1
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Aleman J, Young CD, Karam SD, Wang XJ. Revisiting laminin and extracellular matrix remodeling in metastatic squamous cell carcinoma: What have we learned after more than four decades of research? Mol Carcinog 2023; 62:5-23. [PMID: 35596706 PMCID: PMC9676410 DOI: 10.1002/mc.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Patients with squamous cell carcinoma (SCC) have significantly lower survival upon the development of distant metastases. The extracellular matrix (ECM) is a consistent yet dynamic influence on the metastatic capacity of SCCs. The ECM encompasses a milieu of structural proteins, signaling molecules, and enzymes. Just over 40 years ago, the fibrous ECM glycoprotein laminin was identified. Roughly four decades of research have revealed a pivotal role of laminins in metastasis. However, trends in ECM alterations in some cancers have been applied broadly to all metastatic diseases, despite evidence that these characteristics vary by tumor type. We will summarize how laminins influence the SCC metastatic process exclusively. Enhanced laminin protein deposition occurs at the invasive edge of SCC tumors, which correlates with elevated levels of laminin-binding β1 integrins on SCC cells, increased MMP-3 presence, worse prognosis, and lymphatic dissemination. Although these findings are significant, gaps in knowledge of the formation of a premetastatic niche, the processes of intra- and extravasation, and the contributions of the ECM to SCC metastatic cell dormancy persist. Bridging these gaps requires novel in vitro systems and animal models that reproduce tumor-stromal interactions and spontaneous metastasis seen in the clinic. These advances will allow accurate assessment of laminins to predict responders to transforming growth factor-β inhibitors and immunotherapy, as well as potential combinatorial therapies with the standard of care. Such clinical interventions may drastically improve quality of life and patient survival by explicitly targeting SCC metastasis.
Collapse
Affiliation(s)
- John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian D. Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
3
|
Zhang S, Jin K, Li T, Zhou M, Yang W. Comprehensive analysis of INHBA: A biomarker for anti-TGFβ treatment in head and neck cancer. Exp Biol Med (Maywood) 2022; 247:1317-1329. [PMID: 35521936 PMCID: PMC9442453 DOI: 10.1177/15353702221085203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inhibin subunit βA (INHBA) is a protein-coding gene belonging to the transforming growth factor β (TGFβ) superfamily, which is associated with the development of a variety of cancers. However, the role of INHBA in head and neck squamous cell carcinoma (HNSC) remains unclear. The expression profile and prognostic significance of INHBA in HNSC were assessed using a variety of informatics methods. The level of INHBA expression was significantly higher in patients with HNSC, and it was correlated with sex, tumor-node-metastasis (TNM) stage, histological grade, and human papillomavirus (HPV) status. Kaplan-Meier (K-M) analysis indicated that poor overall survival (OS) and disease-free survival (DFS) were significantly associated with INHBA upregulation in HNSC. INHBA overexpression was validated as an independent poor prognostic factor by multivariate Cox regression, and including INHBA expression level in the prognostic model could increase prediction accuracy. In addition, copy number alterations (CNAs) of INHBA and miR-217-5p downregulation are potential mechanisms for elevated INHBA expression in HNSC. In conclusion, INHBA may represent a promising predictive biomarker and candidate target for anti-TGFβ therapy in HNSC.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Keyu Jin
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Tianle Li
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Maolin Zhou
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, Department of Oral and
Maxillofacial Surgery, Department of Medical Affairs, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China,Wenbin Yang.
| |
Collapse
|
4
|
Li Z, Zhu MX, Hu B, Liu W, Wu J, Wen C, Jian S, Yang G. Effects of suppressing Smads expression on wound healing in Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2020; 97:455-464. [PMID: 31870970 DOI: 10.1016/j.fsi.2019.12.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
As a specific pearl mussel in China, Hyriopsis cumingii has enormous economic value. However, the organism damage caused by pearl insertion is immeasurable. TGF-β/Smad signal transduction pathways are involved in all phases of wound healing. We have previously reported on two cytoplasmic signal transduction factors, Smad3 and Smad5 in mussel H. cumingii (named HcSmads), suggesting their involvements in wound healing. Here, Smad4 was cloned and described. The full length cDNA of HcSmad4 was 2543 bp encoded 515 amino acids. Deduced HcSmad4 protein possessed conserved MH1 and MH2 domains, nuclear location signals (NLS), nuclear exput signals (NES) and Smad activation domain (SAD). Transcripts of Smad3, 4 and 5 were constitutively expressed in all detected tissues, at highest levels in muscles. Furthermore, HcSmad4 mRNA levels were significantly increased at incision site post wounding, and expression of downstream target genes of Smad4, such as HcMMP1, HcMMP19, HcTIMP1 and HcTIMP2 were upregulated to a certain extent. Whatever knocked down HcSmad3/4 or treated by specific inhibitors of Smad 3 (SIS3), expression levels of these genes displayed a significantly downregulated tendency compared with the wound group. In addition, histological evaluation suggested that Smad3 knockdown or SIS3 treatment was accelerated wound healing, and then Smad4 knockdown delayed the process of wound healing in mussels. These data implicate that Smad3/4 play an important role in tissue repair in mollusks.
Collapse
Affiliation(s)
- Zhenfang Li
- Department of Aquaculture, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Ming Xing Zhu
- Department of Aquaculture, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Baoqing Hu
- Department of Aquaculture, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Wenxiu Liu
- Department of Aquaculture, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Jielian Wu
- Department of Aquaculture, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Chungen Wen
- Department of Aquaculture, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Shaoqing Jian
- Department of Aquaculture, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Gang Yang
- Department of Aquaculture, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
5
|
Hernandez AL, Young CD, Wang JH, Wang XJ. Lessons learned from SMAD4 loss in squamous cell carcinomas. Mol Carcinog 2019; 58:1648-1655. [PMID: 31140647 DOI: 10.1002/mc.23049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
SMAD4 is a potent tumor suppressor and a central mediator of the TGFß signaling pathway. SMAD4 genetic loss is frequent in squamous cell carcinomas (SCCs). Reports of SMAD4 expression in SCCs vary significantly possibly due to inter-tumor heterogeneity or technical reasons. SMAD4 loss is an initiation event for SCCs. In tumor epithelial cells, SMAD4 loss causes increased proliferation, decreased apoptosis, and "Brca-like" genomic instability associated with DNA repair defects. SMAD4 loss also plays a role in the expansion of cancer stem cells. Epithelial SMAD4 loss causes overexpression of TGFß that is released into the tumor microenvironment and contributes to SCC progression through proinflammatory and immune evasive mechanisms. SMAD4 loss, while not a direct therapeutic target, is associated with multiple targetable pathways that require further therapeutic studies. Altogether, SMAD4 loss is a potential biomarker in SCCs that should be further studied for its values in prognostic and therapeutic predictions. Such information will potentially guide future biomarker-driven clinical trial designs and improve SCC patient outcomes.
Collapse
Affiliation(s)
- Ariel L Hernandez
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Christian D Young
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado.,Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, School of Medicine, University of Colorado, Aurora, Colorado.,Research Service, Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|
6
|
Lennon S, Oweida A, Milner D, Phan AV, Bhatia S, Van Court B, Darragh L, Mueller AC, Raben D, Martínez-Torrecuadrada JL, Pitts TM, Somerset H, Jordan KR, Hansen KC, Williams J, Messersmith WA, Schulick RD, Owens P, Goodman KA, Karam SD. Pancreatic Tumor Microenvironment Modulation by EphB4-ephrinB2 Inhibition and Radiation Combination. Clin Cancer Res 2019; 25:3352-3365. [PMID: 30944125 DOI: 10.1158/1078-0432.ccr-18-2811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/14/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE A driving factor in pancreatic ductal adenocarcinoma (PDAC) treatment resistance is the tumor microenvironment, which is highly immunosuppressive. One potent immunologic adjuvant is radiotherapy. Radiation, however, has also been shown to induce immunosuppressive factors, which can contribute to tumor progression and formation of fibrotic tumor stroma. To capitalize on the immunogenic effects of radiation and obtain a durable tumor response, radiation must be rationally combined with targeted therapies to mitigate the influx of immunosuppressive cells and fibrosis. One such target is ephrinB2, which is overexpressed in PDAC and correlates negatively with prognosis.Experimental Design: On the basis of previous studies of ephrinB2 ligand-EphB4 receptor signaling, we hypothesized that inhibition of ephrinB2-EphB4 combined with radiation can regulate the microenvironment response postradiation, leading to increased tumor control in PDAC. This hypothesis was explored using both cell lines and in vivo human and mouse tumor models. RESULTS Our data show this treatment regimen significantly reduces regulatory T-cell, macrophage, and neutrophil infiltration and stromal fibrosis, enhances effector T-cell activation, and decreases tumor growth. Furthermore, our data show that depletion of regulatory T cells in combination with radiation reduces tumor growth and fibrosis. CONCLUSIONS These are the first findings to suggest that in PDAC, ephrinB2-EphB4 interaction has a profibrotic, protumorigenic role, presenting a novel and promising therapeutic target.
Collapse
Affiliation(s)
- Shelby Lennon
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ayman Oweida
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dallin Milner
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andy V Phan
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laurel Darragh
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adam C Mueller
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jorge L Martínez-Torrecuadrada
- Crystallography and Protein Engineering Unit, Structural Biology Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Todd M Pitts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly R Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jason Williams
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wells A Messersmith
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard D Schulick
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Department of Veterans Affairs, Denver, Colorado
| | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
7
|
Shee K, Yang W, Hinds JW, Hampsch RA, Varn FS, Traphagen NA, Patel K, Cheng C, Jenkins NP, Kettenbach AN, Demidenko E, Owens P, Faber AC, Golub TR, Straussman R, Miller TW. Therapeutically targeting tumor microenvironment-mediated drug resistance in estrogen receptor-positive breast cancer. J Exp Med 2018; 215:895-910. [PMID: 29436393 PMCID: PMC5839765 DOI: 10.1084/jem.20171818] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/29/2017] [Accepted: 01/01/2018] [Indexed: 12/22/2022] Open
Abstract
Tumor microenvironment (TME) cytokine screening revealed FGF2 as a clinically relevant mechanism of resistance to anti-estrogens, mTORC1 inhibition, and PI3K inhibition in ER+ breast cancer. Shee et al. highlight an underdeveloped aspect of precision oncology: treating patients according to their TME constitution. Drug resistance to approved systemic therapies in estrogen receptor–positive (ER+) breast cancer remains common. We hypothesized that factors present in the human tumor microenvironment (TME) drive drug resistance. Screening of a library of recombinant secreted microenvironmental proteins revealed fibroblast growth factor 2 (FGF2) as a potent mediator of resistance to anti-estrogens, mTORC1 inhibition, and phosphatidylinositol 3-kinase inhibition in ER+ breast cancer. Phosphoproteomic analyses identified ERK1/2 as a major output of FGF2 signaling via FGF receptors (FGFRs), with consequent up-regulation of Cyclin D1 and down-regulation of Bim as mediators of drug resistance. FGF2-driven drug resistance in anti-estrogen–sensitive and –resistant models, including patient-derived xenografts, was reverted by neutralizing FGF2 or FGFRs. A transcriptomic signature of FGF2 signaling in primary tumors predicted shorter recurrence-free survival independently of age, grade, stage, and FGFR amplification status. These findings delineate FGF2 signaling as a ligand-based drug resistance mechanism and highlights an underdeveloped aspect of precision oncology: characterizing and treating patients according to their TME constitution.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Wei Yang
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - John W Hinds
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Riley A Hampsch
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Frederick S Varn
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Nicole A Traphagen
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Kishan Patel
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Chao Cheng
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Nicole P Jenkins
- Department of Biochemistry and Cell Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Philip Owens
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN.,Research Medicine, Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Anthony C Faber
- VCU Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Todd W Miller
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH .,Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| |
Collapse
|
8
|
The role of TGFβ in wound healing pathologies. Mech Ageing Dev 2017; 172:51-58. [PMID: 29132871 DOI: 10.1016/j.mad.2017.11.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 12/25/2022]
Abstract
Wound healing is one of the most complex processes in multicellular organisms, involving numerous intra- and intercellular signalling pathways in various cell types. It involves extensive communication between the cellular constituents of diverse skin compartments and its extracellular matrix. Miscommunication during healing may have two distinct damaging consequences: the development of a chronic wound or the formation of a hypertrophic scar/keloid. Chronic wounds are defined as barrier defects that have not proceeded through orderly and timely reparation to regain structural and functional integrity. Several growth factors are involved in wound healing, of which transforming growth factor beta (TGFβ) is of particular importance for all phases of this procedure. It exerts pleiotropic effects on wound healing by regulating cell proliferation, differentiation, extracellular matrix production, and modulating the immune response. In this review we are presenting the role of TGFβ in physiological and pathological wound healing. We show that the context-dependent nature of the TGFβ signaling pathways on wound healing is the biggest challenge in order to gain a therapeutically applicable comprehensive knowledge of their specific involvement in chronic wounds.
Collapse
|
9
|
Jian Z, Strait A, Jimeno A, Wang XJ. Cancer Stem Cells in Squamous Cell Carcinoma. J Invest Dermatol 2016; 137:31-37. [PMID: 27638386 DOI: 10.1016/j.jid.2016.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/11/2016] [Accepted: 07/31/2016] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are found in many cancer types, including squamous cell carcinoma (SCC). CSCs initiate cancer formation and are linked to metastasis and resistance to therapies. Studies have revealed that several distinct CSC populations coexist in SCC and that tumor initiation and metastatic potential of these populations can be uncoupled. Therefore, it is critical to understand CSC biology to develop novel CSC-targeted therapies for patients with SCC with poor prognoses. This review compares the properties of CSCs in SCC with normal stem cells in the skin, summarizes current advances and characteristics of CSCs, and considers the challenges for CSC-targeted treatment of SCC.
Collapse
Affiliation(s)
- Zhe Jian
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Alexander Strait
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Antonio Jimeno
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
10
|
Abstract
Wounds are among the most common, painful, debilitating and costly conditions in older adults. Disruption of the angiotensin type 1 receptors (AT1R), has been associated with impaired wound healing, suggesting a critical role for AT1R in this repair process. Biological functions of angiotensin type 2 receptors (AT2R) are less studied. We investigated effects of genetically disrupting AT2R on rate and quality of wound healing. Our results suggest that AT2R effects on rate of wound closure depends on the phase of wound healing. We observed delayed healing during early phase of wound healing (inflammation). An accelerated healing rate was seen during later stages (proliferation and remodeling). By day 12, fifty percent of AT2R−/− mice had complete wound closure as compared to none in either C57/BL6 or AT1R−/− mice. There was a significant increase in AT1R, TGFβ1 and TGFβ2 expression during the proliferative and remodeling phases in AT2R−/− mice. Despite the accelerated closure rate, AT2R−/− mice had more fragile healed skin. Our results suggest that in the absence of AT2R, wound healing rate is accelerated, but yielded worse skin quality. Elucidating the contribution of both of the angiotensin receptors may help fine tune future intervention aimed at wound repair in older individuals.
Collapse
|
11
|
Pickup MW, Hover LD, Guo Y, Gorska AE, Chytil A, Novitskiy SV, Moses HL, Owens P. Deletion of the BMP receptor BMPR1a impairs mammary tumor formation and metastasis. Oncotarget 2016; 6:22890-904. [PMID: 26274893 PMCID: PMC4673207 DOI: 10.18632/oncotarget.4413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/27/2015] [Indexed: 11/29/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are secreted cytokines/growth factors belonging to the Transforming Growth Factor β (TGFβ) family. BMP ligands have been shown to be overexpressed in human breast cancers. Normal and cancerous breast tissue display active BMP signaling as indicated by phosphorylated Smads 1, 5 and 9. We combined mice expressing the MMTV.PyMT oncogene with mice having conditional knockout (cKO) of BMP receptor type 1a (BMPR1a) using whey acidic protein (WAP)-Cre and found this deletion resulted in delayed tumor onset and significantly extended survival. Immunofluorescence staining revealed that cKO tumors co-expressed Keratin 5 and mesenchymal cell markers such as Vimentin. This indicates that epithelial-to-mesenchymal (EMT)-like transitions occurred in cKO tumors. We performed microarray analysis on these tumors and found changes that support EMT-like changes. We established primary tumor cell lines and found that BMPR1a cKO had slower growth in vitro and in vivo upon implantation. cKO tumor cells had reduced migration in vitro. We analyzed human databases from TCGA and survival data from microarrays to confirm BMPR1a tumor promoting functions, and found that high BMPR1a gene expression correlates with decreased survival regardless of molecular breast cancer subtype. In conclusion, the data indicate that BMP signaling through BMPR1a functions as a tumor promoter.
Collapse
Affiliation(s)
- Michael W Pickup
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, CA, USA
| | - Laura D Hover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Vanderbilt Ingram Cancer Center, Center for Quantitative Sciences, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Agnieszka E Gorska
- Department of Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Anna Chytil
- Department of Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Sergey V Novitskiy
- Department of Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Harold L Moses
- Department of Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Philip Owens
- Department of Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
12
|
Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 2016; 73:3861-85. [PMID: 27180275 PMCID: PMC5021733 DOI: 10.1007/s00018-016-2268-0] [Citation(s) in RCA: 1024] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
The ability to rapidly restore the integrity of a broken skin barrier is critical and is the ultimate goal of therapies for hard-to-heal-ulcers. Unfortunately effective treatments to enhance healing and reduce scarring are still lacking. A deeper understanding of the physiology of normal repair and of the pathology of delayed healing is a prerequisite for the development of more effective therapeutic interventions. Transition from the inflammatory to the proliferative phase is a key step during healing and accumulating evidence associates a compromised transition with wound healing disorders. Thus, targeting factors that impact this phase transition may offer a rationale for therapeutic development. This review summarizes mechanisms regulating the inflammation-proliferation transition at cellular and molecular levels. We propose that identification of such mechanisms will reveal promising targets for development of more effective therapies.
Collapse
|
13
|
A brief update on potential molecular mechanisms underlying antimicrobial and wound-healing potency of snake venom molecules. Biochem Pharmacol 2016; 115:1-9. [PMID: 26975619 DOI: 10.1016/j.bcp.2016.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
Infectious diseases remain a significant cause of morbidity and mortality worldwide. A wide range of diverse, novel classes of natural antibiotics have been isolated from different snake species in the recent past. Snake venoms contain diverse groups of proteins with potent antibacterial activity against a wide range of human pathogens. Some snake venom molecules are pharmacologically attractive, as they possess promising broad-spectrum antibacterial activities. Furthermore, snake venom proteins (SVPs)/peptides also bind to integrins with high affinity, thereby inhibiting cell adhesion and accelerating wound healing in animal models. Thus, SVPs are a potential alternative to chemical antibiotics. The mode of action for many antibacterial peptides involves pore formation and disruption of the plasma membrane. This activity often includes modulation of nuclear factor kappa B (NF-κB) activation during skin wound healing. The NF-κB pathway negatively regulates the transforming growth factor (TGF)-β1/Smad pathway by inducing the expression of Smad7 and eventually reducing in vivo collagen production at the wound sites. In this context, SVPs that regulate the NF-κB signaling pathway may serve as potential targets for drug development.
Collapse
|
14
|
Shen LI, Liu L, Yang Z, Jiang N. Identification of genes and signaling pathways associated with squamous cell carcinoma by bioinformatics analysis. Oncol Lett 2015; 11:1382-1390. [PMID: 26893747 PMCID: PMC4734263 DOI: 10.3892/ol.2015.4051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 11/02/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the genes and signaling pathways associated with squamous cell carcinoma (SCC) by bioinformatics analysis. For this purpose, the GSE2503 was downloaded from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) between 6 normal skin and 5 SCC samples were analyzed using the Linear Models for Microarray Data package. Gene Ontology (GO) and pathway enrichment analysis of DEGs were performed, followed by functional annotation and construction of a protein-protein interaction (PPI) network. Subnetwork modules were subsequently identified and analyzed. A total of 181 DEGs, including 95 upregulated and 86 downregulated DEGs, were identified, in addition to 20 GO biological processes terms enriched by upregulated DEGs and 14 enriched by downregulated DEGs. The upregulated DEGs were enriched in 18 pathways, and the downregulated DEGs were enriched in 7 pathways. Following functional annotation, three upregulated transcription factors (TFs), including hypoxia inducible factor 1, alpha subunit (HIF1A), and six downregulated TFs were identified. In the PPI network and subnetwork, matrix metallopeptidase 1 (MMP1), also known as interstitial collagenase, and interleukin 8 (IL8) were the hub genes with the highest degree of connectivity (degree =8). Integrin alpha (ITGA)6 and 2 were enriched in several pathways, including focal adhesion and extracellular matrix-receptor interaction. DEGs of SCC were primarily enriched in pathways associated with cancer and cell adhesion. Therefore, DEGs such as IL8, MMP1, HIF1A, ITGA6 and ITGA2 may be potential targets for the diagnosis and treatment of SCC.
Collapse
Affiliation(s)
- L I Shen
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China; Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Linbo Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenyong Yang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Nan Jiang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
15
|
Hover LD, Young CD, Bhola NE, Wilson AJ, Khabele D, Hong CC, Moses HL, Owens P. Small molecule inhibitor of the bone morphogenetic protein pathway DMH1 reduces ovarian cancer cell growth. Cancer Lett 2015; 368:79-87. [PMID: 26235139 DOI: 10.1016/j.canlet.2015.07.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 01/06/2023]
Abstract
The bone morphogenetic protein (BMP) pathway belonging to the Transforming Growth Factor beta (TGFβ) family of secreted cytokines/growth factors is an important regulator of cancer. BMP ligands have been shown to play both tumor suppressive and promoting roles in human cancers. We have found that BMP ligands are amplified in human ovarian cancers and that BMP receptor expression correlates with poor progression-free-survival (PFS). Furthermore, active BMP signaling has been observed in human ovarian cancer tissue. We also determined that ovarian cancer cell lines have active BMP signaling in a cell autonomous fashion. Inhibition of BMP signaling with a small molecule receptor kinase antagonist is effective at reducing ovarian tumor sphere growth. Furthermore, BMP inhibition can enhance sensitivity to Cisplatin treatment and regulates gene expression involved in platinum resistance in ovarian cancer. Overall, these studies suggest targeting the BMP pathway as a novel source to enhance chemo-sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Laura D Hover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Christian D Young
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil E Bhola
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew J Wilson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA; Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| | - Dineo Khabele
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA; Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| | - Charles C Hong
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA; Department of Medicine, Cardiovascular, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harold L Moses
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip Owens
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
Owens P, Pickup MW, Novitskiy SV, Giltnane JM, Gorska AE, Hopkins CR, Hong CC, Moses HL. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene 2015; 34:2437-49. [PMID: 24998846 PMCID: PMC4689138 DOI: 10.1038/onc.2014.189] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted cytokines/growth factors that have differing roles in cancer. BMPs are overexpressed in human breast cancers, but loss of BMP signaling in mammary carcinomas can accelerate metastasis. We show that human breast cancers display active BMP signaling, which is rarely downregulated or homozygously deleted. We hypothesized that systemic inhibition of BMP signaling in both the tumor and the surrounding microenvironment could prevent tumor progression and metastasis. To test this hypothesis, we used DMH1, a BMP antagonist, in MMTV.PyVmT expressing mice. Treatment with DMH1 reduced lung metastasis and the tumors were less proliferative and more apoptotic. In the surrounding tumor microenvironment, treatment with DMH1 altered fibroblasts, lymphatic vessels and macrophages to be less tumor promoting. These results indicate that inhibition of BMP signaling may successfully target both the tumor and the surrounding microenvironment to reduce tumor burden and metastasis.
Collapse
Affiliation(s)
- P Owens
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M W Pickup
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S V Novitskiy
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J M Giltnane
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - A E Gorska
- Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C R Hopkins
- 1] Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Department of Chemistry, Vanderbilt University College of Arts and Science, Nashville, TN, USA
| | - C C Hong
- 1] Research Medicine, Veterans Affairs TVHS, Nashville, TN, USA [2] Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - H L Moses
- 1] Department of Cancer Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
17
|
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 2014; 1:87-105. [PMID: 25401122 PMCID: PMC4232216 DOI: 10.1016/j.gendis.2014.07.005] [Citation(s) in RCA: 730] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
Collapse
Affiliation(s)
- Richard N. Wang
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jordan Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Michael Peabody
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Sahitya Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Christine Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alan Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - James Mok
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue L. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Pickup MW, Hover LD, Polikowsky ER, Chytil A, Gorska AE, Novitskiy SV, Moses HL, Owens P. BMPR2 loss in fibroblasts promotes mammary carcinoma metastasis via increased inflammation. Mol Oncol 2014; 9:179-91. [PMID: 25205038 DOI: 10.1016/j.molonc.2014.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 01/22/2023] Open
Abstract
Bone Morphogenetic Protein (BMP) receptors mediate a diverse range of signals to regulate both development and disease. BMP activity has been linked to both tumor promoting and suppressive functions in both tumor cells and their surrounding microenvironment. We sought to investigate the requirement for BMPR2 in stromal fibroblasts during mammary tumor formation and metastasis. We utilized FSP1 (Fibroblast Specific Protein-1) promoter driven Cre to genetically delete BMPR2 in mice expressing the MMTV.PyVmT mammary carcinoma oncogene. We found that abrogation of stromal BMPR2 expression via FSP1 driven Cre resulted in increased tumor metastasis. Additionally, similar to epithelial BMPR2 abrogation, stromal loss of BMPR2 results in increased inflammatory cell infiltration. We proceeded to isolate and establish fibroblast cell lines without BMPR2 and found a cell autonomous increase in inflammatory cytokine secretion. Fibroblasts were co-implanted with syngeneic tumor cells and resulted in accelerated tumor growth and increased metastasis when fibroblasts lacked BMPR2. We observed that the loss of BMPR2 results in increased chemokine expression, which facilitates inflammation by a sustained increase in myeloid cells. The chemokines increased in BMPR2 deleted cells correlated with poor outcome in human breast cancer patients. We conclude that BMPR2 has tumor suppressive functions in the stroma by regulating inflammation.
Collapse
Affiliation(s)
| | - Laura D Hover
- Department of Pathology, Microbiology and Immunology, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Haertel E, Werner S, Schäfer M. Transcriptional regulation of wound inflammation. Semin Immunol 2014; 26:321-8. [DOI: 10.1016/j.smim.2014.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/18/2014] [Indexed: 12/23/2022]
|
20
|
Ramirez H, Patel SB, Pastar I. The Role of TGFβ Signaling in Wound Epithelialization. Adv Wound Care (New Rochelle) 2014; 3:482-491. [PMID: 25032068 DOI: 10.1089/wound.2013.0466] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Indexed: 01/06/2023] Open
Abstract
Significance: Transforming growth factor β (TGFβ) has a crucial role in maintaining skin homeostasis. TGFβ signaling is important for re-epithelialization, inflammation, angiogenesis, and granulation tissue formation during wound healing. This review will discuss the most important findings regarding the role of TGFβ in epidermal maintenance and its restoration after injury. Recent Advances: Latest findings on the role of TGFβ signaling in normal and impaired wound healing, including the role of TGFβ pathway in tissue regeneration observed in super-healer animal models, will be reviewed. Critical Issues: The TGFβ pathway is attenuated in nonhealing wounds. Observed suppression of TGFβ signaling in chronic ulcers may contribute to the loss of tissue homeostasis and the inability of keratinocytes to migrate and close a wound. Future Directions: A better understanding of TGFβ signaling may provide new insights not only in the normal epithelialization process, but also in tissue regeneration. Future studies focused on TGFβ-mediated crosstalk between multiple cell types involved in wound healing may lead to development of novel therapeutic advances for chronic wounds.
Collapse
Affiliation(s)
- Horacio Ramirez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
- PIBS Human Genetics and Genomics Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Shailee B. Patel
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
21
|
Archambeault DR, Yao HHC. Loss of smad4 in Sertoli and Leydig cells leads to testicular dysgenesis and hemorrhagic tumor formation in mice. Biol Reprod 2014; 90:62. [PMID: 24501173 DOI: 10.1095/biolreprod.113.111393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As the central component of canonical TGFbeta superfamily signaling, SMAD4 is a critical regulator of organ development, patterning, tumorigenesis, and many other biological processes. Because numerous TGFbeta superfamily ligands are expressed in developing testes, there may exist specific requirements for SMAD4 in individual testicular cell types. Previously, we reported that expansion of the fetal testis cords requires expression of SMAD4 by the Sertoli cell lineage. To further uncover the role of Smad4 in murine testes, we produced conditional knockout mice lacking Smad4 in either Leydig cells or in both Sertoli and Leydig cells simultaneously. Loss of Smad4 concomitantly in Sertoli and Leydig cells led to underdevelopment of the testis cords during fetal life and mild testicular dysgenesis in young adulthood (decreased testis size, partially dysgenic seminiferous tubules, and low sperm production). When the Sertoli/Leydig cell Smad4 conditional knockout mice aged (56- to 62-wk old), the testis phenotypes became exacerbated with the appearance of hemorrhagic tumors, Leydig cell adenomas, and a complete loss of spermatogenesis. In contrast, loss of Smad4 in Leydig cells alone did not appreciably alter fetal and adult testis development. Our findings support a cell type-specific requirement of Smad4 in testis development and suppression of testicular tumors.
Collapse
|
22
|
Zhu LH, Xu JX, Zhu SW, Cai X, Yang SF, Chen XL, Guo Q. Gene expression profiling analysis reveals weaning-induced cell cycle arrest and apoptosis in the small intestine of pigs. J Anim Sci 2014; 92:996-1006. [PMID: 24496830 DOI: 10.2527/jas.2013-7551] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In swine production, weaning is a critical event for porcine weaning-associated disease, such as postweaning stress syndrome, which involves intestinal dysfunction. However, little is known about the molecular mechanisms of intestinal dysfunction in pigs during weaning. To gain new insight into the interaction between weaning stress and intestinal function, 4 pigs at 25 d of age for each of the weaning and the suckling groups for a total of 40 pigs were used to analyze changes in the genomic expression in the intestines of weaned pigs by microarray analysis. Four hundred forty-five genes showed altered expression after weaning treatment (286 upregulated and 159 downregulated) at the cutoff criteria of the fold change ≥1.5 or <0.67 and P < 0.05. Most of these altered genes are cellular process related and regulators that may be involved in biological regulation, developmental processes, and metabolic processes. A keen interest was paid in deciphering expression changes in apoptosis or cell cycle control genes. The altered genomic expression of 8 selected genes related to the cell cycle process was confirmed by quantitative real-time PCR. Of the 8 genes tested, increased (P < 0.05) expression of genes involved in apoptosis (cytochrome c, somatic, and ataxia telangiectasia mutated), pro-inflammatory signals (tumor necrosis factor and NO synthases 2), and a transcription factor (nuclear factor of activated T cells, cytoplasmic, and calcineurin-dependent 2) were detected in weaned pigs compared with suckling pigs, but the expression of cell cycle control-related genes, such as E2F transcription factor 5-like, was lower (P < 0.05) in weaned pigs than suckling pigs. Weaned pigs also showed increased interleukin 8 expression and decreased SMAD family member 4 expression although no significant differences (P > 0.05) were observed when compared with the suckling pigs. These selected genes likely indicate that weaning induced cell cycle arrest, enhanced apoptosis, and inhibited cell proliferation. The results of this study provide a basis for understanding the molecular pathogenesis of weaning treatment.
Collapse
Affiliation(s)
- L H Zhu
- Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Cutaneous wound healing assay is important to address many key questions including (1) migration ability of different cells; (2) communication between the different cell types such as keratinocytes, fibroblasts, and immune cells; (3) understanding the cell-autonomous and non-cell-autonomous function(s) of the different cells; and (4) gene regulation in healing processes. Wound healing studies can be used to test new treatment modalities, function of new drugs/compounds, and stem cell-based therapies on the different stages of healing and for accelerating wound healing in patients with compromised healing. In this chapter, we have described a simple step-by-step protocol to generate full-thickness cutaneous wounds in the dorsal skin of mice, followed by collecting the post-wounding biopsied materials on specific days for histological and immunohistochemical analyses and for RNA and protein extractions.
Collapse
Affiliation(s)
- Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 1601 SW Jefferson str, Corvallis, OR, 97331, USA,
| |
Collapse
|
24
|
Bellavia G, Fasanaro P, Melchionna R, Capogrossi MC, Napolitano M. Transcriptional control of skin reepithelialization. J Dermatol Sci 2014; 73:3-9. [DOI: 10.1016/j.jdermsci.2013.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 11/16/2022]
|
25
|
Xie Z, Paras CB, Weng H, Punnakitikashem P, Su LC, Vu K, Tang L, Yang J, Nguyen KT. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 2013; 9:9351-9. [PMID: 23917148 DOI: 10.1016/j.actbio.2013.07.030] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023]
Abstract
The objective of this research is to develop a dual growth factor-releasing nanoparticle-in-nanofiber system for wound healing applications. In order to mimic and promote the natural healing procedure, chitosan and poly(ethylene oxide) were electrospun into nanofibrous meshes as mimics of extracellular matrix. Vascular endothelial growth factor (VEGF) was loaded within nanofibers to promote angiogenesis in the short term. In addition, platelet-derived growth factor-BB (PDGF-BB) encapsulated poly(lactic-co-glycolic acid) nanoparticles were embedded inside nanofibers to generate a sustained release of PDGF-BB for accelerated tissue regeneration and remodeling. In vitro studies revealed that our nanofibrous composites delivered VEGF quickly and PDGF-BB in a relayed manner, supported fibroblast growth and exhibited anti-bacterial activities. A preliminary in vivo study performed on normal full thickness rat skin wound models demonstrated that nanofiber/nanoparticle scaffolds significantly accelerated the wound healing process by promoting angiogenesis, increasing re-epithelialization and controlling granulation tissue formation. For later stages of healing, evidence also showed quicker collagen deposition and earlier remodeling of the injured site to achieve a faster full regeneration of skin compared to the commercial Hydrofera Blue® wound dressing. These results suggest that our nanoparticle-in-nanofiber system could provide a promising treatment for normal and chronic wound healing.
Collapse
Affiliation(s)
- Zhiwei Xie
- Department of Bioengineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Finnson KW, Arany PR, Philip A. Transforming Growth Factor Beta Signaling in Cutaneous Wound Healing: Lessons Learned from Animal Studies. Adv Wound Care (New Rochelle) 2013; 2:225-237. [PMID: 24761336 DOI: 10.1089/wound.2012.0419] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 12/11/2022] Open
Abstract
SIGNIFICANCE Wound healing is a complex physiological process involving a multitude of growth factors, among which transforming growth factor beta (TGF-β) has the broadest spectrum of effects. Animal studies have provided key information on the mechanisms of TGF-β action in wound healing and have guided the development of therapeutic strategies targeting the TGF-β pathway to improve wound healing and scarring outcome. RECENT ADVANCES Development of tissue-specific expression systems for overexpression or knockout of TGF-β signaling pathway components has led to novel insight into the role of TGF-β signaling in wound healing. This work has also identified molecules that might serve as molecular targets for the treatment of pathological skin conditions such as chronic wounds and excessive scarring (fibrosis). CRITICAL ISSUES Many of the mouse models with genetic alterations in the TGF-β signaling pathway develop an underlying skin abnormality, which may pose some limitations on the interpretation of wound-healing results obtained in these animals. Also, TGF-β's pleiotropic effects on many cell types throughout all phases of wound healing present a challenge in designing specific strategies for targeting the TGF-β signaling pathway to promote wound healing or reduce scarring. FUTURE DIRECTIONS Further characterization of TGF-β signaling pathway components using inducible tissue-specific overexpression or knockout technology will be needed to corroborate results obtained in mouse models that display a skin phenotype, and to better understand the role of TGF-β signaling during distinct phases of the wound-healing process. Such studies will also provide a better understanding of how TGF-β mediates its autocrine, paracrine, and double paracrine effects on cellular responses in vivo during wound healing.
Collapse
Affiliation(s)
- Kenneth W. Finnson
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal General Hospital, Montreal, Canada
| | - Praveen R. Arany
- Cell Regulation and Control Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal General Hospital, Montreal, Canada
| |
Collapse
|
27
|
Vorstenbosch J, Gallant-Behm C, Trzeciak A, Roy S, Mustoe T, Philip A. Transgenic mice overexpressing CD109 in the epidermis display decreased inflammation and granulation tissue and improved collagen architecture during wound healing. Wound Repair Regen 2013; 21:235-46. [DOI: 10.1111/wrr.12023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 11/27/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Joshua Vorstenbosch
- Department of Surgery; Division of Plastic Surgery; McGill University; Montréal; Quebec; Canada
| | - Corrie Gallant-Behm
- Division of Plastic and Reconstructive Surgery; Northwestern University; Chicago; Illinois
| | - Alissa Trzeciak
- Department of Surgery; Division of Plastic Surgery; McGill University; Montréal; Quebec; Canada
| | - Stéphane Roy
- Faculté de Médecine Dentaire; Université de Montréal; Montréal; Quebec; Canada
| | - Thomas Mustoe
- Division of Plastic and Reconstructive Surgery; Northwestern University; Chicago; Illinois
| | - Anie Philip
- Department of Surgery; Division of Plastic Surgery; McGill University; Montréal; Quebec; Canada
| |
Collapse
|
28
|
|
29
|
Nie J, Fu X, Han W. Microenvironment-dependent homeostasis and differentiation of epidermal basal undifferentiated keratinocytes and their clinical applications in skin repair. J Eur Acad Dermatol Venereol 2012; 27:531-5. [PMID: 23030703 DOI: 10.1111/j.1468-3083.2012.04704.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skin homeostasis is maintained by controlling the balance between proliferation and differentiation of epidermal stem cells. The microenvironment, including extrinsic stresses, growth factors, soluble molecules, cell-ECM and cell-cell communications, plays an important role in cell fate determination in vivo and in vitro. In response to external signals, keratinocytes cooperate with other cell types to modulate and facilitate the wound microenvironment during wound healing; however, the aberrant signals or conjunctions in the environment will lead to pathologic abnormalities. In addition, despite some drawbacks, the epidermal stem-cellbased bioengineered skin substitutes have greatly improved the quality of cutaneous repair. Thus, exploring the characteristics and regulation mechanisms of microenvironment-dependent homeostasis and differentiation of epidermal basal undifferentiated keratinocytes is necessary to understand skin development and wound repair and to design novel therapeutic strategies for skin wound healing.
Collapse
Affiliation(s)
- J Nie
- Department of Molecular Biology, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | | | | |
Collapse
|
30
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|
31
|
Yang L, Li W, Wang S, Wang L, Li Y, Yang X, Peng R. Smad4 disruption accelerates keratinocyte reepithelialization in murine cutaneous wound repair. Histochem Cell Biol 2012; 138:573-82. [PMID: 22644379 DOI: 10.1007/s00418-012-0974-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2012] [Indexed: 12/28/2022]
Abstract
Keratinocyte reepithelialization is a rate-limiting event in cutaneous wound repair, which involves the migration and proliferation of keratinocytes to cover the denuded dermal surface. Transforming growth factor-β1 (TGF-β1) has the ability to induce epithelial cell migration while inhibiting proliferation, and controversial results have been generated regarding the effect of TGF-β signaling on reepithelialization. In this study, full-thickness skin wounds were made in keratinocyte-specific Smad4 knockout and the control mice. The wound closure, reepithelialization, keratinocyte proliferation, myofibroblast numbers and collagen deposition of were assessed. The results showed that the proliferation of keratinocytes increased, which accelerated the reepithelialization, and led to faster wound repair in the epidermis of Smad4 mutant mice. Upregulation of keratin 17, 14-3-3 sigma and phosphorylated AKT in the hyperproliferative epidermis may be correlated with the accelerated reepithelialization. We conclude that Smad4 plays an inhibitory role in the keratinocyte-mediated reepithelialization of wound healing.
Collapse
Affiliation(s)
- Leilei Yang
- Beijing Institute of Radiation Medicine, 27 Tai-Ping Road, Beijing 100850, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
Padmakumar VC, Speer K, Pal-Ghosh S, Masiuk KE, Ryscavage A, Dengler SL, Hwang S, Edwards JC, Coppola V, Tessarollo L, Stepp MA, Yuspa SH. Spontaneous skin erosions and reduced skin and corneal wound healing characterize CLIC4(NULL) mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:74-84. [PMID: 22613027 DOI: 10.1016/j.ajpath.2012.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 02/21/2012] [Accepted: 03/20/2012] [Indexed: 01/29/2023]
Abstract
Cutaneous wound healing is a complex process involving blood clotting, inflammation, migration of keratinocytes, angiogenesis, and, ultimately, tissue remodeling and wound closure. Many of these processes involve transforming growth factor-β (TGF-β) signaling, and mice lacking components of the TGF-β signaling pathway are defective in wound healing. We show herein that CLIC4, an integral component of the TGF-β pathway, is highly up-regulated in skin wounds. We genetically deleted murine CLIC4 and generated a colony on a C57Bl/6 background. CLIC4(NULL) mice were viable and fertile but had smaller litters than did wild-type mice. After 6 months of age, up to 40% of null mice developed spontaneous skin erosions. Reepithelialization of induced full-thickness skin wounds and superficial corneal wounds was delayed in CLIC4(NULL) mice, resolution of inflammation was delayed, and expression of β4 integrin and p21 was reduced in lysates of constitutive and wounded CLIC4(NULL) skin. The induced level of phosphorylated Smad2 in response to TGF-β was reduced in cultured CLIC4(NULL) keratinocytes relative to in wild-type cells, and CLIC4(NULL) keratinocytes migrated slower than did wild-type keratinocytes and did not increase migration in response to TGF-β. CLIC4(NULL) keratinocytes were also less adherent on plates coated with matrix secreted by wild-type keratinocytes. These results indicate that CLIC4 participates in skin healing and corneal wound reepithelialization through enhancement of epithelial migration by a mechanism that may involve a compromised TGF-β pathway.
Collapse
Affiliation(s)
- V C Padmakumar
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Malkoski SP, Haeger SM, Cleaver TG, Rodriguez KJ, Li H, Lu SL, Feser WJ, Barón AE, Merrick D, Lighthall JG, Ijichi H, Franklin W, Wang XJ. Loss of transforming growth factor beta type II receptor increases aggressive tumor behavior and reduces survival in lung adenocarcinoma and squamous cell carcinoma. Clin Cancer Res 2012; 18:2173-83. [PMID: 22399565 DOI: 10.1158/1078-0432.ccr-11-2557] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lung adenocarcinoma and lung squamous cell carcinoma (SCC) are the most common non-small cell lung cancer (NSCLC) subtypes. This study was designed to determine whether reduced expression of TGFβ type II receptor (TGFβRII) promotes lung adenocarcinoma and SCC carcinogenesis. EXPERIMENTAL DESIGN We examined TGFβRII expression at the protein and mRNA levels in human NSCLC samples and assessed the relationship between TGFβRII expression and clinicopathologic parameters. To determine whether sporadic TGFβRII deletion in airway epithelial cells induces NSCLC formation, we targeted TGFβRII deletion alone and in combination with oncogenic Kras(G12D) to murine airways using a keratin 5 (K5) promoter and inducible Cre recombinase. RESULTS Reduced TGFβRII expression in human NSCLC is associated with male gender, smoking, SCC histology, reduced differentiation, increased tumor stage, increased nodal metastasis, and reduced survival. Homozygous or heterozygous TGFβRII deletion in mouse airway epithelia increases the size and number of Kras(G12D)-initiated adenocarcinoma and SCC. TGFβRII deletion increases proliferation, local inflammation, and TGFβ ligand elaboration; TGFβRII knockdown in airway epithelial cells increases migration and invasion. CONCLUSIONS Reduced TGFβRII expression in human NSCLC is associated with more aggressive tumor behavior and inflammation that is, at least partially, mediated by increased TGFβ1 expression. TGFβRII deletion in mouse airway epithelial cells promotes adenocarcinoma and SCC formation, indicating that TGFβRII loss plays a causal role in lung carcinogenesis. That TGFβRII shows haploid insufficiency suggests that a 50% TGFβRII protein reduction would negatively impact lung cancer prognosis.
Collapse
Affiliation(s)
- Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Pathology, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Malkoski SP, Wang XJ. Two sides of the story? Smad4 loss in pancreatic cancer versus head-and-neck cancer. FEBS Lett 2012; 586:1984-92. [PMID: 22321641 DOI: 10.1016/j.febslet.2012.01.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 12/31/2022]
Abstract
TGFβ signaling Smads (Smad2, 3, and 4) were suspected tumor suppressors soon after their discovery. Nearly two decades of research confirmed this role and revealed other divergent and cancer-specific functions including paradoxical tumor promotion effects. Although Smad4 is the most potent tumor suppressor, its functions are highly context-specific as exemplified by pancreatic cancer and head-and-neck cancer: in pancreatic cancer, Smad4 loss cannot initiate tumor formation but promotes metastases while in head-and-neck cancer Smad4 loss promotes cancer progression but also initiates tumor formation, likely through effects on genomic instability. The differing consequences of impaired Smad signaling in human cancers and the molecular mechanisms that underpin these differences will have important implications for the design and application of novel targeted therapies.
Collapse
Affiliation(s)
- Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | |
Collapse
|
35
|
Han G, Li F, Ten Dijke P, Wang XJ. Temporal smad7 transgene induction in mouse epidermis accelerates skin wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 179:1768-79. [PMID: 21944279 DOI: 10.1016/j.ajpath.2011.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 05/31/2011] [Accepted: 06/09/2011] [Indexed: 01/14/2023]
Abstract
The expression of Smad7, a tumor growth factor-β (TGFβ) antagonist, is increased during cutaneous wound healing. To assess this significance, we temporally induced Smad7 transgene expression in wounded skin in gene-switch-Smad7 transgenic (Smad7 tg) mice. Smad7 induction in epidermal keratinocytes caused an increase in keratinocyte proliferation with reduced Smad2 activation, indicating that Smad7 abrogated TGFβ-mediated growth inhibition. Additionally, wounded skin from Smad7 tg mice exhibited accelerated re-epithelialization, with increased activation of extracellular signal-regulated kinase (Erk), and an in vitro migration assay revealed that Erk activation contributed to Smad7-mediated keratinocyte migration. Notably, epidermis-specific Smad7 transgene expression also has a profound effect on the wound stroma, resulting in reduced inflammation, angiogenesis, and production of type I collagen. Reduced Smad2 activation was observed in wounded stroma from Smad7 transgenic (Smad7 tg) mice, possibly owing to fewer infiltrated TGFβ-producing leukocytes compared to those in wounds from control mice. Because Smad7 is not secreted, these effects could reflect functional changes in Smad7 tg keratinocytes. Supporting this notion, the activation of NF-κB, a nonsecreted protein complex that transcriptionally activates inflammatory cytokines, was reduced in wounded epidermis from Smad7 tg mice compared to that in wounded wild-type epidermis. In sum, epidermal Smad7 overexpression accelerated wound healing through its direct effects on keratinocyte proliferation and migration, and through indirect effects on wound stroma.
Collapse
Affiliation(s)
- Gangwen Han
- Department of Pathology, University of Colorado Denver, Aurora, Colorado; Department of Dermatology, University of Colorado Denver, Aurora, CO 80045-0508, USA
| | | | | | | |
Collapse
|
36
|
Han G, Wang XJ. Roles of TGFβ signaling Smads in squamous cell carcinoma. Cell Biosci 2011; 1:41. [PMID: 22204491 PMCID: PMC3285038 DOI: 10.1186/2045-3701-1-41] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/28/2011] [Indexed: 02/06/2023] Open
Abstract
Smad proteins are classified in different groups based on their functions in mediating transforming growth factor β (TGFβ) superfamily components. Smad1/5/8 mainly mediate bone morphogenetic proteins (BMP) pathway and Smad2/3 mainly mediate TGFβ pathway. Smad4 functions as common Smad to mediate both pathways. Previous studies showed many members of TGFβ superfamily play a role in carcinogenesis. The current review focuses on the role of TGFβ signaling Smads in squamous cell carcinomas (SCCs). TGFβ signaling inhibits early tumor development, but promotes tumor progression in the late stage. Although Smad2, Smad3 and Smad4 are all TGFβ signaling Smads, they play different roles in SCCs. Genetically, Smad2 and Smad4 are frequently mutated or deleted in certain human cancers whereas Smad3 mutation or deletion is infrequent. Genetically engineered mouse models with these individual Smad deletions have provided important tools to identify their diversified roles in cancer. Using these models, we have shown that Smad4 functions as a potent tumor suppressor and its loss causes spontaneous SCCs development; Smad2 functions as a tumor suppressor and its loss promotes SCC formation initiated by other genetic insults but is insufficient to initiate tumor formation. In contrast, Smad3 primarily mediates TGFβ-induced inflammation. The functions of each Smad also depends on the presence/absence of its Smad partner, thus need to be interpreted in a context-specific manner.
Collapse
Affiliation(s)
- Gangwen Han
- Department of Pathology, University of Colorado Denver, Aurora, CO 80045, USA.
| | | |
Collapse
|
37
|
Tumor promotion via injury- and death-induced inflammation. Immunity 2011; 35:467-77. [PMID: 22035839 DOI: 10.1016/j.immuni.2011.09.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/03/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022]
Abstract
Inhibition of programmed cell death is considered to be a major aspect of tumorigenesis. Indeed, several key oncogenic transcription factors, such as NF-κB and STAT3, exert their tumor-promoting activity at least in part through upregulation of survival genes. However, many cancers develop in response to chronic tissue injury, in which the resulting cell death increases the tumorigenic potential of the neighboring cells. In this review, we discuss a resolution to this paradox based on cell death-mediated induction of tumor promoting inflammatory cytokines, which enhance cell survival and trigger compensatory proliferation in response to tissue injury.
Collapse
|
38
|
Yang X, Teng Y, Hou N, Fan X, Cheng X, Li J, Wang L, Wang Y, Wu X, Yang X. Delayed re-epithelialization in Ppm1a gene-deficient mice is mediated by enhanced activation of Smad2. J Biol Chem 2011; 286:42267-42273. [PMID: 21990361 DOI: 10.1074/jbc.m111.292284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein phosphatase magnesium-dependent 1A (PPM1A), a protein serine/threonine phosphatase, controls several signal pathways through cleavage of phosphate from its substrates. However, the in vivo function of Ppm1a in mammals remains unknown. Here we reported that mice lacking Ppm1a developed normally but were impaired in re-epithelialization process during cutaneous wound healing. Specifically, complete or keratinocyte-specific deletion of Ppm1a led to delayed re-epithelialization with reduced keratinocyte migration upon wounding. We showed that this effect was the result of an increase in Smad2/3 phosphorylation in keratinocytes. Keratinocyte-specific Smad2 deficient mice displayed accelerated re-epithelialization with enhanced keratinocyte migration. Importantly, Smad2 and Ppm1a double mutant mice also exhibited accelerated re-epithelialization, demonstrating that the effect of Ppm1a on promoting re-epithelialization is mediated by Smad2 signaling. Furthermore, the decreased expression of specific integrins and matrix metalloproteinases (MMPs) may contribute to the retarded re-epithelialization in Ppm1a mutant mice. These data indicate that Ppm1a, through suppressing Smad2 signaling, plays a critical role in re-epithelialization during wound healing.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China; Model Organism Division, E-institutes of Shanghai Universities, Shanghai JiaoTong University, Shanghai 200025, P.R. China
| | - Yan Teng
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China.
| | - Ning Hou
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Xiongwei Fan
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China; College of Life Sciences, Hunan Normal University, Changsha 410081, P.R. China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Jun Li
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Lijuan Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Youliang Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China
| | - Xiushan Wu
- College of Life Sciences, Hunan Normal University, Changsha 410081, P.R. China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, P.R. China; Model Organism Division, E-institutes of Shanghai Universities, Shanghai JiaoTong University, Shanghai 200025, P.R. China.
| |
Collapse
|
39
|
Yang X, Wang J, Guo SL, Fan KJ, Li J, Wang YL, Teng Y, Yang X. miR-21 promotes keratinocyte migration and re-epithelialization during wound healing. Int J Biol Sci 2011; 7:685-90. [PMID: 21647251 PMCID: PMC3107477 DOI: 10.7150/ijbs.7.685] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/01/2011] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs involved in keratinocyte migration and wound healing are largely unknown. Here, we revealed the indispensable role of miR-21 in keratinocyte migration and in re-epithelialization during wound healing in mice. In HaCaT cell, miR-21 could be upregulated by TGF-β1. Similar to the effect of TGF-β1, miR-21 overexpression promoted keratinocyte migration. Conversely, miR-21 knockdown attenuated TGF-β1-induced keratinocyte migration, suggesting that miR-21 was essential for TGF-β-driven keratinocyte migration. Furthermore, we found that miR-21 was upregulated during wound healing, coincident with the temporal expression pattern of TGF-β1. Consistently, knockdown of endogenous miR-21 using a specific antagomir dramatically delayed re-epithelialization possibly due to the reduced keratinocyte migration. TIMP3 and TIAM1, direct targets of miR-21, were verified to be regulated by miR-21 in vitro and in vivo, indicating that these two molecules might contribute to miR-21-induced keratinocyte migration. Taken together, our results demonstrate that miR-21 promotes keratinocyte migration and boosts re-epithelialization during skin wound healing.
Collapse
Affiliation(s)
- Xue Yang
- Model Organism Division, E-institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hoot KE, Oka M, Han G, Bottinger E, Zhang Q, Wang XJ. HGF upregulation contributes to angiogenesis in mice with keratinocyte-specific Smad2 deletion. J Clin Invest 2010; 120:3606-16. [PMID: 20852387 DOI: 10.1172/jci43304] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/28/2010] [Indexed: 02/04/2023] Open
Abstract
TGF-β signaling can promote tumor formation and development or suppress it, depending on the cellular context and tumor stage. A potential target of this dual effect of TGF-β is HGF, as TGF-β can inhibit or promote its expression, although the mechanisms underlying this are largely unknown. In the present study, we found that mice with keratinocyte-specific deletion of the TGF-β signaling mediator Smad2 (referred to herein as K5.Smad2(-/-) mice), which have increased susceptibility to squamous cell carcinomas (SCCs), exhibited angiogenesis associated with epithelial overexpression of HGF and endothelial activation of the HGF receptor c-Met. Application of a c-Met inhibitor abrogated angiogenesis, suggesting that HGF overexpression plays a major role in angiogenesis associated with epithelial Smad2 loss. On the Hgf promoter, Smad2 was mainly associated with transcriptional corepressors, whereas Smad4 was mainly associated with the transcriptional coactivator CREB-binding protein (CBP/p300). Smad2 loss caused increased binding of Smad4 and CBP/p300 to the Hgf promoter. Consistent with this, knocking down Smad2 in human keratinocytes caused increased levels of HGF, which were abrogated by concomitant knockdown of Smad3 and Smad4. Importantly, the incidence of HGF-positive human SCC was high in cases with Smad2 loss and lower when Smad4 was also lost. We therefore conclude that Smad2 loss causes HGF upregulation via loss of Smad2-mediated transcriptional repression and enhanced Smad3/4-mediated transactivation. Since Smad2 is often downregulated in human SCCs, our data suggest a therapeutic strategy of blocking HGF/c-Met activation for Smad2-deficient SCCs.
Collapse
Affiliation(s)
- Kristina E Hoot
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Transforming growth factor beta (TGFβ) is a key regulator of epithelial cell proliferation, immune function and angiogenesis. Because TGFβ signaling maintains epithelial homeostasis, dysregulated TGFβ signaling is common in many malignancies, including head and neck squamous cell carcinoma (HNSCC). Defective TGFβ signaling in epithelial cells causes hyperproliferation, reduced apoptosis and increased genomic instability, and the compensatory increase in TGFβ production by tumor epithelial cells with TGFβ signaling defects further promotes tumor growth and metastases by increasing angiogenesis and inflammation in tumor stromal cells. Here, we review the mouse models that we used to study TGFβ signaling in HNSCC.
Collapse
|