaptic deficits in Tau.P301S transgenic mice. Conclusions T294-HBc VLP vaccine elicited strong immune response and alleviated cognitive deficits and neuropathology progression in Tau.P301S mice, indicating that the T294-HBc VLP vaccine has promising therapeutic potential for the treatment of AD and FTD.
Collapse
Affiliation(s)
- Mei Ji
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Xiu Xie
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Dong-Qun Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Lin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Yue Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, China
| | - Ling-Xiao Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shao-Wei Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Ya-Ru Huang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| |
Collapse
|
31
|
Cao L, Liang Y, Liu Y, Xu Y, Wan W, Zhu C. Pseudo-phosphorylation at AT8 epitopes regulates the tau truncation at aspartate 421. Exp Cell Res 2018; 370:103-115. [PMID: 29908160 DOI: 10.1016/j.yexcr.2018.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
Tau pathology in Alzheimer's disease (AD) includes hyperphosphorylation and truncation of tau. Phosphorylation at S422 is found to suppress truncation of tau at D421 that leading to the generation of ΔTau. However, the interrelation between hyperphosphorylation and generation of ΔTau in AD remains elusive. In current study, staurosporine (Stau) induced ΔTau generation by caspases in SH-SY5Y cells with tau overexpression was found to be accompanied by a dramatic dephosphorylation at S422 and the epitope of the diagnostic antibody AT8 (S199 + S202 + T205), but a moderate dephosphorylation of PHF1 (S396 + S404) epitope. Therefore, to explore the effect of AT8 epitope on tau truncation, the residues in AT8 epitope were mutated to produce "pseudo-phosphorylated" (AT8E) or "pseudo-unphosphorylated" (AT8A) tau constructs. With Stau treatment, the generation of ΔTau from tau-AT8E was significantly attenuated comparing with that from tau-AT8A, which was S422-independent in that addition of S422A mutation still preserved this effect. Interestingly, this modulatory effect was able to be reversed by addition of PHF1E mutation. Moreover, treating the crude tau extracts with recombinant caspase-3 in vitro, also showed that ΔTau level was suppressed by AT8E, and potentiated by AT8E + PHF1E. The results primarily revealed the modulating effects of phosphorylation on ΔTau generation which may have potential implications in tau pathological processes and therapeutic intervention.
Collapse
Affiliation(s)
- Lan Cao
- State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Liang
- State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunsheng Liu
- State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuxia Xu
- State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenbin Wan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Köhler C, Fuhr V, Dinekov M. Distribution of spleen tyrosine kinase and tau phosphorylated at tyrosine 18 in a mouse model of tauopathy and in the human hippocampus. Brain Res 2017; 1677:1-13. [DOI: 10.1016/j.brainres.2017.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/11/2017] [Accepted: 08/25/2017] [Indexed: 12/01/2022]
|
33
|
Sidoryk-Wegrzynowicz M, Gerber YN, Ries M, Sastre M, Tolkovsky AM, Spillantini MG. Astrocytes in mouse models of tauopathies acquire early deficits and lose neurosupportive functions. Acta Neuropathol Commun 2017; 5:89. [PMID: 29187256 PMCID: PMC6389177 DOI: 10.1186/s40478-017-0478-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023] Open
Abstract
Microtubule-associated protein tau aggregates constitute the characteristic neuropathological features of several neurodegenerative diseases grouped under the name of tauopathies. It is now clear that the process of tau aggregation is associated with neurodegeneration. Several transgenic tau mouse models have been developed where tau progressively aggregates, causing neuronal death. Previously we have shown that transplantation of astrocytes in P301S tau transgenic mice rescues cortical neuron death, implying that the endogenous astrocytes are deficient in survival support. We now show that the gliosis markers Glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein B (S100β) are elevated in brains from P301S tau mice compared to control C57Bl/6 mice whereas the expression of proteins involved in glutamine/glutamate metabolism are reduced, pointing to a functional deficit. To test whether astrocytes from P301S mice are intrinsically deficient, we co-cultured astrocytes and neurons from control and P301S mice. Significantly more C57-derived and P301S-derived neurons survived when cells were cultured with C57-derived astrocytes or astrocyte conditioned medium (C57ACM) than with P301S-derived astrocytes or astrocyte conditioned medium (P301SACM), or ACM from P301L tau mice, where the transgene is also specifically expressed in neurons. The astrocytic alterations developed in mice during the first postnatal week of life. In addition, P301SACM significantly decreased presynaptic (synaptophysin, SNP) and postsynaptic (postsynaptic density protein 95, PSD95) protein expression in cortical neuron cultures whereas C57ACM enhanced these markers. Since thrombospondin 1 (TSP-1) is a major survival and synaptogenic factor, we examined whether TSP-1 is deficient in P301S mouse brains and ACM. Significantly less TSP-1 was expressed in the brains of P301S tau mice or produced by P301S-derived astrocytes, whereas supplementation of P301SACM with TSP-1 increased its neurosupportive capacity. Our results demonstrate that P301S-derived astrocytes acquire an early functional deficiency that may explain in part the loss of cortical neurons in the P301S tau mice.
Collapse
|
34
|
Eskandari-Sedighi G, Daude N, Gapeshina H, Sanders DW, Kamali-Jamil R, Yang J, Shi B, Wille H, Ghetti B, Diamond MI, Janus C, Westaway D. The CNS in inbred transgenic models of 4-repeat Tauopathy develops consistent tau seeding capacity yet focal and diverse patterns of protein deposition. Mol Neurodegener 2017; 12:72. [PMID: 28978354 PMCID: PMC5628424 DOI: 10.1186/s13024-017-0215-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/27/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MAPT mutations cause neurodegenerative diseases such as frontotemporal dementia but, strikingly, patients with the same mutation may have different clinical phenotypes. METHODS Given heterogeneities observed in a transgenic (Tg) mouse line expressing low levels of human (2 N, 4R) P301L Tau, we backcrossed founder stocks of mice to C57BL/6Tac, 129/SvEvTac and FVB/NJ inbred backgrounds to discern the role of genetic versus environmental effects on disease-related phenotypes. RESULTS Three inbred derivatives of a TgTauP301L founder line had similar quality and steady-state quantity of Tau production, accumulation of abnormally phosphorylated 64-68 kDa Tau species from 90 days of age onwards and neuronal loss in aged Tg mice. Variegation was not seen in the pattern of transgene expression and seeding properties in a fluorescence-based cellular assay indicated a single "strain" of misfolded Tau. However, in other regards, the aged Tg mice were heterogeneous; there was incomplete penetrance for Tau deposition despite maintained transgene expression in aged animals and, for animals with Tau deposits, distinctions were noted even within each subline. Three classes of rostral deposition in the cortex, hippocampus and striatum accounted for 75% of pathology-positive mice yet the mean ages of mice scored as class I, II or III were not significantly different and, hence, did not fit with a predictable progression from one class to another defined by chronological age. Two other patterns of Tau deposition designated as classes IV and V, occurred in caudal structures. Other pathology-positive Tg mice of similar age not falling within classes I-V presented with focal accumulations in additional caudal neuroanatomical areas including the locus coeruleus. Electron microscopy revealed that brains of Classes I, II and IV animals all exhibit straight filaments, but with coiled filaments and occasional twisted filaments apparent in Class I. Most strikingly, Class I, II and IV animals presented with distinct western blot signatures after trypsin digestion of sarkosyl-insoluble Tau. CONCLUSIONS Qualitative variations in the neuroanatomy of Tau deposition in genetically constrained slow models of primary Tauopathy establish that non-synchronous, focal events contribute to the pathogenic process. Phenotypic diversity in these models suggests a potential parallel to the phenotypic variation seen in P301L patients.
Collapse
Affiliation(s)
- Ghazaleh Eskandari-Sedighi
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Hristina Gapeshina
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - David W Sanders
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, USA
| | - Razieh Kamali-Jamil
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Beipei Shi
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, USA
| | - Christopher Janus
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
35
|
Klingebiel M, Dinekov M, Köhler C. Analysis of ribosomal protein S6 baseline phosphorylation and effect of tau pathology in the murine brain and human hippocampus. Brain Res 2017; 1659:121-135. [PMID: 28119058 DOI: 10.1016/j.brainres.2017.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/17/2023]
Abstract
We examined the distribution pattern of the phosphorylated 40S ribosomal subunit protein S6, a downstream target of the mTOR pathway, in the brains of 24-months-old human tau transgenic pR5 mice, non-transgenic littermates and in human hippocampi. We studied baseline levels of phosphorylated S6 and a possible effect of tau pathology. S6 phosphorylated at Ser235/236 (pS6Ser235/236) or Ser240/244 (pS6Ser240/244) has been used as a read-out of mTOR activity in several studies. The mTOR pathway regulates a wide variety of cellular functions including cell growth, ribosome biosynthesis, translational control and autophagy. Its dysregulation might underlie the neurodegenerative pathology of Alzheimer's disease and other tauopathies. pS6Ser235/236 and pS6Ser240/244 immunoreactivity in the mouse brain were widespread and similar distributed, but intensive pS6Ser235/236 immunoreactivity was more selective, especially highlighting certain brainstem regions. In the human hippocampus mainly granulovacuolar inclusions in neurons displayed pS6Ser235/236 immunoreactivity. In contrast, a considerable number of neurons displayed pS6Ser240/244 immunoreactivity in the cytoplasm without labeling of granulovacuolar inclusions. Except for a tendency of lower numbers of intensely phosphorylated S6-positive neurons in pR5 mice, the pattern of distribution of pS6Ser235/236 and pS6Ser240/244 immunoreactivity was largely unchanged when compared with non-transgenic mice and also when human hippocampi from AD cases and controls were compared. Similar to pR5 mice most neurons with hyper-phosphorylated tau in human hippocampi displayed no or only weak labeling for phosphorylated S6, suggesting that phosphorylated S6 is not especially associated with pathological tau, but is rather a feature of unaffected neurons.
Collapse
Affiliation(s)
- Maria Klingebiel
- Institute II for Anatomy, Medical Faculty, University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Maja Dinekov
- Institute II for Anatomy, Medical Faculty, University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Christoph Köhler
- Institute II for Anatomy, Medical Faculty, University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany.
| |
Collapse
|
36
|
Ozcelik S, Sprenger F, Skachokova Z, Fraser G, Abramowski D, Clavaguera F, Probst A, Frank S, Müller M, Staufenbiel M, Goedert M, Tolnay M, Winkler DT. Co-expression of truncated and full-length tau induces severe neurotoxicity. Mol Psychiatry 2016; 21:1790-1798. [PMID: 26830137 PMCID: PMC5116481 DOI: 10.1038/mp.2015.228] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/03/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Abundant tau inclusions are a defining hallmark of several human neurodegenerative diseases, including Alzheimer's disease. Protein fragmentation is a widely observed event in neurodegenerative proteinopathies. The relevance of tau fragmentation for the neurodegenerative process in tauopathies has yet remained unclear. Here we found that co-expression of truncated and full-length human tau in mice provoked the formation of soluble high-molecular-weight tau, the failure of axonal transport, clumping of mitochondria, disruption of the Golgi apparatus and missorting of synaptic proteins. This was associated with extensive nerve cell dysfunction and severe paralysis by the age of 3 weeks. When the expression of truncated tau was halted, most mice recovered behaviorally and functionally. In contrast, co-expression of full-length tau isoforms did not result in paralysis. Truncated tau thus induces extensive but reversible neurotoxicity in the presence of full-length tau through the formation of nonfilamentous high-molecular-weight tau aggregates, in the absence of tau filaments. Targeting tau fragmentation may provide a novel approach for the treatment of human tauopathies.
Collapse
Affiliation(s)
- S Ozcelik
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - F Sprenger
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Z Skachokova
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - G Fraser
- MRC, Laboratory of Molecular Biology, Cambridge, UK
| | - D Abramowski
- Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - F Clavaguera
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - A Probst
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - S Frank
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - M Müller
- Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - M Staufenbiel
- Institute of Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - M Goedert
- MRC, Laboratory of Molecular Biology, Cambridge, UK
| | - M Tolnay
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - D T Winkler
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Institute of Pathology and Department of Neurology, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland. E-mail:
| |
Collapse
|
37
|
Secretion of full-length tau or tau fragments in a cell culture model. Neurosci Lett 2016; 634:63-69. [DOI: 10.1016/j.neulet.2016.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022]
|
38
|
Yang S, Kuan WL, Spillantini MG. Progressive tauopathy in P301S tau transgenic mice is associated with a functional deficit of the olfactory system. Eur J Neurosci 2016; 44:2396-403. [PMID: 27422327 DOI: 10.1111/ejn.13333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/28/2022]
Abstract
Multiple neurodegenerative disorders with tau pathology are characterised by the loss of memory and cognitive decline that can be associated with other symptoms including olfactory alterations that are often regarded as an early symptom of the diseases. Here, we have investigated whether olfactory dysfunction is present in the P301S human tau transgenic mice and if it is associated to tau pathology. Progressive tauopathy and neurodegeneration were noticeable in the olfactory bulb and piriform cortex at early age in the P301S human tau transgenic mice and olfactory sensitivity for social or non-social odours was significantly impaired at 3 months of age, when the piriform cortex-dependent odour-cross habituation was also disrupted. The olfactory alterations in the P301S tau transgenic mouse line provide an in vivo system where to test the mechanism-based therapies for the common and yet untreatable tauopathies.
Collapse
Affiliation(s)
- Sujeong Yang
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, ED Adrian Building, Robinson Way, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, ED Adrian Building, Robinson Way, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, ED Adrian Building, Robinson Way, University of Cambridge, Cambridge, CB2 0PY, UK. .,Department of Clinical Neurosciences, Clifford Albutt building, Hills Road, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
39
|
Means JC, Gerdes BC, Kaja S, Sumien N, Payne AJ, Stark DA, Borden PK, Price JL, Koulen P. Caspase-3-Dependent Proteolytic Cleavage of Tau Causes Neurofibrillary Tangles and Results in Cognitive Impairment During Normal Aging. Neurochem Res 2016; 41:2278-88. [PMID: 27220334 PMCID: PMC4965284 DOI: 10.1007/s11064-016-1942-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 12/31/2022]
Abstract
Mouse models of neurodegenerative diseases such as Alzheimer's disease (AD) are important for understanding how pathological signaling cascades change neural circuitry and with time interrupt cognitive function. Here, we introduce a non-genetic preclinical model for aging and show that it exhibits cleaved tau protein, active caspases and neurofibrillary tangles, hallmarks of AD, causing behavioral deficits measuring cognitive impairment. To our knowledge this is the first report of a non-transgenic, non-interventional mouse model displaying structural, functional and molecular aging deficits associated with AD and other tauopathies in humans with potentially high impact on both new basic research into pathogenic mechanisms and new translational research efforts. Tau aggregation is a hallmark of tauopathies, including AD. Recent studies have indicated that cleavage of tau plays an important role in both tau aggregation and disease. In this study we use wild type mice as a model for normal aging and resulting age-related cognitive impairment. We provide evidence that aged mice have increased levels of activated caspases, which significantly correlates with increased levels of truncated tau and formation of neurofibrillary tangles. In addition, cognitive decline was significantly correlated with increased levels of caspase activity and tau truncated by caspase-3. Experimentally induced inhibition of caspases prevented this proteolytic cleavage of tau and the associated formation of neurofibrillary tangles. Our study shows the strength of using a non-transgenic model to study structure, function and molecular mechanisms in aging and age related diseases of the brain.
Collapse
Affiliation(s)
- John C Means
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Bryan C Gerdes
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Simon Kaja
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, 2160 S First Ave., Maywood, IL, 60153, USA
| | - Nathalie Sumien
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Andrew J Payne
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Danny A Stark
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Priscilla K Borden
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Jeffrey L Price
- Department of Neurology and Cognitive Neuroscience, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, MO, 64110, USA
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA.
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, MO, 64110, USA.
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA.
| |
Collapse
|
40
|
Ossola B, Zhao C, Compston A, Pluchino S, Franklin RJM, Spillantini MG. Neuronal expression of pathological tau accelerates oligodendrocyte progenitor cell differentiation. Glia 2016; 64:457-71. [PMID: 26576485 PMCID: PMC5132073 DOI: 10.1002/glia.22940] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/19/2015] [Indexed: 12/03/2022]
Abstract
Oligodendrocyte progenitor cell (OPC) differentiation is an important therapeutic target to promote remyelination in multiple sclerosis (MS). We previously reported hyperphosphorylated and aggregated microtubule-associated protein tau in MS lesions, suggesting its involvement in axonal degeneration. However, the influence of pathological tau-induced axonal damage on the potential for remyelination is unknown. Therefore, we investigated OPC differentiation in human P301S tau (P301S-htau) transgenic mice, both in vitro and in vivo following focal demyelination. In 2-month-old P301S-htau mice, which show hyperphosphorylated tau in neurons, we found atrophic axons in the spinal cord in the absence of prominent axonal degeneration. These signs of early axonal damage were associated with microgliosis and an upregulation of IL-1β and TNFα. Following in vivo focal white matter demyelination we found that OPCs differentiated more efficiently in P301S-htau mice than wild type (Wt) mice. We also found an increased level of myelin basic protein within the lesions, which however did not translate into increased remyelination due to higher susceptibility of P301S-htau axons to demyelination-induced degeneration compared to Wt axons. In vitro experiments confirmed higher differentiation capacity of OPCs from P301S-htau mice compared with Wt mice-derived OPCs. Because the OPCs from P301S-htau mice do not ectopically express the transgene, and when isolated from newborn mice behave like Wt mice-derived OPCs, we infer that their enhanced differentiation capacity must have been acquired through microenvironmental priming. Our data suggest the intriguing concept that damaged axons may signal to OPCs and promote their differentiation in the attempt at rescue by remyelination.
Collapse
Affiliation(s)
- Bernardino Ossola
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
| | - Chao Zhao
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
- Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AHUnited Kingdom
| | - Alastair Compston
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
- Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AHUnited Kingdom
- NIHR Biomedical Research CentreCambridgeCB2 0AHUnited Kingdom
| | - Robin J. M. Franklin
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
- Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of CambridgeCambridgeCB2 0AHUnited Kingdom
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt BuildingUniversity of CambridgeCambridge CB2 0AHUnited Kingdom
| |
Collapse
|
41
|
Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model. Neurobiol Dis 2016; 87:19-28. [DOI: 10.1016/j.nbd.2015.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/30/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022] Open
|
42
|
Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss. Sci Rep 2016; 6:20833. [PMID: 26888634 PMCID: PMC4757872 DOI: 10.1038/srep20833] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/08/2016] [Indexed: 01/26/2023] Open
Abstract
The hyperphosphorylated microtubule-associated protein tau is present in several neurodegenerative diseases, although the causal relationship remains elusive. Few mouse models used to study Alzheimer-like dementia target tau phosphorylation. We created an inducible pseudophosphorylated tau (Pathological Human Tau, PH-Tau) mouse model to study the effect of conformationally modified tau in vivo. Leaky expression resulted in two levels of PH-Tau: low basal level and higher upon induction (4% and 14% of the endogenous tau, respectively). Unexpectedly, low PH-Tau resulted in significant cognitive deficits, decrease in the number of synapses (seen by EM in the CA1 region), reduction of synaptic proteins, and localization to the nucleus. Induction of PH-Tau triggered neuronal death (60% in CA3), astrocytosis, and loss of the processes in CA1. These findings suggest, that phosphorylated tau is sufficient to induce neurodegeneration and that two different mechanisms can induce cognitive impairment depending on the levels of PH-Tau expression.
Collapse
|
43
|
Barini E, Antico O, Zhao Y, Asta F, Tucci V, Catelani T, Marotta R, Xu H, Gasparini L. Metformin promotes tau aggregation and exacerbates abnormal behavior in a mouse model of tauopathy. Mol Neurodegener 2016; 11:16. [PMID: 26858121 PMCID: PMC4746897 DOI: 10.1186/s13024-016-0082-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer disease (AD) and other tauopathies develop cerebral intracellular inclusions of hyperphosphorylated tau. Epidemiological and experimental evidence suggests a clear link between type 2 diabetes mellitus and AD. In AD animal models, tau pathology is exacerbated by metabolic comorbidities, such as insulin resistance and diabetes. Within this context, anitidiabetic drugs, including the widely-prescribed insulin-sensitizing drug metformin, are currently being investigated for AD therapy. However, their efficacy for tauopathy in vivo has not been tested. Results Here, we report that in the P301S mutant human tau (P301S) transgenic mouse model of tauopathy, chronic administration of metformin exerts paradoxical effects on tau pathology. Despite reducing tau phosphorylation in the cortex and hippocampus via AMPK/mTOR and PP2A, metformin increases insoluble tau species (including tau oligomers) and the number of inclusions with β-sheet aggregates in the brain of P301S mice. In addition, metformin exacerbates hindlimb atrophy, increases P301S hyperactive behavior, induces tau cleavage by caspase 3 and disrupts synaptic structures. Conclusions These findings indicate that metformin pro-aggregation effects mitigate the potential benefits arising from its dephosphorylating action, possibly leading to an overall increase of the risk of tauopathy in elderly diabetic patients. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0082-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erica Barini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy
| | - Odetta Antico
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Francesco Asta
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy
| | - Valter Tucci
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy
| | - Tiziano Catelani
- Nanochemistry Department, Electron Microscopy Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy
| | - Roberto Marotta
- Nanochemistry Department, Electron Microscopy Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.,Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Laura Gasparini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy. .,Present Address: AbbVie Deutschland GmbH &Co. KG, Knollstr., 67061, Ludwigshafen, Germany.
| |
Collapse
|
44
|
Neuroinflammatory Gene Regulation, Mitochondrial Function, Oxidative Stress, and Brain Lipid Modifications With Disease Progression in Tau P301S Transgenic Mice as a Model of Frontotemporal Lobar Degeneration-Tau. J Neuropathol Exp Neurol 2015; 74:975-99. [DOI: 10.1097/nen.0000000000000241] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
45
|
Matsumoto SE, Motoi Y, Ishiguro K, Tabira T, Kametani F, Hasegawa M, Hattori N. The twenty-four KDa C-terminal tau fragment increases with aging in tauopathy mice: implications of prion-like properties. Hum Mol Genet 2015; 24:6403-16. [PMID: 26374846 DOI: 10.1093/hmg/ddv351] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022] Open
Abstract
The truncated tau protein is a component of the neurofibrillary tangles found in the brains with tauopathies. However, the molecular mechanisms by which the truncated tau fragment causes neurodegeneration remain unknown. Tau pathology was recently suggested to spread through intercellular propagation, and required the formation of 'prion-like' species. We herein identified a new fragment of the tau protein that consisted of four binding domains and a C-terminal tail (Tau-CTF24), but lacked the N-terminal projection domain, and found that it increased with aging in tauopathy model mice (Tg601). Tau-CTF24-like fragments were also present in human brains with tauopathies. A mass spectroscopic analysis revealed that Tau-CTF24 was cleaved behind R242. The digestion of full-length tau (Tau-FL) by calpain produced Tau-CTF24 in vitro and calpain activity increased in old Tg601. Recombinant Tau-CTF24 accelerated heparin-induced aggregation and lost the ability to promote microtubule assembly. When insoluble tau from diseased brains or aggregated recombinant tau was introduced as seeds into SH-SY5Y cells, a larger amount of insoluble tau was formed in cells overexpressing Tau-CTF24 than in those overexpressing Tau-FL. Furthermore, lysates containing the Tau-CTF24 inclusion propagated to naive tau-expressing cells more efficiently than those containing the Tau-FL inclusion. Immunoblot and confocal microscopic analyses revealed that aggregated Tau-CTF24 bound to cells more rapidly and abundantly than aggregated Tau-FL. Our results suggest that Tau-CTF24 contributes to neurodegeneration by enhancing prion-like propagation as well as deteriorating the mechanisms involved in microtubule function.
Collapse
Affiliation(s)
- Shin-Ei Matsumoto
- Department of Diagnosis, Prevention and Treatment of Dementia, Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 116-0013, Japan and
| | - Yumiko Motoi
- Department of Diagnosis, Prevention and Treatment of Dementia, Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 116-0013, Japan and
| | - Koichi Ishiguro
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 116-0013, Japan and
| | - Takeshi Tabira
- Department of Diagnosis, Prevention and Treatment of Dementia
| | - Fuyuki Kametani
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Nobutaka Hattori
- Department of Diagnosis, Prevention and Treatment of Dementia, Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 116-0013, Japan and
| |
Collapse
|
46
|
Jiang T, Zhang YD, Zhou JS, Zhu XC, Tian YY, Zhao HD, Lu H, Gao Q, Tan L, Yu JT. Angiotensin-(1-7) is Reduced and Inversely Correlates with Tau Hyperphosphorylation in Animal Models of Alzheimer’s Disease. Mol Neurobiol 2015; 53:2489-97. [DOI: 10.1007/s12035-015-9260-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/28/2015] [Indexed: 12/29/2022]
|
47
|
Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer's disease. Trends Mol Med 2015; 21:394-402. [DOI: 10.1016/j.molmed.2015.03.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/27/2022]
|
48
|
Brelstaff J, Ossola B, Neher JJ, Klingstedt T, Nilsson KPR, Goedert M, Spillantini MG, Tolkovsky AM. The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice. Front Neurosci 2015; 9:184. [PMID: 26074756 PMCID: PMC4448042 DOI: 10.3389/fnins.2015.00184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/08/2015] [Indexed: 11/15/2022] Open
Abstract
Identification of fluorescent dyes that label the filamentous protein aggregates characteristic of neurodegenerative disease, such as β-amyloid and tau in Alzheimer's disease, in a live cell culture system has previously been a major hurdle. Here we show that pentameric formyl thiophene acetic acid (pFTAA) fulfills this function in living neurons cultured from adult P301S tau transgenic mice. Injection of pFTAA into 5-month-old P301S tau mice detected cortical and DRG neurons immunoreactive for AT100, an antibody that identifies solely filamentous tau, or MC1, an antibody that identifies a conformational change in tau that is commensurate with neurofibrillary tangle formation in Alzheimer's disease brains. In fixed cultures of dorsal root ganglion (DRG) neurons, pFTAA binding, which also identified AT100 or MC1+ve neurons, followed a single, saturable binding curve with a half saturation constant of 0.14 μM, the first reported measurement of a binding affinity of a beta-sheet reactive dye to primary neurons harboring filamentous tau. Treatment with formic acid, which solubilizes filamentous tau, extracted pFTAA, and prevented the re-binding of pFTAA and MC1 without perturbing expression of soluble tau, detected using an anti-human tau (HT7) antibody. In live cultures, pFTAA only identified DRG neurons that, after fixation, were AT100/MC1+ve, confirming that these forms of tau pre-exist in live neurons. The utility of pFTAA to discriminate between living neurons containing filamentous tau from other neurons is demonstrated by showing that more pFTAA+ve neurons die than pFTAA-ve neurons over 25 days. Since pFTAA identifies fibrillar tau and other misfolded proteins in living neurons in culture and in animal models of several neurodegenerative diseases, as well as in human brains, it will have considerable application in sorting out disease mechanisms and in identifying disease-modifying drugs that will ultimately help establish the mechanisms of neurodegeneration in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Jack Brelstaff
- Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | - Bernardino Ossola
- Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | | | | | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology Cambridge, UK
| | | | - Aviva M Tolkovsky
- Department of Clinical Neurosciences, University of Cambridge Cambridge, UK
| |
Collapse
|
49
|
Yang S, Cacquevel M, Saksida LM, Bussey TJ, Schneider BL, Aebischer P, Melani R, Pizzorusso T, Fawcett JW, Spillantini MG. Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology. Exp Neurol 2014; 265:48-58. [PMID: 25483398 PMCID: PMC4353684 DOI: 10.1016/j.expneurol.2014.11.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease is the most prevalent tauopathy and cause of dementia. We investigate the hypothesis that reactivation of plasticity can restore function in the presence of neuronal damage resulting from tauopathy. We investigated two models with tau hyperphosphorylation, aggregation and neurodegeneration: a transgenic mouse model in which the mutant P301S tau is expressed in neurons (Tg P301S), and a model in which an adeno-associated virus expressing P301S tau (AAV-P301S) was injected in the perirhinal cortex, a region critical for object recognition (OR) memory. Both models show profound loss of OR memory despite only 15% neuronal loss in the Tg P301S and 26% in AAV-P301S-injected mice. Recordings from perirhinal cortex slices of 3month-old P301S transgenic mice showed a diminution in synaptic transmission following temporal stimulation. Chondroitinase ABC (ChABC) can reactivate plasticity and affect memory through actions on perineuronal nets. ChABC was injected into the perirhinal cortex and animals were tested for OR memory 1week later, demonstrating restoration of OR memory to normal levels. Synaptic transmission indicated by fEPSP amplitude was restored to control levels following ChABC treatment. ChABC did not affect the progression of neurodegenerative tauopathy. These findings suggest that increasing plasticity by manipulation of perineuronal nets offers a novel therapeutic approach to the treatment of memory loss in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sujeong Yang
- John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Matthias Cacquevel
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Lisa M Saksida
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom; MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Timothy J Bussey
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom; MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Patrick Aebischer
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | | | - Tommaso Pizzorusso
- Inst Neuroscience CNR, via Moruzzi 1, 56125 Pisa, Italy; NEUROFARBA Dept, University of Florence, Area S. Salvi Pad. 26, 50135 Florence, Italy
| | - James W Fawcett
- John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Maria Grazia Spillantini
- John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, United Kingdom.
| |
Collapse
|
50
|
Xu H, Rösler TW, Carlsson T, de Andrade A, Bruch J, Höllerhage M, Oertel WH, Höglinger GU. Memory deficits correlate with tau and spine pathology in P301SMAPTtransgenic mice. Neuropathol Appl Neurobiol 2014; 40:833-43. [DOI: 10.1111/nan.12160] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/21/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Xu
- Department of Neurology; Technical University Munich; Munich Germany
- Department of Translational Neurodegeneration; German Center for Neurodegenerative Diseases (DZNE); Munich Germany
| | - Thomas W. Rösler
- Department of Translational Neurodegeneration; German Center for Neurodegenerative Diseases (DZNE); Munich Germany
| | - Thomas Carlsson
- Department of Pharmacology; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
- Department of Neurology; Philipps-University; Marburg Germany
| | - Anderson de Andrade
- Department of Translational Neurodegeneration; German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Department of Neurology; Philipps-University; Marburg Germany
| | - Julius Bruch
- Department of Neurology; Technical University Munich; Munich Germany
- Department of Translational Neurodegeneration; German Center for Neurodegenerative Diseases (DZNE); Munich Germany
| | | | | | - Günter U. Höglinger
- Department of Neurology; Technical University Munich; Munich Germany
- Department of Translational Neurodegeneration; German Center for Neurodegenerative Diseases (DZNE); Munich Germany
- Department of Neurology; Philipps-University; Marburg Germany
| |
Collapse
|