1
|
Qiu L, Chen S, Zhong J, Zhang Y, Zhang K. Causality of genetically predicted solid cancers on risk of sepsis: insights from Mendelian randomization. Discov Oncol 2025; 16:1043. [PMID: 40490626 DOI: 10.1007/s12672-025-02848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 05/28/2025] [Indexed: 06/11/2025] Open
Abstract
OBJECTIVE Some studies have found that solid cancer and sepsis are linked. The primary objective of this study is to explore this connection further, investigating the causal effect of solid cancer on sepsis by applying Mendelian randomization (MR). METHODS Using genome-wide association study (GWAS) data from the Medical Research Council-Integrative Epidemiology Unit database, we conducted a bidirectional two-sample Mendelian randomization (MR) analysis to test the causal association between solid cancers (10 GWAS, 1,345,730 samples) and sepsis (2 GWAS, 1,288,566 samples) in European ancestry. In the context of multivariable MR analysis, lifestyle risk factors such as body mass index (BMI) were incorporated, with relevant clinical interventions taken into account. RESULTS The two-sample MR analysis suggested a causal relationship between renal cancer and sepsis (OR = 1.051, 95% CI = 1.019-1.085, PIVW = 1.800E-03). Renal cancer (OR = 1.064, 95% CI = 1.011-1.120, PIVW = 1.60E-02), BMI (OR = 1.315, 95% CI = 1.176-1.471, PIVW = 1.25E-06), and smoking (OR = 1.139, 95% CI = 1.009-1.286, PIVW = 3.65E-02) showed a significant association with sepsis in our lifestyle multivariable MR analysis. Reverse MR analysis indicates that sepsis may prevent renal cancer. (OR = 0.924, 95% CI = 0.865 -0.988, PIVW = 2.060E-02). CONCLUSIONS Our findings suggest renal cancer is correlated with the occurrence of sepsis. This association is partially influenced by BMI and smoking. Unexpectedly, sepsis may act as a protective effect against renal cancer.
Collapse
Affiliation(s)
- Linjie Qiu
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyu Chen
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Zhong
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Chen N, Ruan Q, Zhang S, Chu Z, Xie W. Hypoxia impairs autophagy of cardiomyocytes via p38/MAPK/MAP4 pathway. Burns 2025; 51:107511. [PMID: 40318591 DOI: 10.1016/j.burns.2025.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Myocardial hypoxia occurs in severe burns and may cause severe cardiac dysfunction, in which the blockage of the autophagy flux plays an important role. Previous studies indicates that the p38/MAPK pathway is involved in regulating the microtubule structure by regulating MAP4 phosphorylation, and the microtubule structure affects the autophagy. However, as a complex degradation process, how autophagy is specifically affected by microtubules remains unknown. An in-depth understanding of hypoxia-related autophagy disorders is critical for the treatment of myocardial injury. METHODS Cardiomyocytes (CMs) were isolated from the ventricles of neonatal Sprague-Dawley rats and cultured in an incubator filled with 1 % O2, 5 % CO2, and 94 % N2. SB203580 and MKK6 (Glu) recombinant adenovirus were used to specifically inhibit and activate the p38/MAPK pathway, respectively. The adeno-associated viruses (AAVs) encoding MAP4 gene and MAP4 siRNA were used to up-regulate and down-regulate the expression of MAP4, respectively. After infection of cells with AAV encoding GFP-LC3 fusion proteins, the number of green spots under fluorescence microscopy shows the quantity of autophagosomes. Western blots access the expression of LC3-II, LC3-I and p62. The ratio of LC3-II to LC3-I (LC3-II/I) tells the quantity of autophagosomes, and the expression of p62 indicates the extent of autophagosome degradation. Cell Counting Kit 8 was used to detect cell viability. Rapamycin was used to recover the autophagy. RESULTS Hypoxia reduced the viability of cardiomyocytes, in which the quantity of autophagosomes is increased, while the degradation is reduced, and the p38/MAPK pathway is activated. Activation of the p38/MAPK pathway could block the autophagy pathway. The phosphorylation of MAP4 did not affect the quantity of autophagosomes, but hindered its degradation. The p38/MAPK pathway could regulate the phosphorylation of MAP4. Finally, when the autophagy pathway was restored, cell viability has partially recovered. CONCLUSIONS Hypoxia regulates the phosphorylation of MAP4 through the p38/MAPK pathway, thereby hindering the degradation of autophagosomes, rather than the quantity, blocking autophagic flux and ultimately affecting cell viability.
Collapse
Affiliation(s)
- Nuo Chen
- Department of Dermatology, Wuhan Central Hospital, Wuhan, China; Zhongnan Hospital of Wuhan University, Wuhan, China; Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China.
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China.
| | - Siyu Zhang
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China.
| | - Zhigang Chu
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China.
| | - Weiguo Xie
- Zhongnan Hospital of Wuhan University, Wuhan, China; Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, China.
| |
Collapse
|
3
|
Li J, Yan J, Tu G, Jiang W, Qiu Y, Su Y, Miao C, Luo Z, Horng T. NRF1 coordinates mitochondrial adaptations to dampen intracellular ROS and inflammatory responses during ischemia reperfusion. Cell Death Discov 2025; 11:236. [PMID: 40374603 DOI: 10.1038/s41420-025-02461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 05/17/2025] Open
Abstract
Ischemia reperfusion injury (IRI) is commonly seen in surgical procedures involving cardiopulmonary bypass and post-shock reperfusion. Sudden restoration of blood flow after a period of ischemia triggers a rapid accumulation of reactive oxygen species (ROS) and oxidative stress that promote pathological injury. Macrophage-derived inflammatory responses are also thought to contribute to such injury, but how ROS influences tissue macrophages and their elaboration of inflammatory cytokines in IRI remains poorly understood. In this study, we showed that macrophages mobilize mitochondrial adaptations during reoxygenation, including mitochondrial fission and ubiquitin proteasome system (UPS) flux. Furthermore, the transcription factor Nuclear Factor Erythroid 2 Like 1 (NRF1) is rapidly induced during reoxygenation in response to rising levels of ROS. Induction of NRF1 upregulates ubiquitin proteasome system (UPS) and mitophagy pathways to mediate mitochondrial fusion/fission dynamics and dampen ROS production, allowing for alleviation of oxidative stress and the inflammatory response. Conversely, the absence of myeloid NRF1 leads to increased ROS, driving enhanced inflammation and kidney injury in a mouse model of IRI. We thus identify macrophage NRF1 as a master regulator of mitochondrial homeostasis, antioxidant defense, and inflammatory responses in IRI.
Collapse
Affiliation(s)
- Jiakun Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jiawei Yan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Guowei Tu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjiao Jiang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Yue Qiu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Su
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Zhe Luo
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Tiffany Horng
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
4
|
Li D, Zhang J, Su X, Yang Y, Lai J, Wei X, Chen H, Liu Y, Wang H, Sun L. Calpain1 inhibition enhances autophagy-lysosomal pathway and ameliorates tubulointerstitial fibrosis in Nephronophthisis. Mol Med 2025; 31:166. [PMID: 40319239 PMCID: PMC12049798 DOI: 10.1186/s10020-025-01231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Nephronophthisis (NPH) is classified under the category of renal ciliopathies and is the most common genetic disease leading to renal failure in children. Early-onset and progressive renal tubulointerstitial fibrosis represents one of the most significant features, culminating in renal insufficiency. However, the molecular mechanism of tubulointerstitial fibrosis remains unclear. Previously, we constructed an NPH mouse model via CRISPR-Cas9. This mouse model demonstrated typical features of tubulointerstitial fibrosis. In this study, we aimed to explore the pathogenesis of tubulointerstitial fibrosis in NPH and identify early intervention targets in both the NPH models and patients. METHODS In this study, transcriptome changes in mouse kidneys were analyzed through RNA sequencing to explore the molecular mechanisms of renal tubulointerstitial fibrosis in NPH. We found an increased abundance of calpain1 in both the NPH models and patients. Pathway enrichment analysis indicated autophagy-lysosomal pathway was altered in the NPH models. Western blot, immunofluorescence or immunohistochemical staining were used to verify the expression of calpain1. We also detected autophagy activities in NPH models by lysotracker staining and transmission electron microscopy (TEM). Epithelial or mesenchymal-specific markers and Masson's trichrome staining were used to detect the status of tubulointerstitial fibrosis. Furthermore, NPH models were treated with a calpain1 inhibitor to explore the role of calpain1 in autophagy-lysosomal pathway and tubulointerstitial fibrosis. RESULTS The increased abundance of calpain1 impaired the autophagy-lysosomal pathway and induced tubulointerstitial fibrosis by promoting epithelial-to-mesenchymal transition. On the other hand, calpain1 inhibition could enhance the autophagy-lysosomal pathway and ameliorate the phenotypes of tubulointerstitial fibrosis in NPH models. CONCLUSIONS Calpain1-mediated autophagy-lysosomal pathway disorder may be an important cause of tubulointerstitial fibrosis in NPH. Calpain1 may have therapeutic implications for renal tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Dantong Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jinglan Zhang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Xinyu Su
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yichen Yang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayong Lai
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoya Wei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huamu Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yaqing Liu
- Department of Pediatrics, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Haiyan Wang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Ayari F, Abdollahzade Fard A, Chodari L. Selenium pretreatment improve renal function, autophagy signaling pathway and mir21a gene expression in renal ischemia reperfusion injury model in male rat. J Trace Elem Med Biol 2025; 88:127610. [PMID: 39970693 DOI: 10.1016/j.jtemb.2025.127610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) is a major cause of acute kidney injury (AKI). Autophagy is an important mechanisms involved in this damage. In this study, we investigated effect of selenium on autophagy in kidney following IRI. METHODS In this study, 24 Wistar male rats (200 ± 20 gr) were divided into 4 groups: 1) Sham 2) Sham+ Sodium selenite (0.5 mg/kg) 3) Ischemia-reperfusion (I/R) 4) I/R + sodium selenite. RIRI induces by vascular microclamp for 45 min. At the end of study, blood was taken from the heart tissue and used to measure BUN and Creatinine with the kit, the left kidney tissue was frozen for measurement of LC3II, LC3I, Beclin1, Rab11a, P62, and Caspase3 by western blot technique and measurement of mir21a by RT-PCR method. In addition, right kidney tissue was placed in formalin for histological studies with Haematoxylin-eosin staining. RESULT According to the results, in the I/R group compared to the sham group, serum levels of creatinine and urea, amount of autophagy including expression levels of Lc3II/Lc3I, beclin1, Rab11a, Cleaved Caspase3/Pro Caspase3 proteins significantly increased and expression of p62 decreased. Also, mir21a gene expression significantly decreased in the I/R group. According to histological results, ischemia-reperfusion has caused kidney tissue damage, such as destruction of the brush border of renal tubules, congestion, and leukocyte filtration. Our results showed that pretreatment with selenium reduced tissue damage and moderated the expression changes of the mentioned proteins. CONCLUSION It seems selenium inhibits autophagy by changing the expression levels of mediator molecules Rab11a and mir21a, and it can apply its healing effects in the damage caused by ischemia and reperfusion of kidney tissue in an animal model.
Collapse
Affiliation(s)
- Fatemeh Ayari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Abdollahzade Fard
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center,Cellular and Molecular Medicine Research Institute,Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Dong Q, Li X, Cheng K. Hsp90 and HIF-1α regulate mitophagy by promoting BNIP3 expression in renal ischemia-reperfusion injury. Transpl Immunol 2025; 89:102177. [PMID: 39892761 DOI: 10.1016/j.trim.2025.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Studies have shown that mitochondrial damage is involved in the pathogenesis of AKI, and that inhibition of Hsp90 expression can improve IR-induced AKI. However, the mechanisms by which Hsp90 improves IR-induced AKI and whether it is involved in mitochondrial autophagy remain unclear. METHODS An IR-induced AKI mouse model was established, and the degree of renal injury was analyzed using hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining. The expression of Hsp90, HIF-1α, BNIP3, and mitochondrial autophagy proteins was detected by western blotting in vivo and in vitro. HK2 cell viability, apoptosis, mitochondrial autophagy, reactive oxygen species (ROS), and inflammatory cytokines levels were detected using Cell Counting Kit 8 (CCK8) assays, Terminal·deoxynucleotidyl transferase-mediated dUTP nick end·labeling (TUNEL) labeling, immunofluorescence, and enzyme-linked immunosorbent (ELISA). RESULTS A murine IR-induced AKI model was successfully generated, and increased expression levels of Hsp90, HIF-1α, and inflammatory cytokines were observed, accompanied by a worsening of renal injury. After induction of IRI in HK2 cells, downregulation of Hsp90 or HIF-1α expression resulted in decreased downstream BNIP3 expression, an increase in HK2 cell viability, and a decrease in the level of mitochondrial autophagy. CONCLUSION Hsp90 upregulated the expression of HIF-1αand BNIP3, thereby enhancing mitochondrial autophagy in IR-induced AKI.
Collapse
Affiliation(s)
- Qi Dong
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Xia Li
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Ke Cheng
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China.
| |
Collapse
|
7
|
Singh V, Adam RJ, Paterson MR, Kriegel AJ. Vacuole membrane protein 1 and acute response to renal ischemia and ischemia/reperfusion. Physiol Genomics 2025; 57:172-178. [PMID: 39928961 DOI: 10.1152/physiolgenomics.00135.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 01/10/2025] [Indexed: 02/12/2025] Open
Abstract
Ischemia-reperfusion (I/R) injury is an important initiating cause of chronic kidney disease and renal failure. Changes in proximal tubule (PT) morphology, including brush border loss, occur rapidly in response to ischemic stress and I/R injury. Vacuole membrane protein 1 (VMP1) is a compelling target for ischemia-associated renal damage because it is a necessary regulator of autophagy, and the genomic location of hypoxia-responsive microRNA miR-21 lies within an intronic region of the Vmp1 gene. Autophagy is reported to have protective and pathological effects on I/R injury. In this study, we find that VMP1 is rapidly upregulated in renal cortex tissue in response to 15 and 30 min of ischemia. Intravenous delivery of Vmp1-targeting GameR or a scrambled GapmeR was performed on adult male Sprague-Dawley rats for 2 days before either 30 min of renal ischemia, 30 min of ischemia followed by 24 h of reperfusion (I/R), or corresponding control procedures. Autophagy markers and PT morphology were assessed in the renal cortex. Suppression of ischemia-induced upregulation of VMP1 attenuated PT brush border loss following 30 min of ischemia and 24 h post-I/R. Our study reveals a novel and mechanistically important dissociation between VMP1 expression, miR-21-5p expression, autophagy markers, and I/R tubular injury in the renal cortex.NEW & NOTEWORTHY The impact of autophagy on renal ischemia/reperfusion injury (IRI) remains unclear. VMP1 promotes autophagy through interaction with beclin-1 and subsequent localization to the endoplasmic reticulum. In this study, GapmeR-mediated suppression of VMP1 in rats and attenuated proximal tubule damage following 30 min of ischemia or following 24 h of reperfusion, without altering autophagy markers following reperfusion. This new insight suggests that increased VMP1 did not afford autophagy-mediated protection from IRI in proximal tubules.
Collapse
Affiliation(s)
- Vaishali Singh
- Department of Pediatrics, Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ryan J Adam
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mark R Paterson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alison J Kriegel
- Department of Pediatrics, Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
8
|
Chuan'ai C, Haolong L, Pengpeng A, Yang Y, Chunyan L, Yumiao Y. VDAC1 Cleavage Promotes Autophagy in Renal Tubular Epithelial Cells With Hypoxia/Reoxygenation Injury. Nephrology (Carlton) 2025; 30:e70000. [PMID: 39853618 DOI: 10.1111/nep.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
AIM To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation. METHODS C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation. The expression of VDAC1 in kidney tissue was detected by Western blot. An immortalised human proximal tubular epithelial cell line, HK-2 cells, were subjected to hypoxia/reoxygenation treatment. HK-2 cells were incubated under hypoxia for 6 h, followed by 6 and 24 h of reoxygenation, cells were divided into four groups: H6/R0 group, H6/R6 group, H6/R24 group and control group. The release of LDH and cytosolic ROS were assessed, the expression of autophagy-related proteins LC3 and p62 was detected by Western blot, autophagy flux was monitored by transfecting mRFP-GFP-LC3 lentivirus in HK2 cells, and cells were pretreated with bafilomycin A1 to further monitor the autophagy flux. VDAC1-cleavage-defective mutant in HK-2 cells silencing VDAC1 was established to examine the effect of VDAC1 cleavage on autophagy and hypoxia/reoxygenation injury. RESULTS In vivo, IRI 1d/2d promoted the disorder of renal tubular structure and the cleavage of VDAC1 in kidney tissue; in vitro, hypoxia/reoxygenation promoted cytosolic ROS accumulation, LDH release, VDAC1 cleavage and induced autophagy and autophagic flux; reduced VDAC1 cleavage inhibited autophagy; and decreased cytosolic ROS accumulation and LDH release, thus alleviated cell injury. CONCLUSION In renal tubular epithelial cells injured by H/R, VDAC1 cleavage was increased, triggering an autophagic response, and VDAC1 cleavage promoted autophagy to regulate cell injury.
Collapse
Affiliation(s)
- Chen Chuan'ai
- Department of Quality Management, Tianjin Blood Center, Tianjin, China
| | - Li Haolong
- Department of Quality Management, Tianjin Blood Center, Tianjin, China
| | - An Pengpeng
- Department of Quality Management, Tianjin Blood Center, Tianjin, China
| | - Yu Yang
- Department of Quality Management, Tianjin Blood Center, Tianjin, China
| | - Liu Chunyan
- Department of Quality Management, Tianjin Blood Center, Tianjin, China
| | - Yang Yumiao
- Department of Quality Management, Tianjin Blood Center, Tianjin, China
| |
Collapse
|
9
|
Zhao H, Yang M, Han Y, Jiang N, Liu Y, Li C, Yang J, Luo S, Liu C, Sun L, Liu F, Liu Y. HIF-1α/BNIP3-Mediated Endoplasmic Reticulum Degradation via Autophagy Protects Against Ischemia Reperfusion-Induced Acute Kidney Injury. Antioxid Redox Signal 2025; 42:212-227. [PMID: 39099334 DOI: 10.1089/ars.2023.0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Aims: Endoplasmic reticulum (ER) degradation via autophagy is a process that maintains ER homeostasis when cells are in a state of stress and is associated with many diseases; however, the role of hypoxia inducible factor-1α (HIF-1α)-mediated ER degradation and the related regulatory pathway in acute kidney injury (AKI) still needs to be further established. Results: In the present study, an in vivo AKI model was induced in mice via the ischemia-reperfusion (IR) method. The results revealed that HIF-1α and BNIP3 were increased, and autophagy and ER degradation were activated in the kidneys of AKI mice, whereas HIF-1α knockout significantly inhibited BNIP3, autophagy and ER degradation, accompanied by aggravated kidney injury. Overexpression of HIF-1α in vitro significantly increased BNIP3, autophagy and ER degradation, whereas inhibition of BNIP3 significantly reversed the effects of HIF-1α. In addition, the in vitro inhibition of autophagy with chloroquine significantly reversed the effects of HIF-1α on cell apoptosis. Moreover, selectively overexpressing BNIP3 on the ER membrane significantly increased ER degradation via autophagy and decreased cell apoptosis in vitro. Innovation and Conclusion: These data indicate that HIF-1α/BNIP3-mediated ER degradation via autophagy in tubular cells protects against IR-induced AKI. Antioxid. Redox Signal. 42, 212-227.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ming Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfei Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Gong Y, Zhu W, Li Y, Lu T, Tan J, He C, Yang L, Zhu Y, Gong L. Dynamic regulation of proximal tubular autophagy from injury to repair after ischemic kidney damage. Cell Mol Biol Lett 2024; 29:151. [PMID: 39639205 PMCID: PMC11619129 DOI: 10.1186/s11658-024-00663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The role of proximal tubular autophagy in repairing kidney injury following ischemia remains unclear. METHODS In this study, we utilized mice with conditional deletion of the Atg5 gene in proximal tubules and monitored the long-term dynamic regulation of autophagy following ischemic acute kidney injury (AKI). RESULTS The results showed that Atg5-deficient proximal tubule epithelial cells exhibited damaged mitochondria, concentric membranes, and lysosomal accumulation 24 h after ischemia/reperfusion. However, 28 days after ischemia/reperfusion, concentric membrane bodies remained, but lysosomal accumulation was no longer observed. Notably, the absence of Atg5 in renal tubular epithelial cells impaired renal function and led to increased tubular cell proliferation and oxidative stress in the early stage of injury. However, during the repair period following AKI, Atg5 deficiency exhibited no significant difference in the expression of proliferating cell nuclear antigen (PCNA) and 4-hydoxynonenal (4HNE), suggesting that the improvement in renal fibrosis associated with Atg5 deficiency is unlikely to result from its effect on cell proliferation or reactive oxygen species levels. Additionally, Atg5 deficiency inhibits the secretion of profibrotic factor fibroblast growth factor 2 (FGF2) from the early stage of renal injury to the recovery stage of AKI, indicating that autophagy-specific regulation of FGF2 secretion is a dynamic process overlapping with other stages of injury. Furthermore, increased co-localization of ATG5 with 4HNE and FGF2 was observed in patient samples. CONCLUSION In summary, our results suggest that the dynamic regulation of autophagy on key molecules involved in kidney injury and repair varies with the stage of kidney injury.
Collapse
Affiliation(s)
- Yuhong Gong
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhu
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongqiang Li
- Department of General Practice, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Tao Lu
- Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou, 213011, China
| | - Jiexing Tan
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Changsheng He
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Yufeng Zhu
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Li Gong
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Pan C, Zhao H, Cai X, Wu M, Qin B, Li J. The connection between autophagy and ferroptosis in AKI: recent advances regarding selective autophagy. Ren Fail 2024; 46:2379601. [PMID: 39099238 DOI: 10.1080/0886022x.2024.2379601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Acute kidney injury (AKI) is a significant issue in public health, displaying a high occurrence rate and mortality rate. Ferroptosis, a form of programmed cell death (PCD), is characterized by iron accumulation and intensified lipid peroxidation. Recent studies have demonstrated the pivotal significance of ferroptosis in AKI caused by diverse stimuli, including ischemia-reperfusion injury (IRI), sepsis and toxins. Autophagy, a multistep process that targets damaged organelles and macromolecules for degradation and recycling, also plays an essential role in AKI. Previous research has demonstrated that autophagy deletion in proximal tubules could aggravate tubular injury and renal function loss, indicating the protective function of autophagy in AKI. Consequently, finding ways to stimulate autophagy has become a crucial therapeutic strategy. The recent discovery of the role of selective autophagy in influencing ferroptosis has identified new therapeutic targets for AKI and has highlighted the importance of understanding the cross-talk between autophagy and ferroptosis. This study aims to provide an overview of the signaling pathways involved in ferroptosis and autophagy, focusing on the mechanisms and functions of selective autophagy and autophagy-dependent ferroptosis. We hope to establish a foundation for future investigations into the interaction between autophagy and ferroptosis in AKI as well as other diseases.
Collapse
Affiliation(s)
- Chunyu Pan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hairui Zhao
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Cai
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manyi Wu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bowen Qin
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nephrology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Li Y, Qin K, Liang W, Yan W, Fragoulis A, Pufe T, Buhl EM, Zhao Q, Greven J. Kidney Injury in a Murine Hemorrhagic Shock/Resuscitation Model Is Alleviated by sulforaphane's Anti-Inflammatory and Antioxidant Action. Inflammation 2024; 47:2215-2227. [PMID: 39023831 DOI: 10.1007/s10753-024-02106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Hemorrhagic shock/resuscitation (HS/R) can lead to acute kidney injury, mainly manifested as oxidative stress and inflammatory injury in the renal tubular epithelial cells, as well as abnormal autophagy and apoptosis. Sulforaphane (SFN), an agonist of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway, is involved in multiple biological activities, such as anti-inflammatory, antioxidant, autophagy, and apoptosis regulation. This study investigated the effect of SFN on acute kidney injury after HS/R in mice. Hemorrhagic shock was induced in mice by controlling the arterial blood pressure at a range of 35-45 mmHg for 90 min within arterial blood withdrawal. Fluid resuscitation was carried out by reintroducing withdrawn blood and 0.9% NaCl. We found that SFN suppressed the elevation of urea nitrogen and serum creatinine levels in the blood induced by HS/R. SFN mitigated pathological alterations including swollen renal tubules and renal casts in kidney tissue of HS/R mice. Inflammation levels and oxidative stress were significantly downregulated in mouse kidney tissue after SFN administration. In addition, the kidney tissue of HS/R mice showed high levels of autophagosomes as observed by electron microscopy. However, SFN can further enhance the formation of autophagosomes in the HS/R + SFN group. SFN also increased autophagy-related proteins Beclin1 expression and suppressed P62 expression, while increasing the ratio of microtubule-associated protein 1 light chain 3 (LC3)-II and LC3-I (LC3-II/LC3-I). SFN also effectively decreased cleaved caspase-3 level and enhanced the ratio of anti-apoptotic protein B cell lymphoma 2 and Bcl2-associated X protein (Bcl2/Bax). Collectively, SFN effectively inhibited inflammation and oxidative stress, enhanced autophagy, thereby reducing HS/R-induced kidney injury and apoptosis levels in mouse kidneys.
Collapse
Affiliation(s)
- You Li
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Kang Qin
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany.
- Department of Shoulder and Elbow Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| | - Weiqiang Liang
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Weining Yan
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Eva Miriam Buhl
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Electron Microscopy Facility, Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Qun Zhao
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Johannes Greven
- Department of Thoracic Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| |
Collapse
|
13
|
Yang M, Huang Y, Tang A, Zhang Y, Liu Y, Fan Z, Li M. Research Hotspots in Mitochondria-Related Studies for AKI Treatment: A Bibliometric Study. Drug Des Devel Ther 2024; 18:4051-4063. [PMID: 39280255 PMCID: PMC11402358 DOI: 10.2147/dddt.s473426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Acute kidney injury (AKI) is a common clinical critical condition that has become a significant healthcare burden. In recent years, the relationship between AKI and mitochondria has attracted increasing attention. Protecting mitochondria or restoring their function has emerged as a novel therapeutic strategy for alleviating AKI. This study aims to analyze and summarize the current status, research trends, and hotspots in this field, providing references and directions for future research. Methods AKI and mitochondria-related literature from the Web of Science core collection were retrieved and collected. Bibliometric and visualization analyses were conducted using Microsoft Excel 2021, bibliometric tools (VosViewer, Citespace 6.3.R1, and the bibliometrix R package), R 4.3.2, and SCImagoGraphica software. Results A total of 2433 publications were included in this study. The number of annual publications in this field has increased year by year. China and the United States are the two most productive countries. Central South University is the most influential research institution in terms of research output, and Parikh SM, Schnellmann RG, and Dong Z are the most influential authors in this field. KIDNEY INTERNATIONAL, JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, and AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY are the most influential journals. Initially, the research focused on keywords such as oxidative stress, ischemia-reperfusion injury, apoptosis, inflammation, and autophagy. In recent years, new research hotspots have emerged, including ferroptosis, aging, mitochondrial quality control, messenger RNA, mitochondrial-targeted antioxidants, extracellular vesicles, and nanodrug delivery. Conclusion Research on the relationship between mitochondria and AKI has broad developing prospects, and targeting mitochondrial regulation will become a focus of future AKI prevention and treatment research.
Collapse
Affiliation(s)
- Mengfan Yang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Anqi Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Yu Zhang
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Provincial, People’s Republic of China
| | - Yu Liu
- Department of Nephrology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Zhenliang Fan
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
14
|
Ni WJ, Li ZL, Wen XL, Ji JL, Liu H, Yin Q, Jiang LYZ, Zhang YL, Wen Y, Tang TT, Jiang W, Lv LL, Gan WH, Liu BC, Wang B. HIF-1α and adaptor protein LIM and senescent cell antigen-like domains protein 1 axis promotes tubulointerstitial fibrosis by interacting with vimentin in angiotensin II-induced hypertension. Br J Pharmacol 2024; 181:3098-3117. [PMID: 38698737 DOI: 10.1111/bph.16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.
Collapse
Affiliation(s)
- Wei-Jie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xian-Li Wen
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Liang-Yun-Zi Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wei-Hua Gan
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Noh MR, Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol 2024; 327:F4-F20. [PMID: 38660714 PMCID: PMC11390133 DOI: 10.1152/ajprenal.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The involvement of cell death in acute kidney injury (AKI) is linked to multiple factors including energy depletion, electrolyte imbalance, reactive oxygen species, inflammation, mitochondrial dysfunction, and activation of several cell death pathway components. Since our review in 2003, discussing the relative contributions of apoptosis and necrosis, several other forms of cell death have been identified and are shown to contribute to AKI. Currently, these various forms of cell death can be fundamentally divided into accidental cell death and regulated or programmed cell death based on functional aspects. Several death initiator and effector molecules switch molecules that may act as signaling components triggering either death or protective mechanisms or alternate cell death pathways have been identified as part of the machinery. Intriguingly, several of these cell death pathways share components and signaling pathways suggesting complementary or compensatory functions. Thus, defining the cross talk between distinct cell death pathways and identifying the unique molecular effectors for each type of cell death may be required to develop novel strategies to prevent cell death. Furthermore, depending on the multiple forms of cell death simultaneously induced in different AKI settings, strategies for combination therapies that block multiple cell death pathways need to be developed to completely prevent injury, cell death, and renal function. This review highlights the various cell death pathways, cross talk, and interactions between different cell death modalities in AKI.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Babu J Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
16
|
Ponticelli C, Reggiani F, Moroni G. Autophagy: A Silent Protagonist in Kidney Transplantation. Transplantation 2024; 108:1532-1541. [PMID: 37953477 DOI: 10.1097/tp.0000000000004862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Autophagy is a lysosome-dependent regulated mechanism that recycles unnecessary cytoplasmic components. It is now known that autophagy dysfunction may have a pathogenic role in several human diseases and conditions, including kidney transplantation. Both defective and excessive autophagy may induce or aggravate several complications of kidney transplantation, such as ischemia-reperfusion injury, alloimmune response, and immunosuppressive treatment and side effects. Although it is still complicated to measure autophagy levels in clinical practice, more attention should be paid to the factors that may influence autophagy. In kidney transplantation, the association of low doses of a mammalian target of rapamycin inhibitor with low doses of a calcineurin inhibitor may be of benefit for autophagy modulation. However, further studies are needed to explore the role of other autophagy regulators.
Collapse
Affiliation(s)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
17
|
KISAOGLU A, KOSE E, YILMAZ N, TANBEK K, YILDIZ A, YILMAZ U, CIRIK RH, OZBAG D. Investigation of the Effect of Astaxanthin on Autophagy in Renal Ischemia-reperfusion Modeled Rats. Medeni Med J 2024; 39:101-108. [PMID: 38940481 PMCID: PMC11572265 DOI: 10.4274/mmj.galenos.2024.27243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/04/2024] [Indexed: 06/29/2024] Open
Abstract
Objective The aim of this study was to investigate the effect of various astaxanthin (ATX) doses on oxidative damage and autophagy in renal ischemia-reperfusion (I/R) injury-modeled rats. Methods The rats were divided into five groups: sham group (n=8), I/R (n=8), I/R + 5 mg/kg ATX (n=8), I/R + 10 mg/kg ATX (n=8), and I/R + 25 mg/kg ATX (n=8) groups. ATX was dissolved in 5 mg/kg, 10 mg/kg, and 25 mg/kg olive oil for 7 days and administered to the rats in the experimental group. Sham and I/R groups were also administered ATX solution (olive oil) via oral gavage for 7 days. Renal ischemia reperfusion was induced in all rats except the sham group after the last dose was administered on the 7th day. Reperfusion was conducted for 24 hours after 45 minutes of ischemia. Results Blood samples were collected, and kidney tissue were incised for biochemical and histological analyses. Superoxide dismutase (SOD) and total antioxidant status (TAS) were significantly lower in the I/R group than in the sham group (p<0.05), whereas malondialdehyde (MDA) and total oxidant status (TOS) values were higher (p<0.05). It was determined that SOD and TAS increased and MDA and TOS decreased in the ATX-administration groups compared with the I/R group, independent of the dose (p<0.05). In the 25 mg/kg ATX + I/R group, Beclin-1 and LC3β immunoreactivities were significantly higher than those in the other groups (p<0.05). The lowest p62 immunoreactivity was observed in the 25 mg/kg ATX + I/R group. Conclusions ATX had a protective effect on kidney function and against oxidative damage. Furthermore, high-dose ATX administration protected kidney tissue via autophagy induction in this study.
Collapse
Affiliation(s)
- Aysegul KISAOGLU
- Inonu University Faculty of Medicine, Department of Anatomy, Malatya, Türkiye
| | - Evren KOSE
- Inonu University Faculty of Medicine, Department of Anatomy, Malatya, Türkiye
| | - Nesibe YILMAZ
- Karabuk University Faculty of Medicine, Department of Anatomy, Karabuk, Türkiye
| | - Kevser TANBEK
- Inonu University Faculty of Medicine, Department of Physiology, Malatya, Türkiye
| | - Azibe YILDIZ
- Inonu University Faculty of Medicine, Department of Histology and Embryology, Malatya, Türkiye
| | - Umit YILMAZ
- Karabuk University Faculty of Medicine, Department of Physiology, Karabuk, Türkiye
| | - Rumeyza Hilal CIRIK
- Inonu University Faculty of Medicine, Department of Histology and Embryology, Malatya, Türkiye
| | - Davut OZBAG
- Adiyaman University Faculty of Medicine, Department of Anatomy, Adiyaman, Türkiye
| |
Collapse
|
18
|
Boulard P, Azzopardi N, Levard R, Cornec JM, Lamamy J, Prieur B, Demattei MV, Watier H, Gatault P, Gouilleux-Gruart V. Albumin influences leucocyte FcRn expression in the early days of kidney transplantation. Clin Exp Immunol 2024; 216:307-317. [PMID: 38353127 PMCID: PMC11097912 DOI: 10.1093/cei/uxae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/28/2023] [Accepted: 02/08/2024] [Indexed: 05/18/2024] Open
Abstract
FcRn, a receptor originally known for its involvement in IgG and albumin transcytosis and recycling, is also important in the establishment of the innate and adaptive immune response. Dysregulation of the immune response has been associated with variations in FcRn expression, as observed in cancer. Recently, a link between autophagy and FcRn expression has been demonstrated. Knowing that autophagy is strongly involved in the development of reperfusion injury in kidney transplantation and that albuminemia is transiently decreased in the first 2 weeks after transplantation, we investigated variations in FcRn expression after kidney transplantation. We monitored FcRn levels by flow cytometry in leukocytes from 25 renal transplant patients and considered parameters such as albumin concentrations, estimated glomerular filtration rate, serum creatinine, serum IgG levels, and ischaemia/reperfusion time. Two groups of patients could be distinguished according to their increased or non-increased FcRn expression levels between days 2 and 6 (d2-d6) post-transplantation. Leukocyte FcRn expression at d2-d6 was correlated with albumin concentrations at d0-d2. These results suggest that albumin concentrations at d0-d2 influence FcRn expression at d2-d6, raising new questions about the mechanisms underlying these original observations.
Collapse
Affiliation(s)
- Pierre Boulard
- Centre d’Étude des Pathologies Respiratoires (CEPR) U1100 INSERM, Tours, France
- Laboratoire d’immunologie, CHU de Tours, Tours,France
| | | | - Romain Levard
- Laboratoire d’immunologie, CHU de Tours, Tours,France
| | | | - Juliette Lamamy
- EA7501 GICC, Faculté de Médecine, Université de Tours, Tours,France
| | | | | | - Hervé Watier
- Laboratoire d’immunologie, CHU de Tours, Tours,France
- EA7501 GICC, Faculté de Médecine, Université de Tours, Tours,France
| | - Philippe Gatault
- EA4245 T2I, Faculté de Médecine, Université de Tours, Tours,France
- Service de Néphrologie, CHU de Tours, Tours,France
| | - Valérie Gouilleux-Gruart
- Laboratoire d’immunologie, CHU de Tours, Tours,France
- EA7501 GICC, Faculté de Médecine, Université de Tours, Tours,France
| |
Collapse
|
19
|
Livingston MJ, Zhang M, Kwon SH, Chen JK, Li H, Manicassamy S, Dong Z. Autophagy activates EGR1 via MAPK/ERK to induce FGF2 in renal tubular cells for fibroblast activation and fibrosis during maladaptive kidney repair. Autophagy 2024; 20:1032-1053. [PMID: 37978868 PMCID: PMC11135847 DOI: 10.1080/15548627.2023.2281156] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Macroautophagy/autophagy contributes to maladaptive kidney repair by inducing pro-fibrotic factors such as FGF2 (fibroblast growth factor 2), but the underlying mechanism remains elusive. Here, we show that EGR1 (early growth response 1) was induced in injured proximal tubules after ischemic acute kidney injury (AKI) and this induction was suppressed by autophagy deficiency in inducible, renal tubule-specific atg7 (autophagy related 7) knockout (iRT-atg7 KO) mice. In cultured proximal tubular cells, TGFB1 (transforming growth factor beta 1) induced EGR1 and this induction was also autophagy dependent. Egr1 knockdown in tubular cells reduced FGF2 expression during TGFB1 treatment, leading to less FGF2 secretion and decreased paracrine effects on fibroblasts. ChIP assay detected an increased binding of EGR1 to the Fgf2 gene promoter in TGFB1-treated tubular cells. Both Fgf2 and Egr1 transcription was inhibited by FGF2 neutralizing antibody, suggesting a positive feedback for EGR1-mediated FGF2 autoregulation. This feedback was confirmed using fgf2-deficient tubular cells and fgf2-deficient mice. Upstream of EGR1, autophagy deficiency in mice suppressed MAPK/ERK (mitogen-activated protein kinase) activation in post-ischemic renal tubules. This inhibition correlated with SQSTM1/p62 (sequestosome 1) aggregation and its sequestration of MAPK/ERK. SQSTM1/p62 interacted with MAPK/ERK and blocked its activation during TGFB1 treatment in autophagy-deficient tubular cells. Inhibition of MAPK/ERK suppressed EGR1 and FGF2 expression in maladaptive tubules, leading to the amelioration of renal fibrosis and improvement of renal function. These results suggest that autophagy activates MAPK/ERK in renal tubular cells, which induces EGR1 to transactivate FGF2. FGF2 is then secreted into the interstitium to stimulate fibroblasts for fibrogenesis.Abbreviation: 3-MA: 3-methyladenine; ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ACTB/β-actin: actin, beta; AKI: acute kidney injury; aa: amino acid; ATG/Atg: autophagy related; BUN: blood urea nitrogen; ChIP: chromatin immunoprecipitation; CKD: chronic kidney disease; CM: conditioned medium; COL1A1: collagen, type I, alpha 1; COL4A1: collagen, type IV, alpha 1; CQ: chloroquine; DBA: dolichos biflorus agglutinin; EGR1: early growth response 1; ELK1: ELK1, member of ETS oncogene family; FGF2: fibroblast growth factor 2; FN1: fibronectin 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HAVCR1/KIM-1: hepatitis A virus cellular receptor 1; IP: immunoprecipitation; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2K/MEK: mitogen-activated protein kinase kinase; MAPK: mitogen-activated protein kinase; NFKB: nuclear factor kappa B; PB1: Phox and Bem1; PFT: pifithrin α; PPIB/cyclophilin B: peptidylprolyl isomerase B; RT-qPCR: real time-quantitative PCR; SQSTM1/p62: sequestosome 1; TGFB1/TGF-β1: transforming growth factor beta 1; VIM: vimentin.
Collapse
Affiliation(s)
- Man J. Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Santhakumar Manicassamy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
20
|
Feng S, Ji J, Li H, Zhang X. H 2S alleviates renal ischemia and reperfusion injury by suppressing ERS-induced autophagy. Transpl Immunol 2024; 83:102006. [PMID: 38342329 DOI: 10.1016/j.trim.2024.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Ischemia/reperfusion injury (IRI) can lead to acute kidney injury and result in high disability and mortality rates. Cystathionine γ-lyase (CSE)-produced hydrogen sulfide (H2S) has been confirmed to play a protective role in renal IRI. While autophagy is involved in renal IRI, its role in the regulation by endoplasmic reticulum stress (ERS) has not been considered. Our study explored the role of CSE/H2S in protecting against renal IRI by regulating ERS-induced autophagy. METHODS C57/BL6 mice were subjected to 30-min renal ischemia followed by .24-h reperfusion injury (IRI). The H2S donor sodium hydrosulfide hydrate (NaHS) or the CSE inhibitor D,L-propargylglycine (PAG) was injected intraperitoneally (i.p) into the mice. Serum creatinine and urea nitrogen levels were analyzed to evaluate renal function. Renal tubule epithelial cell damage was measured by HE and PAS staining. ERS and microtubule-associated protein light chain 3 (LC3) autophagy (LC3-I to LC3-II conversion) were analyzed by using western blotting. RESULTS In a C57/BL6 mouse model of acute renal IRI, the application of IRI impaired the renal function, which was accompanied by elevated serum creatinine (P < 0.001) and urea nitrogen levels (P < 0.001). While NaHS pretreatment dramatically attenuated renal IRI, PAG administration exacerbated renal IRI (P < 0.001). Furthermore, NaHS treatment inhibited the ERS-induced increased LC3II/I protein ratio (P < 0.001); increased Beclin-1 protein expression (P < 0.001); PAG pretreatment exacerbated the effects of ERS on both the LC3II/I ratio (P < 0.001) and the Beclin-1 protein expression (P < 0.001). CONCLUSIONS Our results suggest that the CSE/H2S system is an important therapeutic target for protecting against renal IRI, and it may protect renal tubule epithelial cells from IRI by suppressing ERS-induced autophagy.
Collapse
Affiliation(s)
- Sujuan Feng
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiawei Ji
- Department of urology, Beijing Haidian Hospital, Beijing 100080, China
| | - Han Li
- Institute of Uro-Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Xiaodong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
21
|
Bork T, Hernando-Erhard C, Liang W, Tian Z, Yamahara K, Huber TB. Cisplatin Nephrotoxicity Is Critically Mediated by the Availability of BECLIN1. Int J Mol Sci 2024; 25:2560. [PMID: 38473806 DOI: 10.3390/ijms25052560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Cisplatin nephrotoxicity is a critical limitation of solid cancer treatment. Until now, the complex interplay of various pathophysiological mechanisms leading to proximal tubular cell apoptosis after cisplatin exposure has not been fully understood. In our study, we assessed the role of the autophagy-related protein BECLIN1 (ATG6) in cisplatin-induced acute renal injury (AKI)-a candidate protein involved in autophagy and with putative impact on apoptosis by harboring a B-cell lymphoma 2 (BCL2) interaction site of unknown significance. By using mice with heterozygous deletion of Becn1, we demonstrate that reduced intracellular content of BECLIN1 does not impact renal function or autophagy within 12 months. However, these mice were significantly sensitized towards cisplatin-induced AKI, and by using Becn1+/-;Sglt2-Cre;Tomato/EGFP mice with subsequent primary cell analysis, we confirmed that nephrotoxicity depends on proximal tubular BECLIN1 content. Mechanistically, BECLIN1 did not impact autophagy or primarily the apoptotic pathway. In fact, a lack of BECLIN1 sensitized mice towards cisplatin-induced ER stress. Accordingly, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blunted cisplatin-induced cell death in Becn1 heterozygosity. In conclusion, our data first highlight a novel role of BECLIN1 in protecting against cellular ER stress independent from autophagy. These novel findings open new therapeutic avenues to intervene in this important intracellular stress response pathway with a promising impact on future AKI management.
Collapse
Affiliation(s)
- Tillmann Bork
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Camila Hernando-Erhard
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Wei Liang
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhejia Tian
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Kosuke Yamahara
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu 520-2192, Shiga, Japan
| | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
22
|
Yamahara K, Yasuda-Yamahara M, Kume S. A novel therapeutic target for kidney diseases: Lessons learned from starvation response. Pharmacol Ther 2024; 254:108590. [PMID: 38286162 DOI: 10.1016/j.pharmthera.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, making the disease an urgent clinical challenge. Caloric restriction has various anti-aging and organ-protective effects, and unraveling its molecular mechanisms may provide insight into the pathophysiology of CKD. In response to changes in nutritional status, intracellular nutrient signaling pathways show adaptive changes. When nutrients are abundant, signals such as mechanistic target of rapamycin complex 1 (mTORC1) are activated, driving cell proliferation and other processes. Conversely, others, such as sirtuins and AMP-activated protein kinase, are activated during energy scarcity, in an attempt to compensate. Autophagy, a cellular self-maintenance mechanism that is regulated by such signals, has also been reported to contribute to the progression of various kidney diseases. Furthermore, in recent years, ketone bodies, which have long been considered to be detrimental, have been reported to play a role as starvation signals, and thereby to have renoprotective effects, via the inhibition of mTORC1. Therefore, in this review, we discuss the role of mTORC1, which is one of the most extensively studied nutrient-related signals associated with kidney diseases, autophagy, and ketone body metabolism; and kidney energy metabolism as a novel therapeutic target for CKD.
Collapse
Affiliation(s)
- Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan.
| |
Collapse
|
23
|
Huang L, Zhang L, Zhang Z, Tan F, Ma Y, Zeng X, Cao D, Deng L, Liu Q, Sun H, Shen B, Liao X. Loss of nephric augmenter of liver regeneration facilitates acute kidney injury via ACSL4-mediated ferroptosis. J Cell Mol Med 2024; 28:e18076. [PMID: 38088220 PMCID: PMC10844764 DOI: 10.1111/jcmm.18076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 02/08/2024] Open
Abstract
Ferroptosis, characterized by lipid accumulation in intracellular compartments, is related to acute kidney injury (AKI), but the mechanism remains obscure. In our previous study, the protective effect of augmenter of liver regeneration (ALR) on AKI was not fully clarified. In this study, we established an AKI mouse model by knocking out proximal tubule-specific ALR and an AKI cell model by inducing hypoxia, as well as enrolled AKI patients, to investigate the effects of ALR on ferroptosis and the progression of AKI. We found that ALR knockout aggravated ferroptosis and increased ROS accumulation and mitochondrial damage, whereas ALR overexpression attenuated ferroptosis through clearance of ROS and maintenance of mitochondrial morphology. Mechanistically, we demonstrated that ALR could directly bind to long-chain-fatty-acid-CoA ligase 4 (ACSL4) and further inhibit the expression of ACSL4 by interacting with certain regions. By resolution liquid chromatography coupled with triple quadruple mass spectrometry, we found that ALR could reduce the contents of polyunsaturated fatty acids, especially arachidonic acid. In addition, we showed that ALR binds to ACSL4 and attenuates oxylipin accumulation, exerting a protective effect against ferroptosis in AKI. Therefore, targeting renal ALR can attenuate ferroptosis and can offer a promising strategy for the treatment of AKI.
Collapse
Affiliation(s)
- Lili Huang
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Ling Zhang
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Zheng Zhang
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
- Department of Cell Biology and GeneticsChongqing Medical UniversityChongqingChina
| | - Fangyan Tan
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Yixin Ma
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xujia Zeng
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Dan Cao
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Lili Deng
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Qi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral HepatitisThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral HepatitisThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bingbing Shen
- Department of NephrologyChongqing University Central Hospital, Chongqing Emergency Medical CenterChongqingChina
| | - Xiaohui Liao
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
- Kuanren Laboratory of Translational Lipidology, Centre for Lipid ResearchThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
24
|
Fahmy MI, Khalaf SS, Yassen NN, Sayed RH. Nicorandil attenuates cisplatin-induced acute kidney injury in rats via activation of PI3K/AKT/mTOR signaling cascade and inhibition of autophagy. Int Immunopharmacol 2024; 127:111457. [PMID: 38160566 DOI: 10.1016/j.intimp.2023.111457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cisplatin is a highly effective antitumor agent, but its clinical use is limited due to critical adverse reactions including acute kidney injury (AKI). Nicorandil is an approved antianginal agent decreasing ischemia by potassium channel opening. The aim of this study was to investigate the nephroprotective effects of nicorandil and the possible role of activating PI3K/AKT/mTOR pathway in ameliorating cisplatin-induced AKI. Forty male Wistar rats were randomly allocated in 4 groups (n = 10). Group I: rats received the vehicle and served as control. Group II: rats received a single dose of cisplatin (7 mg/kg, i.p) on the 10th day of the experiment and served as AKI group. Group III: rats received cisplatin as in group II and nicorandil (3 mg/kg/day, p.o) for 14 days. Group IV: rats received cisplatin and nicorandil as in group III as well as wortmannin (15 μg/kg, i.v) for 14 days. Nicorandil exhibited obvious nephroprotective effects via the activation of PI3K/AKT/mTOR pathway. Moreover, nicorandil succeed to reduce the expression of the autophagy markers beclin-1 and LC-3II/I. In parallel, nicorandil showed anti-inflammatory and antiapoptotic effects via inhibition of NF-κB inflammatory pathway and depression of Bax/Bcl-2 ratio. Wortmannin, the PI3K inhibitor, was used to demonstrate the proposed pathway. Our study showed the nephroprotective effects of nicorandil in cisplatin-induced AKI in rats via activation of PI3K/AKT/mTOR signaling cascade, inhibition of autophagy, anti-inflammatory, anti-apoptotic, anti-oxidant activities. Thus, nicorandil could represent a promising renoprotective agent in cancer patients treated with cisplatin.
Collapse
Affiliation(s)
- Mohamed I Fahmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 12585, Giza, Egypt
| | - Samar S Khalaf
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Rabab H Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; School of Pharmacy, Newgiza University, Giza, Egypt.
| |
Collapse
|
25
|
Zeng YF, Li JY, Wei XY, Ma SQ, Wang QG, Qi Z, Duan ZC, Tan L, Tang H. Preclinical evidence of reno-protective effect of quercetin on acute kidney injury: a meta-analysis of animal studies. Front Pharmacol 2023; 14:1310023. [PMID: 38186644 PMCID: PMC10770850 DOI: 10.3389/fphar.2023.1310023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Objective: This study evaluated the reno-protective effects of quercetin in animal models of acute kidney injury (AKI). Methods: We conducted a systematic search of literature published before April 2023 in PubMed, Web of Science, and EMBASE databases. Methodological quality was assessed by SYRCLE's RoB tool. Funnel plot, Egger's test, and Begg's test were used to determine publication bias. Results: A total of 19 studies with 288 animals were included in this meta-analysis. The methodology quality scores of the included studies ranged from 4 to 7. The results indicated that quercetin reduced blood urea nitrogen (SMD = -4.78; 95% CI: 6.45, -3.12; p < 0.01; I2 = 84%) and serum creatinine (SMD: 2.73, 95% CI: 3.66, -1.80; p < 0.01; I2 = 80%) in AKI models. The result of sensitivity analysis was stable, while the results of funnel plot indicated asymmetric. In addition, we further analyzed inflammatory cytokines, oxidative stress levels, and kidney injury scores, and found that quercetin treatment had antioxidant and anti-inflammatory effects and improved kidney injury scores in animal models of AKI. Conclusion: Quercetin exhibited a promising reno-protective effect in AKI animal models. Systematic Review Registration: PROSPERO (CRD42023433333).
Collapse
Affiliation(s)
- Yi-Fan Zeng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing-Yu Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Yu Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Si-Qing Ma
- Department of Pharmacy, Hunan Chest Hospital, Changsha Medical University, Changsha, China
| | - Qiu-Guo Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Cheng Duan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Ai S, Li Y, Zheng H, Wang Z, Liu W, Tao J, Li Y, Wang Y. Global research trends and hot spots on autophagy and kidney diseases: a bibliometric analysis from 2000 to 2022. Front Pharmacol 2023; 14:1275792. [PMID: 38099142 PMCID: PMC10719858 DOI: 10.3389/fphar.2023.1275792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Background: Autophagy is an essential cellular process involving the self-degradation and recycling of organelles, proteins, and cellular debris. Recent research has shown that autophagy plays a significant role in the occurrence and development of kidney diseases. However, there is a lack of bibliometric analysis regarding the relationship between autophagy and kidney diseases. Methods: A bibliometric analysis was conducted by searching for literature related to autophagy and kidney diseases in the Web of Science Core Collection (WoSCC) database from 2000 to 2022. Data processing was carried out using R package "Bibliometrix", VOSviewers, and CiteSpace. Results: A total of 4,579 articles related to autophagy and kidney diseases were collected from various countries. China and the United States were the main countries contributing to the publications. The number of publications in this field showed a year-on-year increasing trend, with open-access journals playing a major role in driving the literature output. Nanjing Medical University in China, Osaka University in Japan, and the University of Pittsburgh in the United States were the main research institutions. The journal "International journal of molecular sciences" had the highest number of publications, while "Autophagy" was the most influential journal in the field. These articles were authored by 18,583 individuals, with Dong, Zheng; Koya, Daisuke; and Kume, Shinji being the most prolific authors, and Dong, Zheng being the most frequently co-cited author. Research on autophagy mainly focused on diabetic kidney diseases, acute kidney injury, and chronic kidney disease. "Autophagy", "apoptosis", and "oxidative stress" were the primary research hotspots. Topics such as "diabetic kidney diseases", "sepsis", "ferroptosis", "nrf2", "hypertension" and "pi3k" may represent potential future development trends. Research on autophagy has gradually focused on metabolic-related kidney diseases such as diabetic nephropathy and hypertension. Additionally, PI3K, NRF2, and ferroptosis have been recent research directions in the field of autophagy mechanisms. Conclusion: This is the first comprehensive bibliometric study summarizing the relationship between autophagy and kidney diseases. The findings aid in identifying recent research frontiers and hot topics, providing valuable references for scholars investigating the role of autophagy in kidney diseases.
Collapse
Affiliation(s)
- Sinan Ai
- Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - JiaYin Tao
- Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yaotan Li
- Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
27
|
Manzéger A, Garmaa G, Mózes MM, Hansmann G, Kökény G. Pioglitazone Protects Tubular Epithelial Cells during Kidney Fibrosis by Attenuating miRNA Dysregulation and Autophagy Dysfunction Induced by TGF-β. Int J Mol Sci 2023; 24:15520. [PMID: 37958504 PMCID: PMC10649561 DOI: 10.3390/ijms242115520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Excessive renal TGF-β production and pro-fibrotic miRNAs are important drivers of kidney fibrosis that lack any efficient treatment. Dysfunctional autophagy might play an important role in the pathogenesis. We aimed to study the yet unknown effects of peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone (Pio) on renal autophagy and miRNA dysregulation during fibrosis. Mouse primary tubular epithelial cells (PTEC) were isolated, pre-treated with 5 µM pioglitazone, and then stimulated with 10 ng/mL TGF-β1 for 24 h. Male 10-week-old C57Bl6 control (CTL) and TGF-β overexpressing mice were fed with regular chow (TGF) or Pio-containing chow (20 mg/kg/day) for 5 weeks (TGF + Pio). PTEC and kidneys were evaluated for mRNA and protein expression. In PTEC, pioglitazone attenuated (p < 0.05) the TGF-β-induced up-regulation of Col1a1 (1.4-fold), Tgfb1 (2.2-fold), Ctgf (1.5-fold), Egr2 (2.5-fold) mRNAs, miR-130a (1.6-fold), and miR-199a (1.5-fold), inhibited epithelial-to-mesenchymal transition, and rescued autophagy function. In TGF mice, pioglitazone greatly improved kidney fibrosis and related dysfunctional autophagy (increased LC3-II/I ratio and reduced SQSTM1 protein content (p < 0.05)). These were accompanied by 5-fold, 3-fold, 12-fold, and 2-fold suppression (p < 0.05) of renal Ccl2, Il6, C3, and Lgals3 mRNA expression, respectively. Our results implicate that pioglitazone counteracts multiple pro-fibrotic processes in the kidney, including autophagy dysfunction and miRNA dysregulation.
Collapse
Affiliation(s)
- Anna Manzéger
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (A.M.); (G.G.); (M.M.M.)
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Gantsetseg Garmaa
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (A.M.); (G.G.); (M.M.M.)
| | - Miklós M. Mózes
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (A.M.); (G.G.); (M.M.M.)
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, 30625 Hannover, Germany;
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (A.M.); (G.G.); (M.M.M.)
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
28
|
Wang RL, Liu SH, Shen SH, Jian LY, Yuan Q, Guo HH, Huang JS, Chen PH, Huang RF. Protective Mechanism of Cordyceps sinensis Treatment on Acute Kidney Injury-Induced Acute Lung Injury through AMPK/mTOR Signaling Pathway. Chin J Integr Med 2023; 29:875-884. [PMID: 36843056 DOI: 10.1007/s11655-023-3593-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 02/28/2023]
Abstract
OBJECTIVE To investigate protective effect of Cordyceps sinensis (CS) through autophagy-associated adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in acute kidney injury (AKI)-induced acute lung injury (ALI). METHODS Forty-eight male Sprague-Dawley rats were divided into 4 groups according to a random number table, including the normal saline (NS)-treated sham group (sham group), NS-treated ischemia reperfusion injury (IRI) group (IRI group), and low- (5 g/kg·d) and high-dose (10 g/kg·d) CS-treated IRI groups (CS1 and CS2 groups), 12 rats in each group. Nephrectomy of the right kidney was performed on the IRI rat model that was subjected to 60 min of left renal pedicle occlusion followed by 12, 24, 48, and 72 h of reperfusion. The wet-to-dry (W/D) ratio of lung, levels of serum creatinine (Scr), blood urea nitrogen (BUN), inflammatory cytokines such as interleukin- β and tumor necrosis factor- α, and biomarkers of oxidative stress such as superoxide dismutase, malonaldehyde (MDA) and myeloperoxidase (MPO), were assayed. Histological examinations were conducted to determine damage of tissues in the kidney and lung. The protein expressions of light chain 3 II/light chain 3 I (LC3-II/LC3-I), uncoordinated-51-like kinase 1 (ULK1), P62, AMPK and mTOR were measured by Western blot and immunohistochemistry, respectively. RESULTS The renal IRI induced pulmonary injury following AKI, resulting in significant increases in W/D ratio of lung, and the levels of Scr, BUN, inflammatory cytokines, MDA and MPO (P<0.01); all of these were reduced in the CS groups (P<0.05 or P<0.01). Compared with the IRI groups, the expression levels of P62 and mTOR were significantly lower (P<0.05 or P<0.01), while those of LC3-II/LC3-I, ULK1, and AMPK were significantly higher in the CS2 group (P<0.05 or P<0.01). CONCLUSION CS had a potential in treating lung injury following renal IRI through activation of the autophagy-related AMPK/mTOR signaling pathway in AKI-induced ALI.
Collapse
Affiliation(s)
- Ruo-Lin Wang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shu-Hua Liu
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Si-Heng Shen
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lu-Yong Jian
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qi Yuan
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hua-Hui Guo
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
| | - Jia-Sheng Huang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
| | - Peng-Hui Chen
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China
| | - Ren-Fa Huang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, 518034, China.
| |
Collapse
|
29
|
Bhatia D, Choi ME. Autophagy and mitophagy: physiological implications in kidney inflammation and diseases. Am J Physiol Renal Physiol 2023; 325:F1-F21. [PMID: 37167272 PMCID: PMC10292977 DOI: 10.1152/ajprenal.00012.2023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Autophagy is a ubiquitous intracellular cytoprotective quality control program that maintains cellular homeostasis by recycling superfluous cytoplasmic components (lipid droplets, protein, or glycogen aggregates) and invading pathogens. Mitophagy is a selective form of autophagy that by recycling damaged mitochondrial material, which can extracellularly act as damage-associated molecular patterns, prevents their release. Autophagy and mitophagy are indispensable for the maintenance of kidney homeostasis and exert crucial functions during both physiological and disease conditions. Impaired autophagy and mitophagy can negatively impact the pathophysiological state and promote its progression. Autophagy helps in maintaining structural integrity of the kidney. Mitophagy-mediated mitochondrial quality control is explicitly critical for regulating cellular homeostasis in the kidney. Both autophagy and mitophagy attenuate inflammatory responses in the kidney. An accumulating body of evidence highlights that persistent kidney injury-induced oxidative stress can contribute to dysregulated autophagic and mitophagic responses and cell death. Autophagy and mitophagy also communicate with programmed cell death pathways (apoptosis and necroptosis) and play important roles in cell survival by preventing nutrient deprivation and regulating oxidative stress. Autophagy and mitophagy are activated in the kidney after acute injury. However, their aberrant hyperactivation can be deleterious and cause tissue damage. The findings on the functions of autophagy and mitophagy in various models of chronic kidney disease are heterogeneous and cell type- and context-specific dependent. In this review, we discuss the roles of autophagy and mitophagy in the kidney in regulating inflammatory responses and during various pathological manifestations.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
30
|
Miyano T, Suzuki A, Sakamoto N. Actin cytoskeletal reorganization is involved in hyperosmotic stress-induced autophagy in tubular epithelial cells. Biochem Biophys Res Commun 2023; 663:1-7. [PMID: 37116392 DOI: 10.1016/j.bbrc.2023.04.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
Tubular epithelial cells are routinely exposed to severe changes in osmolarity. Although the autophagic activity of cells is an indispensable process to maintain cellular homeostasis and respond to stressors, the effect of hyperosmotic stress on autophagic activity in tubular epithelial cells remains unknown. The aim of this study was to determine the effect of hyperosmotic stress on autophagy in rat kidney tubular epithelial cells focusing on the role of actin and microtubule cytoskeletons. Normal rat kidney (NRK)-52E cells exposed to mannitol-induced hyperosmotic stress. As a result, NRK-52E cells showed elevated protein levels of the autophagosome marker LC3-II, indicating enhancement of the autophagic flux. Hyperosmotic stress also transiently decreased cell volume and caused the reorganization of actin and microtubule cytoskeletal structures in NRK-52E cells. The inhibition of the actin cytoskeleton reorganization by cytochalasin D impaired the increase in the levels of LC3-II; however, disassembly of the microtubules following treatment with nocodazole did not affect the increase. These results indicate that hyperosmotic stress can induce autophagy mediated by the reorganization of the actin cytoskeleton in tubular epithelial cells.
Collapse
Affiliation(s)
- Takashi Miyano
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan.
| | - Atsushi Suzuki
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
31
|
Shi H, Qi H, Xie D, Zhuang J, Qi H, Dai Y, Wu J. Inhibition of ACSF2 protects against renal ischemia/reperfusion injury via mediating mitophagy in proximal tubular cells. Free Radic Biol Med 2023; 198:68-82. [PMID: 36764625 DOI: 10.1016/j.freeradbiomed.2023.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Acute kidney injury (AKI) is a prevalent clinical condition caused by sepsis and ischemia reperfusion (IR) injury. The principal driver of IR-induced AKI involves renal tubular structural changes triggered by the impairment of function in renal tubular cells. The target gene, Acyl-CoA Synthetase Family Member 2 (ACSF2), was retrieved from the GEO database based on high specific expression in renal tubular cells and location in mitochondria. Here, we substantiate that ACSF2 is specifically localized in the mitochondria of the renal tubular epithelium. Functionally silencing ACSF2 in HK2 cells enhanced hypoxia-reoxygenation (HR)-induced mitophagy, restored mitochondrial function and decreased the production of mitochondrial superoxide. Our study demonstrated that these effects were reversed by silencing Bcl-2 19-kDa interacting protein 3 (BNIP3), a receptor regulating mitophagy. In vivo, ACSF2 knockdown significantly enhanced IR-induced mitophagy and improved renal function in mice with IR injury. Conversely, BNIP3 knockdown inhibited mitophagy and exacerbated renal damage in ACSF2-knockdown mice with IR injury. In conclusion, our study demonstrated that inhibition of ACSF2 enhances mitophagy, restoring mitochondrial function and protects against IR-induced AKI, providing a new target and potential strategy for therapy.
Collapse
Affiliation(s)
- Haoyu Shi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Hao Qi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Dongdong Xie
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Jiayi Zhuang
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Huiyue Qi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yingbo Dai
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| | - Jiaqing Wu
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
32
|
Pre-Treatment of Transplant Donors with Hydrogen Sulfide to Protect against Warm and Cold Ischemia-Reperfusion Injury in Kidney and Other Transplantable Solid Organs. Int J Mol Sci 2023; 24:ijms24043518. [PMID: 36834928 PMCID: PMC9963309 DOI: 10.3390/ijms24043518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Ischemia-reperfusion injury (IRI), a pathological condition resulting from prolonged cessation and subsequent restoration of blood flow to a tissue, is an inevitable consequence of solid organ transplantation. Current organ preservation strategies, such as static cold storage (SCS), are aimed at reducing IRI. However, prolonged SCS exacerbates IRI. Recent research has examined pre-treatment approaches to more effectively attenuate IRI. Hydrogen sulfide (H2S), the third established member of a family of gaseous signaling molecules, has been shown to target the pathophysiology of IRI and thus appears to be a viable candidate that can overcome the transplant surgeon's enemy. This review discusses pre-treatment of renal grafts and other transplantable organs with H2S to mitigate transplantation-induced IRI in animal models of transplantation. In addition, ethical principles of pre-treatment and potential applications of H2S pre-treatment in the prevention of other IRI-associated conditions are discussed.
Collapse
|
33
|
Xiang Y, Fu Y, Wu W, Tang C, Dong Z. Autophagy in acute kidney injury and maladaptive kidney repair. BURNS & TRAUMA 2023; 11:tkac059. [PMID: 36694860 PMCID: PMC9867874 DOI: 10.1093/burnst/tkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/23/2023]
Abstract
Acute kidney injury (AKI) is a major renal disease characterized by a sudden decrease in kidney function. After AKI, the kidney has the ability to repair, but if the initial injury is severe the repair may be incomplete or maladaptive and result in chronic kidney problems. Autophagy is a highly conserved pathway to deliver intracellular contents to lysosomes for degradation. Autophagy plays an important role in maintaining renal function and is involved in the pathogenesis of renal diseases. Autophagy is activated in various forms of AKI and acts as a defense mechanism against kidney cell injury and death. After AKI, autophagy is maintained at a relatively high level in kidney tubule cells during maladaptive kidney repair but the role of autophagy in maladaptive kidney repair has been controversial. Nonetheless, recent studies have demonstrated that autophagy may contribute to maladaptive kidney repair after AKI by inducing tubular degeneration and promoting a profibrotic phenotype in renal tubule cells. In this review, we analyze the role and regulation of autophagy in kidney injury and repair and discuss the therapeutic strategies by targeting autophagy.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Wenwen Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan Province, China
| | | |
Collapse
|
34
|
Zhang K, Huang Q, Peng L, Lin S, Liu J, Zhang J, Li C, Zhai S, Xu Z, Wang S. The multifunctional roles of autophagy in the innate immune response: Implications for regulation of transplantation rejection. Front Cell Dev Biol 2022; 10:1007559. [PMID: 36619861 PMCID: PMC9810636 DOI: 10.3389/fcell.2022.1007559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
Organ transplantation is the main treatment for end-stage organ failure, which has rescued tens of thousands of lives. Immune rejection is the main factor affecting the survival of transplanted organs. How to suppress immune rejection is an important goal of transplantation research. A graft first triggers innate immune responses, leading to graft inflammation, tissue injury and cell death, followed by adaptive immune activation. At present, the importance of innate immunity in graft rejection is poorly understood. Autophagy, an evolutionarily conserved intracellular degradation system, is proven to be involved in regulating innate immune response following graft transplants. Moreover, there is evidence indicating that autophagy can regulate graft dysfunction. Although the specific mechanism by which autophagy affects graft rejection remains unclear, autophagy is involved in innate immune signal transduction, inflammatory response, and various forms of cell death after organ transplantation. This review summarizes how autophagy regulates these processes and proposes potential targets for alleviating immune rejection.
Collapse
Affiliation(s)
- Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Laru Peng
- Guangzhou Laboratory, Guangzhou International BioIsland, Guangzhou, China
| | - Sen Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Liu
- Guangdong Yantang Dairy Co, Ltd, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Shaolun Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhihong Xu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Livestock Disease Prevention Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China,*Correspondence: Zhihong Xu, ; Sutian Wang,
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China,*Correspondence: Zhihong Xu, ; Sutian Wang,
| |
Collapse
|
35
|
Wang R, Shen S, Jian L, Liu S, Yuan Q, Guo H, Huang J, Chen P, Huang R. Regulation of the autophagy plays an important role in acute kidney injury induced acute lung injury. Ren Fail 2022; 44:1754-1768. [PMID: 36259464 PMCID: PMC9586646 DOI: 10.1080/0886022x.2022.2135446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
AIM This study aimed to investigate the regulatory role of autophagy in acute kidney injury (AKI) induced acute lung injury (ALI). METHODS The male Sprague-Dawley rats were divided into four groups: normal saline-treated sham rats (sham group), normal saline-treated ischemia-reperfusion injury rats (IRI group), 3-methyladenine-treated IRI rats (3-MA group), and rapamycin-treated IRI rats (RA group). The rats in the IRI rat model received the nephrectomy of the right kidney and was subjected to 60 mins of left renal pedicle occlusion, followed by 12, 24, 48, and 72 h of reperfusion. The levels of Scr, BUN, wet-to-dry ratio of lung, inflammatory cytokines, and oxidative stress were determined. The damage to tissues was detected by histological examinations. The western blot and immunohistochemistry methods were conducted to determine the expression of indicated proteins. RESULTS Renal IRI could induce the pulmonary injury after AKI, which caused significant increases in the function index of pulmonary and renal, the levels of inflammatory cytokines, and biomarkers of oxidative stress. In comparison to the IRI group, the RA group showed significantly decreased P62 and Caspase-3 expression and increased LC-II/LC3-I, Beclin-1, Bcl-2, and unc-51-like autophagy activating kinase 1 expression. Meanwhile, by suppressing the inflammation and oxidative stress, as well as inhibiting the pathological lesions in kidney and lung tissues, the autophagy could effectively ameliorate IRI-induced AKI and ALI. CONCLUSIONS Autophagy plays an important role in AKI-induced ALI, which could be used as a new target for AKI therapy and reduce the mortality caused by the complication.
Collapse
Affiliation(s)
- Ruolin Wang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Siheng Shen
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Luyong Jian
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shuhua Liu
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Yuan
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Huahui Guo
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiasheng Huang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Penghui Chen
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Renfa Huang
- Nephropathy Department, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
36
|
Zhang Q, Zhan H, Liu C, Zhang C, Wei H, Li B, Zhou D, Lu Y, Huang S, Cheng J, Li S, Wang C, Hu C, Liao X. Neuroprotective Effect of miR-483-5p Against Cardiac Arrest-Induced Mitochondrial Dysfunction Mediated Through the TNFSF8/AMPK/JNK Signaling Pathway. Cell Mol Neurobiol 2022:10.1007/s10571-022-01296-3. [PMID: 36266523 DOI: 10.1007/s10571-022-01296-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022]
Abstract
Substantial morbidity and mortality are associated with postcardiac arrest brain injury (PCABI). MicroRNAs(miRNAs) are essential regulators of neuronal metabolism processes and have been shown to contribute to alleviated neurological injury after cardiac arrest. In this study, we identified miRNAs related to the prognosis of patients with neurological dysfunction after cardiopulmonary resuscitation based on data obtained from the Gene Expression Omnibus (GEO) database. Then, we explored the effects of miR-483-5p on mitochondrial biogenesis, mitochondrial-dependent apoptosis, and oxidative stress levels after ischemia‒reperfusion injury in vitro and in vivo. MiR-483-5p was downregulated in PC12 cells and hippocampal samples compared with that in normal group cells and hippocampi. Overexpression of miR-483-5p increased the viability of PC12 cells after ischemia‒reperfusion injury and reduced the proportion of dead cells. A western blot analysis showed that miR-483-5p increased the protein expression of PCG-1, NRF1, and TFAM and reduced the protein expression of Bax and cleaved caspase 3, inhibiting the release of cytochrome c from mitochondria and alleviating oxidative stress injury by inhibiting the production of ROS and reducing MDA activity. We confirmed that miR-483-5p targeted TNFSF8 to regulate the AMPK/JNK pathway, thereby playing a neuroprotective role after cardiopulmonary resuscitation. Hence, this study provides further insights into strategies for inhibiting neurological impairment after cardiopulmonary resuscitation and suggests a potential therapeutic target for PCABI.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Cong Liu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Chenyu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National Health Council (NHC) Key Laboratory of Assisted Circulation, Guangzhou, 510080, China
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dawang Zhou
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuanzheng Lu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shaomin Huang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingge Cheng
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuhao Li
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chuyue Wang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiaoxing Liao
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
37
|
Dai R, Zhang L, Jin H, Wang D, Cheng M, Sang T, Peng C, Li Y, Wang Y. Autophagy in renal fibrosis: Protection or promotion? Front Pharmacol 2022; 13:963920. [PMID: 36105212 PMCID: PMC9465674 DOI: 10.3389/fphar.2022.963920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a process that degrades endogenous cellular protein aggregates and damaged organelles via the lysosomal pathway to maintain cellular homeostasis and energy production. Baseline autophagy in the kidney, which serves as a quality control system, is essential for cellular metabolism and organelle homeostasis. Renal fibrosis is the ultimate pathological manifestation of progressive chronic kidney disease. In several experimental models of renal fibrosis, different time points, stimulus intensities, factors, and molecular mechanisms mediating the upregulation or downregulation of autophagy may have different effects on renal fibrosis. Autophagy occurring in a single lesion may also exert several distinct biological effects on renal fibrosis. Thus, whether autophagy prevents or facilitates renal fibrosis remains a complex and challenging question. This review explores the different effects of the dual regulatory function of autophagy on renal fibrosis in different renal fibrosis models, providing ideas for future work in related basic and clinical research.
Collapse
Affiliation(s)
- Rong Dai
- Department of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Zhang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hua Jin
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Dong Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Tian Sang
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Chuyi Peng
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Li
- Blood Purification Center, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Yiping Wang,
| |
Collapse
|
38
|
Essential Roles of the Histone Demethylase KDM4C in Renal Development and Acute Kidney Injury. Int J Mol Sci 2022; 23:ijms23169318. [PMID: 36012577 PMCID: PMC9409075 DOI: 10.3390/ijms23169318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Lysine demethylase 4C (KDM4C) is a nuclear protein that is essential for histone modification and acts as an important regulator of several transcription factors. Previous studies have shown that KDM4C may also play a role in mediating stress responses. The purpose of this study was to examine the roles of KDM4C in kidney development and acute kidney injury (AKI). Methods: The effect of KDM4C on kidney development was assessed by comparing the kidney phenotype between 96 zebrafish embryos treated with kdm4c-morpholino oligonucleotide and 96 untreated zebrafish embryos. We further examined whether KDM4C is essential for maintaining cell survival in AKI. Cultured human renal tubular cells were used for the in vitro study. Wild-type and Kdm4c knockout mice (C57BL/6NTac-Kdm4ctm1a(KOMP)Wtsi) were divided into a sham group and model group, and then subjected to ischemic reperfusion kidney injury (IRI-AKI). Blood samples and kidneys were collected at different time points (day 3, day 7, day 14, and day 28) and were processed for in vivo studies (n = 8 in each group). Results: Kdm4c knockdown significantly decreased zebrafish embryo survival and impaired kidney development. The in vitro study showed that KDM4C inhibition by JIB04 significantly increased cellular apoptosis under oxidative stress conditions. KDM4C knockdown cells had impaired autophagy function under stress conditions. The IRI-AKI mice study showed that KDM4C protein levels dynamically changed and were significantly correlated with HIF-1α levels in AKI. Kdm4c−/− mice had significantly more severe renal impairment and increased kidney fibrosis than the wild-type mice. Cytokine array results also indicated that the kidneys of Kdm4c−/− mice had increased inflammation in AKI compared with the wild-type mice. Further RNA sequence analysis revealed that KDM4C may regulate transcription factors related to mitochondrial dynamics and function. Conclusions: Our study suggests that KDM4C may play a critical role in regulating mitochondria, which is related to a protective effect on maintaining cell survival in AKI.
Collapse
|
39
|
Spitz D, Comas M, Gerstner L, Kayser S, Helmstädter M, Walz G, Hermle T. mTOR-Dependent Autophagy Regulates Slit Diaphragm Density in Podocyte-like Drosophila Nephrocytes. Cells 2022; 11:2103. [PMID: 35805186 PMCID: PMC9265458 DOI: 10.3390/cells11132103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Both mTOR signaling and autophagy are important modulators of podocyte homeostasis, regeneration, and aging and have been implicated in glomerular diseases. However, the mechanistic role of these pathways for the glomerular filtration barrier remains poorly understood. We used Drosophila nephrocytes as an established podocyte model and found that inhibition of mTOR signaling resulted in increased spacing between slit diaphragms. Gain-of-function of mTOR signaling did not affect spacing, suggesting that additional cues limit the maximal slit diaphragm density. Interestingly, both activation and inhibition of mTOR signaling led to decreased nephrocyte function, indicating that a fine balance of signaling activity is needed for proper function. Furthermore, mTOR positively controlled cell size, survival, and the extent of the subcortical actin network. We also showed that basal autophagy in nephrocytes is required for survival and limits the expression of the sns (nephrin) but does not directly affect slit diaphragm formation or endocytic activity. However, using a genetic rescue approach, we demonstrated that excessive, mTOR-dependent autophagy is primarily responsible for slit diaphragm misspacing. In conclusion, we established this invertebrate podocyte model for mechanistic studies on the role of mTOR signaling and autophagy, and we discovered a direct mTOR/autophagy-dependent regulation of the slit diaphragm architecture.
Collapse
Affiliation(s)
- Dominik Spitz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Maria Comas
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Lea Gerstner
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Séverine Kayser
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
- CIBSS—Centre for Integrative Biological Signalling Studies, 79106 Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (D.S.); (L.G.); (S.K.); (M.H.); (G.W.)
| |
Collapse
|
40
|
Liu Z, Li X, Li X, Li Z, Chen H, Gong S, Zhang M, Zhang Y, Li Z, Yang L, Liu H. The kidney-expressed transcription factor ZKSCAN3 is dispensable for autophagy transcriptional regulation and AKI progression in mouse. Mutat Res 2022; 825:111790. [PMID: 35841832 DOI: 10.1016/j.mrfmmm.2022.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Acute kidney injury (AKI) is a common clinical disease that can cause serious harm to the kidneys, but it has no effective treatment till now. The modulation of autophagy pathway regulation is considered a potentially effective therapeutic approach in AKI prevention and treatment. ZKSCAN3 has been shown to be an important transcription factor that negatively regulates autophagy activity in cancer tissues. In order to determine whether autophagy could be activated by knocking out ZKSCAN3 to exert the renal protective effect of autophagy, we constructed AKI models with Zkscan3 knockout (KO) mice and detected renal pathological changes and renal function changes as well as autophagy-related indicators. We found that Zkscan3 KO had no significant effect on kidney development. Besides, no significant changes in autophagy activity were observed under normal physiological or AKI conditions. In non-tumor tissues, ZKSCAN3 did not mediate transcriptional regulation of autophagy-related genes. These findings suggest that because ZKSCAN3 may not function in the transcriptional regulation of autophagy-related genes in non-tumor tissues, it may not be used as a therapeutic target for AKI.
Collapse
Affiliation(s)
- Zejian Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xingyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zixian Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Minjie Zhang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yaozhi Zhang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhihang Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lin Yang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou 215127, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
41
|
Koehler FC, Fu CY, Späth MR, Hoyer-Allo KJR, Bohl K, Göbel H, Lackmann JW, Grundmann F, Osterholt T, Gloistein C, Steiner JD, Antebi A, Benzing T, Schermer B, Schwarz G, Burst V, Müller RU. A systematic analysis of diet-induced nephroprotection reveals overlapping changes in cysteine catabolism. Transl Res 2022; 244:32-46. [PMID: 35189406 DOI: 10.1016/j.trsl.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023]
Abstract
Caloric Restriction (CR) extends lifespan and augments cellular stress-resistance from yeast to primates, making CR an attractive strategy for organ protection in the clinic. Translation of CR to patients is complex, due to problems regarding adherence, feasibility, and safety concerns in frail patients. Novel tailored dietary regimens, which modulate the dietary composition of macro- and micronutrients rather than reducing calorie intake promise similar protective effects and increased translatability. However, a direct head-to-head comparison to identify the most potent approach for organ protection, as well as overlapping metabolic consequences have not been performed. We systematically analyzed six dietary preconditioning protocols - fasting mimicking diet (FMD), ketogenic diet (KD), dietary restriction of branched chained amino acids (BCAA), two dietary regimens restricting sulfur-containing amino acids (SR80/100) and CR - in a rodent model of renal ischemia-reperfusion injury (IRI) to quantify diet-induced resilience in kidneys. Of the administered diets, FMD, SR80/100 and CR efficiently protect from kidney damage after IRI. Interestingly, these approaches show overlapping changes in oxidative and hydrogen sulfide (H2S)-dependent cysteine catabolism as a potential common mechanism of organ protection.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Chun-Yu Fu
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Osterholt
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Claas Gloistein
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Joachim D Steiner
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Günter Schwarz
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
42
|
Several Alkaloids in Chinese Herbal Medicine Exert Protection in Acute Kidney Injury: Focus on Mechanism and Target Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2427802. [PMID: 35602100 PMCID: PMC9122709 DOI: 10.1155/2022/2427802] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Objectives Acute kidney injury (AKI) is a loose set of kidney diseases accompanied by a variety of syndromes, which is a serious threat to human life and health. Some alkaloids are derived from various Chinese herbs have been widely concerned in the improvement of AKI. This review provides the research progress of alkaloids in AKI experimental models and discusses the related molecular mechanisms. Key Findings. Alkaloids can protect AKI through various mechanisms including antioxidant stress, improvement of mitochondrial damage, reduction of cell death, induction of autophagy, and inhibition of inflammation. These mechanisms are mainly related to the activation of Nrf2/HO-1 signaling pathway, inhibition of ferroptosis and apoptosis, regulation of PINK1/Parkin pathway, inhibition of TLR4/NF-κB pathway and NLRP3 inflammatory bodies, upregulation of Klotho protein level and so on. In addition, there are a few alkaloids that have certain toxicity on the kidney. Conclusion Alkaloids have been shown to significantly improve AKI, but only in pharmacological studies. This paper summarizes the main experimental models currently used in AKI research and describes some representative alkaloids based on recent research. Their potential roles in the prevention and treatment of AKI through different mechanisms are highlighted.
Collapse
|
43
|
BECLIN1 Is Essential for Podocyte Secretory Pathways Mediating VEGF Secretion and Podocyte-Endothelial Crosstalk. Int J Mol Sci 2022; 23:ijms23073825. [PMID: 35409185 PMCID: PMC8998849 DOI: 10.3390/ijms23073825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) secretion from podocytes is crucial for maintaining endothelial integrity within the glomerular filtration barrier. However, until now, the molecular mechanisms underlying podocyte secretory function remained unclear. Through podocyte-specific deletion of BECLIN1 (ATG6 or Becn1), a key protein in autophagy initiation, we identified a major role for this molecule in anterograde Golgi trafficking. The Becn1-deficient podocytes displayed aberrant vesicle formation in the trans-Golgi network (TGN), leading to dramatic vesicle accumulation and complex disrupted patterns of intracellular vesicle trafficking and membrane dynamics. Phenotypically, podocyte-specific deletion of Becn1 resulted in early-onset glomerulosclerosis, which rapidly progressed and dramatically reduced mouse life span. Further, in vivo and in vitro studies clearly showed that VEGFA secretion, and thereby endothelial integrity, greatly depended on BECLIN1 availability and function. Being the first to demonstrate the importance of a secretory pathway for podocyte integrity and function, we identified BECLIN1 as a key component in this complex cellular process. Functionally, by promoting VEGFA secretion, a specific secretory pathway emerged as an essential component for the podocyte-endothelial crosstalk that maintains the glomerular filtration barrier.
Collapse
|
44
|
Zhao Z, Hou B, Tang L, Wang Y, Zhang Y, Ying Z, Duo J. High-altitude hypoxia-induced rat alveolar cell injury by increasing autophagy. Int J Exp Pathol 2022; 103:132-139. [PMID: 35235244 PMCID: PMC9264343 DOI: 10.1111/iep.12434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022] Open
Abstract
Autophagy has been implicated in the pathogenesis of various lung diseases. This study aimed to investigate the role of autophagy in lung injury induced by high-altitude hypoxia. Wistar rats were randomized into four groups for exposure to normal altitude or high altitude for 1, 7, 14 and 21 days with no treatment or with the treatment of 1 mg/kg rapamycin or 2 mg/kg 3-methyladenine (3-MA) for consecutive 21 days respectively. In control rats, the alveolar structure was intact with regularly arranged cells. However, inflammatory cell infiltration and shrunk alveoli were observed in rats exposed to hypoxia. Rapamycin treatment led to many shrunken alveoli with a large number of red blood cells in them. In contrast, 3-MA treatment led to almost intact alveoli or only a few shrunken alveoli. Compared to the control group exposure to high-altitude hypoxia for longer periods resulted in the aggravation of the lung injury, the formation of autophagosomes with a double-membrane structure and increased levels of Beclin-1 and LC3-II in alveolar tissues. Rapamycin treatment resulted in significant increase in Beclin-1 and LC3-II levels and further aggravation of alveolar tissue damage, while 3-MA treatment led to opposite effects. In conclusion, exposure to high-altitude hypoxia can induce autophagy of alveolar cells, which may be an important mechanism of high-altitude hypoxia-induced lung injury. The inhibition of autophagy may be a promising therapy strategy for high-altitude hypoxia-induced lung injury.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Respiratory Medicine, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Bing Hou
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Li Tang
- Department of Respiratory Medicine, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Yaping Wang
- Department of Respiratory Medicine, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Yueqing Zhang
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Zhanzhuan Ying
- Department of Respiratory Medicine, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Jie Duo
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
45
|
Abstract
RNA-binding proteins (RBPs) are of fundamental importance for post-transcriptional gene regulation and protein synthesis. They are required for pre-mRNA processing and for RNA transport, degradation and translation into protein, and can regulate every step in the life cycle of their RNA targets. In addition, RBP function can be modulated by RNA binding. RBPs also participate in the formation of ribonucleoprotein complexes that build up macromolecular machineries such as the ribosome and spliceosome. Although most research has focused on mRNA-binding proteins, non-coding RNAs are also regulated and sequestered by RBPs. Functional defects and changes in the expression levels of RBPs have been implicated in numerous diseases, including neurological disorders, muscular atrophy and cancers. RBPs also contribute to a wide spectrum of kidney disorders. For example, human antigen R has been reported to have a renoprotective function in acute kidney injury (AKI) but might also contribute to the development of glomerulosclerosis, tubulointerstitial fibrosis and diabetic kidney disease (DKD), loss of bicaudal C is associated with cystic kidney diseases and Y-box binding protein 1 has been implicated in the pathogenesis of AKI, DKD and glomerular disorders. Increasing data suggest that the modulation of RBPs and their interactions with RNA targets could be promising therapeutic strategies for kidney diseases.
Collapse
|
46
|
Potential of Polyphenols to Restore SIRT1 and NAD+ Metabolism in Renal Disease. Nutrients 2022; 14:nu14030653. [PMID: 35277012 PMCID: PMC8837945 DOI: 10.3390/nu14030653] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
SIRT1 is an NAD+-dependent class III histone deacetylase that is abundantly expressed in the kidney, where it modulates gene expression, apoptosis, energy homeostasis, autophagy, acute stress responses, and mitochondrial biogenesis. Alterations in SIRT1 activity and NAD+ metabolism are frequently observed in acute and chronic kidney diseases of diverse origins, including obesity and diabetes. Nevertheless, in vitro and in vivo studies and clinical trials with humans show that the SIRT1-activating compounds derived from natural sources, such as polyphenols found in fruits, vegetables, and plants, including resveratrol, quercetin, and isoflavones, can prevent disease and be part of treatments for a wide variety of diseases. Here, we summarize the roles of SIRT1 and NAD+ metabolism in renal pathophysiology and provide an overview of polyphenols that have the potential to restore SIRT1 and NAD+ metabolism in renal diseases.
Collapse
|
47
|
Li S, Zhuang K, He Y, Deng Y, Xi J, Chen J. Leptin relieves ischemia/reperfusion induced acute kidney injury through inhibiting apoptosis and autophagy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:8-17. [PMID: 35545358 PMCID: PMC10930488 DOI: 10.11817/j.issn.1672-7347.2022.210244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Acute kidney injury (AKI) can be caused by ischemia/reperfusion (I/R), nephrotoxin, and sepsis, with poor prognosis and high mortality. Leptin is a protein molecule that regulates the body's energy metabolism and reproductive activities via binding to its specific receptor. Leptin can inhibit cardiomyocyte apoptosis caused by I/R, but its effect on I/R kidney injury and the underlying mechanisms are still unclear. This study aims to investigate the effect and mechanisms of leptin on renal function, renal histopathology, apoptosis, and autophagy during acute I/R kidney injury. METHODS Healthy adult male mice were randomly divided into 4 groups: a sham+wild-type mice (ob/+) group, a sham+leptin gene-deficient mice (ob/ob) group, an I/R+ob/+ group, and an I/R+ob/ob group (n=8 per group). For sham operation, a longitudinal incision was made on the back of the mice to expose and separate the bilateral kidneys and renal arteries, and no subsequent treatment was performed. I/R treatment was ischemia for 30 min and reperfusion for 48 h. The levels of BUN and SCr were detected to evaluate renal function; HE staining was used to observe the pathological changes of renal tissue; TUNEL staining was used to observe cell apoptosis, and apoptosis-positive cells were counted; Western blotting was used to detect levels of apoptosis-related proteins (caspase 3, caspase 9), autophagy-related proteins [mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), LC3 I, LC3 II], mTOR-dependent signaling pathway proteins [phosphate and tension homology (PTEN), adenosine monophosphate-activated protein kinase (AMPK), protein kinase B (AKT), extracellular regulated protein kinase (ERK), phosphorylated PTEN (p-PTEN), phosphorylated AMPK (p-AMPK), phosphorylated AKT (p-AKT), phosphorylated ERK (p-ERK)]. RESULTS There was no significant difference in the levels of BUN and SCr between the sham+ob/+ group and the sham+ob/ob group (both P>0.05). The levels of BUN and SCr in the I/R+ob/+ group were significantly higher than those in the sham+ob/+ group (both P<0.05). Compared with the mice in the sham+ob/ob group or the I/R+ob/+ group, the levels of BUN and SCr in the I/R+ob/ob group were significantly increased (all P<0.05). There was no obvious damage to the renal tubules in the sham+ob/+ group and the sham+ob/ob group. Compared with sham+ob/+ group and sham+ob/ob group, both the I/R+ob/+ group and the I/R+ob/ob group had cell damage such as brush border shedding, vacuolar degeneration, and cast formation. Compared with the I/R+ob/+ group, the renal tubules of the mice in the I/R+ob/ob group were more severely damaged. The pathological score of renal tubular injury showed that the renal tubular injury was the most serious in the I/R+ob/ob group (P<0.05). Compared with the sham+ob/+ group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, the ratio of LC3 II to LC3 I was significantly increased, and the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/+ group (all P<0.05). Compared with the sham+ob/ob group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, and the ratio of LC3 II to LC3 I was significantly increased, while the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/ob group (all P<0.05). Compared with the I/R+ob/+ group, the levels of p-mTOR, p-PTEN, p-AMPK, p-AKT were more significantly down-regulated, while the levels of caspase 3, caspase 9, PTEN, and LC3 II were more significantly up-regulated, and the ratio of LC3 II to LC3 I was more significantly increase in the I/R+ob/ob group (all P<0.05). CONCLUSIONS Renal function and tubular damage, and elevated levels of apoptosis and autophagy are observed in mice kidneys after acute I/R. Leptin might relieve I/R induced AKI by inhibiting apoptosis and autophagy that through a complex network of interactions between mTOR-dependent signaling pathways.
Collapse
Affiliation(s)
- Siyao Li
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Kaiting Zhuang
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yi He
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yunzhen Deng
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Xi
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junxiang Chen
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
48
|
Zhang Y, Liu M, Zhang Y, Tian M, Chen P, Lan Y, Zhou B. Urolithin A alleviates acute kidney injury induced by renal ischemia reperfusion through the p62-Keap1-Nrf2 signaling pathway. Phytother Res 2022; 36:984-995. [PMID: 35040204 DOI: 10.1002/ptr.7370] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) induced by renal ischemia reperfusion (RIR) is typically observed in renal surgeries and is a leading cause of renal failure. However, there is still an unmet medical need currently in terms of clinical treatments. Herein, we report the effect of Urolithin A (UA) in a mouse RIR model, wherein we demonstrated its underlying mechanism both in vitro and in vivo. The expression levels of p62 and Keap1 significantly decreased, while that of nuclear Nrf2 increased in vitro in a hypoxia cell model after UA treatment. Furthermore, the apoptosis of tubular cells was attenuated and the reactive oxygen species (ROS) levels were reduced in the kidneys in a mouse RIR model after UA administration. In this study, we demonstrated that UA can alleviate oxidative stress and promote autophagy by activating the p62-Keap1-Nrf2 signaling pathway, which could protect the kidneys from ischemia reperfusion injury.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Mengmeng Liu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yaoyuan Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mi Tian
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Lan
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Park CH, Lee B, Han M, Rhee WJ, Kwak MS, Yoo TH, Shin JS. Canagliflozin protects against cisplatin-induced acute kidney injury by AMPK-mediated autophagy in renal proximal tubular cells. Cell Death Dis 2022; 8:12. [PMID: 35013111 PMCID: PMC8748642 DOI: 10.1038/s41420-021-00801-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors, which are recently introduced as glucose-lowering agents, improve cardiovascular and renal outcomes in patients with diabetes mellitus. These drugs also have beneficial effects in various kidney disease models. However, the effect of SGLT2 inhibitors on cisplatin-induced acute kidney injury (AKI) and their mechanism of action need to be elucidated. In this study, we investigated whether canagliflozin protects against cisplatin-induced AKI, depending on adenosine monophosphate-activated protein kinase (AMPK) activation and following induction of autophagy. In the experiments using the HK-2 cell line, cell viability assay and molecular analysis revealed that canagliflozin protected renal proximal tubular cells from cisplatin, whereas addition of chloroquine or compound C abolished the protective effect of canagliflozin. In the mouse model of cisplatin-induced AKI, canagliflozin protected mice from cisplatin-induced AKI. However, treatment with chloroquine or compound C in addition to administration of cisplatin and canagliflozin eliminated the protective effect of canagliflozin. Collectively, these findings indicate that canagliflozin protects against cisplatin-induced AKI by activating AMPK and autophagy in renal proximal tubular cells.
Collapse
Affiliation(s)
- Cheol Ho Park
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea ,grid.15444.300000 0004 0470 5454Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bin Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myeonggil Han
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Joong Rhee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Man Sup Kwak
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- grid.15444.300000 0004 0470 5454Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis 2021; 12:1948-1963. [PMID: 34881079 PMCID: PMC8612618 DOI: 10.14336/ad.2021.0603] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.
Collapse
Affiliation(s)
- Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|