1
|
Cao B, Liu K, Tian C, He H, He S, Chen H, Zhang X, Liu Y, Wang L, Liu X, Li M, Jia Q, Chai J. OTX1 regulates tumorigenesis and metastasis in glioma. Pathol Res Pract 2024; 254:155116. [PMID: 38218040 DOI: 10.1016/j.prp.2024.155116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The most prevalent kind of primary brain tumors, gliomas, have a dismal prognosis. Recent advances in the tumor-promoting ability of OTX1 have drawn increasing attention. The overexpression of OTX1 has been reported to be associated with tumor-promoting effects in several malignancies, but its expression in gliomas is unknown. The oncogene OTX1 is increased in gliomas and is linked to a poor prognosis, as we show here. The degree of OTX1 positive expression is doubtlessly concomitant with the grade of glioma. We observed that OTX1 was up-regulated in gliomas, influenced the epithelial-mesenchymal transition (EMT), encouraged glioma cell growth and proliferation, and was linked to a poor clinical outcome for patients. At present, the prognosis of glioma is still not optimistic, and further research is needed to find a new target for treatment. According to our research, OTX1 is anticipated to emerge as a novel biological target for determining glioma prognosis and treatment.
Collapse
Affiliation(s)
- Bowei Cao
- Department of Information Service, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Kai Liu
- Department of Gastroenterology, No.971 Hospital of the PLA Navy, Qingdao, China
| | - Chuntao Tian
- Department of Oncology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Hongyu He
- Department of Pathology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Shaofei He
- Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Xi'an, China
| | - Hang Chen
- Department of Information Service, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xinwen Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yixiong Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xuantong Liu
- Department of Pathology, The General Hospital of Northern Theater Command, Shenyang, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Terrinoni A, Micheloni G, Moretti V, Caporali S, Bernardini S, Minieri M, Pieri M, Giaroni C, Acquati F, Costantino L, Ferrara F, Valli R, Porta G. OTX Genes in Adult Tissues. Int J Mol Sci 2023; 24:16962. [PMID: 38069286 PMCID: PMC10707059 DOI: 10.3390/ijms242316962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
OTX homeobox genes have been extensively studied for their role in development, especially in neuroectoderm formation. Recently, their expression has also been reported in adult physiological and pathological tissues, including retina, mammary and pituitary glands, sinonasal mucosa, in several types of cancer, and in response to inflammatory, ischemic, and hypoxic stimuli. Reactivation of OTX genes in adult tissues supports the notion of the evolutionary amplification of functions of genes by varying their temporal expression, with the selection of homeobox genes from the "toolbox" to drive or contribute to different processes at different stages of life. OTX involvement in pathologies points toward these genes as potential diagnostic and/or prognostic markers as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giovanni Micheloni
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Vittoria Moretti
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Sabrina Caporali
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Cristina Giaroni
- Department of Medicina e Innovazione Tecnologica, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Francesco Acquati
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
- Department of Biotechnology and Life Science, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Lucy Costantino
- Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
| | - Fulvio Ferrara
- Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
| | - Roberto Valli
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Giovanni Porta
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| |
Collapse
|
3
|
Hu S, Zhou H, Zhao X, Qian F, Jin C. MiR-195-5p suppresses gastric adenocarcinoma cell progression via targeting OTX1. Histol Histopathol 2023; 38:659-668. [PMID: 36093844 DOI: 10.14670/hh-18-512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gastric adenocarcinoma (GAC) caused by malignant transformation of gastric adenocytes is a malignancy with high incidence. MiR-195-5p modulates a variety of cancers. One of its target genes, orthodenticle homeobox 1 (OTX1), is believed to be a key modulator of tumor progression. We aim to analyze the mechanism of miR-195-5p and OTX1 in GAC. MiR-195-5p and OTX1 mRNA levels in GAC cells were tested via qRT-PCR. OTX1 protein and EMT-related protein levels were examined through western blot. Several cell functional assays were designed to measure changes in cell malignant behaviors. Dual luciferase assay verified the targeting relation of miR-195-5p and OTX1. These experimental results showed significantly low miR-195-5p expression and significantly high OTX1 expression in GAC cells. Enforced miR-195-5p level repressed cell malignant progression and accelerated cell apoptosis in GAC. Increased OTX1 weakened the above-mentioned effect caused by overexpressing miR-195-5p. Thus, miR-195-5p restrained migration, proliferation, invasion and epithelial-mesenchymal transition process of GAC cells, and promoted cell apoptosis through regulating OTX1. A new insight is provided for searching for biomarkers or therapeutic targets of GAC.
Collapse
Affiliation(s)
- Sizhe Hu
- Department of Gastrointestinal Surgery, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China.
| | - Huanting Zhou
- Department of Operating Room, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xiaokang Zhao
- Department of Gastrointestinal Surgery, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Feng Qian
- Department of Gastrointestinal Surgery, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Cancan Jin
- Department of Gastrointestinal Surgery, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| |
Collapse
|
4
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Homann J, Osburg T, Ohlei O, Dobricic V, Deecke L, Bos I, Vandenberghe R, Gabel S, Scheltens P, Teunissen CE, Engelborghs S, Frisoni G, Blin O, Richardson JC, Bordet R, Lleó A, Alcolea D, Popp J, Clark C, Peyratout G, Martinez-Lage P, Tainta M, Dobson RJB, Legido-Quigley C, Sleegers K, Van Broeckhoven C, Wittig M, Franke A, Lill CM, Blennow K, Zetterberg H, Lovestone S, Streffer J, ten Kate M, Vos SJB, Barkhof F, Visser PJ, Bertram L. Genome-Wide Association Study of Alzheimer's Disease Brain Imaging Biomarkers and Neuropsychological Phenotypes in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Dataset. Front Aging Neurosci 2022; 14:840651. [PMID: 35386118 PMCID: PMC8979334 DOI: 10.3389/fnagi.2022.840651] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent neurodegenerative disease with an increasing prevalence in industrialized, aging populations. AD susceptibility has an established genetic basis which has been the focus of a large number of genome-wide association studies (GWAS) published over the last decade. Most of these GWAS used dichotomized clinical diagnostic status, i.e., case vs. control classification, as outcome phenotypes, without the use of biomarkers. An alternative and potentially more powerful study design is afforded by using quantitative AD-related phenotypes as GWAS outcome traits, an analysis paradigm that we followed in this work. Specifically, we utilized genotype and phenotype data from n = 931 individuals collected under the auspices of the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study to perform a total of 19 separate GWAS analyses. As outcomes we used five magnetic resonance imaging (MRI) traits and seven cognitive performance traits. For the latter, longitudinal data from at least two timepoints were available in addition to cross-sectional assessments at baseline. Our GWAS analyses revealed several genome-wide significant associations for the neuropsychological performance measures, in particular those assayed longitudinally. Among the most noteworthy signals were associations in or near EHBP1 (EH domain binding protein 1; on chromosome 2p15) and CEP112 (centrosomal protein 112; 17q24.1) with delayed recall as well as SMOC2 (SPARC related modular calcium binding 2; 6p27) with immediate recall in a memory performance test. On the X chromosome, which is often excluded in other GWAS, we identified a genome-wide significant signal near IL1RAPL1 (interleukin 1 receptor accessory protein like 1; Xp21.3). While polygenic score (PGS) analyses showed the expected strong associations with SNPs highlighted in relevant previous GWAS on hippocampal volume and cognitive function, they did not show noteworthy associations with recent AD risk GWAS findings. In summary, our study highlights the power of using quantitative endophenotypes as outcome traits in AD-related GWAS analyses and nominates several new loci not previously implicated in cognitive decline.
Collapse
Affiliation(s)
- Jan Homann
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Tim Osburg
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Laura Deecke
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospital Leuven, Leuven, Belgium
| | - Silvy Gabel
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Center for Neurosciences, Universitair Ziekenhuis Brussel and Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Giovanni Frisoni
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Olivier Blin
- Institut Neurosciences Timone, AIX Marseille University, Marseille, France
| | - Jill C. Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Regis Bordet
- Lille Neuroscience and Cognition, University of Lille, Inserm, CHU Lille, Lille, France
| | - Alberto Lleó
- Memory Unit, Neurology Department, Hospital de Sant Pau, Barcelona and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Memory Unit, Neurology Department, Hospital de Sant Pau, Barcelona and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Julius Popp
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Christopher Clark
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Gwendoline Peyratout
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pablo Martinez-Lage
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Mikel Tainta
- Department of Neurology, Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Richard J. B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London, United Kingdom
- Health Data Research UK London, University College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Cristina Legido-Quigley
- Steno Diabetes Center, Copenhagen, Denmark
- King’s College London, Institute of Pharmaceutical Sciences, London, United Kingdom
| | - Kristel Sleegers
- Complex Genetics of Alzheimer’s Disease Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina M. Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Janssen R&D, LLC. Beerse, Belgium
| | - Mara ten Kate
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Stephanie J. B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, London, United Kingdom
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Overexpression of OTX1 promotes tumorigenesis in patients with esophageal squamous cell carcinoma. Pathol Res Pract 2022; 232:153841. [DOI: 10.1016/j.prp.2022.153841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022]
|
7
|
Osman N, Shawky AEM, Brylinski M. Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure. BMC Genom Data 2022; 23:13. [PMID: 35176995 PMCID: PMC8851830 DOI: 10.1186/s12863-021-01021-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022] Open
Abstract
Background Numerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging. Results In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants. Conclusions Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-01021-x.
Collapse
Affiliation(s)
- Noha Osman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.,Department of Cell Biology, National Research Centre, Giza, 12622, Egypt.,Department of Medicine, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Abd-El-Monsif Shawky
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA. .,Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
8
|
Micheloni G, Carnovali M, Millefanti G, Rizzetto M, Moretti V, Montalbano G, Acquati F, Giaroni C, Valli R, Costantino L, Ferrara F, Banfi G, Mariotti M, Porta G. Soy diet induces intestinal inflammation in adult Zebrafish: Role of OTX and P53 family. Int J Exp Pathol 2022; 103:13-22. [PMID: 34725870 PMCID: PMC8781668 DOI: 10.1111/iep.12420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the colon and small intestine, including Crohn's disease and ulcerative colitis. Since Danio rerio is a promising animal model to study gut function, we developed a soy-dependent model of intestinal inflammation in adult zebrafish. The soya bean meal diet was given for 4 weeks and induced an inflammatory process, as demonstrated by morphological changes together with an increased percentage of neutrophils infiltrating the intestinal wall, which developed between the second and fourth week of treatment. Pro-inflammatory genes such as interleukin-1beta, interleukin-8 and tumour necrosis factor alpha were upregulated in the second week and anti-inflammatory genes such as transforming growth factor beta and interleukin-10. Interestingly, an additional expression peak was found for interleukin-8 at the fourth week. Neuronal genes, OTX1 and OTX2, were significantly upregulated in the first two weeks, compatible with the development of the changes in the gut wall. As for the genes of the p53 family such as p53, DNp63 and p73, a statistically significant increase was observed after two weeks of treatment compared with controls. Interestingly, DNp63 and p73 were shown an additional peak after four weeks. Our data demonstrate that soya bean meal diet negatively influences intestinal morphology and immunological function in adult zebrafish showing the features of acute inflammation. Data observed at the fourth week of treatment may suggest initiation of chronic inflammation. Adult zebrafish may represent a promising model to better understand the mechanisms of food-dependent intestinal inflammation.
Collapse
Affiliation(s)
- Giovanni Micheloni
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | | | | | - Manuel Rizzetto
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Vittoria Moretti
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Giuseppe Montalbano
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Francesco Acquati
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Cristina Giaroni
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Roberto Valli
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Lucy Costantino
- Department of Molecular GeneticsCentro Diagnostico ItalianoMilanoItaly
| | - Fulvio Ferrara
- Department of Molecular GeneticsCentro Diagnostico ItalianoMilanoItaly
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico GaleazziMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Massimo Mariotti
- IRCCS Istituto Ortopedico GaleazziMilanItaly
- Department of BiomedicalSurgical and Dental SciencesUniversity of MilanMilanItaly
| | - Giovanni Porta
- Centro di Medicina GenomicaDepartment of Medicine and SurgeryUniversity of InsubriaVareseItaly
| |
Collapse
|
9
|
Jiang L, Zuo Z, Lin J, Yang C. Orthodenticle homeobox OTX1 is a potential prognostic biomarker for bladder cancer. Bioengineered 2021; 12:6559-6571. [PMID: 34559577 PMCID: PMC8806575 DOI: 10.1080/21655979.2021.1974646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bladder cancer (BC) is one of the most aggressive tumors worldwide. OTX1 (orthodenticle homeobox 1) is an important transcription factor involved in various diseases, such as cancers. The aim of this study was to further investigate the role of OTX1 in BC. In this study, differentially expressed genes (DEGs) were screened from tumor tissues and para-cancerous tissues by bioinformatics. The expression of protein and RNA was separately detected by western blotting and immunohistochemistry (IHC), and quantitative polymerase chain reaction (qPCR); cell viability and cell growth were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clone formation assays, respectively; cell motility was measured by transwell and wound healing assays; cell cycle was measured by flow cytometry. In this study, 9 DEGs were screened out, and OTX1 was employed as a candidate gene for subsequent study. Results found that OTX1 was highly expressed in BC cells and BC tissues, which was significantly associated with poor prognosis of patients. In addition, OTX1 silencing significantly reduced cell viability, and inhibited cell growth and motility, while OTX1 overexpression got opposite results. Moreover, OTX1 co-expressed genes were enriched in cell cycle-related pathways, suggesting that the role of OTX1 in BC may be related to cell cycle, which was confirmed by flow cytometry analysis. Furthermore, in vivo experiments showed that OTX1 silencing significantly inhibited tumor growth in tumor-bearing mice. Taken together, our findings suggested that OTX1 may play a promotional role in BC progression.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Emergency, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu City, China
| | - Zhongqiang Zuo
- Department of Emergency, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu City, China
| | - Jie Lin
- Department of Emergency, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu City, China
| | - Chuanfeng Yang
- Department of Emergency, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu City, China
| |
Collapse
|
10
|
Osman N, Shawky A, Brylinski M. Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure.. [DOI: 10.1101/2020.10.06.328567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractNumerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging. In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants. Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression.
Collapse
|
11
|
Tu XP, Li H, Chen LS, Luo XN, Lu ZM, Zhang SY, Chen SH. OTX1 exerts an oncogenic role and is negatively regulated by miR129-5p in laryngeal squamous cell carcinoma. BMC Cancer 2020; 20:794. [PMID: 32838760 PMCID: PMC7446126 DOI: 10.1186/s12885-020-07279-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/09/2020] [Indexed: 01/03/2023] Open
Abstract
Background Orthodenticle homeobox 1 (OTX1) is a transcription factor that plays an important role in various human cancers. However, the function of OTX1 in laryngeal squamous cell carcinoma (LSCC) is largely unknown. We aimed to explore the roles of OTX1 in LSCC and its possible molecular mechanism. Methods The expression levels of OTX1 were assessed in LSCC cell lines and tissue samples. We further examined the effect of OTX1 on LSCC progression. The upstream regulator of OTX1 was identified using a computer algorithm and confirmed experimentally. Results OTX1 was highly expressed in 70.7% (70/99) of LSCC tissue samples. The OTX1 expression in LSCC was significantly correlated with lymph node metastasis. High OTX1 expression in patients with LSCC was correlated with poor prognosis. Knockdown of OTX1 inhibited proliferation, colony formation, migration and invasion in LSCC cells. Knockdown of OTX1 inhibited tumor growth in a xenograft mouse model. Mechanistically, OTX1 might act as a direct target of miR-129-5p. OTX1 enhanced tumorigenicity and tumor growth both in vitro and in vivo. Conclusions Our findings support that OTX1 is an oncogene in LSCC tumorigenesis and progression. Furthermore, OTX1 is a direct target of miR-129-5p in LSCC cells. Taken together, OTX1 is a promising diagnostic and therapeutic marker for LSCC.
Collapse
Affiliation(s)
- Xiu-Ping Tu
- Department of Otorhinolaryngology, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Hao Li
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Liang-Si Chen
- Department of Otorhinolaryngology, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Xiao-Ning Luo
- Department of Otorhinolaryngology, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Zhong-Ming Lu
- Department of Otorhinolaryngology, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Si-Yi Zhang
- Department of Otorhinolaryngology, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| | - Shao-Hua Chen
- Department of Otorhinolaryngology, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
12
|
Punjani N, Lamb DJ. Male infertility and genitourinary birth defects: there is more than meets the eye. Fertil Steril 2020; 114:209-218. [PMID: 32741459 PMCID: PMC10590568 DOI: 10.1016/j.fertnstert.2020.06.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
Male factor infertility is a significant problem present in up to 50% of infertile couples. The relationship between male infertility and systemic disease is of significant interest, and emerging evidence suggests a relationship between male infertility and male genitourinary (GU) birth defects (cryptorchidism, hypospadias, ambiguous genitalia, and congenital anomalies of the kidney and urinary tract). Many of these birth defects are treated in isolation by busy urologists without acknowledgment that these may be related to more global syndromic conditions. Conversely, geneticists and nonurologists who treat variable systemic phenotypes may overlook GU defects, which are indeed related conditions. Many of these defects are attributed to copy number variants dosage-sensitive genes due to chromosome microdeletions or microduplications. These variants are responsible for disease phenotypes seen in the general population. The copy number variants described in this review are syndromic in some cases and responsible for both GU birth defects as well as other systemic phenotypes. This review highlights the emerging evidence between these birth defects, male infertility, and other systemic conditions.
Collapse
Affiliation(s)
- Nahid Punjani
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, New York
| | - Dolores J Lamb
- James Buchanan Brady Foundation Institute of Urology, Weill Cornell Medical College, New York, New York; Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, New York; Center for Reproductive Genomics, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
13
|
Crisci S, Amitrano F, Saggese M, Muto T, Sarno S, Mele S, Vitale P, Ronga G, Berretta M, Di Francia R. Overview of Current Targeted Anti-Cancer Drugs for Therapy in Onco-Hematology. ACTA ACUST UNITED AC 2019; 55:medicina55080414. [PMID: 31357735 PMCID: PMC6723645 DOI: 10.3390/medicina55080414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
The upgraded knowledge of tumor biology and microenviroment provides information on differences in neoplastic and normal cells. Thus, the need to target these differences led to the development of novel molecules (targeted therapy) active against the neoplastic cells' inner workings. There are several types of targeted agents, including Small Molecules Inhibitors (SMIs), monoclonal antibodies (mAbs), interfering RNA (iRNA) molecules and microRNA. In the clinical practice, these new medicines generate a multilayered step in pharmacokinetics (PK), which encompasses a broad individual PK variability, and unpredictable outcomes according to the pharmacogenetics (PG) profile of the patient (e.g., cytochrome P450 enzyme), and to patient characteristics such as adherence to treatment and environmental factors. This review focuses on the use of targeted agents in-human phase I/II/III clinical trials in cancer-hematology. Thus, it outlines the up-to-date anticancer drugs suitable for targeted therapies and the most recent finding in pharmacogenomics related to drug response. Besides, a summary assessment of the genotyping costs has been discussed. Targeted therapy seems to be an effective and less toxic therapeutic approach in onco-hematology. The identification of individual PG profile should be a new resource for oncologists to make treatment decisions for the patients to minimize the toxicity and or inefficacy of therapy. This could allow the clinicians to evaluate benefits and restrictions, regarding costs and applicability, of the most suitable pharmacological approach for performing a tailor-made therapy.
Collapse
Affiliation(s)
- Stefania Crisci
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Filomena Amitrano
- Gruppo Oncologico Ricercatori Italiano GORI ONLUS, Pordenone 33100, Italy
| | - Mariangela Saggese
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Tommaso Muto
- Hematology and Cellular Immunology (Clinical Biochemistry) A.O. dei Colli Monaldi Hospital, Naples 80131, Italy
| | - Sabrina Sarno
- Anatomia Patologica, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Sara Mele
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Pasquale Vitale
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Giuseppina Ronga
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Naples 80131, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO National Cancer Institute, Aviano (PN) 33081, Italy
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), Ancona 60125, Italy.
| |
Collapse
|
14
|
OTX1 and OTX2 Genes in Medulloblastoma. World Neurosurg 2019; 127:e58-e64. [DOI: 10.1016/j.wneu.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
|
15
|
Weber J, de la Rosa J, Grove CS, Schick M, Rad L, Baranov O, Strong A, Pfaus A, Friedrich MJ, Engleitner T, Lersch R, Öllinger R, Grau M, Menendez IG, Martella M, Kohlhofer U, Banerjee R, Turchaninova MA, Scherger A, Hoffman GJ, Hess J, Kuhn LB, Ammon T, Kim J, Schneider G, Unger K, Zimber-Strobl U, Heikenwälder M, Schmidt-Supprian M, Yang F, Saur D, Liu P, Steiger K, Chudakov DM, Lenz G, Quintanilla-Martinez L, Keller U, Vassiliou GS, Cadiñanos J, Bradley A, Rad R. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nat Commun 2019; 10:1415. [PMID: 30926791 PMCID: PMC6440946 DOI: 10.1038/s41467-019-09180-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carolyn S Grove
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
- Department of Haematology, PathWest and Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Nedlands, 6009, Australia
| | - Markus Schick
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Lena Rad
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Olga Baranov
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anja Pfaus
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Mathias J Friedrich
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Michael Grau
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Irene Gonzalez Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Manuela Martella
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Maria A Turchaninova
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Anna Scherger
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Gary J Hoffman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
| | - Julia Hess
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | - Laura B Kuhn
- Helmholtz Zentrum München, Research Unit Gene Vectors, Munich, 81377, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine Main, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Kristian Unger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | | | - Mathias Heikenwälder
- Divison of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Katja Steiger
- Comparative Experimental Pathology, Technische Universität München, Munich, 81675, Germany
| | - Dmitriy M Chudakov
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Center of Molecular Medicine, CEITEC, Masaryk University, Brno, 601 77, Czech Republic
| | - Georg Lenz
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ulrich Keller
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Hematology and Oncology-Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Berlin, 12203, Germany
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, CB2 0XY, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0PT, UK
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, 33193, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, 33006, Spain
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| |
Collapse
|
16
|
Qin SC, Zhao Z, Sheng JX, Xu XH, Yao J, Lu JJ, Chen B, Zhao GD, Wang XY, Yang YD. Dowregulation of OTX1 attenuates gastric cancer cell proliferation, migration and invasion. Oncol Rep 2018; 40:1907-1916. [PMID: 30066897 PMCID: PMC6111461 DOI: 10.3892/or.2018.6596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
Orthodenticle homolog 1 (OTX1) has previously been revealed to be tightly associated with the development and progression of several human tumors. However, the functional roles and underlying molecular mechanisms of OTX1 in gastric cancer (GC) remain poorly understood. In the present study, we observed that OTX1 was highly expressed in GC tissues compared with adjacent non-tumor tissues based on a large cohort of samples from The Cancer Genome Atlas (TCGA) database. An immunohistochemical analysis indicated that OTX1 levels were increased in tumors that became metastatic compared with those in tumors that did not. This finding was significantly associated with patients who had shorter overall survival times. The knockdown of OTX1 significantly inhibited the proliferation, migration and invasion of SGC-7901 and MGC-803 cells. Furthermore, the knockdown of OTX1 induced cell cycle arrest in the G0/G1 phase and reduced the expression of cyclin D1. In addition, the inhibition of OTX1 led to increased GC cell apoptosis by upregulating cleaved PARP, cleaved caspase-3 and Bax. In conclusion, our data indicated that OTX1 functions as a key regulator in tumor growth and metastasis of GC cells. Thus, OTX1 may be a promising novel target for molecular therapy directed toward GC.
Collapse
Affiliation(s)
- Shi-Chen Qin
- Department of General Surgery, Haimen People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Zhong Zhao
- Department of General Surgery, Haimen People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Jin-Xin Sheng
- Department of General Surgery, Haimen People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Xiang-Hui Xu
- Department of General Surgery, Haimen People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Jie Yao
- Department of General Surgery, Haimen People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Jin-Jun Lu
- Department of General Surgery, Haimen People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Bin Chen
- Department of General Surgery, Haimen People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Guo-Dong Zhao
- Department of General Surgery, Haimen People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Xiao-Yong Wang
- Department of General Surgery, Haimen People's Hospital, Haimen, Jiangsu 226100, P.R. China
| | - Yan-Dong Yang
- Department of General Surgery, Haimen People's Hospital, Haimen, Jiangsu 226100, P.R. China
| |
Collapse
|
17
|
Pirrone C, Chiaravalli AM, Marando A, Conti A, Rainero A, Pistochini A, Lo Curto F, Pasquali F, Castelnuovo P, Capella C, Porta G. OTX1 and OTX2 as possible molecular markers of sinonasal carcinomas and olfactory neuroblastomas. Eur J Histochem 2017; 61:2730. [PMID: 28348423 PMCID: PMC5304267 DOI: 10.4081/ejh.2017.2730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 11/23/2022] Open
Abstract
OTX Homeobox genes are involved in embryonic morphogenesis and in the development of olfactory epithelium in adult. Mutations occurring in the OTX genes are reported to be associated to tumorigenisis in human. No reports correlate the expression of OTX genes and neoplasms of the nasal cavity. Thus, through immunohistochemical and Real-time PCR analysis we investigated OTX1 and OTX2 expression in the more frequent types of nasal and sinonasal tumours. Variable expression of both genes were found in normal sinonasal mucosa and in tumours. Interestingly, no expression of both OTX genes were detected in sinonasal intestinal-type adenocarcinomas; only OTX1 was found in non-intestinal-type adenocarcinomas and OTX2 was selectively expressed in olfactory neuroblastomas. In conclusion, OTX1 and OTX2 genes might have a role in the pathogenesis of different types of sinonasal neoplasms.
Collapse
Affiliation(s)
- Cristina Pirrone
- University of Insubria, Department of Clinical and Experimental Medicine.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Berretta M, Di Francia R, Stanzione B, Facchini G, LLeshi A, De Paoli P, Spina M, Tirelli U. New treatment strategies for HIV-positive cancer patients undergoing antiblastic chemotherapy. Expert Opin Pharmacother 2016; 17:2391-2403. [PMID: 27771974 DOI: 10.1080/14656566.2016.1252332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The introduction of Highly Active Antiretroviral Therapy (HAART) into clinical practice has dramatically changed the outcome of HIV-infected patients by prolonging their survival. The increase in life expectancy has led to an increased risk of non-AIDS-related mortality and morbidity, including cardiovascular diseases, neurocognitive diseases, neuroendocrine dysfunctions and cancer. Areas covered: The GICAT (Italian Cooperation Group on AIDS and Tumors) has demonstrated that patients who receive a multidisciplinary approach with the combination of anticancer agents (AC) and HAART can achieve better responses and survival rates than patients who receive AC alone. The first obstacle for the oncologist to plan treatment for cancer HIV-patients is the preliminary evaluation of drug-drug interactions between AC and HAART. Recent progress in pharmacogenomics could provide a new approach for personalized treatments. The rationale of this review is to summarize the existing data on the impact of HAART on the clinical management of cancer patients with HIV/AIDS and DDIs between antiretrovirals and AC. In addition, to maximize the efficacy of both concomitant therapy and to minimize the risk of DDIs, a currently useful list of pharmacogenomic markers of key metabolic enzymes is provided. Expert opinion: In this scenario, the importance of cooperation between oncologists and other health specialists (i.e., infectivologists, pharmacists, genetics and lab specialists) must not be underestimated in the management of these patients with the aim of planning an individual treatment strategy.
Collapse
Affiliation(s)
| | - Raffaele Di Francia
- b Hematology-Oncology and Stem Cell Transplantation Unit , National Cancer Institute, Fondazione 'G. Pascale' IRCCS , Naples , Italy
| | - Brigida Stanzione
- a Department of Medical Oncology , National Cancer Institute , Aviano , Italy
| | - Gaetano Facchini
- c Division of Medical Oncology, Department of Uro-Gynecological Oncology , Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS , Naples , Italy
| | - Arben LLeshi
- a Department of Medical Oncology , National Cancer Institute , Aviano , Italy
| | - Paolo De Paoli
- d Scientific Directorate , National Cancer Institute , Aviano , Italy
| | - Michele Spina
- a Department of Medical Oncology , National Cancer Institute , Aviano , Italy
| | - Umberto Tirelli
- a Department of Medical Oncology , National Cancer Institute , Aviano , Italy
| |
Collapse
|
19
|
Li H, Miao Q, Xu CW, Huang JH, Zhou YF, Wu MJ. OTX1 Contributes to Hepatocellular Carcinoma Progression by Regulation of ERK/MAPK Pathway. J Korean Med Sci 2016; 31:1215-23. [PMID: 27478331 PMCID: PMC4951550 DOI: 10.3346/jkms.2016.31.8.1215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/12/2016] [Indexed: 11/26/2022] Open
Abstract
Orthodenticlehomeobox 1 (OTX1) overexpression had previously been associated with the progression of several tumors. The present study aimed to determine the expression and role of OTX1 in human hepatocellular carcinoma (HCC). The expression level of OTX1 was examined by quantitative real-time PCR (qRT-PCR) in 10 samples of HCC and paired adjacent non-cancerous tissues, and by immunohistochemistry (IHC) analysis in 128 HCC samples and matched controls. The relationship between OTX1 expression and the clinicopathological features werealso analyzed. Furthermore, the effects of OTX1 knockdown on cell proliferation and migration were determined in HCC cell lines. Axenograft mouse model was also established to investigate the role of OTX1 in HCC tumor growth. TheqRT-PCR and IHC analyses revealed that OTX1 was significantly elevated in HCC tissues compared with the paired non-cancerous controls. Expression of OTX1 was positively correlated with nodal metastasis status (P = 0.009) and TNM staging (P = 0.001) in HCC tissues. In addition, knockdown of OTX1 by shRNA significantly inhibited the proliferation and migration, and induced cell cycle arrest in S phase in vitro. Tumor growth was markedly inhibited by OTX1 silencing in the xenograft. Moreover, OTX1 silencing was causable for the decreased phosphorylation level of ERK/MAPK signaling. In conclusion, OTX1 contributes to HCC progression possibly by regulation of ERK/MAPK pathway. OTX1 may be a novel target for molecular therapy towards HCC.
Collapse
Affiliation(s)
- Hua Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Qian Miao
- Department of Oncology, Quzhou People's Hospital in Zhejiang Province, Quzhou Zhejiang, China
| | - Chun-wei Xu
- Department of Pathology, Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Jian-hui Huang
- Department of Oncology, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China
| | - Yue-fen Zhou
- Department of Oncology, Lishui Central Hospital, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China
| | - Mei-juan Wu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Zhejiang, China
| |
Collapse
|
20
|
Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma. PLoS One 2015; 10:e0138416. [PMID: 26406991 PMCID: PMC4583255 DOI: 10.1371/journal.pone.0138416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/29/2015] [Indexed: 12/20/2022] Open
Abstract
In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL.
Collapse
|
21
|
Kwiecinska A, Ichimura K, Berglund M, Dinets A, Sulaiman L, Collins VP, Larsson C, Porwit A, Lagercrantz SB. Amplification of 2p as a genomic marker for transformation in lymphoma. Genes Chromosomes Cancer 2014; 53:750-68. [PMID: 24832791 PMCID: PMC4369132 DOI: 10.1002/gcc.22184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/19/2014] [Accepted: 04/22/2014] [Indexed: 12/22/2022] Open
Abstract
To outline further genetic mechanisms of transformation from follicular lymphoma (FL) to diffuse large B-cell lymphoma (DLBCL), we have performed whole genome array-CGH in 81 tumors from 60 patients [29 de novo DLBCL (dnDLBCL), 31 transformed DLBCL (tDLBCL), and 21 antecedent FL]. In 15 patients, paired tumor samples (primary FL and a subsequent tDLBCL) were available, among which three possessed more than two subsequent tumors, allowing us to follow specific genetic alterations acquired before, during, and after the transformation. Gain of 2p15–16.1 encompassing, among others, the REL, BCL11A, USP34, COMMD1, and OTX1 genes was found to be more common in the tDLBCL compared with dnDLBCL (P < 0.001). Furthermore, a high-level amplification of 2p15–16.1 was also detected in the FL stage prior to transformation, indicating its importance during the transformation event. Quantitative real-time PCR showed a higher level of amplification of REL, USP34, and COMMD1 (all involved in the NFκΒ-pathway) compared with BCL11A, which indicates that the altered genes disrupting the NFκΒ pathway may be the driver genes of transformation rather than the previously suggested BCL11A. Moreover, a 17q21.33 amplification was exclusively found in tDLBCL, never in FL (P < 0.04) or dnDLBCL, indicating an upregulation of genes of importance during the later phase of transformation. Taken together, our study demonstrates potential genomic markers for disease progression to clinically more aggressive forms. We also confirm the importance of the TP53-, CDKN2A-, and NFκΒ-pathways for the transformation from FL to DLBCL. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Kwiecinska
- Department of Oncology-Pathology, Karolinska Institutet, CCK Karolinska University Hospital, Solna, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu K, Cai XY, Li Q, Yang ZB, Xiong W, Shen T, Wang WY, Li YF. OTX1 promotes colorectal cancer progression through epithelial-mesenchymal transition. Biochem Biophys Res Commun 2014; 444:1-5. [PMID: 24388989 DOI: 10.1016/j.bbrc.2013.12.125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/14/2013] [Indexed: 11/16/2022]
Abstract
Orthodenticle homeobox 1 (OTX1), a transcription factor containing a bicoid-like homeodomain, plays a role in brain and sensory organ development. In this study, we report that OTX1 is overexpressed in human colorectal cancer (CRC) and OTX1 overexpression is associated with higher stage. Functional analyses reveal that overexpression of OTX1 results in accumulation of CRC cell proliferation and invasion in vitro and tumor growth in vivo, whereas ablation of OTX1 expression significantly inhibits the proliferative and invasive capability of CRC cells in vitro. Together, our results indicate that OTX1 is involved in human colon carcinogenesis and may serve as a potential therapeutic target for human colorectal cancer.
Collapse
Affiliation(s)
- Kun Yu
- Department of Colorectal Cancer Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xin-Yi Cai
- Department of Colorectal Cancer Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Qiang Li
- Department of Colorectal Cancer Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhi-Bin Yang
- Department of Colorectal Cancer Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Xiong
- Department of Colorectal Cancer Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tao Shen
- Department of Colorectal Cancer Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei-Ya Wang
- Department of Colorectal Cancer Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yun-Feng Li
- Department of Colorectal Cancer Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
23
|
Terrinoni A, Pagani IS, Zucchi I, Chiaravalli AM, Serra V, Rovera F, Sirchia S, Dionigi G, Miozzo M, Frattini A, Ferrari A, Capella C, Pasquali F, Curto FL, Curto FL, Albertini A, Melino G, Porta G. OTX1 expression in breast cancer is regulated by p53. Oncogene 2011; 30:3096-103. [PMID: 21478910 DOI: 10.1038/onc.2011.31] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 11/13/2010] [Accepted: 01/11/2011] [Indexed: 02/06/2023]
Abstract
The p53 transcription factor has a critical role in cell stress response and in tumor suppression. Wild-type p53 protein is a growth modulator and its inactivation is a critical event in malignant transformation. It has been recently demonstrated that wild-type p53 has developmental and differentiation functions. Indeed an over-expression of p53 in tumor cells induces asymmetrical division avoiding self-renewal of cancer stem cells (CSCs) and instead promoting their differentiation. In this study, 28 human breast carcinomas have been analyzed for expression of wild-type p53 and of a pool of non-clustered homeobox genes. We demonstrated that orthodenticle homolog 1 gene (OTX1) is transcribed in breast cancer. We established that the p53 protein directly induces OTX1 expression by acting on its promoter. OTX1 has been described as a critical molecule for axon refinement in the developing cerebral cortex of mice, and its activity in breast cancer suggests a synergistic function with p53 in CSC differentiation. Wild-type p53 may regulate cellular differentiation by an alternative pathway controlling OTX1 signaling only in breast cancer cells and not in physiological conditions.
Collapse
Affiliation(s)
- A Terrinoni
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pagani IS, Terrinoni A, Marenghi L, Zucchi I, Chiaravalli AM, Serra V, Rovera F, Sirchia S, Dionigi G, Miozzo M, Mozzo M, Frattini A, Ferrari A, Capella C, Pasquali F, Lo Curto F, Curto FL, Albertini A, Melino G, Porta G. The mammary gland and the homeobox gene Otx1. Breast J 2010; 16 Suppl 1:S53-6. [PMID: 21050313 DOI: 10.1111/j.1524-4741.2010.01006.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mammary gland, the unique organ that primarily form at puberty, is an ideal model to study the functions of homeobox (HB) genes in both development and tumorigenesis. HB genes comprise a large family of developmental regulators that have a critical role in cell growth and differentiation. In the normal mammary gland, homeobox genes are involved in ductal formation, epithelial branching, and lobulo-alveolar development by regulating epithelial proliferation and differentiation. The HB genes are controlled in a spatial and temporal manner in both stromal and epithelial cells. They are coordinately regulated by hormones and extracellular matrix, suggesting that many signaling pathways are involved in homeobox gene functions. When homeobox genes are misexpressed in animal models, different defects are displayed in mammary gland development. Aberrant expression of homeobox genes, overexpressed or downregulated, is found in primary carcinomas and in breast cancer. The Otx1 HB gene is a classic regulatory of nervous system development during embryogenesis. Postnatally Otx1 is transcribed in the anterior pituitary gland, where activates transcription of the pituitary hormones, and plays a role in hematopoiesis, enhancing pluripotent cells, and erythroid differentiation. Otx1 can still be detected in mature cells of the erythroid and megacaryocytic lineage. During cyclical development of mammary gland, the Otx1 gene is overexpressed in lactation, confirming a role of this transcription factor in cell differentiation. Recent studies report that Otx1 is overexpressed in breast cancer. Otx1 is expressed during embryogenesis, and it is expressed again during carcinogenesis, implying its possible function in differentiation of neoplastic cells.
Collapse
Affiliation(s)
- Ilaria S Pagani
- Department of Experimental and Clinical Biomedical Sciences, University of Insubria, Varese, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|