1
|
Liu M. Cytokines, chemokines and growth factors involved in keloids pathogenesis. An Bras Dermatol 2025; 100:300-307. [PMID: 39799030 PMCID: PMC11963030 DOI: 10.1016/j.abd.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/15/2025] Open
Abstract
Keloid is a common fibrotic disease, which is difficult to treat. It often causes itching and pain, which greatly disturbs patients in their work and daily life and causing difficulties in social interaction. Its pathogenesis is not clear, but may be related to several aspects: genetic susceptibility, environmental, immunological and endocrine factors, trauma and tension. The central point of its pathogenesis is the excessive proliferation of fibroblasts, with excessive synthesis and secretion of extracellular matrix such as collagen. However, the cause of fibroblast excessive proliferation and differentiation is not clear. Immune abnormalities may play an important role, with cytokines, chemokines, growth factors, and other important immune molecules acting on fibroblasts. This paper presents a detailed and comprehensive literature review on this subject.
Collapse
Affiliation(s)
- Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Hoch M, Smita S, Cesnulevicius K, Schultz M, Lescheid D, Wolkenhauer O, Gupta S. Network analyses reveal new insights into the effect of multicomponent Tr14 compared to single-component diclofenac in an acute inflammation model. J Inflamm (Lond) 2023; 20:12. [PMID: 36973809 PMCID: PMC10044762 DOI: 10.1186/s12950-023-00335-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Modifying the acute inflammatory response has wide clinical benefits. Current options include non-steroidal anti-inflammatory drugs (NSAIDs) and therapies that may resolve inflammation. Acute inflammation involves multiple cell types and various processes. We, therefore, investigated whether an immunomodulatory drug that acts simultaneously at multiple sites shows greater potential to resolve acute inflammation more effectively and with fewer side effects than a common anti-inflammatory drug developed as a small molecule for a single target. In this work, we used time-series gene expression profiles from a wound healing mouse model to compare the effects of Traumeel (Tr14), a multicomponent natural product, to diclofenac, a single component NSAID on inflammation resolution. RESULTS We advance previous studies by mapping the data onto the "Atlas of Inflammation Resolution", followed by in silico simulations and network analysis. We found that Tr14 acts primarily on the late phase of acute inflammation (during resolution) compared to diclofenac, which suppresses acute inflammation immediately after injury. CONCLUSIONS Our results provide new insights how network pharmacology of multicomponent drugs may support inflammation resolution in inflammatory conditions.
Collapse
Affiliation(s)
- Matti Hoch
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, 18055, Germany
| | - Suchi Smita
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, 18055, Germany
| | | | | | | | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, 18055, Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany
- Stellenbosch Institute of Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, 18055, Germany.
| |
Collapse
|
3
|
Wells A. Role of CXCR3 in fibrotic tissue responses. Int J Biochem Cell Biol 2022; 152:106311. [PMID: 36195287 DOI: 10.1016/j.biocel.2022.106311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022]
Abstract
Development of fibrosis leads to end stage diseases that defy treatments across all organs. This ensues as chronic inflammation is not dampened by physiologic processes that issue in the resolution phase of wound healing. Thus, these conditions can be considered diseases of "failure to heal". In the absence of broadly viable treatments, it is proposed to examine key switches in wound healing resolution to seek insights into novel approaches. Signaling through the GPCR CXCR3 has been shown to be one such critical player in this physiologic transition that limits and even reverses early fibrosis. As such, a number of investigators and early stage technology companies have posited that triggering this signaling network would limit fibrosis. While there are some conflicting results, a consensus is emerging that pharmacologic interventions that promote signaling through this pathway represent innovative ways to limit fibrotic diseases.
Collapse
Affiliation(s)
- Alan Wells
- Departments of Pathology, Bioengineering, and Computational & Systems Biology, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; R&D Service, Pittsburgh VA Health System, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Legrand JMD, Martino MM. Growth Factor and Cytokine Delivery Systems for Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041234. [PMID: 35667794 PMCID: PMC9341469 DOI: 10.1101/cshperspect.a041234] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin wound healing is a highly coordinated process involving multiple tissue-resident and recruited cell types. Cells within the wound microenvironment respond to key secreted factors such as pro-proliferative growth factors and immunomodulatory cytokines to repair the skin and promptly restore its essential barrier role. Therefore, recombinant growth factors and cytokines are promising therapeutics for skin wounds, in particular for large acute wounds such as burns, or wounds associated with underlying pathologies such as nonhealing chronic and diabetic wounds. However, translation of growth factors and cytokines into clinically effective treatments has been limited. Short half-life, poor stability, rapid diffusion, uncontrolled signaling, and systemic side effects are currently the key challenges to developing efficient growth factor- and cytokine-based therapies. To overcome these limitations, novel delivery systems have been developed to improve the regenerative potential of recombinant growth factors and cytokines. In this review, we discuss biomaterial and protein engineering strategies used to optimize the delivery of growth factor and cytokine therapeutics for skin wound treatment.
Collapse
Affiliation(s)
- Julien M D Legrand
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Sylakowski K, Hwang MP, Justin A, Whaley D, Wang Y, Wells A. The matricellular protein decorin delivered intradermally with coacervate improves wound resolution in the CXCR3-deficient mouse model of hypertrophic scarring. Wound Repair Regen 2022; 30:436-447. [PMID: 35470921 DOI: 10.1111/wrr.13017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 01/26/2023]
Abstract
Cutaneous wound healing is an intricate orchestration of three overlapping phases of repair that encompass numerous cell types, signalling cascades, and microenvironment modifications to reach a successful resolution. Disruption of any of these steps will create an abnormal healing response resulting in either ulceration or excessive scarring. It has become evident that the extracellular matrix and its associated components are key orchestrators during this process. One of these essential matrix proteins is decorin, a small leucine-rich proteoglycan (SLRP) that acts as a regulator of collagen fibrillogenesis and a non-competitive inhibitor of multiple growth factors signalling cascades. Decorin is a necessary shut-off switch for the pro-reparative mechanism of the tissue replacement phase and limits the occurrence of hypertrophic scarring by preventing excessive repair. We investigated the use of decorin as a therapeutic by administering the matrix protein anchored in a slow-release coacervate in a hypertrophic scarring mouse model. The results show that early wound healing phase measurements exhibit little difference in performance compared to our coacervate-only baseline or HB-EGF-treated control mice. However, during the resolution phase of wound healing, the decorin-treatment significantly reduces cutaneous thickness, enhances collagen alignment, and improves overall wound scoring in the mice. Thus, mice treated with decorin display better healing outcomes and could limit the hypertrophic scarring phenotype in the coacervate only, and HB-EGF controls. These results suggest that decorin may be a promising tool and alternative therapy for patients who suffer from over-exuberant matrix deposition during wound healing.
Collapse
Affiliation(s)
- Kyle Sylakowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,R&D Service, Pittsburgh, VA Health System, Pittsburgh, Pennsylvania, USA
| | - Mintai Peter Hwang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Amritha Justin
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diana Whaley
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,R&D Service, Pittsburgh, VA Health System, Pittsburgh, Pennsylvania, USA
| | - Yadong Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,R&D Service, Pittsburgh, VA Health System, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Daniels JR, Ma JZ, Cao Z, Beger RD, Sun J, Schnackenberg L, Pence L, Choudhury D, Palevsky PM, Portilla D, Yu LR. Discovery of Novel Proteomic Biomarkers for the Prediction of Kidney Recovery from Dialysis-Dependent AKI Patients. KIDNEY360 2021; 2:1716-1727. [PMID: 34913041 PMCID: PMC8670726 DOI: 10.34067/kid.0002642021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AKI requiring dialysis (AKI-D) is associated with prolonged hospitalization, mortality, and progressive CKD among survivors. Previous studies have examined only select urine or serum biomarkers for predicting kidney recovery from AKI. METHODS Serum samples collected on day 8 of randomized RRT from 72 patients enrolled in the Veteran's Affairs/National Institutes of Health Acute Renal Failure Trial Network study were analyzed by the SOMAscan proteomic platform to profile 1305 proteins in each sample. Of these patients, 38 recovered kidney function and dialysis was discontinued, whereas another 34 patients remained on dialysis by day 28. RESULTS Differential serum levels of 119 proteins, with 53 higher and 66 lower, were detected in samples from patients who discontinued dialysis, compared with patients who remained on dialysis by day 28. Patients were classified into tertiles on the basis of SOMAscan protein measurements for the 25 proteins most differentially expressed. The association of serum levels of each protein with kidney recovery was further evaluated using logistic regression analysis. Higher serum levels of CXCL11, CXCL2/CXCL3, CD86, Wnt-7a, BTK, c-Myc, TIMP-3, CCL5, ghrelin, PDGF-C, survivin, CA2, IL-9, EGF, and neuregulin-1, and lower levels of soluble CXCL16, IL1RL1, stanniocalcin-1, IL-6, and FGF23 when classified in tertiles were significantly associated with better kidney recovery. This significant association persisted for each of these proteins after adjusting for potential confounding risk factors including age, sex, cardiovascular SOFA score, congestive heart failure, diabetes, modality of intensive dialysis treatment, cause of AKI, baseline serum creatinine, day 8 urine volume, and estimated 60-day mortality risk. CONCLUSIONS These results suggest concerted changes between survival-related proteins and immune-regulatory chemokines in regulating angiogenesis, endothelial and epithelial remodeling, and kidney cell regeneration, illustrating potential mechanisms of kidney recovery. Thus, this study identifies potential novel predictive biomarkers of kidney recovery in patients with AKI-D.
Collapse
Affiliation(s)
- Jaclyn R. Daniels
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Jennie Z. Ma
- Division of Biostatistics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia,Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Zhijun Cao
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Richard D. Beger
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Laura Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Lisa Pence
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Devasmita Choudhury
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia,Salem Veterans Affairs Medical Center, Salem, Virginia
| | - Paul M. Palevsky
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania,Renal-Electrolye Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Didier Portilla
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
7
|
Swogger J, Conner IP, Rosano M, Kemmerer M, Happ-Smith C, Wells A, Schuman JS, Yates CC. Injected Versus Sponge-Applied Mitomycin C (MMC) During Modified Trabeculectomy in New Zealand White Rabbit Model. Transl Vis Sci Technol 2020; 9:23. [PMID: 33150049 PMCID: PMC7585388 DOI: 10.1167/tvst.9.11.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/23/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Mitomycin C is routinely applied during trabeculectomy surgeries to enhance bleb survival after glaucoma filtration surgery. The current approach involves placing cellulose sponges soaked in mitomycin C at a standard concentration onto bare sclera for a predetermined duration, which varies among surgeons. The purpose of this study was to compare the effects of sponge-applied versus intra-Tenon injection of mitomycin C during modified trabeculectomy. Methods Two groups of five New Zealand White rabbits underwent glaucoma filtration surgery with either preoperative intra-Tenon injection of mitomycin C or intraoperative application of mitomycin C using a cellulose sponge. Postoperative intraocular pressure was recorded weekly, and eyes were enucleated and sent for pathological examination and histological analysis. Results An intra-Tenon injection of mitomycin C resulted in decreased intraocular pressure measurements and bleb vascularity compared to the controls but increased levels compared to the sponge-applied group. Collagen deposition and cellularity were reduced and the goblet cell population was increased in the intra-Tenon injection group. Conclusions This study shows that an intra-Tenon injection can be an effective method for administering mitomycin C compared to the standard-of-care approach of mitomycin C being sponge applied onto bare sclera. Mitomycin C injection led to a greater reduction in intraocular pressure and inhibition of fibroblasts. The associated goblet cell population that can lead to increased mitomycin C toxicity-related morbidity was minimized with the intra-Tenon injection compared to the sponge-applied MMC treatment. Therefore, patients with ocular surface disease may benefit from an intra-Tenon injection. Translational Relevance This project provides a direct, qualitative assessment in an animal model of common techniques within glaucoma filtration surgery for drug delivery to improve surgical success.
Collapse
Affiliation(s)
- John Swogger
- Department of Ophthalmology, UPMC Eye Center, Eye & Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ian P Conner
- Department of Ophthalmology, UPMC Eye Center, Eye & Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maranda Rosano
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | - Megan Kemmerer
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | - Carrie Happ-Smith
- Department of Ophthalmology, UPMC Eye Center, Eye & Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joel S Schuman
- Department of Ophthalmology, UPMC Eye Center, Eye & Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cecelia C Yates
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Caccuri F, Bugatti A, Corbellini S, Roversi S, Zani A, Mazzuca P, Marsico S, Caruso A, Giagulli C. The Synthetic Dipeptide Pidotimod Shows a Chemokine-Like Activity through CXC Chemokine Receptor 3 (CXCR3). Int J Mol Sci 2019; 20:ijms20215287. [PMID: 31653015 PMCID: PMC6862300 DOI: 10.3390/ijms20215287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
In recent years immunomodulators have gained a strong interest and represent nowadays an active expanding area of research for the control of microbial diseases and for their therapeutic potential in preventing, treating and reducing the morbidity and mortality of different diseases. Pidotimod (3-L-pyroglutamyl-L-thiaziolidine-4carboxylic acid, PDT) is a synthetic dipeptide, which possesses immunomodulatory properties and exerts a well-defined pharmacological activity against infections, but its real mechanism of action is still undefined. Here, we show that PDT is capable of activating tyrosine phosphorylation-based cell signaling in human primary monocytes and triggering rapid adhesion and chemotaxis. PDT-induced monocyte migration requires the activation of the PI3K/Akt signaling pathway and chemokine receptor CXCR3. Indeed, a mAb to CXCR3 and a specific receptor inhibitor suppressed significantly PDT-dependent chemotaxis, and CXCR3-silenced primary monocytes lost responsiveness to PDT chemoattraction. Moreover, our results highlighted that the PDT-induced migratory activity is sustained by the CXCR3A isoform, since CXCR3-transfected L1.2 cells acquired responsiveness to PDT stimulation. Finally, we show that PDT, as CXCR3 ligands, is also able to direct the migration of IL-2 activated T cells, which express the highest levels of CXCR3 among CXCR3-expressing cells. In conclusion, our study defines a chemokine-like activity for PDT through CXCR3A and points on the possible role that this synthetic dipeptide may play in leukocyte trafficking and function. Since recent studies have highlighted diverse therapeutic roles for molecules which activates CXCR3, our findings call for an exploration of using this dipeptide in different pathological processes.
Collapse
Affiliation(s)
- Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Silvia Corbellini
- Laboratory of Microbiology and Virology, Azienda Socio Sanitaria Territoriale Spedali Civili, 25123 Brescia, Italy.
| | - Sara Roversi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
9
|
Kuo PT, Zeng Z, Salim N, Mattarollo S, Wells JW, Leggatt GR. The Role of CXCR3 and Its Chemokine Ligands in Skin Disease and Cancer. Front Med (Lausanne) 2018; 5:271. [PMID: 30320116 PMCID: PMC6167486 DOI: 10.3389/fmed.2018.00271] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Chemokines and their receptors play an important role in the recruitment, activation and differentiation of immune cells. The chemokine receptor, CXCR3, and its ligands, CXCL9, CXCL10, and CXCL11 are key immune chemoattractants during interferon-induced inflammatory responses. Inflammation of the skin resulting from infections or autoimmune disease drives expression of CXCL9/10/11 and the subsequent recruitment of effector, CXCR3+ T cells from the circulation. The relative contributions of the different CXCR3 chemokines and the three variant isoforms of CXCR3 (CXCR3A, CXCR3B, CXCR3alt) to the inflammatory process in human skin requires further investigation. In skin cancers, the CXCR3 receptor can play a dual role whereby expression on tumor cells can lead to cancer metastasis to systemic sites while receptor expression on immune cells can frequently promote anti-tumor immune responses. This review will discuss the biology of CXCR3 and its associated ligands with particular emphasis on the skin during inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Paula T Kuo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Zhen Zeng
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Nazhifah Salim
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Stephen Mattarollo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - James W Wells
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Graham R Leggatt
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Suttorp CM, Cremers NA, van Rheden R, Regan RF, Helmich P, van Kempen S, Kuijpers-Jagtman AM, Wagener FADTG. Chemokine Signaling during Midline Epithelial Seam Disintegration Facilitates Palatal Fusion. Front Cell Dev Biol 2017; 5:94. [PMID: 29164113 PMCID: PMC5670099 DOI: 10.3389/fcell.2017.00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion, and failure results in cleft palate. Palatal fusion and wound repair share many common signaling pathways related to epithelial-mesenchymal cross-talk. We postulate that chemokine CXCL11, its receptor CXCR3, and the cytoprotective enzyme heme oxygenase (HO), which are crucial during wound repair, also play a decisive role in MES disintegration. Fetal growth restriction and craniofacial abnormalities were present in HO-2 knockout (KO) mice without effects on palatal fusion. CXCL11 and CXCR3 were highly expressed in the disintegrating MES in both wild-type and HO-2 KO animals. Multiple apoptotic DNA fragments were present within the disintegrating MES and phagocytized by recruited CXCR3-positive wt and HO-2 KO macrophages. Macrophages located near the MES were HO-1-positive, and more HO-1-positive cells were present in HO-2 KO mice compared to wild-type. This study of embryonic and palatal development provided evidence that supports the hypothesis that the MES itself plays a prominent role in palatal fusion by orchestrating epithelial apoptosis and macrophage recruitment via CXCL11-CXCR3 signaling.
Collapse
Affiliation(s)
- Christiaan M Suttorp
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Niels A Cremers
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands.,Department of Rheumatology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - René van Rheden
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pia Helmich
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sven van Kempen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anne M Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
11
|
Yates CC, Rodrigues M, Nuschke A, Johnson ZI, Whaley D, Stolz D, Newsome J, Wells A. Multipotent stromal cells/mesenchymal stem cells and fibroblasts combine to minimize skin hypertrophic scarring. Stem Cell Res Ther 2017; 8:193. [PMID: 28874184 PMCID: PMC5585998 DOI: 10.1186/s13287-017-0644-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/20/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
Background Transplantation of mesenchymal stem cells (MSC) has been proposed to improve wound healing. However, as these cells only transiently survive in the implantation site, the mechanisms underlying this beneficial healing response are associated with restorative paracrine effects of MSC matricellular factors on resident stromal cells. However, this requires that the recipient has a robust reservoir of viable cells. Here, we examine the influence of MSCs on the behavior of cotransplanted fibroblasts, in a manner to provide augmented cellular reserve to debilitated individuals, specifically focusing on matrix remodeling following in-vivo wounding. Methods Using a Hylan-A dermal filler hydrogel containing collagen I and tenascin-C for delivery and increased survival of transplanted cells, we find that cotransplantation of MSCs with fibroblasts reduces scarring. Results Transplanted xenogeneic MSCs augmented fibroblast proliferation, migration, and extracellular matrix deposition critical for wound closure, and reduced inflammation following wounding. MSCs also corrected matrix remodeling by CXCR3-deficient fibroblasts which otherwise led to hypertrophic scarring. This effect was superior to MSC or fibroblast transplantation alone. Conclusions Taken together, these data suggest that MSCs, even if eventually rejected, transplanted with fibroblasts normalize matrix regeneration during healing. The current study provides insight into cellular therapies as a viable method for antifibrotic treatment and demonstrates that even transiently engrafted cells can have a long-term impact via matrix modulation and education of other tissue cells.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Pathology, University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA, 15261, USA. .,Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA. .,Pittsburgh VAMC, Pittsburgh, PA, USA. .,McGowan Institute of Regenerative Medicine, Pittsburgh, PA, USA. .,University of Pittsburgh, School of Nursing, 3500 Victoria Street, Victoria Bldg. 458A, Pittsburgh, PA, 15261, USA.
| | - Melanie Rodrigues
- Department of Plastic Surgery, Stanford University, Stanford, CA, USA
| | - Austin Nuschke
- Department of Pathology, University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA, 15261, USA
| | - Zariel I Johnson
- Department of Pathology, University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA, 15261, USA
| | | | - Donna Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Newsome
- Department of Pathology, University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA, 15261, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA, 15261, USA. .,Pittsburgh VAMC, Pittsburgh, PA, USA. .,McGowan Institute of Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Huen AC, Marathi A, Nam PK, Wells A. CXCL11 Expression by Keratinocytes Occurs Transiently Between Reaching Confluence and Cellular Compaction. Adv Wound Care (New Rochelle) 2016; 5:517-526. [PMID: 28078185 DOI: 10.1089/wound.2015.0680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022] Open
Abstract
Objective: To investigate whether differentiation or cellular confluence is responsible for CXCL11 expression patterns in re-epithelialization. Approach:In vitro model systems of re-epithelialization using the HaCaT keratinocyte cell line were utilized in monitoring expression of differentiation markers, including desmoplakin and various cytokeratins while evaluating for an association with chemokine CXCL11 expression. Results: CXCL11 expression was elevated in sparse culture with peak expression near the time of confluence. This somewhat followed the accumulation of desmoplakin in detergent-insoluble pool of proteins. However, in postconfluent, despite continued accumulation of desmoplakin within cells, CXCL11 expression decreased to baseline levels. This biphasic pattern was also seen in low calcium culture, an environment that inhibits keratinocyte differentiation and accumulation of desmosomal proteins. Highest CXCL11-expressing areas best correlated with newly confluent areas within culture expressing basal keratin 14, but also activated keratin 6. Innovation: Achievement of a threshold cellular density induces cell signaling cascade through CXCR3 that, in addition to other undiscovered pathways, can progress cutaneous wounds from the proliferative into the remodeling phases of cutaneous wound healing. Conclusion: These results suggest that the achievement of confluence with increased cellular density by migrating keratinocytes at the wound edge triggers expression of CXCL11. Since CXCR3 stimulation in endothelial cells results in apoptosis and causes neovascular pruning, whereas stimulation of CXCR3 in fibroblasts results decreased motility and cellular contraction, we speculate that CXCL11 expression by epidermal cells upon achieving cellular confluence could be the source of CXCR3 stimulation in the dermis ushering a transition from proliferative to remodeling phases of wound healing.
Collapse
Affiliation(s)
- Arthur C. Huen
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Archana Marathi
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter K. Nam
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Satish L, Gallo PH, Johnson S, Yates CC, Kathju S. Local Probiotic Therapy with Lactobacillus plantarum Mitigates Scar Formation in Rabbits after Burn Injury and Infection. Surg Infect (Larchmt) 2016; 18:119-127. [PMID: 27788042 DOI: 10.1089/sur.2016.090] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Infection is the most common complication in burn-injured patients and is believed to contribute to the hypertrophic scarring frequently observed in such injury. Pseudomonas aeruginosa is a common pathogen in burn wound infection. We examined the effect of local probiotic therapy with Lactobacillus plantarum on the severity of the scarring following burn wounding and infection with P. aeruginosa in a rabbit model. METHODS Full-thickness burn wounds were inoculated with control vehicle or L. plantarum; wounds were then challenged with bioluminescent P. aeruginosa. The time course of the ensuing infection was monitored by quantification of the emitted light. After allowing wounds to contract to near completion, they were harvested and analyzed for markers of scar formation. RESULTS Application of L. plantarum curtailed both the severity and the length of the pseudomonal infection. Probiotic therapy significantly reduced both Type I collagen mRNA concentrations and total collagen protein accumulation in infected wounds, consistent with reduced scarring. Surprisingly, the probiotic showed a nearly equivalent effect in uninfected wounds. Masson's trichrome staining confirmed these findings histologically. CONCLUSIONS Lactobacillus plantarum shows exciting potential as a therapeutic agent to both counteract burn wound infection and to alleviate scarring even in the absence of infection.
Collapse
Affiliation(s)
- Latha Satish
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,2 Department of Plastic and Reconstructive Surgery, University of Pittsburgh , Pittsburgh
| | - Phillip H Gallo
- 2 Department of Plastic and Reconstructive Surgery, University of Pittsburgh , Pittsburgh
| | - Sandra Johnson
- 2 Department of Plastic and Reconstructive Surgery, University of Pittsburgh , Pittsburgh
| | - Cecelia C Yates
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,3 Department of Health Promotion and Development, School of Nursing, University of Pittsburgh , Pittsburgh.,4 Department of Pathology, School of Medicine, University of Pittsburgh , Pittsburgh
| | - Sandeep Kathju
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,2 Department of Plastic and Reconstructive Surgery, University of Pittsburgh , Pittsburgh
| |
Collapse
|
14
|
RIPK4 activates an IRF6-mediated proinflammatory cytokine response in keratinocytes. Cytokine 2016; 83:19-26. [DOI: 10.1016/j.cyto.2016.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
|
15
|
Ding J, Tredget EE. The Role of Chemokines in Fibrotic Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:673-686. [PMID: 26543681 DOI: 10.1089/wound.2014.0550] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Significance: Main dermal forms of fibroproliferative disorders are hypertrophic scars (HTS) and keloids. They often occur after cutaneous wound healing after skin injury, or keloids even form spontaneously in the absence of any known injury. HTS and keloids are different in clinical performance, morphology, and histology, but they all lead to physical and psychological problems for survivors. Recent Advances: Although the mechanism of wound healing at cellular and tissue levels has been well described, the molecular pathways involved in wound healing, especially fibrotic healing, is incompletely understood. Critical Issues: Abnormal scars not only lead to increased health-care costs but also cause significant psychological problems for survivors. A plethora of therapeutic strategies have been used to prevent or attenuate excessive scar formation; however, most therapeutic approaches remain clinically unsatisfactory. Future Directions: Effective care depends on an improved understanding of the mechanisms that cause abnormal scars in patients. A thorough understanding of the roles of chemokines in cutaneous wound healing and abnormal scar formation will help provide more effective preventive and therapeutic strategies for dermal fibrosis as well as for other proliferative disorders.
Collapse
Affiliation(s)
- Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Edward E. Tredget
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Division of Critical Care Medicine, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Rees PA, Greaves NS, Baguneid M, Bayat A. Chemokines in Wound Healing and as Potential Therapeutic Targets for Reducing Cutaneous Scarring. Adv Wound Care (New Rochelle) 2015; 4:687-703. [PMID: 26543682 DOI: 10.1089/wound.2014.0568] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Cutaneous scarring is an almost inevitable end point of adult human wound healing. It is associated with significant morbidity, both physical and psychological. Pathological scarring, including hypertrophic and keloid scars, can be particularly debilitating. Manipulation of the chemokine system may lead to effective therapies for problematic lesions. Recent Advances: Rapid advancement in the understanding of chemokines and their receptors has led to exciting developments in the world of therapeutics. Modulation of their function has led to clinically effective treatments for conditions as diverse as human immunodeficiency virus and inflammatory bowel disease. Potential methods of targeting chemokines include monoclonal antibodies, small-molecule antagonists, interference with glycosaminoglycan binding and the use of synthetic truncated chemokines. Early work has shown promising results on scar development and appearance when the chemokine system is manipulated. Critical Issues: Chemokines are implicated in all stages of wound healing leading to the development of a cutaneous scar. An understanding of entirely regenerative wound healing in the developing fetus and how the expression of chemokines and their receptors change during the transition to the adult phenotype is central to addressing pathological scarring in adults. Future Directions: As our understanding of chemokine/receptor interactions and scar formation evolves it has become apparent that effective therapies will need to mirror the complexities in these diverse biological processes. It is likely that sophisticated treatments that sequentially influence multiple ligand/receptor interactions throughout all stages of wound healing will be required to deliver viable treatment options.
Collapse
Affiliation(s)
- Peter Adam Rees
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Nicholas Stuart Greaves
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Mohamed Baguneid
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Hickman HD, Reynoso GV, Ngudiankama BF, Cush SS, Gibbs J, Bennink JR, Yewdell JW. CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells. Immunity 2015; 42:524-37. [PMID: 25769612 DOI: 10.1016/j.immuni.2015.02.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/08/2015] [Accepted: 02/20/2015] [Indexed: 12/16/2022]
Abstract
CD8(+) T cells play a critical role in limiting peripheral virus replication, yet how they locate virus-infected cells within tissues is unknown. Here, we have examined the environmental signals that CD8(+) T cells use to localize and eliminate virus-infected skin cells. Epicutaneous vaccinia virus (VV) infection, mimicking human smallpox vaccination, greatly increased expression of the CXCR3 chemokine receptor ligands CXCL9 and CXCL10 in VV-infected skin. Despite normal T cell numbers in the skin, Cxcr3(-/-) mice exhibited dramatically impaired CD8(+)-T-cell-dependent virus clearance. Intravital microscopy revealed that Cxcr3(-/-) T cells were markedly deficient in locating, engaging, and killing virus-infected cells. Further, transfer of wild-type CD8(+) T cells restored viral clearance in Cxcr3(-/-) animals. These findings demonstrate a function for CXCR3 in enhancing the ability of tissue-localized CD8(+) T cells to locate virus-infected cells and thereby exert anti-viral effector functions.
Collapse
Affiliation(s)
- Heather D Hickman
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Glennys V Reynoso
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Barbara F Ngudiankama
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Stephanie S Cush
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - James Gibbs
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jack R Bennink
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jonathan W Yewdell
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Abstract
CXCR3 is a G-protein coupled receptor which binds to ELR-negative CXC chemokines that have been found to impact immune responses, vascular develop, and wound repair. More recently, CXCR3 has been examined in the context of cancer and increased expression in many human tumors has been correlated with poor prognosis in breast, melanoma, colon and renal cancer patients. Three variants of CXCR3 are identified so far (CXCR3-A, CXCR3-B and CXCR3-alt) with the two primary ones, CXCR3-A and CXCR3-B, considered to induce opposite physiological functions. Generally, CXCR3-A, the predominant form in hematopoietic cells, appears to mediate tumor "go" signaling via promoting cell proliferation, survival, chemotaxis, invasion and metastasis; while CXCR3-B, the main form on formed elements including epithelial cells, appears to mediate tumor "stop" signaling via promoting growth suppression, apoptosis and vascular involution. Thus, aberrant expression of the isoforms CXCR3-A and CXCR3-B could affect tumor progression. In this review, we have discussed the profiles of CXCR3 variants and related signaling, as well as the role of CXCR3 variants in cancer.
Collapse
Affiliation(s)
- Bo Ma
- Department of Pathology, University of Pittsburgh and VA Pittsburgh Health System and University of Pittsburgh Cancer Institute, Pittsburgh, USA
| | - Ahmad Khazali
- Department of Pathology, University of Pittsburgh and VA Pittsburgh Health System and University of Pittsburgh Cancer Institute, Pittsburgh, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh and VA Pittsburgh Health System and University of Pittsburgh Cancer Institute, Pittsburgh, USA.
| |
Collapse
|
19
|
Liu G, Zhang W, Xiao Y, Lu P. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization. Curr Eye Res 2014; 40:891-901. [PMID: 25309995 DOI: 10.3109/02713683.2014.968934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM AND SCOPE To address the role of interferon-induced protein of 10 kDa (IP-10) in the course of corneal neovascularization (CrNV) in a mouse model of experimental corneal neovascularization. MATERIAL AND METHOD BALB/c mice that were 7- to 8-week-old male were included in the study. Corneal injury was induced by NaOH. Mice were randomly divided into 2 groups of IP-10 and vehicle. The alkali-treated eyes received 5 μl of 5 μg/ml IP-10 dissolved in 0.2% sodium hyaluronate for IP-10-treated group, or 5 μl of 0.2% sodium hyaluronate for vehicle-treated group twice a day for 7 days immediately after the alkali injury. 2 weeks after alkali injury, corneas were removed and used for whole mount CD31 staining. The percentages of neovascularization on corneal photographs were examined with digital image analysis. In other experiments, at indicated time intervals, the corneas were removed. Angiogenic factor expression in the early phase after injury was quantified by real-time PCR and western blot. The VEGF expression in macrophages infiltrating into burned corneas was examined by Flow cytometry (FCM) and immunofluorescence. Tube formation and cell proliferation of human retinal endothelial cells (HRECs) were detected after being stimulated with IP-10 in vitro. RESULTS The mRNA and protein expression of IP-10 and C-X-C motif chemokine receptor 3 (CXCR3) was augmented after the alkali injury (p < 0.05). Compared with vehicle-treated mice, IP-10-treated mice exhibited reduced CrNV 2 weeks after injury, as evidenced by diminished CD31-positive areas (p < 0.05). Concomitantly, the intracorneal mRNA and protein expression enhancement of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was lower in IP-10-treated mice than in vehicle-treated mice after injury (p < 0.05). Moreover, IP-10 inhibited HREC tube formation and proliferation in vitro. CONCLUSION IP-10-treated mice exhibited reduced alkali-induced CrNV through decreasing intracorneal VEGF and bFGF expression, and inhibiting endothelial cell proliferation and tube formation.
Collapse
Affiliation(s)
- Gaoqin Liu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University , Suzhou , China and
| | | | | | | |
Collapse
|
20
|
Lundvig DMS, Scharstuhl A, Cremers NAJ, Pennings SWC, te Paske J, van Rheden R, van Run-van Breda C, Regan RF, Russel FGM, Carels CE, Maltha JC, Wagener FADTG. Delayed cutaneous wound closure in HO-2 deficient mice despite normal HO-1 expression. J Cell Mol Med 2014; 18:2488-98. [PMID: 25224969 PMCID: PMC4302653 DOI: 10.1111/jcmm.12389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023] Open
Abstract
Impaired wound healing can lead to scarring, and aesthetical and functional problems. The cytoprotective haem oxygenase (HO) enzymes degrade haem into iron, biliverdin and carbon monoxide. HO-1 deficient mice suffer from chronic inflammatory stress and delayed cutaneous wound healing, while corneal wound healing in HO-2 deficient mice is impaired with exorbitant inflammation and absence of HO-1 expression. This study addresses the role of HO-2 in cutaneous excisional wound healing using HO-2 knockout (KO) mice. Here, we show that HO-2 deficiency also delays cutaneous wound closure compared to WT controls. In addition, we detected reduced collagen deposition and vessel density in the wounds of HO-2 KO mice compared to WT controls. Surprisingly, wound closure in HO-2 KO mice was accompanied by an inflammatory response comparable to WT mice. HO-1 induction in HO-2 deficient skin was also similar to WT controls and may explain this protection against exaggerated cutaneous inflammation but not the delayed wound closure. Proliferation and myofibroblast differentiation were similar in both two genotypes. Next, we screened for candidate genes to explain the observed delayed wound closure, and detected delayed gene and protein expression profiles of the chemokine (C-X-C) ligand-11 (CXCL-11) in wounds of HO-2 KO mice. Abnormal regulation of CXCL-11 has been linked to delayed wound healing and disturbed angiogenesis. However, whether aberrant CXCL-11 expression in HO-2 KO mice is caused by or is causing delayed wound healing needs to be further investigated.
Collapse
Affiliation(s)
- Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution. ACTA ACUST UNITED AC 2014; 96:325-33. [PMID: 24203921 DOI: 10.1002/bdrc.21024] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022]
Abstract
The adverse physiological and psychological effects of scars formation after healing of wounds are broad and a major medical problem for patients. In utero, fetal wounds heal in a regenerative manner, though the mechanisms are unknown. Differences in fetal scarless regeneration and adult repair can provide key insight into reduction of scarring therapy. Understanding the cellular and extracellular matrix alterations in excessive adult scarring in comparison to fetal scarless healing may have important implications. Herein, we propose that matrix can be controlled via cellular therapy to resemble a fetal-like matrix that will result in reduced scarring.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
22
|
Saxena A, Bujak M, Frunza O, Dobaczewski M, Gonzalez-Quesada C, Lu B, Gerard C, Frangogiannis NG. CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans. Cardiovasc Res 2014; 103:217-27. [PMID: 24891401 DOI: 10.1093/cvr/cvu138] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS The CXC chemokine CXCL10 is up-regulated in the infarcted myocardium and limits cardiac fibrosis by inhibiting growth factor-mediated fibroblast migration. CXCL10 signals by binding to its receptor CXCR3; however, recently CXCR3-independent CXCL10 actions have been suggested. Our study explores the role of CXCR3 signalling in myocardial infarction and investigates its involvement in mediating the anti-fibrotic effects of CXCL10. METHODS AND RESULTS Wild-type and CXCR3 null mice underwent reperfused infarction protocols. CXCL10 was markedly induced in the infarct; in contrast, expression of the other two CXCR3 ligands, CXCL9 and CXCL11 was extremely low. CXCR3 loss did not affect scar size, geometric ventricular remodelling, collagen deposition, and systolic dysfunction of the infarcted heart. CXCR3 null mice had increased peak neutrophil recruitment and delayed myofibroblast infiltration in the infarcted heart, but exhibited comparable myocardial expression of pro-inflammatory cytokines and chemokines. In vitro, CXCL10 did not modulate Transforming Growth Factor (TGF)-β signalling, but inhibited basic fibroblast growth factor (bFGF)-induced cardiac fibroblast migration in both wild-type and CXCR3 null cells. Treatment of fibroblasts with heparinase and chondroitinase to cleave glycosaminoglycan chains abrogated the inhibitory effects of CXCL10 on cell migration. CONCLUSION CXCR3 signalling does not critically regulate cardiac remodelling and dysfunction following myocardial infarction. The anti-fibrotic effects of CXCL10 in the healing infarct and in isolated cardiac fibroblasts are CXCR3-independent and may be mediated through proteoglycan signalling. Thus, administration of CXCR3-defective forms of CXCL10 may be an effective anti-fibrotic strategy in the remodelling myocardium without activating a potentially injurious, CXCR3-driven T cell response.
Collapse
Affiliation(s)
- Amit Saxena
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Marcin Bujak
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Olga Frunza
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Marcin Dobaczewski
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carlos Gonzalez-Quesada
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Bao Lu
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig Gerard
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Exploring the CXCR3 Chemokine Receptor with Small-Molecule Antagonists and Agonists. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Tortelli F, Pisano M, Briquez PS, Martino MM, Hubbell JA. Fibronectin binding modulates CXCL11 activity and facilitates wound healing. PLoS One 2013; 8:e79610. [PMID: 24205388 PMCID: PMC3808276 DOI: 10.1371/journal.pone.0079610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Engineered biomatrices offer the potential to recapitulate the regenerative microenvironment, with important implications in tissue repair. In this context, investigation of the molecular interactions occurring between growth factors, cytokines and extracellular matrix (ECM) has gained increasing interest. Here, we sought to investigate the possible interactions between the ECM proteins fibronectin (FN) and fibrinogen (Fg) with the CXCR3 ligands CXCL9, CXCL10 and CXCL11, which are expressed during wound healing. New binding interactions were observed and characterized. Heparin-binding domains within Fg (residues 15-66 of the β chain, Fg β15-66) and FN (FNI1-5, but not FNIII12-14) were involved in binding to CXCL10 and CXCL11 but not CXCL9. To investigate a possible influence of FN and Fg interactions with CXCL11 in mediating its role during re-epithelialization, we investigated human keratinocyte migration in vitro and wound healing in vivo in diabetic db/db mice. A synergistic effect on CXCL11-induced keratinocyte migration was observed when cells were treated with CXCL11 in combination with FN in a transmigration assay. Moreover, wound healing was enhanced in full thickness excisional wounds treated with fibrin matrices functionalized with FN and containing CXCL11. These findings highlight the importance of the interactions occurring between cytokines and ECM and point to design concepts to develop functional matrices for regenerative medicine.
Collapse
Affiliation(s)
- Federico Tortelli
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Pisano
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Priscilla S. Briquez
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mikaël M. Martino
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A. Hubbell
- Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Bodnar RJ, Rodgers ME, Chen WCW, Wells A. Pericyte regulation of vascular remodeling through the CXC receptor 3. Arterioscler Thromb Vasc Biol 2013; 33:2818-29. [PMID: 24135023 DOI: 10.1161/atvbaha.113.302012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To understand the role, if any, played by pericytes in the regulation of newly formed vessels during angiogenesis. In this study, we investigate whether pericytes regulate the number of nascent endothelial tubes. APPROACH AND RESULTS Using an in vitro angiogenesis assay (Matrigel assay), we demonstrate that pericytes can inhibit vessel formation and induce vessel dissociation via CXCR3-induced involution of the endothelial cells. In a coculture Matrigel assay for cord formation, pericytes prevented endothelial cord formation of human dermal microvascular endothelial cells but not umbilical vein endothelial cells. Blockade of endothelial CXCR3 function or expression inhibited the repressing effect of the pericytes. We further show that pericytes are also able to induce regression of newly formed microvascular cords through CXCR3 activation of calpain. When CXCR3 function was inhibited by a neutralizing antibody or downregulated by siRNA, cord regression mediated by pericytes was abolished. CONCLUSIONS We show for the first time that pericytes regulate angiogenic vessel formation, and that this is mediated through CXCR3 expressed on endothelial cells. This suggests a role for pericytes in the pruning of immature vessels overproduced during wound repair.
Collapse
Affiliation(s)
- Richard J Bodnar
- From the Department of Pathology (R.J.B., M.E.B., A.W.) and Department of Bioengineering (W.C.W.C.), University of Pittsburgh, PA; and Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA (R.J.B., M.E.B., A.W.)
| | | | | | | |
Collapse
|
26
|
Martins-Green M, Petreaca M, Wang L. Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:327-347. [PMID: 24587971 DOI: 10.1089/wound.2012.0380] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE Normal wound healing progresses through a series of overlapping phases, all of which are coordinated and regulated by a variety of molecules, including chemokines. Because these regulatory molecules play roles during the various stages of healing, alterations in their presence or function can lead to dysregulation of the wound-healing process, potentially leading to the development of chronic, nonhealing wounds. RECENT ADVANCES A discovery that chemokines participate in a variety of disease conditions has propelled the study of these proteins to a level that potentially could lead to new avenues to treat disease. Their small size, exposed termini, and the fact that their only modifications are two disulfide bonds make them excellent targets for manipulation. In addition, because they bind to G-protein-coupled receptors (GPCRs), they are highly amenable to pharmacological modulation. CRITICAL ISSUES Chemokines are multifunctional, and in many situations, their functions are highly dependent on the microenvironment. Moreover, each specific chemokine can bind to several GPCRs to stimulate the function, and both can function as monomers, homodimers, heterodimers, and even oligomers. Activation of one receptor by any single chemokine can lead to desensitization of other chemokine receptors, or even other GPCRs in the same cell, with implications for how these proteins or their receptors could be used to manipulate function. FUTURE DIRECTIONS Investment in better understanding of the functions of chemokines and their receptors in a local context can reveal new ways for therapeutic intervention. Understanding how different chemokines can activate the same receptor and vice versa could identify new possibilities for drug development based on their heterotypic interactions.
Collapse
Affiliation(s)
- Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Melissa Petreaca
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Lei Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| |
Collapse
|
27
|
Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci 2013; 34:283-9. [PMID: 23571046 PMCID: PMC3640670 DOI: 10.1016/j.tips.2013.03.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/03/2013] [Accepted: 03/06/2013] [Indexed: 12/16/2022]
Abstract
Advances in diagnosis and treatment have rendered most solid tumors largely curable if they are diagnosed and treated before dissemination. However, once they spread beyond the initial primary location, these cancers are usually highly morbid, if not fatal. Thus, current efforts focus on both limiting initial dissemination and preventing secondary spread. There are two modes of tumor dissemination - invasion and metastasis - each leading to unique therapeutic challenges and likely to be driven by distinct mechanisms. However, these two forms of dissemination utilize some common strategies to accomplish movement from the primary tumor, establishment in an ectopic site, and survival therein. The adaptive behaviors of motile cancer cells provide an opening for therapeutic approaches if we understand the molecular, cellular, and tissue biology that underlie them. Herein, we review the signaling cascades and organ reactions that lead to dissemination, as these are non-genetic in nature, focusing on cell migration as the key to tumor progression. In this context, the cellular phenotype will also be discussed because the modes of migration are dictated by quantitative and physical aspects of the cell motility machinery.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology, University of Pittsburgh and Pittsburgh VAHS, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
28
|
Huen AC, Wells A. The Beginning of the End: CXCR3 Signaling in Late-Stage Wound Healing. Adv Wound Care (New Rochelle) 2012; 1:244-248. [PMID: 24527313 DOI: 10.1089/wound.2011.0355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Prior to 2009, research regarding the role of CXC receptor 3 (CXCR3) in cutaneous biology was primarily in the context of inflammatory reactions. Foundational research performed at that time demonstrated that, in addition to recruited inflammatory cells, cellular components of the skin, keratinocytes, fibroblasts, and endothelial cells, also express CXCR3 and are capable of expressing CXCR3 ligands, specifically CXC ligand 10 (CXCL10) and CXCL11. Surprisingly, in vitro experimentation demonstrated differential effects on the different cell types, suggesting that the CXCR3 signaling pathway may serve as a coordinator of wound remodeling. In support of this, a CXCR3 null mouse line and a mouse line abrogating CXCL11 expression in the epidermis demonstrated delayed wound closure and disordered dermal wound healing. THE PROBLEM These findings demonstrate the role of CXCR3 signaling in the latter stages of wounding healing and opened a new avenue of investigation into the molecular and cellular mechanisms of coordinating the events of cutaneous tissue regeneration. BASIC SCIENCE ADVANCES More recent investigation highlights the role of CXCR3 signaling in the dramatic vascular pruning events after the proliferative stage of wound healing and its importance in guiding remodeling of dermal collagen during cicatrix formation. CONCLUSION CXCR3 signaling plays a strong role in coordinating the actions of several cell types during cutaneous wound healing. The disruption of this signaling pathway results in delayed return to homeostasis and dystrophic scarring.
Collapse
Affiliation(s)
- Arthur C Huen
- Department of Dermatology, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania. ; Department of Pathology, Veterans Administration Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Edsberg LE, Wyffels JT, Brogan MS, Fries KM. Analysis of the proteomic profile of chronic pressure ulcers. Wound Repair Regen 2012; 20:378-401. [PMID: 22564231 DOI: 10.1111/j.1524-475x.2012.00791.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analysis of the proteomic profile of pressure ulcers over time is a critical step in the identification of biomarkers of healing or nonhealing in pressure ulcers. The wound fluid from 32 subjects with 42 pressure ulcers was evaluated over 6 weeks at 15 time points. Samples specific to both the interior and the periphery of the wound bed were collected. Antibody screening arrays, isobaric tags for relative and absolute quantitation with mass spectrometry and multiplexed microarrays were used to characterize wound fluid and results were correlated with clinical outcome. Twenty-one proteins were found to distinguish between healed and chronic wounds and 19 proteins were differentially expressed between the interior and periphery of wounds. Four proteins, pyruvate kinase isozymes M1/M2, profilin-1, Ig lambda-1 chain C regions, and Ig gamma-1 chain C region, were present in lower levels for periphery samples when compared to interior samples and six proteins, keratin, type II cytoskeletal 6A (KRT6A), keratin, type I cytoskeletal 14, S100 calcium binding proteins A7, alpha-1-antitrypsin precursor, hemoglobin subunit alpha, and hemoglobin subunit beta, were present in higher levels in periphery samples when compared with interior samples. S100 calcium binding protein A6, S100 calcium binding protein A7, and soluble receptor for advanced glycation end-products had higher levels in the periphery of chronic wounds vs. the interior in planar arrays. A significant temporal trend was noted for monokine induced by gamma interferon (MIG), synonomous with chemokine (C-X-C motif) ligand 9 (CXCL9), which increased as wounds healed and remained nearly constant for ulcers that were not approaching closure.
Collapse
Affiliation(s)
- Laura E Edsberg
- Natural and Health Sciences Research Center, Center for Wound Healing Research, Daemen College, Amherst, NY 14226-3592, USA.
| | | | | | | |
Collapse
|
30
|
Yates-Binder CC, Rodgers M, Jaynes J, Wells A, Bodnar RJ, Turner T. An IP-10 (CXCL10)-derived peptide inhibits angiogenesis. PLoS One 2012; 7:e40812. [PMID: 22815829 PMCID: PMC3397949 DOI: 10.1371/journal.pone.0040812] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/15/2012] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3) and, activation by its ligand IP-10 (CXCL10), both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77–98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis.
Collapse
Affiliation(s)
- Cecelia C. Yates-Binder
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama, United States of America
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (CCYB); (RJB)
| | - Margaret Rodgers
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Jesse Jaynes
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama, United States of America
| | - Alan Wells
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama, United States of America
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Richard J. Bodnar
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (CCYB); (RJB)
| | - Timothy Turner
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama, United States of America
| |
Collapse
|
31
|
Wang J, Nikrad MP, Travanty EA, Zhou B, Phang T, Gao B, Alford T, Ito Y, Nahreini P, Hartshorn K, Wentworth D, Dinarello CA, Mason RJ. Innate immune response of human alveolar macrophages during influenza A infection. PLoS One 2012; 7:e29879. [PMID: 22396727 PMCID: PMC3292548 DOI: 10.1371/journal.pone.0029879] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/06/2011] [Indexed: 12/11/2022] Open
Abstract
Alveolar macrophages (AM) are one of the key cell types for initiating inflammatory and immune responses to influenza virus in the lung. However, the genome-wide changes in response to influenza infection in AM have not been defined. We performed gene profiling of human AM in response to H1N1 influenza A virus PR/8 using Affymetrix HG-U133 Plus 2.0 chips and verified the changes at both mRNA and protein levels by real-time RT-PCR and ELISA. We confirmed the response with a contemporary H3N2 influenza virus A/New York/238/2005 (NY/238). To understand the local cellular response, we also evaluated the impact of paracrine factors on virus-induced chemokine and cytokine secretion. In addition, we investigated the changes in the expression of macrophage receptors and uptake of pathogens after PR/8 infection. Although macrophages fail to release a large amount of infectious virus, we observed a robust induction of type I and type III interferons and several cytokines and chemokines following influenza infection. CXCL9, 10, and 11 were the most highly induced chemokines by influenza infection. UV-inactivation abolished virus-induced cytokine and chemokine response, with the exception of CXCL10. The contemporary influenza virus NY/238 infection of AM induced a similar response as PR/8. Inhibition of TNF and/or IL-1β activity significantly decreased the secretion of the proinflammatory chemokines CCL5 and CXCL8 by over 50%. PR/8 infection also significantly decreased mRNA levels of macrophage receptors including C-type lectin domain family 7 member A (CLEC7A), macrophage scavenger receptor 1 (MSR1), and CD36, and reduced uptake of zymosan. In conclusion, influenza infection induced an extensive proinflammatory response in human AM. Targeting local components of innate immune response might provide a strategy for controlling influenza A infection-induced proinflammatory response in vivo.
Collapse
Affiliation(s)
- Jieru Wang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wu Q, Dhir R, Wells A. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion. Mol Cancer 2012; 11:3. [PMID: 22236567 PMCID: PMC3320557 DOI: 10.1186/1476-4598-11-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Carcinoma cells must circumvent the normally suppressive signals to disseminate. While often considered 'stop' signals for adherent cells, CXCR3-binding chemokines have recently been correlated positively with cancer progression though the molecular basis remains unclear. RESULTS Here, we examined the expression and function of two CXCR3 variants in human prostate cancer biopsies and cell lines. Globally, both CXCR3 mRNA and protein were elevated in localized and metastatic human cancer biopsies compared to normal. Additionally, CXCR3A mRNA level was upregulated while CXCR3B mRNA was downregulated in these prostate cancer specimens. In contrast to normal prostate epithelial cells (RWPE-1), CXCR3A was up to half the receptor in the invasive and metastatic DU-145 and PC-3 prostate cancer cells, but not in the localized LNCaP cells. Instead of inhibiting cell migration as in RWPE-1 cells, the CXCR3 ligands CXCL4/PF4 and CXCL10/IP10 promoted cell motility and invasiveness in both DU-145 and PC-3 cells via PLCβ3 and μ-calpain activation. CXCR3-mediated diminution of cell motility in RWPE-1 cells is likely a result of cAMP upregulation and m-calpain inhibition via CXCR3B signal transduction. Interestingly, overexpression of CXCR3B in DU-145 cells decreased cell movement and invasion. CONCLUSION These data suggest that the aberrant expression of CXCR3A and down-regulation of CXCR3B may switch a progression "stop" to a "go" signal to promote prostate tumor metastasis via stimulating cell migration and invasion.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
33
|
Yates CC, Whaley D, Wells A. Transplanted fibroblasts prevents dysfunctional repair in a murine CXCR3-deficient scarring model. Cell Transplant 2012; 21:919-31. [PMID: 22236446 DOI: 10.3727/096368911x623817] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In skin, the regeneration of the ontogenically distinct mesenchymal and epithelial compartments must proceed in a coordinated manner orchestrated by extracellular signaling networks. We have recently found that the switch from regeneration to remodeling during repair is modulated by chemokines that bind CXCR3 receptor. If this signaling is disrupted wounds continue to be active, resulting in a chronic hypercellular and hypertrophic state characterized by an immature matrix composition. As healing is masterminded in large part by fibroblasts and their synthesis of the extracellular matrix, the question arose as to whether this ongoing scarring can be modulated by transplanted fibroblasts. We examined wounds in the CXCR3-/- mouse scarring model. These wounds exhibited a significant delay in healing in all areas compared to young and aged wild-type mice. Full-thickness wounds were transplanted with fibroblasts derived from newborn CXCR3-/- or wild-type mice. The transplanted fibroblasts were labeled with fluorescent dye (CM-DiI) and suspended in hyaluronic acid gel; by 30 days, these transplanted cells comprised some 30% of the dermal stromal cells regardless of the host or source of transplanted cells. Wild-type fibroblasts transplanted into CXCR3-/- mice wounds reversed the delay and dysfunction previously seen in CXCR3-/- wounds; this correction was not noted with transplanted CXCR3-/- fibroblasts. Additionally, transplant of CXCR3-/- cells into wounds in wild-type animals did not adversely affect those wounds. The transplanted fibroblasts exhibited strong survival and migration patterns and led to an increase in tensile strength. Expression of matrix proteins and collagen in CXCR3-/- wounds transplanted with wild-type fibroblasts resembled normal wild-type healing, and the wound matrix in wild-type mice transplanted with CXCR3-/- cells also presented a mature matrix. These suggest that the major determinant of healing versus scarring lies with the nature of the matrix. These findings have intriguing implications for rational cellular interventions aimed at promoting wound healing via cell therapy.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Pathology and McGowan Institute for Regenerative Medicine, University of Pittsburgh and Pittsburgh VAMC, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
34
|
Autocrine Regulation of Re-Epithelialization After Wounding by Chemokine Receptors CCR1, CCR10, CXCR1, CXCR2, and CXCR3. J Invest Dermatol 2012; 132:216-25. [DOI: 10.1038/jid.2011.245] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Abstract
The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have many functions in wounds, including host defence, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound and that the influence of these cells on each stage of repair varies with the specific phenotype. Although the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation or fibrosis under certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of nonhealing and poorly healing wounds. As a result of advances in the understanding of this multifunctional cell, the macrophage continues to be an attractive therapeutic target, both to reduce fibrosis and scarring, and to improve healing of chronic wounds.
Collapse
|
36
|
Yates CC, Bodnar R, Wells A. Matrix control of scarring. Cell Mol Life Sci 2011; 68:1871-81. [PMID: 21390544 DOI: 10.1007/s00018-011-0663-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/24/2011] [Accepted: 02/22/2011] [Indexed: 02/06/2023]
Abstract
Repair of wounds usually results in restoration of organ function, even if suboptimal. However, in a minority of situations, the healing process leads to significant scarring that hampers homeostasis and leaves the tissue compromised. This scar is characterized by an excess of matrix deposition that remains poorly organized and weakened. While we know much of the early stages of the repair process, the transition to wound resolution that limits scar formation is poorly understood. This is particularly true of the inducers of scar formation. Here, we present a hypothesis that it is the matrix itself that is a primary driver of scar, rather than being simply the result of other cellular dysregulations.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
37
|
Wang J, Nikrad MP, Phang T, Gao B, Alford T, Ito Y, Edeen K, Travanty EA, Kosmider B, Hartshorn K, Mason RJ. Innate immune response to influenza A virus in differentiated human alveolar type II cells. Am J Respir Cell Mol Biol 2011; 45:582-91. [PMID: 21239608 DOI: 10.1165/rcmb.2010-0108oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alveolar Type II (ATII) cells are important targets for seasonal and pandemic influenza. To investigate the influenza-induced innate immune response in those cells, we measured the global gene expression profile of highly differentiated ATII cells infected with the influenza A virus at a multiplicity of infection of 0.5 at 4 hours and 24 hours after inoculation. Infection with influenza stimulated a significant increase in the mRNA concentrations of many host defense-related genes, including pattern/pathogen recognition receptors, IFN, and IFN-induced genes, chemokines, and suppressors of cytokine signaling. We verified these changes by quantitative real-time RT-PCR. At the protein level, we detected a robust virus-induced secretion of the three glutamic acid-leucine-arginine (ELR)-negative chemokines CXCL9, CXCL10, and CXCL11, according to ELISA. The ultraviolet inactivation of virus abolished the chemokine and cytokine response. Viral infection did not appear to alter the differentiation of ATII cells, as measured by cellular mRNA and concentrations of surfactant proteins. However, viral infection significantly reduced the secretion of surfactant protein (SP)-A and SP-D. In addition, influenza A virus triggered a time-dependent activation of phosphatidylinositol 3-kinase signaling in ATII cells. The inhibition of this pathway significantly decreased the release of infectious virus and the chemokine response, but did not alter virus-induced cell death. This study provides insights into influenza-induced innate immunity in differentiated human ATII cells, and demonstrates that the alveolar epithelium is a critical part of the initial innate immune response to influenza.
Collapse
Affiliation(s)
- Jieru Wang
- Department of Medicine, National Jewish Health, 1400 Jackson St., A448, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wells A, Chao YL, Grahovac J, Wu Q, Lauffenburger DA. Epithelial and mesenchymal phenotypic switchings modulate cell motility in metastasis. Front Biosci (Landmark Ed) 2011; 16:815-37. [PMID: 21196205 DOI: 10.2741/3722] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The most ominous stage of cancer progression is metastasis, or the dissemination of carcinoma cells from the primary site into distant organs. Metastases are often resistant to current extirpative therapies and even the newest biological agents cure only a small subset of patients. Therefore a greater understanding of tumor biology that integrates properties intrinsic to carcinomas with tissue environmental modulators of behavior is needed. In no aspect of tumor progression is this more evident than the acquisition of cell motility that is critical for both escape from the primary tumor and colonization. In this overview, we discuss how this behavior is modified by carcinoma cell phenotypic plasticity that is evidenced by reversible switching between epithelial and mesenchymal phenotypes. The presence or absence of intercellular adhesions mediate these switches and dictate the receptivity towards signals from the extracellular milieu. These signals, which include soluble growth factors, cytokines, and extracellular matrix embedded with matrikines and matricryptines will be discussed in depth. Finally, we will describe a new mode of discerning the balance between epithelioid and mesenchymal movement.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology, Pittsburgh VAMC and University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
39
|
Fahlenkamp AV, Coburn M, Czaplik M, Ryang YM, Kipp M, Rossaint R, Beyer C. Expression analysis of the early chemokine response 4 h after in vitro traumatic brain injury. Inflamm Res 2010; 60:379-87. [PMID: 21104293 DOI: 10.1007/s00011-010-0281-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/15/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE AND DESIGN The importance of cytokine- and chemokine-mediated neuroinflammation in the progress of brain injury is becoming increasingly evident. We investigated the early local cytokine and chemokine expression and the development of tissue injury after moderate mechanical hippocampus trauma. MATERIAL OR SUBJECTS Mouse organotypic hippocampal slice cultures. TREATMENT Drop-weight trauma in the CA1 region of the hippocampus. METHODS Staining of necrotic tissue, PCR array and evaluation, real-time PCR, statistical analysis with a two-tailed, independent t test. RESULTS At 12 and 24 h after trauma, the tissue injury spread from the primary mechanical lesion to the entire hippocampal formation. A pronounced up-regulation of distinct chemokine transcripts was found 4 h after in vitro traumatic brain injury which preceded the development of the secondary injury. CONCLUSIONS The enhanced expression of inflammatory genes might contribute to the development of the secondary trauma and could pinpoint future neuroinflammatory and neuroprotective targets for research and treatment.
Collapse
Affiliation(s)
- Astrid V Fahlenkamp
- Department of Anesthesiology, University Hospital Aachen, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Role of I-TAC-binding receptors CXCR3 and CXCR7 in proliferation, activation of intracellular signaling pathways and migration of various tumor cell lines. Folia Histochem Cytobiol 2010; 48:104-11. [PMID: 20529825 DOI: 10.2478/v10042-008-0091-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemokines and its receptors stimulate tumor growth, migration and invasion. In this study we evaluated the expression and function of CXCR3 and CXCR7 receptors in cervical carcinoma, rhabdomyosarcoma and glioblastoma cell lines. We found that both receptors were expressed at different degree by tumor cells. CXCR7 was expressed at both mRNA and protein level by all tumor cell lines. The expression of CXCR7 differed between rhabdomyosarcoma subtypes. The receptor was highly expressed in alveolar rhabdomyosarcoma and the expression was low in embryonal rhabdomyosarcoma. The expression of CXCR3 was low in majority of the tumor cell lines. Upon I-TAC stimulation AKT and MAPK kinases were activated. However, the activation of growth promoting pathways did not increased the proliferation rate of tumor cells. Since chemokines stimulate the migration of various cell types the ability of I-TAC to stimulate migration of tumor cells were studied. We did not observe the migration of tumor cells toward I-TAC gradient alone. However, at the low dose, I-TAC sensitized tumor cells toward SDF-1beta gradient and synergized with SDF-1beta in activation of intracellular pathways. Our data suggest an important role of I-TAC and its receptors in biology of solid tumors and we postulate that I-TAC-binding receptors might be used as the potential targets for antitumor therapy.
Collapse
|
41
|
Leloup L, Shao H, Bae YH, Deasy B, Stolz D, Roy P, Wells A. m-Calpain activation is regulated by its membrane localization and by its binding to phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2010; 285:33549-33566. [PMID: 20729206 DOI: 10.1074/jbc.m110.123604] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
m-Calpain plays a critical role in cell migration enabling rear de-adhesion of adherent cells by cleaving structural components of the adhesion plaques. Growth factors and chemokines regulate keratinocyte, fibroblast, and endothelial cell migration by modulating m-calpain activity. Growth factor receptors activate m-calpain secondary to phosphorylation on serine 50 by ERK. Concurrently, activated m-calpain is localized to its inner membrane milieu by binding to phosphatidylinositol 4,5-bisphosphate (PIP(2)). Opposing this, CXCR3 ligands inhibit cell migration by blocking m-calpain activity secondary to a PKA-mediated phosphorylation in the C2-like domain. The failure of m-calpain activation in the absence of PIP(2) points to a key regulatory role, although whether this PIP(2)-mediated membrane localization is regulatory for m-calpain activity or merely serves as a docking site for ERK phosphorylation is uncertain. Herein, we report the effects of two CXCR3 ligands, CXCL11/IP-9/I-TAC and CXCL10/IP-10, on the EGF- and VEGF-induced redistribution of m-calpain in human fibroblasts and endothelial cells. The two chemokines block the tail retraction and, thus, the migration within minutes, preventing and reverting growth factor-induced relocalization of m-calpain to the plasma membrane of the cells. PKA phosphorylation of m-calpain blocks the binding of the protease to PIP(2). Unexpectedly, we found that this was due to membrane anchorage itself and not merely serine 50 phosphorylation, as the farnesylation-induced anchorage of m-calpain triggers a strong activation of this protease, leading notably to an increased cell death. Moreover, the ERK and PKA phosphorylations have no effect on this membrane-anchored m-calpain. However, the presence of PIP(2) is still required for the activation of the anchored m-calpain. In conclusion, we describe a novel mechanism of m-calpain activation by interaction with the plasma membrane and PIP(2) specifically, this phosphoinositide acting as a cofactor for the enzyme. The phosphorylation of m-calpain by ERK and PKA by growth factors and chemokines, respectively, act in cells to regulate the enzyme only indirectly by controlling its redistribution.
Collapse
Affiliation(s)
- Ludovic Leloup
- From the Departments of Pathology, Pittsburgh, Pennsylvania 15261
| | - Hanshuang Shao
- From the Departments of Pathology, Pittsburgh, Pennsylvania 15261
| | - Yong Ho Bae
- Bioengineering, Pittsburgh, Pennsylvania 15261
| | | | - Donna Stolz
- Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Partha Roy
- From the Departments of Pathology, Pittsburgh, Pennsylvania 15261; Bioengineering, Pittsburgh, Pennsylvania 15261
| | - Alan Wells
- From the Departments of Pathology, Pittsburgh, Pennsylvania 15261; Bioengineering, Pittsburgh, Pennsylvania 15261; Pittsburgh Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
42
|
Yates CC, Krishna P, Whaley D, Bodnar R, Turner T, Wells A. Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1743-55. [PMID: 20203286 DOI: 10.2353/ajpath.2010.090564] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CXC chemokine receptor 3 (CXCR3) signaling promotes keratinocyte migration while terminating fibroblast and endothelial cell immigration into wounds; this signaling also directs epidermal and matrix maturation. Herein, we investigated the long-term effects of failure to activate the "stop-healing" CXCR3 axis. Full-thickness excisional wounds were created on CXCR3 knockout((-/-)) or wild-type mice and examined at up to 180 days after wounding. Grossly, the CXCR3(-/-) mice presented a thick keratinized scar compared with the wild-type mice in which the scar was scarcely noticeable; histological examination revealed thickening of both the epidermis and dermis. The dermis was disorganized with thick and long collagen fibrils and contained excessive collagen content in comparison with the wild-type mice. Interestingly, the CXCR3(-/-) wounds presented lower tensile/burst strength, which correlates with decreased alignment of collagen fibers, similar to published findings of human scars. Persistent Extracellular matrix turnover and immaturity was shown by the elevated expression of proteins of the immature matrix as well as expression of matrix metallopeptidase-9 MMP-9. Interestingly, the scars in the CXCR3(-/-) mice presented evidence of de novo development of a sterile inflammatory response only months after wounding; earlier periods showed resolution of the initial inflammatory stage. These in vivo studies establish that the absence of CXCR3(-/-) signaling network results in hypertrophic and hypercellular scarring characterized by on-going wound regeneration, cellular proliferation, and scars in which immature matrix components are undergoing increased turnover resulting in a chronic inflammatory process.
Collapse
Affiliation(s)
- Cecelia C Yates
- University of Pittsburgh, Department of Pathology, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Jeffrey M Davidson
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232-2562, USA.
| |
Collapse
|
44
|
Bodnar RJ, Yates CC, Rodgers ME, Du X, Wells A. IP-10 induces dissociation of newly formed blood vessels. J Cell Sci 2009; 122:2064-77. [PMID: 19470579 DOI: 10.1242/jcs.048793] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The signals that prune the exuberant vascular growth of tissue repair are still ill defined. We demonstrate that activation of CXC chemokine receptor 3 (CXCR3) mediates the regression of newly formed blood vessels. We present evidence that CXCR3 is expressed on newly formed vessels in vivo and in vitro. CXCR3 is expressed on vessels at days 7-21 post-wounding, and is undetectable in unwounded or healed skin. Treatment of endothelial cords with CXCL10 (IP-10), a CXCR3 ligand present during the resolving phase of wounds, either in vitro or in vivo caused dissociation even in the presence of angiogenic factors. Consistent with this, mice lacking CXCR3 express a greater number of vessels in wound tissue compared to wild-type mice. We then hypothesized that signaling from CXCR3 not only limits angiogenesis, but also compromises vessel integrity to induce regression. We found that activation of CXCR3 triggers micro-calpain activity, causing cleavage of the cytoplasmic tail of beta3 integrins at the calpain cleavage sites c'754 and c'747. IP-10 stimulation also activated caspase 3, blockage of which prevented cell death but not cord dissociation. This is the first direct evidence for an extracellular signaling mechanism through CXCR3 that causes the dissociation of newly formed blood vessels followed by cell death.
Collapse
Affiliation(s)
- Richard J Bodnar
- Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA 15240, USA.
| | | | | | | | | |
Collapse
|
45
|
Yates CC, Whaley D, Hooda S, Hebda PA, Bodnar RJ, Wells A. Delayed reepithelialization and basement membrane regeneration after wounding in mice lacking CXCR3. Wound Repair Regen 2009; 17:34-41. [PMID: 19152649 DOI: 10.1111/j.1524-475x.2008.00439.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wound healing is a complex, orchestrated series of biological events that is controlled by extracellular components that communicate between cell types to re-establish lost tissue. We have found that signaling by ELR-negative CXC chemokines through their common CXCR3 receptor is critical for dermal maturation during the resolving phase. In addition there needs to be complete maturation of the epidermis and regeneration of a delineating basement membrane for proper functioning. The role of this ligand-receptor system appears confounding as one ligand, CXCL4/(PF4), is present during the initial dissolution and two others, CXCL10/(IP-10) and CXCL11/(IP-9/I-TAC), are expressed by keratinocytes in the later regenerative and resolving phases during which the basement membrane is re-established. We examined CXCR3 signaling role in healing using a mouse lacking this receptor, as all three ligands act solely via the common receptor. Reepithelialization was delayed in CXCR3-deficient mice in both full and partial-thickness excisional wounds. Even at 90 days postwounding, the epidermis of these mice appeared less mature with lower levels of E-cadherin and cytokeratin 18. The underlying basement membrane, a product of both dermal fibroblasts and epidermal keratinocytes, was not fully established with persistent diffuse expression of the matrix components laminin 5, collagen IV, and collagen VII throughout the wound bed. These results suggest that CXCR3 and its ligands play an important role in the re-establishment of the basement membrane and epidermis. These studies further establish the emerging signaling network that involves the CXCR3 chemokine receptor and its ligands as a key regulator of wound repair.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|