1
|
Ran J, Yin S, Issa R, Zhao Q, Zhu G, Zhang H, Zhang Q, Wu C, Li J. Key role of macrophages in the progression of hepatic fibrosis. Hepatol Commun 2025; 9:e0602. [PMID: 39670853 PMCID: PMC11637753 DOI: 10.1097/hc9.0000000000000602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/10/2024] [Indexed: 12/14/2024] Open
Abstract
Liver fibrosis is a pathological change characterized by excessive deposition of extracellular matrix caused by chronic liver injury, and the mechanisms underlying its development are associated with endothelial cell injury, inflammatory immune cell activation, and HSC activation. Furthermore, hepatic macrophages exhibit remarkable heterogeneity and hold central functions in the evolution of liver fibrosis, with different subgroups exerting dual effects of promotion and regression. Currently, targeted macrophage therapy for reversing hepatic fibrosis has been extensively studied and has shown promising prospects. In this review, we will discuss the dual role of macrophages in liver fibrosis and provide new insights into reversing liver fibrosis based on macrophages.
Collapse
Affiliation(s)
- Jinqiu Ran
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Rahma Issa
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Qianwen Zhao
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Guangqi Zhu
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Huan Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qun Zhang
- Department of Infectious Diseases, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chao Wu
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Franzoni G, Fruscione F, Dell'Anno F, Mura L, De Ciucis CG, Zinellu S, Columbano N, Graham SP, Dei Giudici S, Razzuoli E. Expression of key immune genes in polarized porcine monocyte-derived macrophage subsets. Vet Immunol Immunopathol 2024; 278:110841. [PMID: 39427365 DOI: 10.1016/j.vetimm.2024.110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Swine are considered one of the most relevant large animal biomedical models since they share many immunological similarities with humans. Despite that, macrophage polarization has not comprehensively investigated in pigs. In this study, porcine monocyte-derived macrophages (moMΦ) were untreated or stimulated with IFN-γ + LPS (classical activation), or by different M2 polarizing stimuli: IL-4, IL-10, TGF-β, or dexamethasone. Expression of key cytokine genes (IL1B2, IL33, IL19, IL22, IL26, CCL17, CCL24, IFNA, IFNB) in macrophage subsets were investigated over time. Expression of the genes encoding the two main enzymes of the arginine pathway (ARG1, NOS2), and molecules related to alternative macrophage polarization in human and mice (MMP9, MRC1, FIZZ1, VEGFA) were also assessed. Stimulation with IFN-γ + LPS triggered up-regulation of IL1B2, IFNB, NOS2, whereas IL-4 triggered upregulation of CCL17, CCL24, CXCR2, and ARG1 expression. IL19 and IL22 expression was enhanced by stimulation with IFN-γ + LPS or TGF-β, but not IL-4, IL-10, or dexamethasone. Our data highlighted some peculiarities in swine, such as induced expression of IL33 after stimulation with IFN-γ + LPS, and no up-regulation of FIZZ1, VEGFA or MMP9 after exposure to any of the M2 polarizing stimuli. A better understanding of porcine macrophage polarization could benefit translational studies using this large animal model.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy.
| | - Filippo Dell'Anno
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy; Department of Public Health Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy.
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Chiara G De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy; Department of Public Health Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy.
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Nicolò Columbano
- Department of Veterinary Medicine, University of Sassari, Sassari 07100, Italy.
| | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 ONF, UK.
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari 07100, Italy.
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy.
| |
Collapse
|
3
|
Takabatake K, Tsujigiwa H, Nakano K, Chang A, Piao T, Inada Y, Arashima T, Morimatsu A, Tanaka A, Kawai H, Nagatsuka H. Effect of Scaffold Geometrical Structure on Macrophage Polarization during Bone Regeneration Using Honeycomb Tricalcium Phosphate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4108. [PMID: 39203286 PMCID: PMC11356497 DOI: 10.3390/ma17164108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
The polarization balance of M1/M2 macrophages with different functions is important in osteogenesis and bone repair processes. In a previous study, we succeeded in developing honeycomb tricalcium phosphate (TCP), which is a cylindrical scaffold with a honeycomb arrangement of straight pores, and we demonstrated that TCP with 300 and 500 μm pore diameters (300TCP and 500TCP) induced bone formation within the pores. However, the details of the influence of macrophage polarization on bone formation using engineered biomaterials, especially with respect to the geometric structure of the artificial biomaterials, are unknown. In this study, we examined whether differences in bone tissue formation due to differences in TCP geometry were due to the polarity of the assembling macrophages. Immunohistochemistry for IBA-1, iNOS, and CD163 single staining was performed. The 300TCP showed a marked infiltration of iNOS-positive cells, which are thought to be M1 macrophages, during the osteogenesis process, while no involvement of CD163-positive cells, which are thought to be M2 macrophages, was observed in the TCP pores. In addition, 500TCP showed a clustering of iNOS-positive cells and CD163-positive cells at 2 weeks, suggesting the involvement of M2 macrophages in the formation of bone tissue in the TCP pores. In conclusion, we demonstrated for the first time that the geometrical structure of the artificial biomaterial, i.e., the pore size of honeycomb TCP, affects the polarization of M1/2 macrophages and bone tissue formation in TCP pores.
Collapse
Affiliation(s)
- Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan;
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Anqi Chang
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Tianyan Piao
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Yasunori Inada
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Takuma Arashima
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Ayumi Morimatsu
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Ayumi Tanaka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| |
Collapse
|
4
|
Pal D, Das P, Mukherjee P, Roy S, Chaudhuri S, Kesh SS, Ghosh D, Nandi SK. Biomaterials-Based Strategies to Enhance Angiogenesis in Diabetic Wound Healing. ACS Biomater Sci Eng 2024; 10:2725-2741. [PMID: 38630965 DOI: 10.1021/acsbiomaterials.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Amidst the present healthcare issues, diabetes is unique as an emerging class of affliction with chronicity in a majority of the population. To check and control its effects, there have been huge turnover and constant development of management strategies, and though a bigger part of the health care area is involved in achieving its control and the related issues such as the effect of diabetes on wound healing and care and many of the works have reached certain successful outcomes, still there is a huge lack in managing it, with maximum effect yet to be attained. Studying pathophysiology and involvement of various treatment options, such as tissue engineering, application of hydrogels, drug delivery methods, and enhancing angiogenesis, are at constantly developing stages either direct or indirect. In this review, we have gathered a wide field of information and different new therapeutic methods and targets for the scientific community, paving the way toward more settled ideas and research advances to cure diabetic wounds and manage their outcomes.
Collapse
Affiliation(s)
- Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Shubhamitra Chaudhuri
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Shyam Sundar Kesh
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| |
Collapse
|
5
|
Tao B, Li Y, Shi Z, Duan Y, Guo Y, Huang X, Li J, Zhang Y, Chen M, Song F, Lan X, Sun W, Gu L, Qi C, Zhang Y. Discovery of bioactive polycyclic polyprenylated acylphloroglucinols with adamantine/homoadamantane skeletons from Hypericum wilsonii. PHYTOCHEMISTRY 2024; 218:113953. [PMID: 38101592 DOI: 10.1016/j.phytochem.2023.113953] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
In this work, nine previous undescribed polycyclic polyprenylated acylphloroglucinols with adamantine/homoadamantane skeletons, cumilcinols A-I (1-9), along with six known analogues, were isolated and identified from the stems, leaves and flowers of Hypericum wilsonii. Their structures were determined by HRESIMS, NMR spectroscopic analysis, single-crystal X-ray crystallography as well as electronic circular dichroism calculations and comparisons. Compound 2 formed a unique furan ring bearing a rare acetal functionality. In bioassays, hyperacmosin G (13) could significantly inhibit the production of NO in LPS-stimulated RAW264.7 cell (IC50 = 4.350 ± 1.146 μM), and increased expression of related transcription factors at the gene level, inhibit the nuclear translocation of NF-κBp65, and reduce the protein expression of COX-2. Additionally, compound 5 showed significant inhibitory activity on Con A-induced T-lymphocyte proliferation (IC50 = 4.803 ± 3.149 μM), and treatment of 5 could reduce the increased ratio of CD4 and CD8 subpopulations induced by Con A in vitro. Those results indicated 13 possesses potential anti-inflammatory activity, and 5 exhibits a certain degree of immunosuppressive activity.
Collapse
Affiliation(s)
- Bo Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yongqi Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yulin Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Department of Pharmacy, Wuhan No.1 Hospital, 215 Zhongshan Road, Wuhan 430022, Hubei, People's Republic of China
| | - Yi Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xinye Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jie Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ming Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fei Song
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xueqi Lan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, Hubei Province, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
6
|
Xiang SY, Deng KL, Yang DX, Yang P, Zhou YP. Function of macrophage-derived exosomes in chronic liver disease: From pathogenesis to treatment. World J Hepatol 2023; 15:1196-1209. [DOI: 10.4254/wjh.v15.i11.1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
Chronic liver disease (CLD) imposes a heavy burden on millions of people worldwide. Despite substantial research on the pathogenesis of CLD disorders, no optimal treatment is currently available for some diseases, such as liver cancer. Exosomes, which are extracellular vesicles, are composed of various cellular components. Exosomes have unique functions in maintaining cellular homeostasis and regulating cell communication, which are associated with the occurrence of disease. Furthermore, they have application potential in diagnosis and treatment by carrying diverse curative payloads. Hepatic macrophages, which are key innate immune cells, show extraordinary heterogeneity and polarization. Hence, macrophage-derived exosomes may play a pivotal role in the initiation and progression of various liver diseases. This review focuses on the effects of macrophage-derived exosomes on liver disease etiology and their therapeutic potential, which will provide new insights into alleviating the global pressure of CLD.
Collapse
Affiliation(s)
- Shi-Yi Xiang
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Kai-Li Deng
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dong-Xue Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Ping Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
| | - Yu-Ping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| |
Collapse
|
7
|
Deng L, Jian Z, Xu T, Li F, Deng H, Zhou Y, Lai S, Xu Z, Zhu L. Macrophage Polarization: An Important Candidate Regulator for Lung Diseases. Molecules 2023; 28:molecules28052379. [PMID: 36903624 PMCID: PMC10005642 DOI: 10.3390/molecules28052379] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Macrophages are crucial components of the immune system and play a critical role in the initial defense against pathogens. They are highly heterogeneous and plastic and can be polarized into classically activated macrophages (M1) or selectively activated macrophages (M2) in response to local microenvironments. Macrophage polarization involves the regulation of multiple signaling pathways and transcription factors. Here, we focused on the origin of macrophages, the phenotype and polarization of macrophages, as well as the signaling pathways associated with macrophage polarization. We also highlighted the role of macrophage polarization in lung diseases. We intend to enhance the understanding of the functions and immunomodulatory features of macrophages. Based on our review, we believe that targeting macrophage phenotypes is a viable and promising strategy for treating lung diseases.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Fengqin Li
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 625014, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 625014, China
- Correspondence: (Z.X.); (L.Z.); Tel.: +86-139-8160-4765 (L.Z.)
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 625014, China
- Correspondence: (Z.X.); (L.Z.); Tel.: +86-139-8160-4765 (L.Z.)
| |
Collapse
|
8
|
Macrophage Phenotyping in Atherosclerosis by Proteomics. Int J Mol Sci 2023; 24:ijms24032613. [PMID: 36768933 PMCID: PMC9917096 DOI: 10.3390/ijms24032613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.
Collapse
|
9
|
Kokabi F, Ebrahimi S, Mirzavi F, Ghiasi Nooghabi N, Hashemi SF, Hashemy SI. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023. [PMID: 36651605 DOI: 10.1002/biof.1935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Diabetes is a significant public health issue known as the world's fastest-growing disease condition. It is characterized by persistent hyperglycemia and subsequent chronic complications leading to organ dysfunction and, ultimately, the failure of target organs. Substance P (SP) is an undecapeptide that belongs to the family of tachykinin (TK) peptides. The SP-mediated activation of the neurokinin 1 receptor (NK1R) regulates many pathophysiological processes in the body. There is also a relation between the SP/NK1R system and diabetic processes. Importantly, deregulated expression of SP has been reported in diabetes and diabetes-associated chronic complications. SP can induce both diabetogenic and antidiabetogenic effects and thus affect the pathology of diabetes destructively or protectively. Here, we review the current knowledge of the functional relevance of the SP/NK1R system in diabetes pathogenesis and its exploitation for diabetes therapy. A comprehensive understanding of the role of the SP/NK1R system in diabetes is expected to shed further light on developing new therapeutic possibilities for diabetes and its associated chronic conditions.
Collapse
Affiliation(s)
- Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Bhatkar D, Nimburkar D, Raj AK, Lokhande KB, Khunteta K, Kothari H, Joshi M, Sarode SC, Sharma NK. Reduced Level of Prolylhydroxyproline in the Nail Clippings of Oral Cancer Patients and its Role as an Activator of Phospholipase C-β2. Curr Protein Pept Sci 2023; 24:684-699. [PMID: 37565551 DOI: 10.2174/1389203724666230810094615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The oral cancer microenvironment plays an important role in the development and progression of the disease which depicts the heterogeneous nature of diseases. Several cellular and non-cellular factors, including dipeptides, have been reported to drive tumor progression and metastasis. Among various secreted molecules in the tumor microenvironment, prolylhydroxyproline (Pro-Hyp) is a collagen-degraded product with specific relevance to fibrosis and oral cancer. However, the detection of Pro-Hyp in the nails of oral cancer patients is a potential biomarker, and our understanding of the biological relevance of Pro-Hyp is highly limited. METHODS Here, the authors have attempted to use a novel and in-house vertical tube gel electrophoresis (VTGE) protocol to evaluate the level of Pro-Hyp in the nails of oral cancer patients and healthy subjects. Furthermore, we employed molecular docking and molecular dynamics (MD) simulations to predict the biological function of Pro-Hyp. ADME profiles such as the druglikeness and leadlikeness of Pro-Hyp and a known PLC-β2 activator, m-3M3FBS, were evaluated by the SWISS-ADME server. RESULTS We report that among various key metabolites, Pro-Hyp, a dipeptide, is reduced in the nails of oral cancer patients. Molecular docking and MD simulations helped to suggest the potential role of Pro-Hyp as an activator of Phospholipase C-β2 (PLC-β2). Pro-Hyp displayed good binding affinity (-7.6 kcal/mol) with specific interactions by a conventional hydrogen bond with key residues, such as HIS311, HIS312, VAL641, and GLU743. MD simulations showed that the activator binding residues and stability of complexes are similar to the well-known activator m-3M3FBS of PLC-β2. ADME profiles such as the druglikeness and leadlikeness of Pro-Hyp were found to be highly comparable and even better than those of m-3M3FBS. CONCLUSION This study is one of the first reports on Pro-Hyp as a metabolite biomarker in the nails of oral cancer patients. Furthermore, the implications of Pro-Hyp are proposed to activate PLC-β2 as a pro-tumor signaling cascade. In the future, diagnostic and therapeutic approaches may be explored as biomarkers and mimetic of Pro-Hyp.
Collapse
Affiliation(s)
- Devyani Bhatkar
- Cancer and Translational Research Lab., Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Dipti Nimburkar
- Cancer and Translational Research Lab., Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Ajay Kumar Raj
- Cancer and Translational Research Lab., Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Kiran B Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Kratika Khunteta
- Cancer and Translational Research Lab., Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Haet Kothari
- Cancer and Translational Research Lab., Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Mrudula Joshi
- Cancer and Translational Research Lab., Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| | - Sachin C Sarode
- Research Director, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab., Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, 411033, India
| |
Collapse
|
11
|
Wang D, Chen B, Bai S, Zhao L. Screening and identification of tissue-infiltrating immune cells and genes for patients with emphysema phenotype of COPD. Front Immunol 2022; 13:967357. [PMID: 36248880 PMCID: PMC9563378 DOI: 10.3389/fimmu.2022.967357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo study the tissue-infiltrating immune cells of the emphysema phenotype of chronic obstructive pulmonary disease (COPD) and find the molecular mechanism related to the development of emphysema to offer potential targets for more precise treatment of patients with COPD.MethodsCombined analyses of COPD emphysema phenotype lung tissue-related datasets, GSE47460 and GSE1122, were performed. CIBERSORT was used to assess the distribution of tissue-infiltrating immune cells. Weighted gene co-expression network analysis (WGCNA) was used to select immune key genes closely related to clinical features. Rt-qPCR experiments were used for the validation of key genes. Emphysema risk prediction models were constructed by logistic regression analysis and a nomogram was developed.ResultsIn this study, three immune cells significantly associated with clinical features of emphysema (FEV1 post-bronchodilator % predicted, GOLD Stage, and DLCO) were found. The proportion of neutrophils (p=0.025) infiltrating in the emphysema phenotype was significantly increased compared with the non-emphysema phenotype, while the proportions of M2 macrophages (p=0.004) and resting mast cells (p=0.01) were significantly decreased. Five immune-related differentially expressed genes (DEGs) were found. WGCNA and clinical lung tissue validation of patients with emphysema phenotype were performed to further screen immune-related genes closely related to clinical features. A key gene (SERPINA3) was selected and included in the emphysema risk prediction model. Compared with the traditional clinical prediction model (AUC=0.923), the combined prediction model, including SERPINA3 and resting mast cells (AUC=0.941), had better discrimination power and higher net benefit.ConclusionThis study comprehensively analyzed the tissue-infiltrating immune cells significantly associated with emphysema phenotype, including M2 macrophages, neutrophils, and resting mast cells, and identified SERPINA3 as a key immune-related gene.
Collapse
Affiliation(s)
- Di Wang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bingnan Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Bai
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Yakupova EI, Maleev GV, Krivtsov AV, Plotnikov EY. Macrophage polarization in hypoxia and ischemia/reperfusion: Insights into the role of energetic metabolism. Exp Biol Med (Maywood) 2022; 247:958-971. [PMID: 35220781 PMCID: PMC9189569 DOI: 10.1177/15353702221080130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Macrophages, the key cells of innate immunity, possess wide phenotypical and functional heterogeneity. In vitro studies showed that microenvironment signals could induce the so-called polarization of macrophages into two phenotypes: classically activated macrophages (M1) or alternatively activated macrophages (M2). Functionally, they are considered as proinflammatory and anti-inflammatory/pro-regenerative, respectively. However, in vivo studies into macrophage states revealed a continuum of phenotypes from M1 to M2 state instead of the clearly distinguished extreme phenotypes. An important role in determining the type of polarization of macrophages is played by energy metabolism, including the activity of oxidative phosphorylation. In this regard, hypoxia and ischemia that affect cellular energetics can modulate macrophage polarization. Here, we overview the data on macrophage polarization during metabolic shift-associated pathologies including ischemia and ischemia/reperfusion in various organs and discuss the role of energy metabolism potentially triggering the macrophage polarization.
Collapse
Affiliation(s)
- Elmira I Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Grigoriy V Maleev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Andrei V Krivtsov
- Center for Pediatric Cancer Therapeutics, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| |
Collapse
|
13
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
14
|
Ordaz-Arias MA, Díaz-Alvarez L, Zúñiga J, Martinez-Sánchez ME, Balderas-Martínez YI. Cyclic Attractors Are Critical for Macrophage Differentiation, Heterogeneity, and Plasticity. Front Mol Biosci 2022; 9:807228. [PMID: 35480895 PMCID: PMC9035596 DOI: 10.3389/fmolb.2022.807228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Adaptability, heterogeneity, and plasticity are the hallmarks of macrophages. How these complex properties emerge from the molecular interactions is an open question. Thus, in this study we propose an actualized regulatory network of cytokines, signaling pathways, and transcription factors to survey the differentiation, heterogeneity, and plasticity of macrophages. The network recovers attractors, which in regulatory networks correspond to cell types, that correspond to M0, M1, M2a, M2b, M2c, M2d, M2-like, and IL-6 producing cells, including multiple cyclic attractors that are stable to perturbations. These cyclic attractors reproduce experimental observations and show that oscillations result from the structure of the network. We also study the effect of the environment in the differentiation and plasticity of macrophages, showing that the observed heterogeneity in macrophage populations is a result of the regulatory network and its interaction with the micro-environment. The macrophage regulatory network gives a mechanistic explanation to the heterogeneity and plasticity of macrophages seen in vivo and in vitro, and offers insights into the mechanism that allows the immune system to react to a complex dynamic environment.
Collapse
Affiliation(s)
- Manuel Azaid Ordaz-Arias
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Licenciatura en Ciencias Genómicas, UNAM, Cuernavaca, Mexico
| | - Laura Díaz-Alvarez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias Biomédicas, Mexico City, Mexico
| | - Mariana Esther Martinez-Sánchez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- *Correspondence: Mariana Esther Martinez-Sánchez, ; Yalbi Itzel Balderas-Martínez,
| | - Yalbi Itzel Balderas-Martínez
- Laboratorio de Biopatología Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- *Correspondence: Mariana Esther Martinez-Sánchez, ; Yalbi Itzel Balderas-Martínez,
| |
Collapse
|
15
|
Xu S, Gu R, Bian X, Xu X, Xia X, Liu Y, Jia C, Gu Y, Zhang H. Remote Conditioning by Rhythmic Compression of Limbs Ameliorated Myocardial Infarction by Downregulation of Inflammation via A2 Adenosine Receptors. Front Cardiovasc Med 2022; 8:723332. [PMID: 35498376 PMCID: PMC9040771 DOI: 10.3389/fcvm.2021.723332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
Background Remote ischemic conditioning (RIC) is a cardioprotective phenomenon, yet transient ischemia is not a requisite trigger for remote cardioprotection. In fact, RIC is a stimulus compound containing interruption of the blood vessel and tissue compression. In this study, we evaluate the effects of remote tissue compression on infarct size after myocardial infarction and explore its preliminary mechanisms. Methods and Results We used a murine model of myocardial infarction to assess ischemia injury and identified remote conditioning by rhythmic compression on forelimb as a novel cardioprotective intervention. We show that the cardioprotective signal transduction of remote conditioning from the trigger limb to the heart involves the release of adenosine. Our results demonstrate that A2a and A2b receptors are indispensable parts for cardioprotection of remote conditioning, which is linked to its anti-inflammatory properties by the subsequent activation of cAMP/PKA/NF-κB axis. Conclusion Our results establish a new connection between remote tissue compression and cardiovascular diseases, which enhances our cognition about the role of tissue compression on RIC cardioprotection.
Collapse
Affiliation(s)
- Senlei Xu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiangyu Bian
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Xu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuefeng Xia
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuchen Liu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengjie Jia
- Wuxi Municipal Rehabilitation Hospital, Wuxi, China
| | - Yihuang Gu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yihuang Gu
| | - Hongru Zhang
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Hongru Zhang
| |
Collapse
|
16
|
Zhang T, Zhu L, Cai J, He J. Four drug metabolism-related subgroups of pancreatic adenocarcinoma in prognosis, immune infiltration, and gene mutation. Open Med (Wars) 2022; 17:427-440. [PMID: 35340619 PMCID: PMC8898926 DOI: 10.1515/med-2022-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/15/2022] Open
Abstract
We aimed to screen the drug metabolism-related subgroups of pancreatic adenocarcinoma (PAAD) and to study the prognosis, clinical features, immune infiltration, and gene mutation differences of different subtypes in PAAD patients. All 181 cases of PAAD samples and clinical characteristics data were downloaded from The Cancer Genome Atlas (TCGA). After matching the drug metabolism-related genes downloaded from PMID 33202946 with the TCGA dataset, the drug metabolism-related genes were initially obtained. Besides, univariate Cox regression analysis was used to screen the drug metabolism genes related to the prognosis of PAAD. Moreover, the construction of the protein–protein interaction (PPI) network and gene ontology were performed. The four subgroups of PAAD obtained from unsupervised clustering analysis were systematically analyzed, including prognostic, GSVA, immune infiltration, and gene mutation analysis. A total of 83 drug metabolism genes related to the prognosis of PAAD were obtained and enriched in 16 pathways. The PPI network was composed of 248 relationship pairs. Four subgroups that can identify different subtypes of PPAD were obtained, and there were significant differences in survival and clinical characteristics, mutation types, and immune infiltration abundance between subgroups. A total of 17 different pathways among the four subgroups involved in cell cycle, response to stimulants such as drugs, and transmembrane transport. In this study, the four subgroups related to the drug metabolism of PAAD were comprehensively analyzed, and the important role of drug metabolism-related genes in the immune infiltration and prognosis of PAAD were emphasized.
Collapse
Affiliation(s)
- Tongyi Zhang
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University , Jing’an District, 200040 , Shanghai , China
| | - Liyong Zhu
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University , Jing’an District, 200040 , Shanghai , China
| | - Jianhua Cai
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University , Jing’an District, 200040 , Shanghai , China
| | - Jiaqi He
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University , No. 221 Yan’an West Road, Jing’an District, 200040 , Shanghai , China
| |
Collapse
|
17
|
Zhou Z, Xi R, Liu J, Peng X, Zhao L, Zhou X, Li J, Zheng X, Xu X. TAS2R16 Activation Suppresses LPS-Induced Cytokine Expression in Human Gingival Fibroblasts. Front Immunol 2022; 12:726546. [PMID: 34975834 PMCID: PMC8714777 DOI: 10.3389/fimmu.2021.726546] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023] Open
Abstract
Sustained and non-resolved inflammation is a characteristic of periodontitis. Upon acute inflammation, gingival fibroblasts release cytokines to recruit immune cells to counter environmental stimuli. The intricate regulation of pro-inflammatory signaling pathways, such as NF-κB, is necessary to maintain periodontal homeostasis. Nonetheless, how inflammation is resolved has not yet been elucidated. In this study, 22 subtypes of taste receptor family 2 (TAS2Rs), as well as the downstream machineries of Gα-gustducin and phospholipase C-β2 (PLCβ2), were identified in human gingival fibroblasts (HGFs). Various bitter agonists could induce an intensive cytosolic Ca2+ response in HGFs. More importantly, TAS2R16 was expressed at a relatively high level, and its agonist, salicin, showed robust Ca2+ evocative effects in HGFs. Activation of TAS2R16 signaling by salicin inhibited the release of lipopolysaccharide (LPS)-induced pro-inflammatory cytokines, at least in part, by repressing LPS-induced intracellular cAMP elevation and NF-κB p65 nuclear translocation in HGFs. These findings indicate that TAS2Rs activation in HGFs may mediate endogenous pro-inflammation resolution by antagonizing NF-κB signaling, providing a novel paradigm and treatment target for the better management of periodontitis.
Collapse
Affiliation(s)
- Zhiyan Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ranhui Xi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Razeghian-Jahromi I, Karimi Akhormeh A, Razmkhah M, Zibaeenezhad MJ. Immune system and atherosclerosis: Hostile or friendly relationship. Int J Immunopathol Pharmacol 2022; 36:3946320221092188. [PMID: 35410514 PMCID: PMC9009140 DOI: 10.1177/03946320221092188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Coronary artery disease has remained a major health challenge despite enormous progress in prevention, diagnosis, and treatment strategies. Formation of atherosclerotic plaque is a chronic process that is developmentally influenced by intrinsic and extrinsic determinants. Inflammation triggers atherosclerosis, and the fundamental element of inflammation is the immune system. The immune system involves in the atherosclerosis process by a variety of immune cells and a cocktail of mediators. It is believed that almost all main components of this system possess a profound contribution to the atherosclerosis. However, they play contradictory roles, either protective or progressive, in different stages of atherosclerosis progression. It is evident that monocytes are the first immune cells appeared in the atherosclerotic lesion. With the plaque growth, other types of the immune cells such as mast cells, and T lymphocytes are gradually involved. Each cell releases several cytokines which cause the recruitment of other immune cells to the lesion site. This is followed by affecting the expression of other cytokines as well as altering certain signaling pathways. All in all, a mix of intertwined interactions determine the final outcome in terms of mild or severe manifestations, either clinical or subclinical. Therefore, it is of utmost importance to precisely understand the kind and degree of contribution which is made by each immune component in order to stop the growing burden of cardiovascular morbidity and mortality. In this review, we present a comprehensive appraisal on the role of immune cells in the atherosclerosis initiation and development.
Collapse
Affiliation(s)
| | - Ali Karimi Akhormeh
- Cardiovascular Research Center, Shiraz University of Medical
Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer
Research, Shiraz University of Medical
Sciences, Shiraz, Iran
| | | |
Collapse
|
19
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater 2021; 133:4-16. [PMID: 33775905 PMCID: PMC8464623 DOI: 10.1016/j.actbio.2021.03.038] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are a highly heterogeneous and plastic population of cells that are crucial for tissue repair and regeneration. This has made macrophages a particularly attractive target for biomaterial-directed regenerative medicine strategies. However, macrophages also contribute to adverse inflammatory and fibrotic responses to implanted biomaterials, typically related to the foreign body response (FBR). The traditional model in the field asserts that the M2 macrophage phenotype is pro-regenerative and associated with positive wound healing outcomes, whereas the M1 phenotype is pro-inflammatory and associated with pathogenesis. However, recent studies indicate that both M1 and M2 macrophages play different, but equally vital, roles in promoting tissue repair. Furthermore, recent technological developments such as single-cell RNA sequencing have allowed for unprecedented insights into the heterogeneity within the myeloid compartment, related to activation state, niche, and ontogenetic origin. A better understanding of the phenotypic and functional characteristics of macrophages critical to tissue repair and FBR processes will allow for rational design of biomaterials to promote biomaterial-tissue integration and regeneration. In this review, we discuss the role of temporal and ontogenetic macrophage heterogeneity on tissue repair processes and the FBR and the potential implications for biomaterial-directed regenerative medicine applications. STATEMENT OF SIGNIFICANCE: This review outlines the contributions of different macrophage phenotypes to different phases of wound healing and angiogenesis. Pathological outcomes, such as chronic inflammation, fibrosis, and the foreign body response, related to disruption of the macrophage inflammation-resolution process are also discussed. We summarize recent insights into the vast heterogeneity of myeloid cells related to their niche, especially the biomaterial microenvironment, and ontogenetic origin. Additionally, we present a discussion on novel tools that allow for resolution of cellular heterogeneity at the single-cell level and how these can be used to build a better understanding of macrophage heterogeneity in the biomaterial immune microenvironment to better inform immunomodulatory biomaterial design.
Collapse
Affiliation(s)
- Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
21
|
Tripathi A, Lin E, Xie W, Flaifel A, Steinharter JA, Stern Gatof EN, Bouchard G, Fleischer JH, Martinez-Chanza N, Gray C, Mantia C, Thompson L, Wei XX, Giannakis M, McGregor BA, Choueiri TK, Agarwal N, McDermott DF, Signoretti S, Harshman LC. Prognostic significance and immune correlates of CD73 expression in renal cell carcinoma. J Immunother Cancer 2021; 8:jitc-2020-001467. [PMID: 33177176 PMCID: PMC7661372 DOI: 10.1136/jitc-2020-001467] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 01/04/2023] Open
Abstract
Background CD73–adenosine signaling in the tumor microenvironment is immunosuppressive and may be associated with aggressive renal cell carcinoma (RCC). We investigated the prognostic significance of CD73 protein expression in RCC leveraging nephrectomy samples. We also performed a complementary analysis using The Cancer Genome Atlas (TCGA) dataset to evaluate the correlation of CD73 (ecto-5′-nucleotidase (NT5E), CD39 (ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1)) and A2 adenosine receptor (A2AR; ADORA2A) transcript levels with markers of angiogenesis and antitumor immune response. Methods Patients with RCC with available archived nephrectomy samples were eligible for inclusion. Tumor CD73 protein expression was assessed by immunohistochemistry and quantified using a combined score (CS: % positive cells×intensity). Samples were categorized as CD73negative (CS=0), CD73low or CD73high (< and ≥median CS, respectively). Multivariable Cox regression analysis compared disease-free survival (DFS) and overall survival (OS) between CD73 expression groups. In the TCGA dataset, samples were categorized as low, intermediate and high NT5E, ENTPD1 and ADORA2A gene expression groups. Gene expression signatures for infiltrating immune cells, angiogenesis, myeloid inflammation, and effector T-cell response were compared between NT5E, ENTPD1 and ADORA2A expression groups. Results Among the 138 patients eligible for inclusion, ‘any’ CD73 expression was observed in 30% of primary tumor samples. High CD73 expression was more frequent in patients with M1 RCC (29% vs 12% M0), grade 4 tumors (27% vs 13% grade 3 vs 15% grades 1 and 2), advanced T-stage (≥T3: 22% vs T2: 19% vs T1: 12%) and tumors with sarcomatoid histology (50% vs 12%). In the M0 cohort (n=107), patients with CD73high tumor expression had significantly worse 5-year DFS (42%) and 10-year OS (22%) compared with those in the CD73negative group (DFS: 75%, adjusted HR: 2.7, 95% CI 1.3 to 5.9, p=0.01; OS: 64%, adjusted HR: 2.6, 95% CI 1.2 to 5.8, p=0.02) independent of tumor stage and grade. In the TCGA analysis, high NT5E expression was associated with significantly worse 5-year OS (p=0.008). NT5E and ENTPD1 expression correlated with higher regulatory T cell (Treg) signature, while ADORA2A expression was associated with increased Treg and angiogenesis signatures. Conclusions High CD73 expression portends significantly worse survival outcomes independent of stage and grade. Our findings provide compelling support for targeting the immunosuppressive and proangiogenic CD73–adenosine pathway in RCC.
Collapse
Affiliation(s)
- Abhishek Tripathi
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA.,Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Edwin Lin
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Wanling Xie
- Department of Data Sciences, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - John A Steinharter
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Gabrielle Bouchard
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Justin H Fleischer
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nieves Martinez-Chanza
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Connor Gray
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Charlene Mantia
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Linda Thompson
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xiao X Wei
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Bradley A McGregor
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Neeraj Agarwal
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | | | | | - Lauren C Harshman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Campos-Martins A, Bragança B, Correia-de-Sá P, Fontes-Sousa AP. Pharmacological Tuning of Adenosine Signal Nuances Underlying Heart Failure With Preserved Ejection Fraction. Front Pharmacol 2021; 12:724320. [PMID: 34489711 PMCID: PMC8417789 DOI: 10.3389/fphar.2021.724320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) roughly represents half of the cardiac failure events in developed countries. The proposed 'systemic microvascular paradigm' has been used to explain HFpHF presentation heterogeneity. The lack of effective treatments with few evidence-based therapeutic recommendations makes HFpEF one of the greatest unmet clinical necessities worldwide. The endogenous levels of the purine nucleoside, adenosine, increase significantly following cardiovascular events. Adenosine exerts cardioprotective, neuromodulatory, and immunosuppressive effects by activating plasma membrane-bound P1 receptors that are widely expressed in the cardiovascular system. Its proven benefits have been demonstrated in preclinical animal tests. Here, we provide a comprehensive and up-to-date critical review about the main therapeutic advantages of tuning adenosine signalling pathways in HFpEF, without discounting their side effects and how these can be seized.
Collapse
Affiliation(s)
- Alexandrina Campos-Martins
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Bruno Bragança
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.,Department of Cardiology, Centro Hospitalar Tâmega e Sousa, Penafiel, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Ana Patrícia Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
23
|
Li M, Hou Q, Zhong L, Zhao Y, Fu X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front Immunol 2021; 12:681710. [PMID: 34220830 PMCID: PMC8242337 DOI: 10.3389/fimmu.2021.681710] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent hyper-inflammation is a distinguishing pathophysiological characteristic of chronic wounds, and macrophage malfunction is considered as a major contributor thereof. In this review, we describe the origin and heterogeneity of macrophages during wound healing, and compare macrophage function in healing and non-healing wounds. We consider extrinsic and intrinsic factors driving wound macrophage dysregulation, and review systemic and topical therapeutic approaches for the restoration of macrophage response. Multidimensional analysis is highlighted through the integration of various high-throughput technologies, used to assess the diversity and activation states as well as cellular communication of macrophages in healing and non-healing wound. This research fills the gaps in current literature and provides the promising therapeutic interventions for chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4 Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, PLA General Hospital, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Wei F, Liu S, Chen M, Tian G, Zha K, Yang Z, Jiang S, Li M, Sui X, Chen Z, Guo Q. Host Response to Biomaterials for Cartilage Tissue Engineering: Key to Remodeling. Front Bioeng Biotechnol 2021; 9:664592. [PMID: 34017827 PMCID: PMC8129172 DOI: 10.3389/fbioe.2021.664592] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterials play a core role in cartilage repair and regeneration. The success or failure of an implanted biomaterial is largely dependent on host response following implantation. Host response has been considered to be influenced by numerous factors, such as immune components of materials, cytokines and inflammatory agents induced by implants. Both synthetic and native materials involve immune components, which are also termed as immunogenicity. Generally, the innate and adaptive immune system will be activated and various cytokines and inflammatory agents will be consequently released after biomaterials implantation, and further triggers host response to biomaterials. This will guide the constructive remolding process of damaged tissue. Therefore, biomaterial immunogenicity should be given more attention. Further understanding the specific biological mechanisms of host response to biomaterials and the effects of the host-biomaterial interaction may be beneficial to promote cartilage repair and regeneration. In this review, we summarized the characteristics of the host response to implants and the immunomodulatory properties of varied biomaterial. We hope this review will provide scientists with inspiration in cartilage regeneration by controlling immune components of biomaterials and modulating the immune system.
Collapse
Affiliation(s)
- Fu Wei
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Kangkang Zha
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | | | - Muzhe Li
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Hwang WC, Seo SH, Kang M, Kang RH, Di Paolo G, Choi KY, Min DS. PLD1 and PLD2 differentially regulate the balance of macrophage polarization in inflammation and tissue injury. J Cell Physiol 2020; 236:5193-5211. [PMID: 33368247 PMCID: PMC8048932 DOI: 10.1002/jcp.30224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Phospholipase D (PLD) isoforms PLD1 and PLD2 serve as the primary nodes where diverse signaling pathways converge. However, their isoform‐specific functions remain unclear. We showed that PLD1 and PLD2 selectively couple to toll‐like receptor 4 (TLR4) and interleukin 4 receptor (IL‐4R) and differentially regulate macrophage polarization of M1 and M2 via the LPS–MyD88 axis and the IL‐4–JAK3 signaling, respectively. Lipopolysaccharide (LPS) enhanced TLR4 or MyD88 interaction with PLD1; IL‐4 induced IL‐4R or JAK3 association with PLD2, indicating isozyme‐specific signaling events. PLD1 and PLD2 are indispensable for M1 polarization and M2 polarization, respectively. Genetic and pharmacological targeting of PLD1 conferred protection against LPS‐induced sepsis, cardiotoxin‐induced muscle injury, and skin injury by promoting the shift toward M2; PLD2 ablation intensified disease severity by promoting the shift toward M1. Enhanced Foxp3+ regulatory T cell recruitment also influenced the anti‐inflammatory phenotype of Pld1LyzCre macrophages. We reveal a previously uncharacterized role of PLD isoforms in macrophage polarization, signifying potential pharmacological interventions for macrophage modulation.
Collapse
Affiliation(s)
- Won Chan Hwang
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea.,Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Seol Hwa Seo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Minju Kang
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Rae Hee Kang
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York, USA
| | - Kang-Yell Choi
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| |
Collapse
|
26
|
Good Cop, Bad Cop: The Opposing Effects of Macrophage Activation State on Maintaining or Damaging Functional β-Cell Mass. Metabolites 2020; 10:metabo10120485. [PMID: 33256225 PMCID: PMC7761161 DOI: 10.3390/metabo10120485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Loss of functional β-cell mass is a hallmark of Type 1 and Type 2 Diabetes. Macrophages play an integral role in the maintenance or destruction of pancreatic β-cells. The effect of the macrophage β-cell interaction is dependent on the activation state of the macrophage. Macrophages can be activated across a spectrum, from pro-inflammatory to anti-inflammatory and tissue remodeling. The factors secreted by these differentially activated macrophages and their effect on β-cells define the effect on functional β-cell mass. In this review, the spectrum of macrophage activation is discussed, as are the positive and negative effects on β-cell survival, expansion, and function as well as the defined factors released from macrophages that impinge on functional β-cell mass.
Collapse
|
27
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
28
|
Thiriot JD, Martinez-Martinez YB, Endsley JJ, Torres AG. Hacking the host: exploitation of macrophage polarization by intracellular bacterial pathogens. Pathog Dis 2020; 78:5739920. [PMID: 32068828 DOI: 10.1093/femspd/ftaa009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages play an integral role in host defenses against intracellular bacterial pathogens. A remarkable plasticity allows for adaptation to the needs of the host to orchestrate versatile innate immune responses to a variety of microbial threats. Several bacterial pathogens have adapted to macrophage plasticity and modulate the classical (M1) or alternative (M2) activation bias towards a polarization state that increases fitness for intracellular survival. Here, we summarize the current understanding of the host macrophage and intracellular bacterial interface; highlighting the roles of M1/M2 polarization in host defense and the mechanisms employed by several important intracellular pathogens to modulate macrophage polarization to favor persistence or proliferation. Understanding macrophage polarization in the context of disease caused by different bacterial pathogens is important for the identification of targets for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D Thiriot
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Yazmin B Martinez-Martinez
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Janice J Endsley
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA.,Department of Pathology, University of Texas Medical Branch , University of Texas Medical Branch, 301 University Blvd, Galveston, Texas 77555 USA
| |
Collapse
|
29
|
Chen S, Yan D, Qiu A. The role of macrophages in pulmonary hypertension: Pathogenesis and targeting. Int Immunopharmacol 2020; 88:106934. [PMID: 32889242 DOI: 10.1016/j.intimp.2020.106934] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) is a pathophysiological disorder that can complicate most cardiovascular and respiratory diseases and may involve multiple clinical conditions, but its pathogenesis is poorly understood. Despite recent developments in the management of PH, there is an urgent need for new ways to effectively treat PH and reduce the risk of further complications. Recent studies have shown that dysregulated immunity underlies the development of PH. Myeloid cells, including monocytes and macrophages, participate in immune homeostasis and the adaptive immune response, but the function and production of these cells in PH is not well understood. A prominent pathological feature of pH is the accumulation of macrophages near the arterioles of the lung, indicating that pulmonary inflammation mediated by lung perivascular macrophages is a key driver of pulmonary remodelling, which leads to increased right ventricular systolic pressure. An improved understanding of the roles macrophages play in immune responses associated with PH may lead to new therapeutic targets. In this review, we highlight the relationship between macrophages and PH, the molecular mechanisms involved, and the recent advances in targeting these processes to treat PH.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Respiratory and Critical Care Medicine, Yancheng Third People's Hospital, The Affiliated Yancheng Hospital of Southeast University Medical College, Jiangsu, China
| | - Dongmei Yan
- Department of Clinical Laboratory, Yancheng Third People's Hospital, The Affiliated Yancheng Hospital of Southeast University Medical College, Jiangsu, China
| | - Aimin Qiu
- Department of Respiratory and Critical Care Medicine, Yancheng Third People's Hospital, The Affiliated Yancheng Hospital of Southeast University Medical College, Jiangsu, China.
| |
Collapse
|
30
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
31
|
Monavarian M, Kader S, Moeinzadeh S, Jabbari E. Regenerative Scar-Free Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:294-311. [PMID: 30938269 DOI: 10.1089/ten.teb.2018.0350] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Millions of people every year develop scars in response to skin injuries after surgery, trauma, or burns with significant undesired physical and psychological effects. This review provides an update on engineering strategies for scar-free wound healing and discusses the role of different cell types, growth factors, cytokines, and extracellular components in regenerative wound healing. The use of pro-regenerative matrices combined with engineered cells with less intrinsic potential for fibrogenesis is a promising strategy for achieving scar-free skin tissue regeneration.
Collapse
Affiliation(s)
- Mehri Monavarian
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| | - Safaa Kader
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina.,2Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Seyedsina Moeinzadeh
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| | - Esmaiel Jabbari
- 1Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
32
|
Heimes A, Brodhagen J, Weikard R, Becker D, Meyerholz MM, Petzl W, Zerbe H, Schuberth HJ, Hoedemaker M, Schmicke M, Engelmann S, Kühn C. Cows selected for divergent mastitis susceptibility display a differential liver transcriptome profile after experimental Staphylococcus aureus mammary gland inoculation. J Dairy Sci 2020; 103:6364-6373. [PMID: 32307160 DOI: 10.3168/jds.2019-17612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/15/2020] [Indexed: 01/12/2023]
Abstract
Infection and inflammation of the mammary gland, and especially prevention of mastitis, are still major challenges for the dairy industry. Different approaches have been tried to reduce the incidence of mastitis. Genetic selection of cows with lower susceptibility to mastitis promises sustainable success in this regard. Bos taurus autosome (BTA) 18, particularly the region between 43 and 59 Mb, harbors quantitative trait loci (QTL) for somatic cell score, a surrogate trait for mastitis susceptibility. Scrutinizing the molecular bases hereof, we challenged udders from half-sib heifers having inherited either favorable paternal haplotypes for somatic cell score (Q) or unfavorable haplotypes (q) with the Staphylococcus aureus pathogen. RNA sequencing was used for an in-depth analysis of challenge-related alterations in the hepatic transcriptome. Liver exerts highly relevant immune functions aside from being the key metabolic organ. Hence, a holistic approach focusing on the liver enabled us to identify challenge-related and genotype-dependent differentially expressed genes and underlying regulatory networks. In response to the S. aureus challenge, we found that heifers with Q haplotypes displayed more activated immune genes and pathways after S. aureus challenge compared with their q half-sibs. Furthermore, we found a significant enrichment of differentially expressed loci in the genomic target region on BTA18, suggesting the existence of a regionally acting regulatory element with effects on a variety of genes in this region.
Collapse
Affiliation(s)
- A Heimes
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - J Brodhagen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - R Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - D Becker
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - M M Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany; Immunology Unit, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - W Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - H Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - H-J Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - M Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - M Schmicke
- Faculty of Natural Sciences III, Martin-Luther Universität Halle-Wittenberg, 06120 Halle, Germany
| | - S Engelmann
- Technical University Braunschweig, Institute for Microbiology, 38023 Braunschweig, Germany; Helmholtz Centre for Infection Research, Microbial Proteomics, 38124 Braunschweig, Germany
| | - C Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; Agricultural and Environmental Faculty, University Rostock, 18059 Rostock, Germany.
| |
Collapse
|
33
|
Guerrouahen BS, Maccalli C, Cugno C, Rutella S, Akporiaye ET. Reverting Immune Suppression to Enhance Cancer Immunotherapy. Front Oncol 2020; 9:1554. [PMID: 32039024 PMCID: PMC6985581 DOI: 10.3389/fonc.2019.01554] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 01/26/2023] Open
Abstract
Tumors employ strategies to escape immune control. The principle aim of most cancer immunotherapies is to restore effective immune surveillance. Among the different processes regulating immune escape, tumor microenvironment-associated soluble factors, and/or cell surface-bound molecules are mostly responsible for dysfunctional activity of tumor-specific CD8+T cells. These dynamic immunosuppressive networks prevent tumor rejection at several levels, limiting also the success of immunotherapies. Nevertheless, the recent clinical development of immune checkpoint inhibitors or of molecules modulating cellular targets and immunosuppressive enzymes highlights the great potential of approaches based on the selective disruption of immunosuppressive networks. Currently, the administration of different categories of immunotherapy in combination regimens is the ultimate modality for impacting the survival of cancer patients. With the advent of immune checkpoint inhibitors, designed to mount an effective antitumor immune response, profound changes occurred in cancer immunotherapy: from a global stimulation of the immune system to a specific targeting of an immune component. This review will specifically highlight the players, the mechanisms limiting an efficient antitumor response and the current immunotherapy modalities tailored to target immune suppressive pathways. We also discuss the ongoing challenges encountered by these strategies and provide suggestions for circumventing hurdles to new immunotherapeutic approaches, including the use of relevant biomarkers in the optimization of immunotherapy regimens and the identification of patients who can benefit from defined immune-based approaches.
Collapse
Affiliation(s)
- Bella S Guerrouahen
- Sidra Medicine, Member of Qatar Foundation, Research Department, Doha, Qatar
| | - Cristina Maccalli
- Sidra Medicine, Member of Qatar Foundation, Research Department, Doha, Qatar
| | - Chiara Cugno
- Sidra Medicine, Member of Qatar Foundation, Research Department, Doha, Qatar
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Emmanuel T Akporiaye
- Veana Therapeutics, Inc., Portland, OR, United States.,Providence Cancer Center, Portland, OR, United States
| |
Collapse
|
34
|
Huang AY. Immune Responses Alter Taste Perceptions: Immunomodulatory Drugs Shape Taste Signals during Treatments. J Pharmacol Exp Ther 2019; 371:684-691. [PMID: 31611237 DOI: 10.1124/jpet.119.261297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
Considering that nutrients are required in health and diseases, the detection and ingestion of food to meet the requirements is attributable to the sense of taste. Altered taste sensations lead to a decreased appetite, which is usually one of the frequent causes of malnutrition in patients with diseases. Ongoing taste research has identified a variety of drug pathways that cause changes in taste perceptions in cancer, increasing our understanding of taste disturbances attributable to aberrant mechanisms of taste sensation. The evidence discussed in this review, which addresses the implications of innate immune responses in the modulation of taste functions, focuses on the adverse effects on taste transmission from taste buds by immune modulators responsible for alterations in the perceived intensity of some taste modalities. Another factor, damage to taste progenitor cells that directly results in local effects on taste buds, must also be considered in relation to taste disturbances in patients with cancer. Recent discoveries discussed have provided new insights into the pathophysiology of taste dysfunctions associated with the specific treatments. SIGNIFICANCE STATEMENT: The paradigm that taste signals transmitted to the brain are determined only by tastant-mediated activation via taste receptors has been challenged by the immune modification of taste transmission through drugs during the processing of gustatory information in taste buds. This article reports the findings in a model system (mouse taste buds) that explain the basis for the taste dysfunctions in patients with cancer that has long been observed but never understood.
Collapse
Affiliation(s)
- Anthony Y Huang
- Department of Anatomy and Center for Integrated Research in Cognitive and Neural Science, Southern Illinois University School of Medicine, Carbondale, Illinois
| |
Collapse
|
35
|
Ponomarev AV, Shubina IZ. Insights Into Mechanisms of Tumor and Immune System Interaction: Association With Wound Healing. Front Oncol 2019; 9:1115. [PMID: 31709183 PMCID: PMC6823879 DOI: 10.3389/fonc.2019.01115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
A large number of studies have presented a great deal of information about tumor and immune system interaction. Nevertheless, the problem of tumor evasion from the immune reaction is still difficult to resolve. Understanding the ways in which immunosuppressive tumor microenvironment develops and maintains its potential is of utmost importance to ensure the best use of the suppressed immune functions. The study presents a review covering the data on tumor-associated antigens, mechanisms of tumor evasion from the immune reactions, and search for common immunosuppressive processes of tumor growth and normal wound healing. The study discusses the important role of monocytes/macrophages in the regulation of immune system reactions. We suggest that the simultaneous actions of growth factors and pro-inflammatory cytokines may result in the suppression of the immune system. The study describes intracellular signaling molecules that take part in the regulation of the myeloid cell functions. If the hypothesis is proved correct, the indicated interaction of cytokines could be regarded as a prospective target for antitumor therapy.
Collapse
Affiliation(s)
| | - Irina Zh Shubina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
36
|
Effect of Hypoxia on Gene Expression in Cell Populations Involved in Wound Healing. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2626374. [PMID: 31534956 PMCID: PMC6724439 DOI: 10.1155/2019/2626374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/25/2019] [Indexed: 01/27/2023]
Abstract
Wound healing is a complex process regulated by multiple signals and consisting of several phases known as haemostasis, inflammation, proliferation, and remodelling. Keratinocytes, endothelial cells, macrophages, and fibroblasts are the major cell populations involved in wound healing process. Hypoxia plays a critical role in this process since cells sense and respond to hypoxic conditions by changing gene expression. This study assessed the in vitro expression of 77 genes involved in angiogenesis, metabolism, cell growth, proliferation and apoptosis in human keratinocytes (HaCaT), microvascular endothelial cells (HMEC-1), differentiated macrophages (THP-1), and dermal fibroblasts (HDF). Results indicated that the gene expression profiles induced by hypoxia were cell-type specific. In HMEC-1 and differentiated THP-1, most of the genes modulated by hypoxia encode proteins involved in angiogenesis or belonging to cytokines and growth factors. In HaCaT and HDF, hypoxia mainly affected the expression of genes encoding proteins involved in cell metabolism. This work can help to enlarge the current knowledge about the mechanisms through which a hypoxic environment influences wound healing processes at the molecular level.
Collapse
|
37
|
Varela P, Sartori S, Viebahn R, Salber J, Ciardelli G. Macrophage immunomodulation: An indispensable tool to evaluate the performance of wound dressing biomaterials. J Appl Biomater Funct Mater 2019; 17:2280800019830355. [PMID: 30808227 DOI: 10.1177/2280800019830355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major burden of the healthcare system resides in providing proper medical treatment for all types of chronic wounds, which are usually treated with dressings to induce a faster regeneration. Hence, to reduce healing time and improve the patient's quality of life, it is extremely important to select the most appropriate constituent material for a specific wound dressing. A wide range of wound dressings exist but their mechanisms of action are poorly explored, especially concerning the immunomodulatory effects that occur from the interactions between immune cells and the biomaterial. Tissue-resident and monocyte-derived recruited macrophages are key regulators of wound repair. These phagocytic immune cells exert specific functions during the different stages of wound healing. The recognition of the substantial role of macrophages in the outcome of the wound healing process requires specific understanding of the immunomodulatory effects of commercially available or newly developed wound dressings. For a precise intervention, it is necessary to obtain more knowledge on macrophage polarization in different phases of wound healing in the presence of the dressings. The main purpose of this review is to collect clinical cases in which macrophage immunomodulation was taken into consideration as an indicator of the performances of novel or mainstream wound dressing materials, including those provided with antimicrobial properties.
Collapse
Affiliation(s)
- Patrícia Varela
- 1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,2 Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Germany
| | - Susanna Sartori
- 1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Richard Viebahn
- 2 Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Germany
| | - Jochen Salber
- 2 Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Germany
| | - Gianluca Ciardelli
- 1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
38
|
Wang Y, Smith W, Hao D, He B, Kong L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int Immunopharmacol 2019; 70:459-466. [PMID: 30861466 DOI: 10.1016/j.intimp.2019.02.050] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
Macrophages, as crucial cellular components of innate immunity, are characterized by possessing high plasticity and an abnormal ability to differentiate in response to numerous stimuli. Given this, macrophages show extreme heterogeneity under both physiological and pathological conditions. Typically, macrophages can be polarized into classically activated macrophages (M1) and alternatively activated macrophages (M2) depending on their environment. The relative functions of these two subtypes are almost exactly opposed to one another. Recent studies have suggested that some naturally occurring compounds can exert regulatory effects on the progression of macrophage polarization, which implies that they could be promising therapeutic tools to treat relevant diseases. Therefore, in our current review, we summarize recent studies on several naturally occurring compounds that may possess the ability to regulate macrophage polarization and explore the associated molecular mechanisms.
Collapse
Affiliation(s)
- Youhan Wang
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China; Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Wanli Smith
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dingjun Hao
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China.
| |
Collapse
|
39
|
Wang L, Zhou Y, Chen Z, Sun L, Wu J, Li H, Liu F, Wang F, Yang C, Yang J, Leng Q, Zhang Q, Xu A, Shen L, Sun J, Wu D, Fang C, Lu H, Yan D, Ge B. PLCβ2 negatively regulates the inflammatory response to virus infection by inhibiting phosphoinositide-mediated activation of TAK1. Nat Commun 2019; 10:746. [PMID: 30765691 PMCID: PMC6375925 DOI: 10.1038/s41467-019-08524-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/10/2019] [Indexed: 01/04/2023] Open
Abstract
Excessive or uncontrolled release of proinflammatory cytokines caused by severe viral infections often results in host tissue injury or even death. Phospholipase C (PLC)s degrade phosphatidylinositol-4, 5-bisphosphate (PI(4,5)P2) lipids and regulate multiple cellular events. Here, we report that PLCβ2 inhibits the virus-induced expression of pro-inflammatory cytokines by interacting with and inhibiting transforming growth factor-β-activated kinase 1 (TAK1) activation. Mechanistically, PI(4,5)P2 lipids directly interact with TAK1 at W241 and N245, and promote its activation. Impairing of PI(4,5)P2's binding affinity or mutation of PIP2-binding sites on TAK1 abolish its activation and the subsequent production of pro-inflammatory cytokines. Moreover, PLCβ2-deficient mice exhibit increased expression of proinflammatory cytokines and a higher frequency of death in response to virus infection, while the PLCβ2 activator, m-3M3FBS, protects mice from severe Coxsackie virus A 16 (CVA16) infection. Thus, our findings suggest that PLCβ2 negatively regulates virus-induced pro-inflammatory responses by inhibiting phosphoinositide-mediated activation of TAK1.
Collapse
Affiliation(s)
- Lin Wang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Yilong Zhou
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Zijuan Chen
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 200032, Shanghai, China
| | - Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Juehui Wu
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Haohao Li
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Feng Liu
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Fei Wang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Chunfu Yang
- Institut Pasteur of Shanghai, 200031, Shanghai, China
| | - Juhao Yang
- Institut Pasteur of Shanghai, 200031, Shanghai, China
| | - Qibin Leng
- Institut Pasteur of Shanghai, 200031, Shanghai, China
| | - Qingli Zhang
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Ajing Xu
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Lisong Shen
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Caiyun Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 200032, Shanghai, China.
| | - Baoxue Ge
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
40
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol Rev 2018; 98:1591-1625. [PMID: 29848236 DOI: 10.1152/physrev.00049.2017] [Citation(s) in RCA: 526] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| |
Collapse
|
41
|
The Kat in the HAT: The Histone Acetyl Transferase Kat6b (MYST4) Is Downregulated in Murine Macrophages in Response to LPS. Mediators Inflamm 2018; 2018:7852742. [PMID: 29977151 PMCID: PMC6011073 DOI: 10.1155/2018/7852742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Epigenetic modulators, including histone methylases, demethylases, and deacetylases, have been implicated previously in the regulation of classical and alternative macrophage activation pathways. In this study, we show that the histone acetyl transferase (HAT) Kat6B (MYST4) is strongly suppressed (>80%) in macrophages by lipopolysaccharide (LPS) (M1 activation), while Kat6A, its partner in the MOZ/MORF complex, is reciprocally upregulated. This pattern of expression is not altered by LPS together with the adenosine receptor agonist NECA (M2d activation). This is despite the observation that miR-487b, a putative regulator of Kat6B expression, is mildly stimulated by LPS, but strongly suppressed by LPS/NECA. Other members of the MYST family of HATs (Kat5, Kat7, and Kat8) are unaffected by LPS treatment. Using the pLightswitch 3′UTR reporter plasmid, the miR-487b binding site in the Kat6b 3′UTR was found to play a role in the LPS-mediated suppression of Kat6B expression, but other as-yet unidentified factors are also involved. As Kat6B is a HAT that has the potential to modulate gene expression by its effects on chromatin accessibility, we are continuing our studies into the potential roles of this epigenetic modulator in macrophage activation pathways.
Collapse
|
42
|
Increased Gi protein signaling potentiates the negative chronotropic effect of adenosine in the SHR right atrium. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:513-522. [PMID: 29470593 DOI: 10.1007/s00210-018-1482-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
Hypertension is a risk factor for cardiovascular diseases, which have been associated with dysfunction of sympathetic and purinergic neurotransmission. Therefore, herein, we evaluated whether modifications of adenosine receptor signaling may contribute to the cardiac dysfunction observed in hypertension. Isolated right atria from spontaneously hypertensive (SHR) or normotensive Wistar rats (NWR) were used to investigate the influence of adenosine receptor signaling cascade in the cardiac chronotropism. Our results showed that adenosine, the endogenous agonist of adenosine receptors, and CPA, a selective agonist of A1 receptor, decreased the atrial chronotropism of NWR and SHR in a concentration- and time-dependent manner, culminating in cardiac arrest (0 bpm). Interestingly, a 3-fold lower concentration of adenosine was required to induce the negative chronotropic effect in SHR atria. Pre-incubation of tissues from both strains with DPCPX, a selective A1 receptor antagonist, inhibited the negative chronotropic effect of CPA, while simultaneous inhibition of A2 and A3 receptors, with ZM241385 and MRS1523, did not change the adenosine chronotropic effects. Moreover, 1 μg/ml pertussis toxin, which inactivates the Gαi protein subunit, reduced by 80% the negative chronotropic effects of adenosine in the NWR atrium, with minor effects in SHR tissue. These data indicate that the negative chronotropic effect of adenosine in right atrium depends exclusively on the activation of A1 receptors. Moreover, the distinct responsiveness of NWR and SHR atria to pertussis toxin reveals that the enhanced negative chronotropic response of SHR right atrium is probably due to an increased activity of Gαi protein-mediated.
Collapse
|
43
|
The Role of Phospholipase C Signaling in Macrophage-Mediated Inflammatory Response. J Immunol Res 2018; 2018:5201759. [PMID: 30057916 PMCID: PMC6051040 DOI: 10.1155/2018/5201759] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/06/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022] Open
Abstract
Macrophages are crucial members of the mononuclear phagocyte system essential to protect the host from invading pathogens and are central to the inflammatory response with their ability to acquire specialized phenotypes of inflammatory (M1) and anti-inflammatory (M2) and to produce a pool of inflammatory mediators. Equipped with a broad range of receptors, such as Toll-like receptor 4 (TLR4), CD14, and Fc gamma receptors (FcγRs), macrophages can efficiently recognize and phagocytize invading pathogens and secrete cytokines by triggering various secondary signaling pathways. Phospholipase C (PLC) is a family of enzymes that hydrolyze phospholipids, the most significant of which is phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Cleavage at the internal phosphate ester generates two second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), both of which mediate in diverse cellular functions including the inflammatory response. Recent studies have shown that some PLC isoforms are involved in multiple stages in TLR4-, CD14-, and FcγRs-mediated activation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and interferon regulatory factors (IRFs), all of which are associated with the regulation of the inflammatory response. Therefore, secondary signaling by PLC is implicated in the pathogenesis of numerous inflammatory diseases. This review provides an overview of our current knowledge on how PLC signaling regulates the macrophage-mediated inflammatory response.
Collapse
|
44
|
Affiliation(s)
- Chang-Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, van Rooijen N, Radbruch A, Lucius R, Hartmann S, Duda GN, Schmidt-Bleek K. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone 2018; 106:78-89. [PMID: 26529389 DOI: 10.1016/j.bone.2015.10.019] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/06/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022]
Abstract
In fracture healing, skeletal and immune system are closely interacting through common cell precursors and molecular mediators. It is thought that the initial inflammatory reaction, which involves migration of macrophages into the fracture area, has a major impact on the long term outcome of bone repair. Interestingly, macrophages reside during all stages of fracture healing. Thus, we hypothesized a critical role for macrophages in the subsequent phases of bone regeneration. This study examined the impact of in vivo induced macrophage reduction, using clodronate liposomes, on the different healing phases of bone repair in a murine model of a standard closed femoral fracture. A reduction in macrophages had no obvious effect on the early fracture healing phase, but resulted in a delayed hard callus formation, thus severely altering endochondral ossification. Clodronate treated animals clearly showed delayed bony consolidation of cartilage and enhanced periosteal bone formation. Therefore, we decided to backtrack macrophage distribution during fracture healing in non-treated mice, focusing on the identification of the M1 and M2 subsets. We observed that M2 macrophages were clearly prevalent during the ossification phase. Therefore enhancement of M2 phenotype in macrophages was investigated as a way to further bone healing. Induction of M2 macrophages through interleukin 4 and 13 significantly enhanced bone formation during the 3week investigation period. These cumulative data illustrate their so far unreported highly important role in endochondral ossification and the necessity of a fine balance in M1/M2 macrophage function, which appears mandatory to fracture healing and successful regeneration.
Collapse
Affiliation(s)
- Claudia Schlundt
- Julius Wolff Institute and Center for Muskuloskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Thaqif El Khassawna
- Laboratory of Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Alessandro Serra
- German Arthritis Research Center (DRFZ), Charité - Universitätsmedizin Berlin, Charitestrasse 1, 10117, Berlin, Germany.
| | - Anke Dienelt
- Julius Wolff Institute and Center for Muskuloskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Sebastian Wendler
- Julius Wolff Institute and Center for Muskuloskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Hanna Schell
- Julius Wolff Institute and Center for Muskuloskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Nico van Rooijen
- Vrije Universiteit, VUMC, Department of Molecular Cell Biology, Faculty of Medicine, Van der Boechorststraat 7, 1007 MB, Amsterdam, The Netherlands.
| | - Andreas Radbruch
- German Arthritis Research Center (DRFZ), Charité - Universitätsmedizin Berlin, Charitestrasse 1, 10117, Berlin, Germany.
| | - Richard Lucius
- Department of Molecular Parasitology, Humboldt-University Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| | - Susanne Hartmann
- Center for Infection Medicine, Institute for Immunology, Freie Universität Berlin, Robert von Ostertag-Strasse 7-13, 14163, Berlin, Germany.
| | - Georg N Duda
- Julius Wolff Institute and Center for Muskuloskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Muskuloskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
46
|
Arora S, Dev K, Agarwal B, Das P, Syed MA. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology 2017; 223:383-396. [PMID: 29146235 PMCID: PMC7114886 DOI: 10.1016/j.imbio.2017.11.001] [Citation(s) in RCA: 436] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023]
Abstract
Macrophages, circulating in the blood or concatenated into different organs and tissues constitute the first barrier against any disease. They are foremost controllers of both innate and acquired immunity, healthy tissue homeostasis, vasculogenesis and congenital metabolism. Two hallmarks of macrophages are diversity and plasticity due to which they acquire a wobbling array of phenotypes. These phenotypes are appropriately synchronized responses to a variety of different stimuli from either the tissue microenvironment or - microbes or their products. Based on the phenotype, macrophages are classified into classically activated/(M1) and alternatively activated/(M2) which are further sub-categorized into M2a, M2b, M2c and M2d based upon gene expression profiles. Macrophage phenotype metamorphosis is the regulating factor in initiation, progression, and termination of numerous inflammatory diseases. Several transcriptional factors and other factors controlling gene expression such as miRNAs contribute to the transformation of macrophages at different points in different diseases. Understanding the mechanisms of macrophage polarization and modulation of their phenotypes to adjust to the micro environmental conditions might provide us a great prospective for designing novel therapeutic strategy. In view of the above, this review summarises the activation of macrophages, the factors intricated in activation along with benefaction of macrophage polarization in response to microbial infections, pulmonary toxicity, lung injury and other inflammatory diseases such as chronic obstructive pulmonary dysplasia (COPD), bronchopulmonary dysplasia (BPD), asthma and sepsis, along with the existing efforts to develop therapies targeting this facet of macrophage biology.
Collapse
Affiliation(s)
- Shweta Arora
- Translational Research Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Kapil Dev
- Translational Research Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Beamon Agarwal
- Department of Hematopathology, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467-2401, United States.
| | - Pragnya Das
- Drexel University College of Medicine, Philadelphia, PA 19134, United States.
| | - Mansoor Ali Syed
- Translational Research Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
47
|
Bahreyni A, Khazaei M, Rajabian M, Ryzhikov M, Avan A, Hassanian SM. Therapeutic potency of pharmacological adenosine receptor agonist/antagonist in angiogenesis, current status and perspectives. ACTA ACUST UNITED AC 2017; 70:191-196. [PMID: 29057476 DOI: 10.1111/jphp.12844] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/30/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Adenosine concentration significantly increases in tumour microenvironment contributing to tumorigenic processes including cell proliferation, survival, invasion and of special interest in this review angiogenesis. KEY FINDINGS This review summarizes the role of pharmacological adenosine receptor agonist and antagonist in regulating angiogenesis for a better understanding and hence a better management of angiogenesis-associated disorders. SUMMARY Depending upon the pharmacological characteristics of adenosine receptor subtypes, adenosine elicits anti- or pro-angiogenic responses in stimulated cells. Inhibition of the stimulatory effect of adenosine signalling on angiogenesis using specific pharmacological adenosine receptor agonist, and antagonist is a potentially novel strategy to suppress angiogenesis in tumours.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Faculty of Medicine, Department of Clinical Biochemistry and Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Majid Khazaei
- Faculty of Medicine, Department of Medical Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rajabian
- Department of Biochemistry, Payam-e-Noor University, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed M Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Nagenborg J, Goossens P, Biessen EAL, Donners MMPC. Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and functions: Implications for treatment. Eur J Pharmacol 2017; 816:14-24. [PMID: 28989084 DOI: 10.1016/j.ejphar.2017.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023]
Abstract
Macrophages are key players in atherosclerotic lesions, regulating the local inflammatory milieu and plaque stability by the secretion of many inflammatory molecules, growth factors and cytokines. Monocytes have long been considered to be the main source of plaque macrophages. However, recent findings provide evidence for proliferation of local macrophages or transdifferentiation from other vascular cells as alternative sources. Recent years of research focused on the further identification and characterisation of macrophage phenotypes and functions. In this review we describe the advances in our understanding of monocyte and macrophage heterogeneity and its implications for specific therapeutic interventions, aiming to reduce the ever growing significant risk of cardiovascular events without any detrimental side effects on the patient's immune response.
Collapse
Affiliation(s)
- Jan Nagenborg
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Pieter Goossens
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Erik A L Biessen
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Marjo M P C Donners
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
49
|
Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology 2017; 223:101-111. [PMID: 29032836 DOI: 10.1016/j.imbio.2017.10.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/03/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
The mononuclear phagocytes control the body homeostasis through the involvement in resolving tissue injury and further wound healing. Indeed, local tissue microenvironmental changes can significantly influence the functional behavior of monocytes and macrophages. Such microenvironmental changes for example occur in an atherosclerotic plaque during all progression stages. In response to exogenous stimuli, macrophages show a great phenotypic plasticity and heterogeneity. Exposure of monocytes to inflammatory or anti-inflammatory conditions also induces predominant differentiation to proinflammatory (M1) or anti-inflammatory (M2) macrophage subsets and phenotype switch between macrophage subsets. The phenotype transition is accompanied with great changes in the macrophage transcriptome and regulatory networks. Interferon-regulatory factors (IRFs) play a key role in hematopoietic development of monocytes, their differentiation to macrophages, and regulating macrophage maturation, phenotypic polarization, phenotypic switch, and function. Of 9 IRFs, at least 3 (IRF-1, IRF-5, and IRF-8) are involved in the commitment of proinflammatory M1 whereas IRF-3 and IRF-4 control M2 polarization. The role of IRF-2 is context-dependent. The IRF impact on macrophage phenotype plasticity and heterogeneity is complex and involves activating and repressive function in triggering transcription of target genes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, Moscow, Russia; Department of Molecular Genetic Diagnostics and Cell Biology, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Veronika A Myasoedova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Victor V Revin
- Biological Faculty, N.P. Ogaryov Mordovian State University, Republic of Mordovia, Saransk 430005, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, NSW, Sydney, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia.
| |
Collapse
|
50
|
Is macrophage polarization important in rheumatoid arthritis? Int Immunopharmacol 2017; 50:345-352. [PMID: 28750350 DOI: 10.1016/j.intimp.2017.07.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/15/2022]
Abstract
Macrophages are myeloid immune cells which are strategically positioned throughout the body, where they engulf and degrade debris, dead cells, and foreign substances, and coordinating the inflammatory processes. Macrophages can be divided into two extreme subsets, classical activation (M1), and alternatively activation (M2). The symptoms and signs of rheumatoid arthritis (RA) would exacerbate with the increase in pro-inflammatory cytokines, whereas anti-inflammatory cytokines will alleviate the symptoms and signs of RA. This review, mainly discusses the effects of Notch, JNK and ERK signaling pathways on the regulation of macrophage polarization, and the effects of pro-inflammatory factors and/or anti-inflammatory cytokines produced by polarized macrophages in RA. Also, we will make an attempt to find out the importance of macrophage polarization in RA treatment as a drug target.
Collapse
|