1
|
Moro AM, Brucker N, Goethel G, Flesch I, Nascimento S, Charão M, Gauer B, Sauer E, Cestonaro LV, Viçozzi GP, Gioda A, Saint'Pierre TD, Arbo MD, Garcia I, Cattani SA, Petrecelli RR, Martins MO, Garcia SC. The Influence of Blood Titanium Levels on DNA Damage in Brazilian Workers Occupationally Exposed to Different Chemical Agents. Biol Trace Elem Res 2024:10.1007/s12011-024-04472-2. [PMID: 39695012 DOI: 10.1007/s12011-024-04472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Occupational exposure to pollutants may cause health-damaging effects in humans. Genotoxicity assays can be used to detect the toxic effects of pollutants. In the present study, we evaluated genetic damage in three populations occupationally exposed to benzene, pyrenes, and agrochemicals and assessed the possible influence of titanium (Ti) co-exposure. A total of 275 subjects were enrolled in this study. The occupationally exposed population was composed of 201 male individuals, divided into three different groups: gas station attendants (GSA group) (n = 76), taxi drivers (TD group) (n = 97), farmers (farmers group) (n = 28), and control (n = 74). Biomarkers of exposure and effect were investigated such as AChe, BuChE, t,t-muconic acid (t,t-MA), and 1-hydroxypyrene (1-OHP). Ti levels in blood were higher in all the workers compared with the control group. DNA damage evaluated by comet assay was higher in the taxi drivers and farmers than in the controls, and the frequency of micronucleate buccal cells was higher in the gas station attendants and taxi drivers than in the controls. Correlations were found among occupational exposure time and biomarkers of exposure, genotoxicity biomarkers, and blood Ti levels. Our results demonstrated Ti co-exposure in the gas station attendants, taxi drivers, and farmers, and blood Ti levels were linked with the respective biomarkers of exposure. Additionally, tools through machine learning corroborated these findings, and Ti was the factor that contributed to DNA damage. Thus, the present study indicates the role of Ti in occupational settings and interactions with already known major xenobiotics present in the occupational environment contributing to genotoxicity.
Collapse
Affiliation(s)
- Angela M Moro
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Goethel
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Ingrid Flesch
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Sabrina Nascimento
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Mariele Charão
- Graduate Program in Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Larissa V Cestonaro
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Gabriel Pedroso Viçozzi
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Tatiana D Saint'Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Marcelo D Arbo
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Ingrid Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Shanda A Cattani
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Rodrigo R Petrecelli
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mirkos Ortiz Martins
- Graduate Program in Nanosciences, Franciscan University, Santa Maria, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Rua São Luis 150-Anexo II, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil.
| |
Collapse
|
2
|
Shin BJ, Kim BJ, Paeng EJ, Rifkin JT, Moon SH, Shin SH, Ryu BY. N-Acetyl-L-cysteine attenuates titanium dioxide nanoparticle (TiO 2 NP)-induced autophagy in male germ cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104466. [PMID: 38759847 DOI: 10.1016/j.etap.2024.104466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products, raising concerns about their impact on human health. This study investigates the effects of TiO2 NPs on male germ cells while focusing on cell proliferation inhibition and underlying mechanisms. This was done by utilizing mouse GC-1 spermatogonia cells, an immortalized spermatogonia cell line. TiO2 NPs induced a concentration-dependent proliferation inhibition with increased reactive oxygen species (ROS) generation. Notably, TiO2 NPs induced autophagy and decreased ERK phosphorylation. Treatment with the ROS inhibitor N-Acetyl-l-cysteine (NAC) alleviated TiO2 NPs-induced autophagy, restored ERK phosphorylation, and promoted cell proliferation. These findings call attention to the reproductive risks posed by TiO2 NPs while also highlighting NAC as a possible protective agent against reproductive toxins.
Collapse
Affiliation(s)
- Beom-Jin Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do 17546, Republic of Korea
| | - Bang-Jin Kim
- Department of Surgery, Division of Surgical Sciences, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eun-Ji Paeng
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do 17546, Republic of Korea
| | - Jack Tyler Rifkin
- Department of Surgery, Division of Surgical Sciences, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do 17546, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do 17546, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do 17546, Republic of Korea.
| |
Collapse
|
3
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [DOI: https:/doi.org/10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Padmanaban S, Pully D, Samrot AV, Gosu V, Sadasivam N, Park IK, Radhakrishnan K, Kim DK. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants (Basel) 2023; 12:1405. [PMID: 37507944 PMCID: PMC10376173 DOI: 10.3390/antiox12071405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reactive oxygen species (ROS) play a significant role in the survival and decline of various biological systems. In liver-related metabolic disorders such as steatohepatitis, ROS can act as both a cause and a consequence. Alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) are two distinct types of steatohepatitis. Recently, there has been growing interest in using medications that target ROS formation and reduce ROS levels as a therapeutic approach for oxidative stress-related liver disorders. Mammalian systems have developed various antioxidant defenses to protect against excessive ROS generation. These defenses modulate ROS through a series of reactions, limiting their potential impact. However, as the condition worsens, exogenous antioxidants become necessary to control ROS levels. Nanotechnology has emerged as a promising avenue, utilizing nanocomplex systems as efficient nano-antioxidants. These systems demonstrate enhanced delivery of antioxidants to the target site, minimizing leakage and improving targeting accuracy. Therefore, it is essential to explore the evolving field of nanotechnology as an effective means to lower ROS levels and establish efficient therapeutic interventions for oxidative stress-related liver disorders.
Collapse
Affiliation(s)
- Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Durgasruthi Pully
- Biochemistry and Biotechnology, Faculty of Science, KU Leuven, 3000 Leuven, Belgium
| | - Antony V Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Min Y, Suminda GGD, Heo Y, Kim M, Ghosh M, Son YO. Metal-Based Nanoparticles and Their Relevant Consequences on Cytotoxicity Cascade and Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030703. [PMID: 36978951 PMCID: PMC10044810 DOI: 10.3390/antiox12030703] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Emerging nanoscience allows us to take advantage of the improved evolutionary components and apply today’s advanced characterization and fabrication techniques to solve environmental and biological problems. Despite the promise that nanotechnology will improve our lives, the potential risks of technology remain largely uncertain. The lack of information on bio-impacts and the absence of consistent standards are the limitations of using metal-based nanoparticles (mNPs) for existing applications. To analyze the role played by the mNPs physicochemical characteristics and tactics to protect live beings, the field of nanotoxicology nowadays is focused on collecting and analyzing data from in vitro and in vivo investigations. The degree of reactive oxygen species (ROS) and oxidative stress caused by material nanoparticles (NPs) depends on many factors, such as size, shape, chemical composition, etc. These characteristics enable NPs to enter cells and interact with biological macromolecules and cell organelles, resulting in oxidative damage, an inflammatory response, the development of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. This report explored the mechanisms and cellular signaling cascades of mNPs-induced oxidative stress and the relevant health consequences.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | | | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mangeun Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Educational, Krishnankoil 626126, India
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si 63243, Republic of Korea
- Correspondence: (M.G.); (Y.-O.S.); Tel.: +82-10-6752-9677 (M.G.); +82-64-754-3331 (Y.-O.S.)
| |
Collapse
|
6
|
Samrot AV, Ram Singh SP, Deenadhayalan R, Rajesh VV, Padmanaban S, Radhakrishnan K. Nanoparticles, a Double-Edged Sword with Oxidant as Well as Antioxidant Properties—A Review. OXYGEN 2022; 2:591-604. [DOI: https:/doi.org/10.3390/oxygen2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The usage of nanoparticles became inevitable in medicine and other fields when it was found that they could be administered to hosts to act as oxidants or antioxidants. These oxidative nanoparticles act as pro-oxidants and induce oxidative stress-mediated toxicity through the generation of free radicals. Some nanoparticles can act as antioxidants to scavenge these free radicals and help in maintaining normal metabolism. The oxidant and antioxidant properties of nanoparticles rely on various factors including size, shape, chemical composition, etc. These properties also help them to be taken up by cells and lead to further interaction with cell organelles/biological macromolecules, leading to either the prevention of oxidative damage, the creation of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. It is important to know the properties that make these nanoparticles act as oxidants/antioxidants and the mechanisms behind them. In this review, the roles and mechanisms of nanoparticles as oxidants and antioxidants are explained.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Sanjay Preeth Ram Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Rajalakshmi Deenadhayalan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Vinod Vincent Rajesh
- MSU College, Naduvakurichi, Sankarankovil Taluk, Tenkasi District, Tirunelveli 627012, Tamil Nadu, India
| | - Sathiyamoorthy Padmanaban
- Department of Medical Nanotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Kamalakannan Radhakrishnan
- Combinatorial Cancer Immunotherapy MRC, Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| |
Collapse
|
7
|
Kumar A, Sharipov M, Turaev A, Azizov S, Azizov I, Makhado E, Rahdar A, Kumar D, Pandey S. Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications. Polymers (Basel) 2022; 14:polym14153027. [PMID: 35893988 PMCID: PMC9370428 DOI: 10.3390/polym14153027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022] Open
Abstract
Globally, cancer is affecting societies and is becoming an important cause of death. Chemotherapy can be highly effective, but it is associated with certain problems, such as undesired targeting and multidrug resistance. The other advanced therapies, such as gene therapy and peptide therapy, do not prove to be effective without a proper delivery medium. Polymer-based hybrid nanoarchitectures have enormous potential in drug delivery. The polymers used in these nanohybrids (NHs) provide them with their distinct properties and also enable the controlled release of the drugs. This review features the recent use of polymers in the preparation of different nanohybrids for cancer therapy published since 2015 in some reputed journals. The polymeric nanohybrids provide an advantage in drug delivery with the controlled and targeted delivery of a payload and the irradiation of cancer by chemotherapeutical and photodynamic therapy.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
| | - Mirkomil Sharipov
- Department of Chemistry, Changwon National University, Changwon 51140, Korea;
| | - Abbaskhan Turaev
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan;
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan;
- Department of Pharmaceutical Chemistry, Tashkent Pharmaceutical Institute, Tashkent 100015, Uzbekistan
- Correspondence: (S.A.); (D.K.); or (S.P.)
| | - Ismatdjan Azizov
- State Center for Expertise and Standardization of Medicines, Medical Devices, and Medical Equipment, State Unitary Enterprise, Tashkent 100002, Uzbekistan;
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Polokwane 0727, South Africa;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran;
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
- Correspondence: (S.A.); (D.K.); or (S.P.)
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (D.K.); or (S.P.)
| |
Collapse
|
8
|
Molecular relation between biological stress and carcinogenesis. Mol Biol Rep 2022; 49:9929-9945. [PMID: 35610338 DOI: 10.1007/s11033-022-07543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
This paper aims to overview different types of stress, including DNA replication stress, oxidative stress, and psychological stress. Understanding the processes that constitute a cellular response to varied types of stress lets us find differences in how normal cells and cancer cells react to the appearance of a particular kind of stressor. The revealed dissimilarities are the key for targeting new molecules and signaling pathways in anticancer treatment. For this reason, molecular mechanisms that underlay DNA replication stress, oxidative stress, and psychological stress have been studied and briefly presented to indicate biochemical points that make stressors contribute to cancer development. What is more, the viewpoint in which cancer constitutes the outcome and the cause of stress has been taken into consideration. In a described way, this paper draws attention to the problem of cancer-related post-traumatic stress disorder and proposes a novel, multidimensional oncological approach, connecting anticancer treatment with psychiatric support.
Collapse
|
9
|
Prevention of tumor progression in inflammation-related carcinogenesis by anti-inflammatory and anti-mutagenic effects brought about by ingesting fermented brown rice and rice bran with Aspergillus oryzae (FBRA). J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of Protamine in Nanopharmaceuticals-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1508. [PMID: 34200384 PMCID: PMC8230241 DOI: 10.3390/nano11061508] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Macromolecular biomolecules are currently dethroning classical small molecule therapeutics because of their improved targeting and delivery properties. Protamine-a small polycationic peptide-represents a promising candidate. In nature, it binds and protects DNA against degradation during spermatogenesis due to electrostatic interactions between the negatively charged DNA-phosphate backbone and the positively charged protamine. Researchers are mimicking this technique to develop innovative nanopharmaceutical drug delivery systems, incorporating protamine as a carrier for biologically active components such as DNA or RNA. The first part of this review highlights ongoing investigations in the field of protamine-associated nanotechnology, discussing the self-assembling manufacturing process and nanoparticle engineering. Immune-modulating properties of protamine are those that lead to the second key part, which is protamine in novel vaccine technologies. Protamine-based RNA delivery systems in vaccines (some belong to the new class of mRNA-vaccines) against infectious disease and their use in cancer treatment are reviewed, and we provide an update on the current state of latest developments with protamine as pharmaceutical excipient for vaccines.
Collapse
Affiliation(s)
| | | | | | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; (I.R.); (K.F.); (C.P.)
| |
Collapse
|
11
|
Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Acta Biomater 2021; 127:80-101. [PMID: 33744499 DOI: 10.1016/j.actbio.2021.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Nanoscale surface modification of titanium-based orthopaedic and dental implants is routinely applied to augment bioactivity, however, as is the case with other cells, bacterial adhesion is increased on nano-rough surfaces. Electrochemically anodized Ti implants with titania nanotubes (TNTs) have been proposed as an ideal implant surface with desirable bioactivity and local drug release functions to target various conditions. However, a comprehensive state of the art overview of why and how such TNTs-Ti implants acquire antibacterial functions, and an in-depth knowledge of how topography, chemistry and local elution of potent antibiotic agents influence such functions has not been reported. This review discusses and details the application of nano-engineered Ti implants modified with TNTs for maximum local antibacterial functions, deciphering the interdependence of various characteristics and the fine-tuning of different parameters to minimize cytotoxicity. An ideal implant surface should cater simultaneously to ossoeintegration (and soft-tissue integration for dental implants), immunomodulation and antibacterial functions. We also evaluate the effectiveness and challenges associated with such synergistic functions from modified TNTs-implants. Particular focus is placed on the metallic and semi-metallic modification of TNTs towards enabling bactericidal properties, which is often dose dependent. Additionally, there are concerns over the cytotoxicity of these therapies. In that light, research challenges in this domain and expectations from the next generation of customizable antibacterial TNTs implants towards clinical translation are critically evaluated. STATEMENT OF SIGNIFICANCE: One of the major causes of titanium orthopaedic/dental implant failure is bacterial colonization and infection, which results in complete implant failure and the need for revision surgery and re-implantation. Using advanced nanotechnology, controlled nanotopographies have been fabricated on Ti implants, for instance anodized nanotubes, which can accommodate and locally elute potent antibiotic agents. In this pioneering review, we shine light on the topographical, chemical and therapeutic aspects of antibacterial nanotubes towards achieving desirable tailored antibacterial efficacy without cytotoxicity concerns. This interdisciplinary review will appeal to researchers from the wider scientific community interested in biomaterials science, structure and function, and will provide an improved understanding of controlling bacterial infection around nano-engineered implants, aimed at bridging the gap between research and clinics.
Collapse
|
12
|
Quiles JL, Sánchez-González C, Vera-Ramírez L, Giampieri F, Navarro-Hortal MD, Xiao J, Llopis J, Battino M, Varela-López A. Reductive Stress, Bioactive Compounds, Redox-Active Metals, and Dormant Tumor Cell Biology to Develop Redox-Based Tools for the Treatment of Cancer. Antioxid Redox Signal 2020; 33:860-881. [PMID: 32064905 DOI: 10.1089/ars.2020.8051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Cancer is related to redox biology from many points of view, such as initiation and promotion, metabolism and growth, invasion and metastasis, vascularization, or through the interaction with the immune system. In addition, this extremely complex relationship depends on the redox homeostasis of each cellular compartment, which might be used to fight cancer. Recent Advances: New ways of modulating specific and little explored aspects of redox biology have been revealed, as well as new delivery methods or uses of previously known treatments against cancer. Here, we review the latest experimental evidence regarding redox biology in cancer treatment and analyze its potential impact in the development of improved and more effective antineoplastic therapies. Critical Issues: A critical issue that deserves particular attention is the understanding that both extremes of redox biology (i.e., oxidative stress [OS] and reductive stress) might be useful or harmful in relation to cancer prevention and treatment. Future Directions: Additional research is needed to understand how to selectively induce reductive or OS adequately to avoid cancer proliferation or to induce cancer cell death.
Collapse
Affiliation(s)
- José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramírez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), Granada, Spain
| | - Francesca Giampieri
- College of Food Science and Technology, Northwest University, Xi'an, China
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - M Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Sultan S, Mustafa M, Bennani F, Atteia E, Acharya Y, Hynes N. Challenges in diagnosing aortic leiomyosarcoma post endovascular repair of abdominal aortic aneurysm. JOURNAL OF VASCULAR SURGERY CASES INNOVATIONS AND TECHNIQUES 2020; 6:666-670. [PMID: 33251394 PMCID: PMC7683213 DOI: 10.1016/j.jvscit.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
Primary aortic tumors after endovascular aortic repair are rarely reported in the literature. Here, we report an elderly male with abdominal aortic leiomyosarcomas (LMS) after an endovascular aneurysm repair in 2012 for a 5-cm symptomatic abdominal aortic aneurysm using an Endurant II aortic stent graft (Medtronic, Minneapolis, Minn). The autopsy confirmed the aortic LMS after the patient rapidly deteriorated and succumbed to death. The vascular LMS are rapidly progressive and diagnostically challenging malignant soft tissue tumors with poor prognosis, which necessitates a strong clinical suspicion and attentiveness to radiologic signs for prompt diagnosis.
Collapse
Affiliation(s)
- Sherif Sultan
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland and the National University of Ireland Galway Affiliated Hospital, Galway, Ireland
| | - Mohamed Mustafa
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, National University of Ireland Galway, Galway, Ireland
| | - Fadel Bennani
- Department of Pathology, Mayo University Hospital, National University of Ireland Galway Affiliated Hospital, Galway, Ireland
| | - Emad Atteia
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, National University of Ireland Galway, Galway, Ireland
| | - Yogesh Acharya
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland and the National University of Ireland Galway Affiliated Hospital, Galway, Ireland
| | - Niamh Hynes
- Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland and the National University of Ireland Galway Affiliated Hospital, Galway, Ireland
| |
Collapse
|
14
|
Jo VY, Schoen FJ. Tumorigenesis and Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Park WK, Park KL, Cho YS, Han A, Ahn S, Min SK. Intravascular Epithelioid Angiosarcoma in the Abdominal Aorta Mimicking an Infected Aneurysm. Vasc Specialist Int 2019; 35:232-236. [PMID: 31915668 PMCID: PMC6941772 DOI: 10.5758/vsi.2019.35.4.232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Primary aortic angiosarcoma is very rare, and preoperative diagnosis is challenging with resultant poor prognosis. Angiosarcoma may mimic an infected aneurysm or a mural thrombus. Clinical suspicion of angiosarcoma is vital for an early diagnosis and proper surgical treatment, especially in cases with atypical rapid growth of an aortic abdominal aneurysm with a thrombotic mass. Herein, we report a case of angiosarcoma in the abdominal aorta mimicking an infected aneurysm and present computed tomography and positron emission tomography findings.
Collapse
Affiliation(s)
- Woong Ki Park
- Division of Vascular Surgery, Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyong Lin Park
- Department of Surgery, National Cancer Center, Goyang, Korea
| | - Yo Seok Cho
- Division of Vascular Surgery, Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ahram Han
- Division of Vascular Surgery, Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sanghyun Ahn
- Division of Vascular Surgery, Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Kee Min
- Division of Vascular Surgery, Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Sambi M, DeCarlo A, Malardier-Jugroot C, Szewczuk MR. Next-Generation Multimodality of Nanomedicine Therapy: Size and Structure Dependence of Folic Acid Conjugated Copolymers Actively Target Cancer Cells in Disabling Cell Division and Inducing Apoptosis. Cancers (Basel) 2019; 11:cancers11111698. [PMID: 31683806 PMCID: PMC6896001 DOI: 10.3390/cancers11111698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine as a multimodality treatment of cancer utilizes the advantages of nanodelivery systems of drugs. They are superior to the clinical administration of different therapeutic agents in several aspects, including simultaneous delivery of drugs to the active site, precise ratio control of the loading drugs and overcoming multidrug resistance. The role of nanopolymer size and structural shape on the internalization process and subsequent intracellular toxicity is limited. Here, the size and shape dependent mechanism of a functionalized copolymer was investigated using folic acid (FA) covalently bonded to the copolymer poly (styrene-alt-maleic anhydride) (SMA) on its hydrophilic exterior via a biological linker 2,4-diaminobutyric acid (DABA) to target folic acid receptors (FR) overly expressed on cancer cells actively. We recently reported that unloaded FA-DABA-SMA copolymers significantly reduced cancer cell viability, suggesting a secondary therapeutic mechanism of action of the copolymer carrier post-internalization. Here, we investigated the size and shape dependent secondary mechanism of unloaded 350 kDa and 20 kDa FA-DABA-SMA. The 350 kDa and 20 kDa copolymers actively target folic acid receptors (FR) to initialize internationalization, but only the large size and sheet shaped copolymer disables cell division by intracellular disruptions of essential oncogenic proteins including p53, STAT-3 and c-Myc. Furthermore, the 350 kDa FA-DABA-SMA activates early and late apoptotic events in both PANC-1 and MDA-MB-231 cancer cells. These findings indicate that the large size and structural sheet shape of the 350 kDa FA-DABA-SMA copolymer facilitate multimodal tumor targeting mechanisms together with the ability to internalize hydrophobic chemotherapeutics to disable critical oncogenic proteins controlling cell division and to induce apoptosis. The significance of these novel findings reveals copolymer secondary cellular targets and therapeutic actions that extend beyond the direct delivery of chemotherapeutics. This report offers novel therapeutic insight into the intracellular activity of copolymers critically dependent on the size and structural shape of the nanopolymers.
Collapse
Affiliation(s)
- Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Alexandria DeCarlo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Cecile Malardier-Jugroot
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
17
|
Swiatkowska I, Martin N, Hart AJ. Blood titanium level as a biomarker of orthopaedic implant wear. J Trace Elem Med Biol 2019; 53:120-128. [PMID: 30910194 DOI: 10.1016/j.jtemb.2019.02.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Joint replacement implants are usually manufactured from cobalt-chromium or titanium alloys. After the device is implanted, wear and corrosion generate metal particles and ions, which are released into local tissue and blood. The metal debris can cause a range of adverse local and systemic effects in patients. RESEARCH PROBLEM In the case of cobalt and chromium, a blood level exceeding 7 μg L-1 indicates potential for local toxicity, and a failing implant. It has been repeatedly suggested in the literature that measurement of titanium could also be used to assess implant function. Despite an increasing interest in this biomarker, and growing use of titanium in orthopaedics, it is unclear what blood concentrations should raise concerns. This is partly due to the technical challenges involved in the measurement of titanium in biological samples. AIM This Review summarises blood/serum titanium levels associated with well-functioning and malfunctioning prostheses, so that the prospects of using titanium measurements to gain insights into implant performance can be evaluated. CONCLUSION Due to inter-laboratory analytical differences, reliable conclusions regarding "normal" and "abnormal" titanium levels in patients with orthopaedic implants are difficult to draw. Diagnosis of symptomatic patients should be based on radiographic evidence combined with blood/serum metal levels.
Collapse
Affiliation(s)
- Ilona Swiatkowska
- Institute of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP, Stanmore, UK.
| | - Nicholas Martin
- Trace Element Laboratory, Clinical Biochemistry, Charing Cross Hospital, W6 8RF, London, UK
| | - Alister J Hart
- Institute of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP, Stanmore, UK; Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| |
Collapse
|
18
|
Khaliullin TO, Kisin ER, Yanamala N, Guppi S, Harper M, Lee T, Shvedova AA. Comparative cytotoxicity of respirable surface-treated/untreated calcium carbonate rock dust particles in vitro. Toxicol Appl Pharmacol 2018; 362:67-76. [PMID: 30393145 DOI: 10.1016/j.taap.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023]
Abstract
Calcium carbonate rock dust (RD) is used in mining to reduce the explosivity of aerosolized coal. During the dusting procedures, potential for human exposure occurs, raising health concerns. To improve RD aerosolization, several types of anti-caking surface treatments exist. The aim of the study was to evaluate cytotoxicity of four respirable RD samples: untreated/treated limestone (UL/TL), untreated/treated marble (UM/TM), and crystalline silica (SiO2) as a positive control in A549 and THP-1 transformed human cell lines. Respirable fractions were generated and collected using FSP10 high flow-rate cyclone samplers. THP-1 cells were differentiated with phorbol-12-myristate-13-acetate (20 ng/ml, 48 h). Cells were exposed to seven different concentrations of RD and SiO2 (0-0.2 mg/ml). RD caused a slight decrease in viability at 24 or 72 h post-exposure and were able to induce inflammatory cytokine production in A549 cells, however, with considerably less potency than SiO2. In THP-1 cells at 24 h, there was significant dose-dependent lactate dehydrogenase, inflammatory cytokine and chemokine release. Caspase-1 activity was increased in SiO2- and, on a lesser scale, in TM- exposed cells. To test if the increased toxicity of TM was uptake-related, THP-1 cells were pretreated with Cytochalasin D (CytD) or Bafilomycin A (BafA), followed by exposure to RD or SiO2 for 6 h. CytD blocked the uptake and significantly decreased cytotoxicity of all particles, while BafA prevented caspase-1 activation but not cytotoxic effects of TM. Only TM was able to induce an inflammatory response in THP-1 cells, however it was much less pronounced compared to silica.
Collapse
Affiliation(s)
- Timur O Khaliullin
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA; West Virginia University, Department of Physiology and Pharmacology, PO Box 9229, Morgantown, WV, USA.
| | - Elena R Kisin
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA.
| | - Naveena Yanamala
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA.
| | - Supraja Guppi
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA.
| | - Martin Harper
- Zefon International, 5350 SW 1st Lane, Ocala, FL 34474, USA.
| | - Taekhee Lee
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Mining Research Division, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA.
| | - Anna A Shvedova
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA; West Virginia University, Department of Physiology and Pharmacology, PO Box 9229, Morgantown, WV, USA.
| |
Collapse
|
19
|
Ozone augments interleukin-8 production induced by ambient particulate matter. Genes Environ 2018; 40:14. [PMID: 30026883 PMCID: PMC6050665 DOI: 10.1186/s41021-018-0102-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background Experimental and controlled human exposure studies have demonstrated additive effects of ambient particulate matter and ozone on health. A few epidemiological studies have suggested that ambient particulate matter components are important for the combined effects of ambient particulate matter and ozone on health. However, few studies have examined whether ozone changes the effects of ambient particulate matter on pro-inflammatory cytokine production. In this study, the influence of ozone on pro-inflammatory cytokine production in response to ambient particulate matter was evaluated. Results Ambient particulate matter smaller than 1 μm was collected and the suspension of this particulate matter was bubbled through 0.12 ppm and 0.24 ppm ozone. THP1 cells were stimulated by the solution containing the particulate matter with and without bubbling through ozone at 1 μg/mL. The interleukin-8 concentrations in the supernatants of THP1 cells stimulated by collected particulate matter dissolved in solution were 108.3 ± 24.7 pg/mL without ozone exposure, 165.0 ± 26.1 pg/mL for 0.12 ppm ozone bubbling for 1 min, 175.1 ± 33.1 pg/mL for 0.12 ppm for 5 min, 183.3 ± 17.8 pg/mL for 0.12 ppm for 15 min, 167.8 ± 35.9 pg/mL for 0.24 ppm for 1 min, 209.2 ± 8.4 pg/mL for 0.24 ppm for 5 min, and 209.3 ± 14.3 pg/mL for 0.24 ppm for 15 min. Ozone significantly increased interleukin-8 concentrations compared to those for particulate matter dissolved in solution without ozone exposure and the solvent only (8.2 ± 0.9 pg/mL) in an ozone concentration-dependent manner. Collected particulate matter in solutions with or without bubbling through ozone had no effect on interleukin-6 production. The antioxidant N-acetyl-L-cysteine significantly inhibited the increases in interleukin-8 induced by solutions with particulate matter, regardless of ozone exposure. The reactive oxygen species concentration in solutions with collected particulate matter was not associated with ozone bubbling. Conclusion Ozone may augment the production of interleukin-8 in response to ambient particulate matter by a mechanism unrelated to reactive oxygen species. These results support the epidemiological evidence for combined effects of ambient particulate matter and ozone on human health.
Collapse
|
20
|
Męczyńska-Wielgosz S, Piotrowska A, Majkowska-Pilip A, Bilewicz A, Kruszewski M. Effect of Surface Functionalization on the Cellular Uptake and Toxicity of Nanozeolite A. NANOSCALE RESEARCH LETTERS 2016; 11:123. [PMID: 26935303 PMCID: PMC4775514 DOI: 10.1186/s11671-016-1334-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/23/2016] [Indexed: 05/29/2023]
Abstract
Extensive use of zeolite nanoparticles in many areas, including medicine, has led to the concern about an impact and possible risk of their use for human health and the environment.In our studies, we investigated an uptake, retention, and cytotoxicity of nanozeolite A (BaA) functionalized with aminopropyl or poly(ethylene glycol) (PEG) of different chain lengths using human cervical carcinoma cell line. For internalization studies, nanozeolite was labeled with (133)Ba radionuclide.The results show that in the case of PEG modification, toxicity and uptake depend on the PEG chain length. The highest toxicity has been observed for nanozeolites coated with short-length chain (Ba-silane-PEGm(MW350). Also, amine-modified nanozeolites exhibited high toxicity, while nanozeolites coated with long PEG molecules, BaA-silane-PEGm(MW1000), and BaA-silane-PEGm(MW2000), as well as unmodified nanozeolite, seem to be nontoxic.In conclusion, this study shows that uptake, retention, and toxicity of nanozeolites coated with various length PEG molecules groups depend on the molecular weight of PEG.
Collapse
Affiliation(s)
| | - Agata Piotrowska
- Institute of Nuclear Chemistry and Technology, Dorodna 16, Warsaw, 03-195, Poland.
| | | | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, Warsaw, 03-195, Poland.
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, Warsaw, 03-195, Poland.
- Faculty of Medicine, University of Information Technology and Management in Rzeszów, ul. Sucharskiego 2, Rzeszów, 35-225, Poland.
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
| |
Collapse
|
21
|
Jukapli NM, Bagheri S. Recent developments on titania nanoparticle as photocatalytic cancer cells treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:421-30. [DOI: 10.1016/j.jphotobiol.2016.08.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 01/08/2023]
|
22
|
Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: a Review. Biol Trace Elem Res 2016; 172:1-36. [PMID: 26554951 DOI: 10.1007/s12011-015-0550-x] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023]
Abstract
Nano-titanium dioxide (TiO2) is one of the most commonly used materials being synthesized for use as one of the top five nanoparticles. Due to the extensive application of TiO2 nanoparticles and their inclusion in many commercial products, the increased exposure of human beings to nanoparticles is possible. This exposure could be routed via dermal penetration, inhalation and oral ingestion or intravenous injection. Therefore, regular evaluation of their potential toxicity and distribution in the bodies of exposed individuals is essential. Keeping in view the potential health hazards of TiO2 nanoparticles for humans, we reviewed the research articles about studies performed on rats or other mammals as animal models. Most of these studies utilized the dermal or skin and the pulmonary exposures as the primary routes of toxicity. It was interesting that only very few studies revealed that the TiO2 nanoparticles could penetrate through the skin and translocate to other tissues, while many other studies demonstrated that no penetration or translocation could happen through the skin. Conversely, the TiO2 nanoparticles that entered through the pulmonary route were translocated to the brain or the systemic circulation from where these reached other organs like the kidney, liver, etc. In most studies, TiO2 nanoparticles appeared to have caused oxidative stress, histopathological alterations, carcinogenesis, genotoxicity and immune disruption. Therefore, the use of such materials in humans must be either avoided or strictly managed to minimise risks for human health in various situations.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Samina Shabbir
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Saleem Khan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdul Shakoor Chaudhry
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
23
|
De Simone U, Lonati D, Ronchi A, Coccini T. Brief exposure to nanosized and bulk titanium dioxide forms induces subtle changes in human D384 astrocytes. Toxicol Lett 2016; 254:8-21. [DOI: 10.1016/j.toxlet.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/09/2023]
|
24
|
Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicol In Vitro 2016; 33:125-35. [DOI: 10.1016/j.tiv.2016.01.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/09/2015] [Accepted: 01/25/2016] [Indexed: 01/28/2023]
|
25
|
Multimodality Imaging Approach towards Primary Aortic Sarcomas Arising after Endovascular Abdominal Aortic Aneurysm Repair: Case Series Report. Cardiovasc Intervent Radiol 2015; 39:940-7. [PMID: 26721588 DOI: 10.1007/s00270-015-1280-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/22/2015] [Indexed: 01/30/2023]
Abstract
Primary aortic neoplasms are rare. Aortic sarcoma arising after endovascular aneurysm repair (EVAR) is a scarce subset of primary aortic malignancies, reports of which are infrequent in the published literature. The diagnosis of aortic sarcoma is challenging due to its non-specific clinical presentation, and the prognosis is poor due to delayed diagnosis, rapid proliferation, and propensity for metastasis. Post-EVAR, aortic sarcomas may mimic other more common aortic processes on surveillance imaging. Radiologists are rarely knowledgeable about this rare entity for which multimodality imaging and awareness are invaluable in early diagnosis. A series of three pathologically confirmed cases are presented to display the multimodality imaging features and clinical presentations of aortic sarcoma arising after EVAR.
Collapse
|
26
|
Flaherty NL, Chandrasekaran A, Peña MDPS, Roth GA, Brenner SA, Begley TJ, Melendez JA. Comparative analysis of redox and inflammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nano-abrasives. Toxicol Lett 2015; 239:205-15. [DOI: 10.1016/j.toxlet.2015.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/12/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022]
|
27
|
Meindl C, Kueznik T, Bösch M, Roblegg E, Fröhlich E. Intracellular calcium levels as screening tool for nanoparticle toxicity. J Appl Toxicol 2015; 35:1150-9. [PMID: 25976553 PMCID: PMC4606983 DOI: 10.1002/jat.3160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/01/2015] [Accepted: 03/16/2015] [Indexed: 01/11/2023]
Abstract
The use of engineered nano-sized materials led to revolutionary developments in many industrial applications and in the medical field. These materials, however, also may cause cytotoxicity. In addition to size, surface properties and shape were identified as relevant parameters for cell damage. Cell damage may occur as disruption of membrane integrity, induction of apoptosis and by organelle damage. Generation of oxidative stress may serve as an indicator for cytotoxicity. Effects occurring upon short contact of particles with cells, for instance in the systemic blood circulation, could be identified according to increases of intracellular [Ca(2+) ] levels, which are caused by variety of toxic stimuli. Negatively charged, neutral and positively charged polystyrene particles of different sizes were used to study the role of size and surface properties on viability, membrane disruption, apoptosis, lysosome function, intracellular [Ca(2+) ] levels and generation of oxidative stress. Silica particles served to test this hypothesis. Twenty nm polystyrene particles as well as 12 nm and 40 nm silica particles caused membrane damage and apoptosis with no preference of the surface charge. Only 20 nm plain and amine functionalized polystyrene particles cause oxidative stress and only the plain particles lysosomal damage. A potential role of surface charge was identified for 200 nm polystyrene particles, where only the amidine particles caused lysosomal damage. Increases in intracellular [Ca(2+) ] levels and cytotoxicity after 24 h was often linked but determination of intracellular [Ca(2+) ] levels could serve to characterize further the type of membrane damage.
Collapse
Affiliation(s)
- Claudia Meindl
- Center for Medical Research, Medical University of GrazAustria
| | - Tatjana Kueznik
- Center for Medical Research, Medical University of GrazAustria
| | - Martina Bösch
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of GrazAustria
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of GrazAustria
| | | |
Collapse
|
28
|
Tee JK, Ong CN, Bay BH, Ho HK, Leong DT. Oxidative stress by inorganic nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:414-38. [PMID: 26359790 DOI: 10.1002/wnan.1374] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/04/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022]
Abstract
Metallic and metallic oxide nanoparticles (NPs) have been increasingly used for various bio-applications owing to their unique physiochemical properties in terms of conductivity, optical sensitivity, and reactivity. With the extensive usage of NPs, increased human exposure may cause oxidative stress and lead to undesirable health consequences. To date, various endogenous and exogenous sources of oxidants contributing to oxidative stress have been widely reported. Oxidative stress is generally defined as an imbalance between the production of oxidants and the activity of antioxidants, but it is often misrepresented as a single type of cellular stress. At the biological level, NPs can initiate oxidative stress directly or indirectly through various mechanisms, leading to profound effects ranging from the molecular to the disease level. Such effects of oxidative stress have been implicated owing to their small size and high biopersistence. On the other hand, cellular antioxidants help to counteract oxidative stress and protect the cells from further damage. While oxidative stress is commonly known to exert negative biological effects, measured and intentional use of NPs to induce oxidative stress may provide desirable effects to either stimulate cell growth or promote cell death. Hence, NP-induced oxidative stress can be viewed from a wide paradigm. Because oxidative stress is comprised of a wide array of factors, it is also important to use appropriate assays and methods to detect different pro-oxidant and antioxidant species at molecular and disease levels. WIREs Nanomed Nanobiotechnol 2016, 8:414-438. doi: 10.1002/wnan.1374 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jie Kai Tee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, Singapore, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy, National University of Singapore, Singapore, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, Singapore, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, Singapore, Singapore
| |
Collapse
|
29
|
Ibañez IL, Notcovich C, Catalano PN, Bellino MG, Durán H. The redox-active nanomaterial toolbox for cancer therapy. Cancer Lett 2015; 359:9-19. [PMID: 25597786 DOI: 10.1016/j.canlet.2015.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/29/2014] [Accepted: 01/08/2015] [Indexed: 01/03/2023]
Abstract
Advances in nanomaterials science contributed in recent years to develop new devices and systems in the micro and nanoscale for improving the diagnosis and treatment of cancer. Substantial evidences associate cancer cells and tumor microenvironment with reactive oxygen species (ROS), while conventional cancer treatments and particularly radiotherapy, are often mediated by ROS increase. However, the poor selectivity and the toxicity of these therapies encourage researchers to focus efforts in order to enhance delivery and to decrease side effects. Thus, the development of redox-active nanomaterials is an interesting approach to improve selectivity and outcome of cancer treatments. Herein, we describe an overview of recent advances in redox nanomaterials in the context of current and emerging strategies for cancer therapy based on ROS modulation.
Collapse
Affiliation(s)
- Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Paolo N Catalano
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Martín G Bellino
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
30
|
Safety Studies of Metal Oxide Nanoparticles Used in Food Industry. FOOD NANOSCIENCE AND NANOTECHNOLOGY 2015. [DOI: 10.1007/978-3-319-13596-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R, Jiang G, Yan B. Perturbation of physiological systems by nanoparticles. Chem Soc Rev 2014; 43:3762-809. [PMID: 24647382 DOI: 10.1039/c3cs60338e] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology is having a tremendous impact on our society. However, societal concerns about human safety under nanoparticle exposure may derail the broad application of this promising technology. Nanoparticles may enter the human body via various routes, including respiratory pathways, the digestive tract, skin contact, intravenous injection, and implantation. After absorption, nanoparticles are carried to distal organs by the bloodstream and the lymphatic system. During this process, they interact with biological molecules and perturb physiological systems. Although some ingested or absorbed nanoparticles are eliminated, others remain in the body for a long time. The human body is composed of multiple systems that work together to maintain physiological homeostasis. The unexpected invasion of these systems by nanoparticles disturbs normal cell signaling, impairs cell and organ functions, and may even cause pathological disorders. This review examines the comprehensive health risks of exposure to nanoparticles by discussing how nanoparticles perturb various physiological systems as revealed by animal studies. The potential toxicity of nanoparticles to each physiological system and the implications of disrupting the balance among systems are emphasized.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Møller P, Danielsen PH, Jantzen K, Roursgaard M, Loft S. Oxidatively damaged DNA in animals exposed to particles. Crit Rev Toxicol 2013; 43:96-118. [PMID: 23346980 DOI: 10.3109/10408444.2012.756456] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exposure to combustion-derived particles, quartz and asbestos is associated with increased levels of oxidized and mutagenic DNA lesions. The aim of this survey was to critically assess the measurements of oxidatively damaged DNA as marker of particle-induced genotoxicity in animal tissues. Publications based on non-optimal assays of 8-oxo-7,8-dihydroguanine by antibodies and/or unrealistically high levels of 8-oxo-7,8-dihydroguanine (suggesting experimental problems due to spurious oxidation of DNA) reported more induction of DNA damage after exposure to particles than did the publications based on optimal methods. The majority of studies have used single intracavitary administration or inhalation with dose rates exceeding the pulmonary overload threshold, resulting in cytotoxicity and inflammation. It is unclear whether this is relevant for the much lower human exposure levels. Still, there was linear dose-response relationship for 8-oxo-7,8-dihydroguanine in lung tissue without obvious signs of a threshold. The dose-response function was also dependent on chemical composition and other characteristics of the administered particles, whereas dependence on species and strain could not be equivocally determined. Roles of cytotoxicity or inflammation for oxidatively induced DNA damage could not be documented or refuted. Studies on exposure to particles in the gastrointestinal tract showed consistently increased levels of 8-oxo-7,8-dihydroguanine in the liver. Collectively, there is evidence from animal experimental models that both pulmonary and gastrointestinal tract exposure to particles are associated with elevated levels of oxidatively damaged DNA in the lung and internal organs. However, there is a paucity of studies on pulmonary exposure to low doses of particles that are relevant for hazard/risk assessment.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 2013. [PMID: 23587290 DOI: 10.1186/17438977-10-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.
Collapse
Affiliation(s)
- Hongbo Shi
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, PR China
| | | | | | | |
Collapse
|
34
|
Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 2013; 10:15. [PMID: 23587290 PMCID: PMC3637140 DOI: 10.1186/1743-8977-10-15] [Citation(s) in RCA: 813] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/02/2013] [Indexed: 01/19/2023] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.
Collapse
Affiliation(s)
- Hongbo Shi
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, P. R. China
| | - Ruth Magaye
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, P. R. China
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, P. R. China
| |
Collapse
|
35
|
Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis 2013; 4:e549. [PMID: 23519118 PMCID: PMC3615742 DOI: 10.1038/cddis.2013.76] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The long-term health risks of nanoparticles remain poorly understood, which is a serious concern given their prevalence in the environment from increased industrial and domestic use. The extent to which such compounds contribute to cellular toxicity is unclear, and although it is known that induction of oxidative stress pathways is associated with this process, the proteins and the metabolic pathways involved with nanoparticle-mediated oxidative stress and toxicity are largely unknown. To investigate this problem further, the effect of TiO2 on the HaCaT human keratinocyte cell line was examined. The data show that although TiO2 does not affect cell cycle phase distribution, nor cell death, these nanoparticles have a considerable and rapid effect on mitochondrial function. Metabolic analysis was performed to identify 268 metabolites of the specific pathways involved and 85 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. Importantly, the uptake of nanoparticles into the cultured cells was restricted to phagosomes, TiO2 nanoparticles did not enter into the nucleus or any other cytoplasmic organelle. No other morphological changes were detected after 24-h exposure consistent with a specific role of mitochondria in this response.
Collapse
|
36
|
Rauch J, Kolch W, Laurent S, Mahmoudi M. Big signals from small particles: regulation of cell signaling pathways by nanoparticles. Chem Rev 2013; 113:3391-406. [PMID: 23428231 DOI: 10.1021/cr3002627] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jens Rauch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
37
|
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 2012; 7:5577-91. [PMID: 23144561 PMCID: PMC3493258 DOI: 10.2147/ijn.s36111] [Citation(s) in RCA: 1634] [Impact Index Per Article: 125.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many types of nanoparticles (NPs) are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria.
| |
Collapse
|
38
|
Lindberg HK, Falck GCM, Catalán J, Koivisto AJ, Suhonen S, Järventaus H, Rossi EM, Nykäsenoja H, Peltonen Y, Moreno C, Alenius H, Tuomi T, Savolainen KM, Norppa H. Genotoxicity of inhaled nanosized TiO2 in mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 745:58-64. [DOI: 10.1016/j.mrgentox.2011.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 12/19/2022]
|
39
|
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14:1-16. [PMID: 22524388 DOI: 10.1146/annurev-bioeng-071811-150124] [Citation(s) in RCA: 2432] [Impact Index Per Article: 187.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An understanding of the interactions between nanoparticles and biological systems is of significant interest. Studies aimed at correlating the properties of nanomaterials such as size, shape, chemical functionality, surface charge, and composition with biomolecular signaling, biological kinetics, transportation, and toxicity in both cell culture and animal experiments are under way. These fundamental studies will provide a foundation for engineering the next generation of nanoscale devices. Here, we provide rationales for these studies, review the current progress in studies of the interactions of nanomaterials with biological systems, and provide a perspective on the long-term implications of these findings.
Collapse
Affiliation(s)
- Alexandre Albanese
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
40
|
Garg N, Lewis MA, Maleszewski JJ, Kalra M. Intimal sarcoma in an inflammatory aneurysm after endovascular aneurysm repair. J Vasc Surg 2012; 55:1134-7. [DOI: 10.1016/j.jvs.2011.08.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/24/2011] [Accepted: 08/29/2011] [Indexed: 10/15/2022]
|
41
|
Saraceno R, Chiricozzi A, Gabellini M, Chimenti S. Emerging applications of nanomedicine in dermatology. Skin Res Technol 2011; 19:e13-9. [PMID: 22175818 DOI: 10.1111/j.1600-0846.2011.00601.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Nanotechnology is a new branch of engineering consisting of the usage of nanoscale particles (100 nm and smaller). Nanomedicine is the application of nanoscale technologies for diagnostic and therapeutic purposes in medicine. Nanodermatology, nanotechnology applied to dermatology, represents one of the most advanced field for which an increasing interest, both economic and scientific, is rising. The skin is the first point of contact for a whole host of nanomaterials, ranging from topical preparations, articles of clothing and household products, to sporting goods and industrial manufactured goods. Applications of nanomedicine in dermatology include new direction in medical diagnosis, monitoring and treatment. Gold nanoparticle, quantum dots and magnetic nanoparticles are used in non-invasive nanoimaging of high-resolution dermoscopy, microscopy, nanopunch, and spectroscopy, offering advanced diagnostic and therapeutic modalities. Nanotherapeutics has been considered in immunotherapy, genetherapy, and drug therapy. In drug therapy, because of size reduction or encapsulation of drug particles, the therapeutic potential of water insoluble and unstable drugs improve, and also facilitate the delivery of small molecules across blood, skin, nails, and pilosebaceous unit. AIMS To review therapeutic applications and benefits of nanomedicine in esthetic dermatology, treatment of malignancies, and inflammatory skin diseases.
Collapse
Affiliation(s)
- Rosita Saraceno
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Katherine M. Buettner
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ann M. Valentine
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
43
|
Gurevitch D, Shuster-Meiseles T, Nov O, Zick Y, Rudich A, Rudich Y. TiO2 nanoparticles induce insulin resistance in liver-derived cells both directly and via macrophage activation. Nanotoxicology 2011; 6:804-12. [PMID: 22007682 DOI: 10.3109/17435390.2011.625128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Upon exposure, TiO(2) nanoparticles (NPs) have been recovered in internal organs such as the liver, and are proposed to cause cellular/organ dysfunction, particularly in the liver and lungs. We hypothesized that despite being considered "inert" as bulk material, TiO(2) NPs may impair insulin responses in liver-derived cells, either indirectly by inflammatory activation of macrophages, and/or by directly interfering with insulin signaling. Using qRT-PCR and conditioned medium (CM) approaches, we show that exposure to TiO(2) NPs activates macrophages' expression of TNF-α, IL-6, IL-8, IL-1α and IL-1β and the resulting CM induces insulin resistance in Fao cells. Furthermore, direct exposure of Fao cells to TiO(2) results in activation of the stress kinases JNK and p38MAP kinase, and in induction of insulin resistance at the signaling and metabolic levels. Collectively, our findings provide a proof-of-concept for the ability of man-made NPs to induce insulin resistance in liver-derived cells, an endocrine abnormality underlying some of the most common human diseases.
Collapse
Affiliation(s)
- Diana Gurevitch
- Department of Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
44
|
Iavicoli I, Leso V, Fontana L, Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2011; 15:481-508. [PMID: 21744743 DOI: 10.1155/2012/964381] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent rapid advances in nanotechnology raise concerns about development, production route, and diffusion in industrial and consumer products of titanium dioxide nanoparticles (TiO2-NPs). In fact, compared to recent increase in applications of this nanomaterial, the health effects of human exposure have not been systematically investigated. The aim of this review was to provide a comprehensive overview on the current knowledge regarding the effects of TiO2-NPs on mammalian cells. EVIDENCE AND INFORMATION SOURCES This review is based on an analysis of the current literature on this topic. STATE OF THE ART Fine TiO2 particles have been considered as safe and to pose little risk to humans, suggesting that exposure to this material is relatively harmless. However, available data in the literature showed that TiO2-NPs can cause several adverse effects on mammalian cells such as increase of reactive oxygen species (ROS) production and cytokines levels, reduction of cell viability and proliferation, induction of apoptosis and genotoxicity. PERSPECTIVES AND CONCLUSIONS Additional research is needed to obtain up-to-date knowledge on health effects of TiO2-NPs and to avoid any potential risk correlated to their exposure. Consequently, future studies need to: (1) use an homogeneous and rigorous exposure classification to clarify how the physicochemical properties of TiO2-NPs correlate with their toxicological effects; (2) assess the potential adverse effects of low level exposures to TiO2-NPs, as most of the information currently available originates from studies in which exposure levels were excessively and unrealistically high; (3) identify the possible roles of TiO2-NPs in genotoxicity and carcinogenicity (4) carry out epidemiologic studies of exposed workers to provide an assessment of possible risks correlated to the occupational exposure to TiO2-NPs.
Collapse
Affiliation(s)
- I Iavicoli
- Institute of Occupational Medicine, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | |
Collapse
|
45
|
Moon EY, Yi GH, Kang JS, Lim JS, Kim HM, Pyo S. An increase in mouse tumor growth by an in vivo immunomodulating effect of titanium dioxide nanoparticles. J Immunotoxicol 2011; 8:56-67. [PMID: 21288165 DOI: 10.3109/1547691x.2010.543995] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here, we investigated whether titanium dioxide (TiO₂) nanoparticles affect in vivo tumor growth through the modulation of mononuclear leukocytes. In vitro lymphocyte proliferation by lipopolysaccharide (LPS) or concanavalin A (ConA) was reduced by < 25 nm TiO₂ with a dose-dependent manner. Similarly, TiO₂ nanoparticles inhibited nitric oxide (NO) production from bone marrow-derived macrophages obtained from naïve mice. When mice were intraperitoneally (IP) injected with < 25 or < 100 nm TiO₂ once a day for 7 days, total cell number of splenocytes was reduced in the spleen of TiO₂ nanoparticle-exposed mice. Both CD4+ and CD8+ T-lymphocyte numbers were significantly decreased and B-lymphocyte development was retarded by host exposure to the TiO₂ nanoparticles. LPS-stimulated spleen cell proliferation was significantly reduced by host exposure to < 25 or < 100 nm TiO₂, but no changes were detected in ConA-stimulated spleen cell proliferation. Further, LPS-stimulated cytokine production by peritoneal macrophages and the percentage of NK1.1+ natural killer cells among splenocytes was reduced by the host exposures to the TiO₂ nanoparticles. When mice were IP injected with TiO₂ nanoparticles once a day for 28 days prior to the subcutaneous implantation of B16F10 melanoma cells, tumor growth was subsequently significantly increased. Collectively, these results show that TiO₂ nanoparticles may damage the development and proliferation of B- and T-lymphocytes, reduce the activity of macrophages, and decrease natural killer (NK) cell population levels, outcomes that appear to lead to an increase in tumor growth in situ. These studies allow us to suggest that TiO₂ nanoparticles might have the potential to enhance tumor growth through immunomodulation of B- and T-lymphocytes, macrophages, and NK cells.
Collapse
Affiliation(s)
- Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
46
|
Uchino T, Ikarashi Y, Nishimura T. Effects of coating materials and size of titanium dioxide particles on their cytotoxicity and penetration into the cellular membrane. J Toxicol Sci 2011; 36:95-100. [DOI: 10.2131/jts.36.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tadashi Uchino
- Division of Environmental Chemistry, National Institute of Health Sciences
| | - Yoshiaki Ikarashi
- Division of Environmental Chemistry, National Institute of Health Sciences
| | - Tetsuji Nishimura
- Division of Environmental Chemistry, National Institute of Health Sciences
| |
Collapse
|
47
|
Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci U S A 2010; 107:19449-54. [PMID: 20974980 DOI: 10.1073/pnas.1008155107] [Citation(s) in RCA: 405] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles are increasingly used in various fields, including biomedicine and electronics. One application utilizes the opacifying effect of nano-TiO(2), which is frequently used as pigment in cosmetics. Although TiO(2) is believed to be biologically inert, an emerging literature reports increased incidence of respiratory diseases in people exposed to TiO(2). Here, we show that nano-TiO(2) and nano-SiO(2), but not nano-ZnO, activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome, leading to IL-1β release and in addition, induce the regulated release of IL-1α. Unlike other particulate Nlrp3 agonists, nano-TiO(2)-dependent-Nlrp3 activity does not require cytoskeleton-dependent phagocytosis and induces IL-1α/β secretion in nonphagocytic keratinocytes. Inhalation of nano-TiO(2) provokes lung inflammation which is strongly suppressed in IL-1R- and IL-1α-deficient mice. Thus, the inflammation caused by nano-TiO(2) in vivo is largely caused by the biological effect of IL-1α. The current use of nano-TiO(2) may present a health hazard due to its capacity to induce IL-1R signaling, a situation reminiscent of inflammation provoked by asbestos exposure.
Collapse
|
48
|
Li JJ, Muralikrishnan S, Ng CT, Yung LYL, Bay BH. Nanoparticle-induced pulmonary toxicity. Exp Biol Med (Maywood) 2010; 235:1025-33. [DOI: 10.1258/ebm.2010.010021] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent decades, advances in nanotechnology engineering have given rise to the rapid development of many novel applications in the biomedical field. However, studies into the health and safety of these nanomaterials are still lacking. The main concerns are the adverse effects to health caused by acute or chronic exposure to nanoparticles (NPs), especially in the workplace environment. The lung is one of the main routes of entry for NPs into the body and, hence, a likely site for accumulation of NPs. Once NPs enter the interstitial air spaces and are quickly taken up by alveolar cells, they are likely to induce toxic effects. In this review, we highlight the different aspects of lung toxicity resulting from NP exposure, such as generation of oxidative stress, DNA damage and inflammation leading to fibrosis and pneumoconiosis, and the underlying mechanisms causing pulmonary toxicity.
Collapse
Affiliation(s)
- Jasmine Jia'en Li
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore117597
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Sindu Muralikrishnan
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Cheng-Teng Ng
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Blk MD10, Singapore117597
| |
Collapse
|
49
|
Taniguchi S, Fujimori M, Sasaki T, Tsutsui H, Shimatani Y, Seki K, Amano J. Targeting solid tumors with non-pathogenic obligate anaerobic bacteria. Cancer Sci 2010; 101:1925-32. [PMID: 20579076 PMCID: PMC11158574 DOI: 10.1111/j.1349-7006.2010.01628.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecular-targeting drugs with fewer severe adverse effects are attracting great attention as the next wave of cancer treatment. There exist, however, populations of cancer cells resistant to these drugs that stem from the instability of tumor cells and/or the existence of cancer stem cells, and thus specific toxicity is required to destroy them. If such selectivity is not available, these targets may be sought out not by the cancer cell types themselves, but rather in their adjacent cancer microenvironments by means of hypoxia, low pH, and so on. The anaerobic conditions present in malignant tumor tissues have previously been regarded as a source of resistance in cancer cells against conventional therapy. However, there now appears to be a way to make use of these limiting factors as a selective target. In this review, we will refer to several trials, including our own, to direct attention to the utilizable anaerobic conditions present in malignant tumor tissues and the use of bacteria as carriers to target them. Specifically, we have been developing a method to attack solid cancers using the non-pathogenic obligate anaerobic bacterium Bifidobacterium longum as a vehicle to selectively recognize and target the anaerobic conditions in solid cancer tissues. We will also discuss the existence of low oxygen pressure in tumor masses in spite of generally enhanced angiogenesis, overview current cancer therapies, especially the history and present situation of bacterial utility to treat solid tumors, and discuss the rationality and future possibilities of this novel mode of cancer treatment.
Collapse
Affiliation(s)
- Shun'ichiro Taniguchi
- Department of Molecular Oncology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
|