1
|
Polasko AL, Zhang D, Ramraj A, Chiu CL, Garcia-Marques FJ, Bermudez A, Kapp K, Peterson E, Qiu Z, Pollack AS, Zhao H, Pollack JR, Pitteri SJ, Brooks JD. Establishing and Characterizing the Molecular Profiles, Cellular Features, and Clinical Utility of a Patient-Derived Xenograft Model Using Benign Prostatic Tissues. J Transl Med 2024; 104:102129. [PMID: 39222914 PMCID: PMC11502252 DOI: 10.1016/j.labinv.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH. PDXs were generated by implanting fresh BPH (transition zone) and paired normal (peripheral zone) prostate tissue from 8 patients under the renal capsule of immunodeficient male mice. Tissue weight, architecture, cellular proliferation, apoptosis, prostate-specific marker expression, and molecular profiles of PDXs were assessed after 1 week and 1, 2, or 3 months of implantation by immunohistochemistry, enzyme-linked immunosorbent assay, transcriptomics, and proteomics. Responses to finasteride, a standard-of-care therapy, were evaluated. PDXs maintained histologic and molecular characteristics of the parental human tissues. BPH, but not normal PDXs, demonstrated significant increases in weight and cellular proliferation, particularly at 1 month. Molecular profiling revealed specific gene and protein expression patterns correlating with BPH pathophysiology. Specifically, an increased immune and stress response was observed at 1 week, followed by increased expression of proliferation markers and BPH-specific stromal signaling molecules, such as BMP5 and CXCL13, at 1 month. Graft stabilization to preimplant characteristics was apparent between 2 and 3 months. Treatment with finasteride reduced proliferation, increased apoptosis, and induced morphologic changes consistent with therapeutic responses observed in human BPH. Our PDX model recapitulates the morphologic, histologic, and molecular features of human BPH, offering a significant advancement in modeling the complex interactions of cell types in BPH microenvironments. These PDXs respond to therapeutic intervention as expected, providing a valuable tool for preclinical testing of new therapeutics that will improve the well-being of BPH patients.
Collapse
Affiliation(s)
| | - Dalin Zhang
- Department of Urology, Stanford University, Stanford, California
| | - Avanti Ramraj
- Department of Urology, Stanford University, Stanford, California
| | - Chun-Lung Chiu
- Department of Urology, Stanford University, Stanford, California
| | - Fernando J Garcia-Marques
- Department of Radiology, Stanford University, Stanford, California; Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Abel Bermudez
- Department of Radiology, Stanford University, Stanford, California; Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Kathryn Kapp
- Department of Radiology, Stanford University, Stanford, California; Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - Eric Peterson
- Department of Urology, Stanford University, Stanford, California
| | - Zhengyuan Qiu
- Department of Urology, Stanford University, Stanford, California
| | - Anna S Pollack
- Department of Pathology, Stanford University, Stanford, California
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, California
| | | | - Sharon J Pitteri
- Department of Radiology, Stanford University, Stanford, California; Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, California; Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California.
| |
Collapse
|
2
|
Lawrence MG, Taylor RA, Cuffe GB, Ang LS, Clark AK, Goode DL, Porter LH, Le Magnen C, Navone NM, Schalken JA, Wang Y, van Weerden WM, Corey E, Isaacs JT, Nelson PS, Risbridger GP. The future of patient-derived xenografts in prostate cancer research. Nat Rev Urol 2023; 20:371-384. [PMID: 36650259 PMCID: PMC10789487 DOI: 10.1038/s41585-022-00706-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Patient-derived xenografts (PDXs) are generated by engrafting human tumours into mice. Serially transplantable PDXs are used to study tumour biology and test therapeutics, linking the laboratory to the clinic. Although few prostate cancer PDXs are available in large repositories, over 330 prostate cancer PDXs have been established, spanning broad clinical stages, genotypes and phenotypes. Nevertheless, more PDXs are needed to reflect patient diversity, and to study new treatments and emerging mechanisms of resistance. We can maximize the use of PDXs by exchanging models and datasets, and by depositing PDXs into biorepositories, but we must address the impediments to accessing PDXs, such as institutional, ethical and legal agreements. Through collaboration, researchers will gain greater access to PDXs representing diverse features of prostate cancer.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia.
| | - Renea A Taylor
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Georgia B Cuffe
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Lisa S Ang
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia.
| |
Collapse
|
3
|
Agudelo JP, Upadhyay D, Zhang D, Zhao H, Nolley R, Sun J, Agarwal S, Bok RA, Vigneron DB, Brooks JD, Kurhanewicz J, Peehl DM, Sriram R. Multiparametric Magnetic Resonance Imaging and Metabolic Characterization of Patient-Derived Xenograft Models of Clear Cell Renal Cell Carcinoma. Metabolites 2022; 12:1117. [PMID: 36422257 PMCID: PMC9692472 DOI: 10.3390/metabo12111117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 08/26/2023] Open
Abstract
Patient-derived xenografts (PDX) are high-fidelity cancer models typically credentialled by genomics, transcriptomics and proteomics. Characterization of metabolic reprogramming, a hallmark of cancer, is less frequent. Dysregulated metabolism is a key feature of clear cell renal cell carcinoma (ccRCC) and authentic preclinical models are needed to evaluate novel imaging and therapeutic approaches targeting metabolism. We characterized 5 PDX from high-grade or metastatic ccRCC by multiparametric magnetic resonance imaging (MRI) and steady state metabolic profiling and flux analysis. Similar to MRI of clinical ccRCC, T2-weighted images of orthotopic tumors of most PDX were homogeneous. The increased hyperintense (cystic) areas observed in one PDX mimicked the cystic phenotype typical of some RCC. The negligible hypointense (necrotic) areas of PDX grown under the highly vascularized renal capsule are beneficial for preclinical studies. Mean apparent diffusion coefficient (ADC) values were equivalent to those of ccRCC in human patients. Hyperpolarized (HP) [1-13C]pyruvate MRI of PDX showed high glycolytic activity typical of high-grade primary and metastatic ccRCC with considerable intra- and inter-tumoral variability, as has been observed in clinical HP MRI of ccRCC. Comparison of steady state metabolite concentrations and metabolic flux in [U-13C]glucose-labeled tumors highlighted the distinctive phenotypes of two PDX with elevated levels of numerous metabolites and increased fractional enrichment of lactate and/or glutamate, capturing the metabolic heterogeneity of glycolysis and the TCA cycle in clinical ccRCC. Culturing PDX cells and reimplanting to generate xenografts (XEN), or passaging PDX in vivo, altered some imaging and metabolic characteristics while transcription remained like that of the original PDX. These findings show that PDX are realistic models of ccRCC for imaging and metabolic studies but that the plasticity of metabolism must be considered when manipulating PDX for preclinical studies.
Collapse
Affiliation(s)
- Joao Piraquive Agudelo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Deepti Upadhyay
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Dalin Zhang
- Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Rosalie Nolley
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jinny Sun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - James D. Brooks
- Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Donna M. Peehl
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Patierno BM, Foo WC, Allen T, Somarelli JA, Ware KE, Gupta S, Wise S, Wise JP, Qin X, Zhang D, Xu L, Li Y, Chen X, Inman BA, McCall SJ, Huang J, Kittles RA, Owzar K, Gregory S, Armstrong AJ, George DJ, Patierno SR, Hsu DS, Freedman JA. Characterization of a castrate-resistant prostate cancer xenograft derived from a patient of West African ancestry. Prostate Cancer Prostatic Dis 2022; 25:513-523. [PMID: 34645983 PMCID: PMC9005588 DOI: 10.1038/s41391-021-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer is a clinically and molecularly heterogeneous disease, with highest incidence and mortality among men of African ancestry. To date, prostate cancer patient-derived xenograft (PCPDX) models to study this disease have been difficult to establish because of limited specimen availability and poor uptake rates in immunodeficient mice. Ancestrally diverse PCPDXs are even more rare, and only six PCPDXs from self-identified African American patients from one institution were recently made available. METHODS In the present study, we established a PCPDX from prostate cancer tissue from a patient of estimated 90% West African ancestry with metastatic castration resistant disease, and characterized this model's pathology, karyotype, hotspot mutations, copy number, gene fusions, gene expression, growth rate in normal and castrated mice, therapeutic response, and experimental metastasis. RESULTS This PCPDX has a mutation in TP53 and loss of PTEN and RB1. We have documented a 100% take rate in mice after thawing the PCPDX tumor from frozen stock. The PCPDX is castrate- and docetaxel-resistant and cisplatin-sensitive, and has gene expression patterns associated with such drug responses. After tail vein injection, the PCPDX tumor cells can colonize the lungs of mice. CONCLUSION This PCPDX, along with others that are established and characterized, will be useful pre-clinically for studying the heterogeneity of prostate cancer biology and testing new therapeutics in models expected to be reflective of the clinical setting.
Collapse
Affiliation(s)
- Brendon M Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wen-Chi Foo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tyler Allen
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason A Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kathryn E Ware
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Santosh Gupta
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sandra Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John P Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dadong Zhang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yanjing Li
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xufeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brant A Inman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shannon J McCall
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, 91010, CA, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Simon Gregory
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David S Hsu
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Wang J, Liu X, Ji J, Luo J, Zhao Y, Zhou X, Zheng J, Guo M, Liu Y. Orthotopic and Heterotopic Murine Models of Pancreatic Cancer Exhibit Different Immunological Microenvironments and Different Responses to Immunotherapy. Front Immunol 2022; 13:863346. [PMID: 35874730 PMCID: PMC9302770 DOI: 10.3389/fimmu.2022.863346] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, tumor-bearing murine models established using tumor cell lines have been the most commonly used models to study human cancers. Even though there are several studies reported that implant sites caused disparities in tumor behaviors, few of them illuminated the positional effect on immunotherapy. Herein, we describe surgical techniques for a novel orthotopic implantation of syngeneic pancreatic ductal adenocarcinoma (PDAC) tissue slices. This method has a high success modeling rate and stable growth kinetics, which makes it useful for testing novel therapeutics. Pathological examination indicated that the orthotopic tumor displayed poor vascularization, desmoplastic stromal reaction, and a highly immunosuppressive tumor microenvironment. This unique microenvironment resulted in limited response to PD1/CTLA4 blockade therapy and anti-MUC1 (αMUC1) CAR-T transfer treatment. To reverse the suppressive tumor microenvironment, we developed gene modified T-cells bearing a chimeric receptor in which activating receptor NKG2D fused to intracellular domains of 4-1BB and CD3ζ (NKG2D CAR). The NKG2D CAR-T cells target myeloid-derived suppressor cells (MDSCs), which overexpress Rae1 (NKG2D ligands) within the TME. Results indicated that NKG2D CAR-T cells eliminated MDSCs and improved antitumor activity of subsequently infused CAR-T cells. Moreover, we generated a bicistronic CAR-T, including αMUC1 CAR and NKG2D CAR separated by a P2A element. Treatment with the dual targeted bicistronic CAR-T cells also resulted in prolonged survival of orthotopic model mice. In summary, this study describes construction of a novel orthotopic PDAC model through implantation of tissue slices and discusses resistance to immunotherapy from the perspective of a PDAC microenvironment. Based on the obtained results, it is evident that elimination MDSCs by NKG2D CAR could rescue the impaired CAR-T cell activity.
Collapse
Affiliation(s)
- Jin Wang
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Xingchen Liu
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Junsong Ji
- Institute of Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Jianhua Luo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Navy Medical University, Shanghai, China
| | - Yuanyu Zhao
- Institute of Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xiaonan Zhou
- Department of Anesthesiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Jianming Zheng
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
- *Correspondence: Yanfang Liu, ; Meng Guo, ; Jianming Zheng,
| | - Meng Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Navy Medical University, Shanghai, China
- *Correspondence: Yanfang Liu, ; Meng Guo, ; Jianming Zheng,
| | - Yanfang Liu
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Navy Medical University, Shanghai, China
- *Correspondence: Yanfang Liu, ; Meng Guo, ; Jianming Zheng,
| |
Collapse
|
6
|
Perez LM, Nonn L. Harnessing the Utility of Ex Vivo Patient Prostate Tissue Slice Cultures. Front Oncol 2022; 12:864723. [PMID: 35433436 PMCID: PMC9008363 DOI: 10.3389/fonc.2022.864723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Patient-derived prostate tissue explant cultures are powerful research tools that offer the potential for personalized medicine. These cultures preserve the local microenvironment of the surrounding stroma but are not without limitations and challenges. There are several methods and processing techniques to culture tissue ex vivo, that include explant tissue chunks and precision-cut tissue slices. Precision-cut tissue slices provide a consistent distribution of nutrients and gases to the explant. Herein we summarize the prostate tissue slice method, its limitations and discuss the utility of this model, to investigate prostate biology and therapeutic treatment responses.
Collapse
Affiliation(s)
- Lillian M Perez
- University of Illinois at Chicago Pathology Department, Chicago, IL, United States.,University of Illinois Cancer Center, Chicago, IL, United States
| | - Larisa Nonn
- University of Illinois at Chicago Pathology Department, Chicago, IL, United States.,University of Illinois Cancer Center, Chicago, IL, United States
| |
Collapse
|
7
|
3D Modeling of Epithelial Tumors-The Synergy between Materials Engineering, 3D Bioprinting, High-Content Imaging, and Nanotechnology. Int J Mol Sci 2021; 22:ijms22126225. [PMID: 34207601 PMCID: PMC8230141 DOI: 10.3390/ijms22126225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The current statistics on cancer show that 90% of all human cancers originate from epithelial cells. Breast and prostate cancer are examples of common tumors of epithelial origin that would benefit from improved drug treatment strategies. About 90% of preclinically approved drugs fail in clinical trials, partially due to the use of too simplified in vitro models and a lack of mimicking the tumor microenvironment in drug efficacy testing. This review focuses on the origin and mechanism of epithelial cancers, followed by experimental models designed to recapitulate the epithelial cancer structure and microenvironment, such as 2D and 3D cell culture models and animal models. A specific focus is put on novel technologies for cell culture of spheroids, organoids, and 3D-printed tissue-like models utilizing biomaterials of natural or synthetic origins. Further emphasis is laid on high-content imaging technologies that are used in the field to visualize in vitro models and their morphology. The associated technological advancements and challenges are also discussed. Finally, the review gives an insight into the potential of exploiting nanotechnological approaches in epithelial cancer research both as tools in tumor modeling and how they can be utilized for the development of nanotherapeutics.
Collapse
|
8
|
Risbridger GP, Lawrence MG, Taylor RA. PDX: Moving Beyond Drug Screening to Versatile Models for Research Discovery. J Endocr Soc 2020; 4:bvaa132. [PMID: 33094211 PMCID: PMC7566391 DOI: 10.1210/jendso/bvaa132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Patient-derived xenografts (PDXs) are tools of the trade for many researchers from all disciplines and medical specialties. Most endocrinologists, and especially those working in oncology, commonly use PDXs for preclinical drug testing and development, and over the last decade large collections of PDXs have emerged across all tumor streams. In this review, we examine how the field has evolved to include PDXs as versatile resources for research discoveries, providing evidence for guidelines and changes in clinical practice.
Collapse
Affiliation(s)
- Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Melbourne, Victoria, Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Melbourne, Victoria, Australia.,Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Renea A Taylor
- Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Elevated Tumor Lactate and Efflux in High-grade Prostate Cancer demonstrated by Hyperpolarized 13C Magnetic Resonance Spectroscopy of Prostate Tissue Slice Cultures. Cancers (Basel) 2020; 12:cancers12030537. [PMID: 32110965 PMCID: PMC7139946 DOI: 10.3390/cancers12030537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Non-invasive assessment of the biological aggressiveness of prostate cancer (PCa) is needed for men with localized disease. Hyperpolarized (HP) 13C magnetic resonance (MR) spectroscopy is a powerful approach to image metabolism, specifically the conversion of HP [1-13C]pyruvate to [1-13C]lactate, catalyzed by lactate dehydrogenase (LDH). Significant increase in tumor lactate was measured in high-grade PCa relative to benign and low-grade cancer, suggesting that HP 13C MR could distinguish low-risk (Gleason score ≤3 + 4) from high-risk (Gleason score ≥4 + 3) PCa. To test this and the ability of HP 13C MR to detect these metabolic changes, we cultured prostate tissues in an MR-compatible bioreactor under continuous perfusion. 31P spectra demonstrated good viability and dynamic HP 13C-pyruvate MR demonstrated that high-grade PCa had significantly increased lactate efflux compared to low-grade PCa and benign prostate tissue. These metabolic differences are attributed to significantly increased LDHA expression and LDH activity, as well as significantly increased monocarboxylate transporter 4 (MCT4) expression in high- versus low- grade PCa. Moreover, lactate efflux, LDH activity, and MCT4 expression were not different between low-grade PCa and benign prostate tissues, indicating that these metabolic alterations are specific for high-grade disease. These distinctive metabolic alterations can be used to differentiate high-grade PCa from low-grade PCa and benign prostate tissues using clinically translatable HP [1-13C]pyruvate MR.
Collapse
|
10
|
Shi C, Chen X, Tan D. Development of patient-derived xenograft models of prostate cancer for maintaining tumor heterogeneity. Transl Androl Urol 2019; 8:519-528. [PMID: 31807428 DOI: 10.21037/tau.2019.08.31] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prostate cancer (Pca) is a heterogeneous disease with multiple morphological patterns. Thus, the establishment of a patient-derived xenograft (PDX) model that retains key features of the primary tumor is of great significance. This review demonstrates the characteristics and advantages of the Pca PDX model and summarizes the main factors affecting the establishment of the model. Because this model well recapitulates the diverse heterogeneity observed in the clinic, it was extensively utilized to discover new therapeutic targets, screen drugs, and explore metastatic mechanisms. In the future, clinical phenotype and different stages of the Pca patient might be faithfully reflected by PDX model, which provides tremendous potential for understanding Pca biology and achieving individualized treatment.
Collapse
Affiliation(s)
- Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, the Fourth Military Medical University, Xi'an 710032, China.,School of Basic Medical Sciences, the Chengdu Medical University, Xindu 610500, China
| | - Xue Chen
- Division of Cancer Biology, Laboratory Animal Center, the Fourth Military Medical University, Xi'an 710032, China.,School of Basic Medical Sciences, the Chengdu Medical University, Xindu 610500, China
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal Center, the Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
11
|
Risbridger GP, Toivanen R, Taylor RA. Preclinical Models of Prostate Cancer: Patient-Derived Xenografts, Organoids, and Other Explant Models. Cold Spring Harb Perspect Med 2018; 8:a030536. [PMID: 29311126 PMCID: PMC6071547 DOI: 10.1101/cshperspect.a030536] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostate cancer remains a lethal disease. Preclinical cancer models that accurately represent the tumors of the patients they are intended to help are necessary to test potential therapeutic approaches and to better translate research discoveries. However, research in the prostate cancer field is hampered by the limited number of human cell lines and xenograft models, most of which do not recapitulate the human disease seen in the clinic today. This work reviews the recent advances in human patient-derived xenograft, organoid, and other explant models to address this need. In contrast to other tumor streams, the prostate cancer field is challenged by this approach, yet despite the limitations, patient-derived models remain an integral component of the preclinical testing pathway leading to better treatments for men with prostate cancer.
Collapse
Affiliation(s)
- Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Melbourne, Victoria 3168, Australia
- Cancer Discovery Program, Biomedicine Discovery Institute; Prostate Cancer Research Group, Department of Anatomy and Developmental Biology; and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
- Prostate Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Roxanne Toivanen
- Prostate Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria 3000, Australia
- Departments of Medicine, Genetics & Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Renea A Taylor
- Cancer Discovery Program, Biomedicine Discovery Institute; Prostate Cancer Research Group, Department of Anatomy and Developmental Biology; and Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
- Prostate Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
12
|
Davies AH, Wang Y, Zoubeidi A. Patient-derived xenografts: A platform for accelerating translational research in prostate cancer. Mol Cell Endocrinol 2018; 462:17-24. [PMID: 28315377 DOI: 10.1016/j.mce.2017.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 11/19/2022]
Abstract
Recently, there has been renewed interest in the development and characterization of patient-derived tumour xenograft (PDX) models. Numerous PDX models have been established for prostate cancer and, importantly, retain the principal molecular, genetic, and histological characteristics of the donor tumour. As such, these models provide significant improvements over standard cell line xenograft models for biological studies, preclinical drug development, and personalized medicine strategies. This review summarizes the current state of the art in this field, illustrating the opportunities and limitations of PDX models in translational prostate cancer research.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Chua CW, Epsi NJ, Leung EY, Xuan S, Lei M, Li BI, Bergren SK, Hibshoosh H, Mitrofanova A, Shen MM. Differential requirements of androgen receptor in luminal progenitors during prostate regeneration and tumor initiation. eLife 2018; 7:28768. [PMID: 29334357 PMCID: PMC5807048 DOI: 10.7554/elife.28768] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor cell that functions in prostate regeneration. Using genetically--engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras in AR-deleted CARNs result in tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer.
Collapse
Affiliation(s)
- Chee Wai Chua
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Nusrat J Epsi
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, United States.,Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, United States
| | - Eva Y Leung
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Shouhong Xuan
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Ming Lei
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Bo I Li
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Sarah K Bergren
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, United States.,Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, United States
| | - Michael M Shen
- Department of Medicine, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States.,Department of Urology, Columbia University Medical Center, New York, United States.,Department of Systems Biology, Columbia University Medical Center, New York, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, United States
| |
Collapse
|
14
|
Lam HM, Nguyen HM, Corey E. Generation of Prostate Cancer Patient-Derived Xenografts to Investigate Mechanisms of Novel Treatments and Treatment Resistance. Methods Mol Biol 2018; 1786:1-27. [PMID: 29786784 DOI: 10.1007/978-1-4939-7845-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Treatment advances lead to survival benefits of patients with advanced prostate cancer. These treatments are highly efficacious in a subset of patients; however, similarly to other cancers, after initial responses the tumors develop resistance (acquired resistance) and the patients succumb to the disease. Furthermore, there is a subset of patients who do not respond to the treatment at all (de novo resistance). Preclinical testing using patient-derived xenografts (PDXs) has led to successful drug development, and PDXs will continue to provide valuable resources to generate clinically relevant data with translational potential. PDXs demonstrate tumor heterogeneity observed in patients, preserve tumor-microenvironment architecture, and provide clinically relevant treatment responses. In view of the evolving biology of the advanced prostate cancer associated with new treatments, PDXs representing these new tumor phenotypes are urgently needed for the study of treatment responses and resistance. In this chapter, we describe methodologies used to establish prostate cancer PDXs and use of these PDXs to study de novo and acquired resistance.
Collapse
Affiliation(s)
- Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Porter LH, Hashimoto K, Lawrence MG, Pezaro C, Clouston D, Wang H, Papargiris M, Thorne H, Li J, Ryan A, Norden S, Moon D, Bolton DM, Sengupta S, Frydenberg M, Murphy DG, Risbridger GP, Taylor RA. Intraductal carcinoma of the prostate can evade androgen deprivation, with emergence of castrate-tolerant cells. BJU Int 2017; 121:971-978. [DOI: 10.1111/bju.14043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laura H. Porter
- Department of Anatomy and Developmental Biology; Biomedicine Discovery Institute; Cancer Program; Monash University; Melbourne Vic. Australia
- Prostate Cancer Research Program; Cancer Research Division; Peter MacCallum Cancer Centre; University of Melbourne; Melbourne Vic. Australia
| | - Kohei Hashimoto
- Department of Anatomy and Developmental Biology; Biomedicine Discovery Institute; Cancer Program; Monash University; Melbourne Vic. Australia
- Department of Urology; Sapporo Medical University School of Medicine; Sapporo Hokkaido Japan
| | - Mitchell G. Lawrence
- Department of Anatomy and Developmental Biology; Biomedicine Discovery Institute; Cancer Program; Monash University; Melbourne Vic. Australia
- Prostate Cancer Research Program; Cancer Research Division; Peter MacCallum Cancer Centre; University of Melbourne; Melbourne Vic. Australia
| | - Carmel Pezaro
- Department of Anatomy and Developmental Biology; Biomedicine Discovery Institute; Cancer Program; Monash University; Melbourne Vic. Australia
- Eastern Health Clinical School; Monash University; Melbourne Vic. Australia
| | | | - Hong Wang
- Department of Anatomy and Developmental Biology; Biomedicine Discovery Institute; Cancer Program; Monash University; Melbourne Vic. Australia
| | - Melissa Papargiris
- Department of Anatomy and Developmental Biology; Biomedicine Discovery Institute; Cancer Program; Monash University; Melbourne Vic. Australia
- Australian Prostate Cancer Bioresource; Victorian Node; Monash University; Melbourne Vic. Australia
| | - Heather Thorne
- kConFab, Research Department; Peter MacCallum Cancer Centre; Melbourne Vic. Australia
- Sir Peter MacCallum Department of Oncology; University of Melbourne; Melbourne Vic. Australia
| | - Jason Li
- Bioinformatics Core; Peter MacCallum Cancer Centre; University of Melbourne; Melbourne Vic. Australia
| | | | - Sam Norden
- TissuPath; Mount Waverley Vic. Australia
| | - Daniel Moon
- Epworth Healthcare; Richmond Vic. Australia
- Central Clinical School; Monash University; Melbourne Vic. Australia
| | - Damien M. Bolton
- Department of Urology; Austin Hospital, Melbourne; Heidelberg Vic. Australia
- Department of Surgery; University of Melbourne; Melbourne Vic. Australia
| | - Shomik Sengupta
- Department of Urology; Austin Hospital, Melbourne; Heidelberg Vic. Australia
- Department of Surgery; University of Melbourne; Melbourne Vic. Australia
| | - Mark Frydenberg
- Department of Anatomy and Developmental Biology; Biomedicine Discovery Institute; Cancer Program; Monash University; Melbourne Vic. Australia
- Department of Surgery; Monash University; Melbourne Vic. Australia
| | - Declan G. Murphy
- Sir Peter MacCallum Department of Oncology; University of Melbourne; Melbourne Vic. Australia
- Division of Cancer Surgery; Peter MacCallum Cancer Centre; University of Melbourne; Melbourne Vic. Australia
| | - Gail P. Risbridger
- Department of Anatomy and Developmental Biology; Biomedicine Discovery Institute; Cancer Program; Monash University; Melbourne Vic. Australia
- Prostate Cancer Research Program; Cancer Research Division; Peter MacCallum Cancer Centre; University of Melbourne; Melbourne Vic. Australia
| | - Renea A. Taylor
- Department of Anatomy and Developmental Biology; Biomedicine Discovery Institute; Cancer Program; Monash University; Melbourne Vic. Australia
- Department of Physiology; Biomedicine Discovery Institute; Cancer Program; Monash University; Melbourne Vic. Australia
| | | |
Collapse
|
16
|
Towards Best Practice in Establishing Patient-Derived Xenografts. PATIENT-DERIVED XENOGRAFT MODELS OF HUMAN CANCER 2017. [DOI: 10.1007/978-3-319-55825-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Zhao H, Nolley R, Chan AMW, Rankin EB, Peehl DM. Cabozantinib inhibits tumor growth and metastasis of a patient-derived xenograft model of papillary renal cell carcinoma with MET mutation. Cancer Biol Ther 2016; 18:863-871. [PMID: 27715452 DOI: 10.1080/15384047.2016.1219816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MET plays an important role in the development and progression of papillary renal cell carcinoma (pRCC). Evaluation of efficacy of MET inhibitors against pRCC has been hampered by limited preclinical models depicting MET abnormalities. We established a new patient-derived xenograft (PDX) model of pRCC carrying an activating mutation of MET and tested the ability of cabozantinib, an inhibitor of receptor tyrosine kinases including MET, to inhibit tumor growth and metastasis. Precision-cut, thin tissue slices from a pRCC specimen obtained by nephrectomy were implanted under the renal capsule of RAG2-/-γC-/- mice to establish first generation TSG-RCC-030. Histologic and genetic fidelity and metastatic potential of this model were characterized by immunohistochemistry, direct DNA sequencing and quantitative polymerase chain reaction (qPCR). The effect of cabozantinib on tumor growth and metastasis was evaluated. Whether measurements of circulating tumor DNA (ctDNA) by allele-specific qPCR could be used as a biomarker of tumor growth and response to therapy was determined. Subrenal and subcutaneous tumor grafts showed high take rates and metastasized to the lung. Both primary tumors and metastases expressed typical markers of pRCC and carried the same activating MET mutation as the parental tumor. Cabozantinib treatment caused striking tumor regression and inhibited lung metastasis in TSG-RCC-030. Plasma ctDNA levels correlated with tumor volume in control mice and changed in response to cabozantinib treatment. TSG-RCC-030 provides a realistic preclinical model to better understand the development and progression of pRCC with MET mutation and accelerate the development of new therapies for pRCC.
Collapse
Affiliation(s)
- Hongjuan Zhao
- a Department of Urology , Stanford University School of Medicine , Stanford , CA , USA
| | - Rosalie Nolley
- a Department of Urology , Stanford University School of Medicine , Stanford , CA , USA
| | - Andy M W Chan
- b Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA , USA
| | - Erinn B Rankin
- b Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA , USA
| | - Donna M Peehl
- a Department of Urology , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
18
|
Endoscopic detection of cancer with lensless radioluminescence imaging and machine vision. Sci Rep 2016; 6:30737. [PMID: 27477912 PMCID: PMC4967900 DOI: 10.1038/srep30737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
Complete removal of residual tumor tissue during surgical resection improves patient outcomes. However, it is often difficult for surgeons to delineate the tumor beyond its visible boundary. This has led to the development of intraoperative detectors that can image radiotracers accumulated within tumors, thus facilitating the removal of residual tumor tissue during surgical procedures. We introduce a beta imaging system that converts the beta radiation from the radiotracer into photons close to the decay origin through a CdWO4 scintillator and does not use any optical elements. The signal is relayed onto an EMCCD chip through a wound imaging fiber. The sensitivity of the device allows imaging of activity down to 100 nCi and the system has a resolution of at least 500 μm with a field of view of 4.80 × 6.51 mm. Advances in handheld beta cameras have focused on hardware improvements, but we apply machine vision to the recorded images to extract more information. We automatically classify sample regions in human renal cancer tissue ex-vivo into tumor or benign tissue based on image features. Machine vision boosts the ability of our system to distinguish tumor from healthy tissue by a factor of 9 ± 3 and can be applied to other beta imaging probes.
Collapse
|
19
|
Risbridger GP, Taylor RA. Patient-Derived Prostate Cancer: from Basic Science to the Clinic. Discov Oncol 2016; 7:236-40. [PMID: 27177552 DOI: 10.1007/s12672-016-0266-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
Abstract
Systems that model cancer form the backbone of research discovery, and their accuracy and validity are a key determinant to ensure successful translation. In many tumour types, patient-derived specimens are an important model of choice for pre-clinical drug development. In this review, we consider why this has been such a challenge for prostate cancer, resulting in relatively few patient-derived xenografts (PDXs) of prostatic tumours compared to breast cancers, for example. Nevertheless, with only a few patient specimens and PDXs, we exemplify in three vignettes how important new clinical insights were obtained resulting in benefit for future men with prostate cancer.
Collapse
Affiliation(s)
- Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium and Cancer Program, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Melbourne, VIC, 3800, Australia.
| | - Renea A Taylor
- Monash Partners Comprehensive Cancer Consortium and Cancer Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Wellington Road, Melbourne, VIC, 3800, Australia
| |
Collapse
|
20
|
Zhang QI, Wang S, Yang D, Pan K, Li L, Yuan S. Preclinical pharmacodynamic evaluation of antibiotic nitroxoline for anticancer drug repurposing. Oncol Lett 2016; 11:3265-3272. [PMID: 27123101 PMCID: PMC4841112 DOI: 10.3892/ol.2016.4380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/10/2016] [Indexed: 11/06/2022] Open
Abstract
The established urinary antibiotic nitroxoline has recently regained considerable attention, due to its potent activities in inhibiting angiogenesis, inducing apoptosis and blocking cancer cell invasion. These features make nitroxoline an excellent candidate for anticancer drug repurposing. To rapidly advance nitroxoline repurposing into clinical trials, the present study performed systemic preclinical pharmacodynamic evaluation of its anticancer activity, including a methyl thiazolyl tetrazolium assay in vitro and an orthotopic urological tumor assay in vivo. The current study determined that nitroxoline exhibits dose-dependent anti-cancer activity in vitro and in urological tumor orthotopic mouse models. In addition, it was demonstrated that the routine nitroxoline administration regimen used for urinary tract infections was effective and sufficient for urological cancer treatment, and 2 to 4-fold higher doses resulted in obvious enhancement of anticancer efficacy without corresponding increases in toxicity. Furthermore, nitroxoline sulfate, one of the most common metabolites of nitroxoline in the urine, effectively inhibited cancer cell proliferation. This finding increases the feasibility of nitroxoline repurposing for urological cancer treatment. Due to the excellent anticancer activity demonstrated in the present study, and its well-known safety profile and pharmacokinetic properties, nitroxoline has been approved to enter into a phase II clinical trial in China for non-muscle invasive bladder cancer treatment (registration no. CTR20131716).
Collapse
Affiliation(s)
- Q I Zhang
- School of Graduate Studies, Anhui Medical University, Hefei, Anhui 230032, P.R. China; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shanshan Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Dexuan Yang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Kevin Pan
- Jiangsu Asieris Pharmaceuticals Co., Ltd., Taizhou, Jiangsu 225300, P.R. China
| | - Linna Li
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shoujun Yuan
- School of Graduate Studies, Anhui Medical University, Hefei, Anhui 230032, P.R. China; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
21
|
Huang Y, Cheng C, Zhang C, Zhang Y, Chen M, Strand DW, Jiang M. Advances in prostate cancer research models: From transgenic mice to tumor xenografting models. Asian J Urol 2016; 3:64-74. [PMID: 29264167 PMCID: PMC5730804 DOI: 10.1016/j.ajur.2016.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/01/2016] [Accepted: 02/02/2016] [Indexed: 12/17/2022] Open
Abstract
The identification of the origin and molecular characteristics of prostate cancer (PCa) has crucial implications for personalized treatment. The development of effective treatments for PCa has been limited; however, the recent establishment of several transgenic mouse lines and/or xenografting models is better reflecting the disease in vivo. With appropriate models, valuable tools for elucidating the functions of specific genes have gone deep into prostate development and carcinogenesis. In the present review, we summarize a number of important PCa research models established in our laboratories (PSA-Cre-ERT2/PTEN transgenic mouse models, AP-OX model, tissue recombination-xenografting models and PDX models), which represent advances of translational models from transgenic mouse lines to human tumor xenografting. Better understanding of the developments of these models will offer new insights into tumor progression and may help explain the functional significance of genetic variations in PCa. Additionally, this understanding could lead to new modes for curing PCa based on their particular biological phenotypes.
Collapse
Affiliation(s)
- Yuejiao Huang
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chun Cheng
- Department of Immunology, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Chong Zhang
- Laboratory of Nuclear Receptors and Cancer Research, Center for Basic Medical Research, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Yonghui Zhang
- Laboratory of Nuclear Receptors and Cancer Research, Center for Basic Medical Research, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Miaomiao Chen
- Laboratory of Nuclear Receptors and Cancer Research, Center for Basic Medical Research, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Douglas W Strand
- Department of Urology, UT Southernwestern Medical Center, Dallas, TX, USA
| | - Ming Jiang
- Laboratory of Nuclear Receptors and Cancer Research, Center for Basic Medical Research, Nantong University School of Medicine, Nantong, Jiangsu, China.,Institute of Medicine and Public Health, Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Wang Y, Wang JX, Xue H, Lin D, Dong X, Gout PW, Gao X, Pang J. Subrenal capsule grafting technology in human cancer modeling and translational cancer research. Differentiation 2015; 91:15-9. [PMID: 26547391 DOI: 10.1016/j.diff.2015.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
Patient-derived xenograft (PDX) cancer models with high fidelity are in great demand. While the majority of PDXs are grafted under the skin of immunodeficient mice, the Living Tumor Laboratory (LTL), using unique subrenal capsule grafting techniques, has successfully established more than 200 transplantable PDX models of various low to high grade human cancers. The LTL PDX models retain key biological properties of the original malignancies, including histopathological and molecular characteristics, tumor heterogeneity, metastatic ability, and response to treatment. The PDXs are stored frozen at early transplant generations in a resurrectable form, which eliminates continuous passaging in mice, thus ensuring maintenance of the high biologic and molecular fidelity and reproducibility of the models. The PDX models have been demonstrated to be powerful tools for (i) studies of cancer progression, metastasis and drug resistance, (ii) evidenced-based precision cancer therapy, (iii) preclinical drug efficacy testing and discovery of new anti-cancer drug candidates. To better provide resources for the research community, an LTL website (www.livingtumorlab.com) has been designed as a publicly accessible database which allows researchers to identify PDX models suitable for translational/preclinical cancer research. In summary, subrenal capsule grafting technology maximizes both tumor engraftment rate and retention of human cancer heterogeneity. Moreover, the method makes possible the recovery of PDXs from frozen stocks for further applications, thus providing a powerful platform for translational cancer research.
Collapse
Affiliation(s)
- Yuzhuo Wang
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Joy X Wang
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.
| | - Hui Xue
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Dong Lin
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Xin Dong
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Xin Gao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, China.
| | - Jun Pang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, China.
| |
Collapse
|
23
|
Saar M, Körbel C, Linxweiler J, Jung V, Kamradt J, Hasenfus A, Stöckle M, Unteregger G, Menger MD. Orthotopic tumorgrafts in nude mice: A new method to study human prostate cancer. Prostate 2015; 75:1526-37. [PMID: 26074274 DOI: 10.1002/pros.23027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND In vivo model systems in prostate cancer research that authentically reproduce tumor growth are still sparse. While orthotopic implantation is technically difficult, particularly in the mouse, most models favor subcutaneous tumor growth. This however provides little information about natural tumor growth behavior and tumor stroma interaction. Furthermore, established prostate cancer cell lines grown as in vivo xenografts are not able to reflect the variety of tumor specific growth patterns and growth behavior in men. Primary cell cultures are difficult to handle and an induction of orthotopic tumors has not been successful yet. Therefore, a tumorgraft model using tumor tissue from prostatectomy specimens was developed. METHODS Balb/c nude mice were used to graft fresh prostate tumor tissue by renal subcapsular and orthotopic implantation. Testosterone propionate was supplemented. Animals were tracked by means of 30 MHz ultrasound to monitor tumor engraftment and growth. Autopsy, histology, PSA measurements as well as immunostaining and PCR for human tissue were performed to confirm orthotopic tumor growth. RESULTS Renal subcapsular engraftment was seen in 2 of 3 mice. Orthotopic engraftment was observed in 7 of 11 animals (63.6%) with an overall engraftment of 5 out of 9 patient specimens (55.6%). Ultrasound confirmed the tumor growth over time. Of interest, the tumorgrafts not only retained essential features of the parental tumors, but also stained positive for tumor specific markers such as AR, PSA, and AMACR. Tumor positive animals showed highly elevated serum PSA levels with confirmation of a human specific PCR sequence and a human endothelial cell lining in the tumor vessels. CONCLUSIONS Standardized implantation of fresh tumor tissue in nude mice prostates generates tumorgrafts with histological properties of organ-confined prostate cancer. These tumorgrafts display a new approach for an optimized in vivo model of prostate cancer and will allow further investigations on specific pathways of tumor initiation and progression as well as therapeutic response.
Collapse
Affiliation(s)
- Matthias Saar
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Volker Jung
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Jörn Kamradt
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Andrea Hasenfus
- Institute of Pathology, Saarland University, Homburg/Saar, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Gerhard Unteregger
- Department of Urology and Pediatric Urology, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
24
|
Lawrence MG, Pook DW, Wang H, Porter LH, Frydenberg M, Kourambas J, Appu S, Poole C, Beardsley EK, Ryan A, Norden S, Papargiris MM, Risbridger GP, Taylor RA. Establishment of primary patient-derived xenografts of palliative TURP specimens to study castrate-resistant prostate cancer. Prostate 2015; 75:1475-83. [PMID: 26177841 DOI: 10.1002/pros.23039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/26/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND Fresh patient specimens of castrate-resistant prostate cancer (CRPC) are invaluable for studying tumor heterogeneity and responses to current treatments. They can be used for primary patient-derived xenografts (PDXs) or serially transplantable PDXs, but only a small proportion of samples grow successfully. To improve the efficiency and quality of PDXs, we investigated the factors that determine the initial engraftment of patient tissues derived from TURP specimens. METHODS Fresh tissue was collected from castrate patients who required a TURP for urinary symptoms. Tissue was grafted under the renal capsule of immune-compromised mice for up to 14 weeks. The abundance of cancer in ungrafted and grafted specimens was compared using histopathology. Mice were castrated or implanted with testosterone pellets to determine the androgen-responsiveness of CRPC PDXs from TURP tissue. RESULTS Primary PDXs were successfully established from 7 of 10 patients that underwent grafting. Of the 112 grafts generated from these 10 patients, 21% contained cancer at harvest. Grafts were most successful when the original patient specimens contained high amounts of viable cancer, defined as samples with (i) at least 50% cancer cells, (ii) no physical damage, and (iii) detectable Ki67 expression. PDX grafts survived in castrated hosts and proliferated in response to testosterone, confirming that they were castrate resistant but androgen-responsive. CONCLUSIONS Primary PDXs of CRPC can be established from TURP specimens with modest success. The take rate can be increased if the original tissues contain sufficient numbers of actively proliferating cancer cells. Selecting specimens with abundant viable cancer will maximize the rate of engraftment and increase the efficiency of establishing PDXs that can be serially transplanted.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - David W Pook
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Oncology, Monash Cancer Centre, Melbourne, Victoria, Australia
| | - Hong Wang
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Mark Frydenberg
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Urology, Monash Medical Centre, Clayton, Victoria, Australia
- Department of Surgery, Monash University, Clayton, Victoria, Australia
| | - John Kourambas
- Department of Urology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Sree Appu
- Department of Urology, Monash Medical Centre, Clayton, Victoria, Australia
- Department of Surgery, Monash University, Clayton, Victoria, Australia
| | - Christine Poole
- Department of Urology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Emma K Beardsley
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Andrew Ryan
- TissuPath Pathology, Melbourne, Mount Waverley, Victoria, Australia
| | - Sam Norden
- TissuPath Pathology, Melbourne, Mount Waverley, Victoria, Australia
| | - Melissa M Papargiris
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Renea A Taylor
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Russell PJ, Russell P, Rudduck C, Tse BWC, Williams ED, Raghavan D. Establishing prostate cancer patient derived xenografts: lessons learned from older studies. Prostate 2015; 75:628-36. [PMID: 25560784 PMCID: PMC4415460 DOI: 10.1002/pros.22946] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. METHODS We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. RESULTS Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43-46, XY, dic(1;12)(p11;p11), der(3)t(3:?5)(q13;q13), -5, inv(7)(p15q35) x2, +add(7)(p13), add(8)(p22), add(11)(p14), add(13)(p11), add(20)(p12), -22, +r4[cp8]. CONCLUSIONS Xenografts provide a clinically relevant model of prostate cancer, although establishing serially transplantable prostate cancer patient derived xenografts is challenging and requires rigorous characterization and high quality starting material. Xenografting from advanced prostate cancer is more likely to succeed, as xenografting from well differentiated, localized disease has not been achieved in our experience. Strong translational correlations can be demonstrated between the clinical disease state and the xenograft model.
Collapse
Affiliation(s)
- Pamela J Russell
- Australian Prostate Cancer Research Centre - QueenslandInstitute of Health and Biomedical InnovationQueensland University of Technology, Translational Research InstituteBrisbane, Queensland, 4102, Australia
- *Correspondence to: Pamela J. Russell, Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, 4102, Australia. E-mail:
| | - Peter Russell
- GynaePath, Douglass Hanly Moir PathologyMacquarie Park, New South Wales, Australia
- Department of Obstetrics Gynaecology and Neonatology, University of Sydney, SydneyNew South Wales, Australia
| | - Christina Rudduck
- Cytogenetics Department, The Children's HospitalSydney, New South Wales, Australia
| | - Brian W-C Tse
- Australian Prostate Cancer Research Centre - QueenslandInstitute of Health and Biomedical InnovationQueensland University of Technology, Translational Research InstituteBrisbane, Queensland, 4102, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre - QueenslandInstitute of Health and Biomedical InnovationQueensland University of Technology, Translational Research InstituteBrisbane, Queensland, 4102, Australia
| | | |
Collapse
|
26
|
Russo MV, Faversani A, Gatti S, Ricca D, Del Gobbo A, Ferrero S, Palleschi A, Vaira V, Bosari S. A new mouse avatar model of non-small cell lung cancer. Front Oncol 2015; 5:52. [PMID: 25785245 PMCID: PMC4347595 DOI: 10.3389/fonc.2015.00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/13/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction: Lung cancer remains the leading cause of tumor-related deaths, despite advances in the understanding of the disease pathogenesis and in its clinical treatment. It is crucial to develop novel technologies to discover disease biomarkers and predict individual therapy response. Materials and methods: We established 48 patients-derived tumor xenografts (PDTXs) implanted in the subrenal capsule of immunodeficient mice using thin, precision-cut tumor tissue slices, derived from five patients affected by non-small cell lung cancer. Twenty-six tissue slices were immediately processed and implanted at sample recovery [patients-derived tumor xenografts derived from fresh tissue (dPDTX)], whereas the remaining sections were cultured on specific organotypic supports at 37°C and 5% CO2 for 24 h before grafting [patients-derived tumor xenografts derived from cultured tissue (cPDTX)]. At sacrifice, xenografts tissue morphology, proliferation (Ki67), and histotype markers were analyzed. Oncogenic miRNAs profiles were assessed in PDTXs, human tumors, and serum from one patient. Results: Xenografts retained the original cancer features and there were no differences between dPDTXs and cPDTXs. Squamous cell carcinoma (SCC) xenografts showed a higher engraftment rate than adenocarcinoma (AC)-derived tumors. At basal time, Ki67 levels were higher in SCCs than in ACs, and the expression levels of genes associated to a stem cell-like phenotype were also more expressed in SCC samples. The analysis of oncogenic miRNAs showed that circulating miR-19b, -21, and -210 levels were correlated with higher Ki67 expression in xenografts. Conclusion: Our study implemented the PDTX model with thin, precision-cut tumor slices from small tumors, which could be useful for clinical applications and predictive purposes. The different engraftment success is likely determined by tumor histotype, high proliferation index, and the expression of genes essential for cancer stem cells maintenance. Our PDTXs model could be a valid tool to expand primary tumors for the discovery of new biomarkers and explore therapeutic options.
Collapse
Affiliation(s)
- Maria Veronica Russo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy ; Department of Pathophysiology and Transplantation, Doctorate School in Molecular and Translational Medicine, University of Milan , Milan , Italy
| | - Alice Faversani
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Stefano Gatti
- Center for Preclinical Surgical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy ; Department of Medical Biotechnology and Translational Medicine, University of Milan , Milan , Italy
| | - Dario Ricca
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy ; Department of Biomedical, Surgical and Dental Sciences, University of Milan , Milan , Italy
| | - Alessandro Palleschi
- Division of Thoracic Surgery and Lung Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy ; Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Silvano Bosari
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy ; Department of Pathophysiology and Transplantation, Doctorate School in Molecular and Translational Medicine, University of Milan , Milan , Italy
| |
Collapse
|
27
|
Lin D, Xue H, Wang Y, Wu R, Watahiki A, Dong X, Cheng H, Wyatt AW, Collins CC, Gout PW, Wang Y. Next generation patient-derived prostate cancer xenograft models. Asian J Androl 2014; 16:407-12. [PMID: 24589467 PMCID: PMC4023366 DOI: 10.4103/1008-682x.125394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
There is a critical need for more effective therapeutic approaches for prostate cancer. Research in this area, however, has been seriously hampered by a lack of clinically relevant, experimental in vivo models of the disease. This review particularly focuses on the development of prostate cancer xenograft models based on subrenal capsule grafting of patients’ tumor tissue into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. This technique allows successful development of transplantable, patient-derived cancer tissue xenograft lines not only from aggressive metastatic, but also from localized prostate cancer tissues. The xenografts have been found to retain key biological properties of the original malignancies, including histopathological and molecular characteristics, tumor heterogeneity, response to androgen ablation and metastatic ability. As such, they are highly clinically relevant and provide valuable tools for studies of prostate cancer progression at cellular and molecular levels, drug screening for personalized cancer therapy and preclinical drug efficacy testing; especially when a panel of models is used to cover a broader spectrum of the disease. These xenograft models could therefore be viewed as next-generation models of prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuzhuo Wang
- The Vancouver Prostate Centre, Vancouver General Hospital; Department of Experimental Therapeutics, British Columbia Cancer Agency and Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
In vitro modeling of the prostate cancer microenvironment. Adv Drug Deliv Rev 2014; 79-80:214-21. [PMID: 24816064 DOI: 10.1016/j.addr.2014.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 01/01/2023]
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and advanced disease is incurable. Model systems are a fundamental tool for research and many in vitro models of prostate cancer use cancer cell lines in monoculture. Although these have yielded significant insight they are inherently limited by virtue of their two-dimensional (2D) growth and inability to include the influence of tumour microenvironment. These major limitations can be overcome with the development of newer systems that more faithfully recreate and mimic the complex in vivo multi-cellular, three-dimensional (3D) microenvironment. This article presents the current state of in vitro models for prostate cancer, with particular emphasis on 3D systems and the challenges that remain before their potential to advance our understanding of prostate disease and aid in the development and testing of new therapeutic agents can be realised.
Collapse
|
29
|
Pu K, Shuhendler AJ, Valta MP, Cui L, Saar M, Peehl DM, Rao J. Phosphorylcholine-coated semiconducting polymer nanoparticles as rapid and efficient labeling agents for in vivo cell tracking. Adv Healthc Mater 2014; 3:1292-8. [PMID: 24668903 PMCID: PMC4134769 DOI: 10.1002/adhm.201300534] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/24/2014] [Indexed: 12/19/2022]
Abstract
Despite the pressing need to noninvasively monitor transplanted cells in vivo with fluorescence imaging, desirable fluorescent agents with rapid labeling capability, durable brightness, and ideal biocompatibility remain lacking. Here, phosphorylcholine-coated near-infrared (NIR) fluorescent semiconducting polymer nanoparticles (SPNs) are reported as a new class of rapid, efficient, and cytocompatible labeling nanoagents for in vivo cell tracking. The phosphorylcholine coating results in efficient and rapid endocytosis and allows the SPN to enter cells within 0.5 h in complete culture medium apparently independent of the cell type, while its NIR fluorescence leads to a tissue penetration depth of 0.5 cm. In comparison to quantum dots and Cy5.5, the SPN is tolerant to physiologically ubiquitous reactive oxygen species (ROS), resulting in durable fluorescence both in vitro and in vivo. These desirable physical and physiological properties of the SPN permit cell tracking of human renal cell carcinoma (RCC) cells in living mice at a lower limit of detection of 10 000 cells with no obvious alteration of cell phenotype after 12 d. SPNs thus can provide unique opportunities for optimizing cellular therapy and deciphering pathological processes as a cell tracking label.
Collapse
Affiliation(s)
- Kanyi Pu
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, USA
| | - Adam J. Shuhendler
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, USA
| | - Maija P. Valta
- Department of Urology, School of Medicine, Stanford University, USA. Division of Medicine, Turku University Hospital and University of Turku, Finland
| | - Lina Cui
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, USA
| | - Matthias Saar
- Department of Urology School of Medicine, Stanford University, USA. Department of Urology and Pediatric Urology, University of Saarland, Homburg/Saar, Germany
| | - Donna M. Peehl
- Department of Urology School of Medicine, Stanford University, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, USA
| |
Collapse
|
30
|
Abstract
Recent developments and improvements of multimodal imaging methods for use in animal research have substantially strengthened the options of in vivo visualization of cancer-related processes over time. Moreover, technological developments in probe synthesis and labelling have resulted in imaging probes with the potential for basic research, as well as for translational and clinical applications. In addition, more sophisticated cancer models are available to address cancer-related research questions. This Review gives an overview of developments in these three fields, with a focus on imaging approaches in animal cancer models and how these can help the translation of new therapies into the clinic.
Collapse
Affiliation(s)
- Marion de Jong
- Departments of Nuclear Medicine and Radiology, Erasmus MC Rotterdam, Room Na-610, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jeroen Essers
- Departments of Genetics (Cancer Genomics Centre), Radiation Oncology and Vascular Surgery, Erasmus MC Rotterdam, P.O Box 2040, 3000CA Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
31
|
Valta MP, Zhao H, Ingels A, Thong AE, Nolley R, Saar M, Peehl DM. Development of a realistic in vivo bone metastasis model of human renal cell carcinoma. Clin Exp Metastasis 2014; 31:573-84. [PMID: 24715498 DOI: 10.1007/s10585-014-9651-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/19/2014] [Indexed: 02/06/2023]
Abstract
About one-third of patients with advanced renal cell carcinoma (RCC) have bone metastases. The incidence of RCC is increasing and bone metastatic RCC merits greater focus. Realistic preclinical bone metastasis models of RCC are lacking, hampering the development of effective therapies. We developed a realistic in vivo bone metastasis model of human RCC by implanting precision-cut tissue slices under the renal capsule of immunodeficient mice. The presence of disseminated cells in bone marrow of tissue slice graft (TSG)-bearing mice was screened by human-specific polymerase chain reaction and confirmed by immunohistology using human-specific antibody. Disseminated tumor cells in bone marrow of TSG-bearing mice derived from three of seven RCC patients were detected as early as 1 month after tissue implantation at a high frequency with close resemblance to parent tumors (e.g., CAIX expression and high vascularity). The metastatic patterns of TSGs correlated with disease progression in patients. In addition, TSGs retained capacity to metastasize to bone at high frequency after serial passaging and cryopreservation. Moreover, bone metastases in mice responded to Temsirolimus treatment. Intratibial injections of single cells generated from TSGs showed 100 % engraftment and produced X-ray-visible tumors as early as 3 weeks after cancer cell inoculation. Micro-computed tomography (μCT) and histological analysis revealed osteolytic characteristics of these lesions. Our results demonstrated that orthotopic RCC TSGs have potential to develop bone metastases that respond to standard therapy. This first reported primary RCC bone metastasis model provides a realistic setting to test therapeutics to prevent or treat bone metastases in RCC.
Collapse
Affiliation(s)
- Maija P Valta
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Af Hällström TM, Zhao H, Tian J, Rantanen V, Reese SW, Nolley R, Laiho M, Peehl DM. A tissue graft model of DNA damage response in the normal and malignant human prostate. J Urol 2014; 191:842-9. [PMID: 24035881 PMCID: PMC4009951 DOI: 10.1016/j.juro.2013.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 12/26/2022]
Abstract
PURPOSE DNA damage responses are relevant to prostate cancer initiation, progression and treatment. Few models of the normal and malignant human prostate that maintain stromal-epithelial interactions in vivo exist in which to study DNA damage responses. We evaluated the feasibility of maintaining tissue slice grafts at subcutaneous vs subrenal capsular sites in RAG2(-/-)γC(-/-) mice to study the DNA damage responses of normal and malignant glands. MATERIALS AND METHODS We compared the take rate and histology of tissue slice grafts from fresh, precision cut surgical specimens that were maintained for 1 to 4 weeks in subcutaneous vs subrenal capsular sites. Induction of γH2AX, p53, ATM and apoptosis was evaluated as a measure of the DNA damage response after irradiation. RESULTS The take rate of subcutaneous tissue slice grafts was higher than typically reported but lower than at the subrenal capsular site. Subcutaneous tissue slice grafts frequently showed basal cell hyperplasia, squamous metaplasia and cystic atrophy, and cancer did not survive. In contrast, normal and malignant histology was well maintained in subrenal capsular tissue slice grafts. Regardless of implantation site the induction of γH2AX and ATM occurred in tissue slice graft epithelium 1 hour after irradiation and decreased to basal level by 24 hours, indicating DNA damage recognition and repair. As observed previously in prostatic ex vivo models, p53 was not activated. Notably, tumor but not normal cells responded to irradiation by undergoing apoptosis. CONCLUSIONS To our knowledge this is the first study of DNA damage responses in a patient derived prostate tissue graft model. The subrenal capsular site of RAG2(-/-)γC(-/-) mice optimally maintains normal and malignant histology and function, permitting novel studies of DNA damage responses in a physiological context.
Collapse
Affiliation(s)
- Taija M Af Hällström
- Department of Urology, Stanford University School of Medicine, Stanford, California; Molecular Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Finland
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Junqiang Tian
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Ville Rantanen
- Department of Virology, Haartman Institute and Molecular Imaging Unit and Computational Systems Biology Laboratory, Institute of Biomedicine and Genome-Scale Biology Program, University of Helsinki, Finland
| | - Stephen W Reese
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Marikki Laiho
- Molecular Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Finland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
33
|
Optimization and comprehensive characterization of a faithful tissue culture model of the benign and malignant human prostate. J Transl Med 2014; 94:208-21. [PMID: 24296879 PMCID: PMC3946793 DOI: 10.1038/labinvest.2013.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/04/2013] [Accepted: 10/28/2013] [Indexed: 01/22/2023] Open
Abstract
Few preclinical models accurately depict normal human prostate tissue or primary prostate cancer (PCa). In vitro systems typically lack complex cellular interactions among structured prostatic epithelia and a stromal microenvironment, and genetic and molecular fidelity are concerns in both in vitro and in vivo models. 'Tissue slice cultures' (TSCs) provide realistic preclinical models of diverse tissues and organs, but have not been fully developed or widely utilized for prostate studies. Problems encountered include degeneration of differentiated secretory cells, basal cell hyperplasia, and poor survival of PCa. Here, we optimized, characterized, and applied a TSC model of primary human PCa and benign prostate tissue that overcomes many deficiencies of current in vitro models. Tissue cores from fresh prostatectomy specimens were precision-cut at 300 μm and incubated in a rotary culture apparatus. The ability of varied culture conditions to faithfully maintain benign and cancer cell and tissue structure and function over time was evaluated by immunohistological and biochemical assays. After optimization of the culture system, molecular and cellular responses to androgen ablation and to piperlongumine (PL), purported to specifically reduce androgen signaling in PCa, were investigated. Optimized culture conditions successfully maintained the structural and functional fidelity of both benign and PCa TSCs for 5 days. TSCs exhibited androgen dependence, appropriately undergoing ductal degeneration, reduced proliferation, and decreased prostate-specific antigen expression upon androgen ablation. Further, TSCs revealed cancer-specific reduction of androgen receptor and increased apoptosis upon treatment with PL, validating data from cell lines. We demonstrate a TSC model that authentically recapitulates the structural, cellular, and genetic characteristics of the benign and malignant human prostate, androgen dependence of the native tissue, and cancer-specific response to a potentially new therapeutic for PCa. The work described herein provides a basis for advancing the experimental utility of the TSC model.
Collapse
|
34
|
Toivanen R, Frydenberg M, Murphy D, Pedersen J, Ryan A, Pook D, Berman DM, Taylor RA, Risbridger GP. A preclinical xenograft model identifies castration-tolerant cancer-repopulating cells in localized prostate tumors. Sci Transl Med 2013; 5:187ra71. [PMID: 23720582 DOI: 10.1126/scitranslmed.3005688] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A lack of clinically relevant experimental models of human prostate cancer hampers evaluation of potential therapeutic agents. Currently, androgen deprivation therapy is the gold standard treatment for advanced prostate cancer, but inevitably, a subpopulation of cancer cells survives and repopulates the tumor. Tumor cells that survive androgen withdrawal are critical therapeutic targets for more effective treatments, but current model systems cannot determine when they arise in disease progression and are unable to recapitulate variable patient response to treatment. A model system was developed in which stromal-supported xenografts from multiple patients with early-stage localized disease can be tested for response to castration. The histopathology of these xenografts mimicked the original tumors, and short-term host castration resulted in reduced proliferation and increased apoptosis in tumor cells. After 4 weeks of castration, residual populations of quiescent, stem-like tumor cells remained. Without subsequent treatment, these residual cells displayed regenerative potential, because testosterone readministration resulted in emergence of rapidly proliferating tumors. Therefore, this model may be useful for revealing potential cellular targets in prostate cancer, which exist before the onset of aggressive incurable disease. Specific eradication of these regenerative tumor cells that survive castration could then confer survival benefits for patients.
Collapse
Affiliation(s)
- Roxanne Toivanen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lin D, Wyatt AW, Xue H, Wang Y, Dong X, Haegert A, Wu R, Brahmbhatt S, Mo F, Jong L, Bell RH, Anderson S, Hurtado-Coll A, Fazli L, Sharma M, Beltran H, Rubin M, Cox M, Gout PW, Morris J, Goldenberg L, Volik SV, Gleave ME, Collins CC, Wang Y. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res 2013; 74:1272-83. [PMID: 24356420 DOI: 10.1158/0008-5472.can-13-2921-t] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Standardized and reproducible preclinical models that recapitulate the dynamics of prostate cancer are urgently needed. We established a bank of transplantable patient-derived prostate cancer xenografts that capture the biologic and molecular heterogeneity currently confounding prognostication and therapy development. Xenografts preserved the histopathology, genome architecture, and global gene expression of donor tumors. Moreover, their aggressiveness matched patient observations, and their response to androgen withdrawal correlated with tumor subtype. The panel includes the first xenografts generated from needle biopsy tissue obtained at diagnosis. This advance was exploited to generate independent xenografts from different sites of a primary site, enabling functional dissection of tumor heterogeneity. Prolonged exposure of adenocarcinoma xenografts to androgen withdrawal led to castration-resistant prostate cancer, including the first-in-field model of complete transdifferentiation into lethal neuroendocrine prostate cancer. Further analysis of this model supports the hypothesis that neuroendocrine prostate cancer can evolve directly from adenocarcinoma via an adaptive response and yielded a set of genes potentially involved in neuroendocrine transdifferentiation. We predict that these next-generation models will be transformative for advancing mechanistic understanding of disease progression, response to therapy, and personalized oncology.
Collapse
Affiliation(s)
- Dong Lin
- Authors' Affiliations: Vancouver Prostate Centre; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia; Departments of Experimental Therapeutics and Radiation Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Weill Cornell Cancer Center, Weill Cornell Medical College, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ingels A, Zhao H, Thong AE, Saar M, Valta MP, Nolley R, Santos J, Peehl DM. Preclinical trial of a new dual mTOR inhibitor, MLN0128, using renal cell carcinoma tumorgrafts. Int J Cancer 2013; 134:2322-9. [PMID: 24243565 DOI: 10.1002/ijc.28579] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/06/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
mTOR is a rational target in renal cell carcinoma (RCC) because of its role in disease progression. However, the effects of temsirolimus, the only first-generation mTOR inhibitor approved by the FDA for first-line treatment of metastatic RCC, on tumor reduction and progression-free survival are minimal. Second-generation mTOR inhibitors have not been evaluated on RCC. We compared the effects of temsirolimus and MLN0128, a potent second-generation mTOR inhibitor, on RCC growth and metastasis using a realistic patient-derived tissue slice graft (TSG) model. TSGs were derived from three fresh primary RCC specimens by subrenal implantation of precision-cut tissue slices into immunodeficient mice that were randomized and treated with MLN0128, temsirolimus, or placebo. MLN0128 consistently suppressed primary RCC growth, monitored by magnetic resonance imaging (MRI), in three TSG cohorts for up to 2 months. Temsirolimus, in contrast, only transiently inhibited the growth of TSGs in one of two cohorts before resistance developed. In addition, MLN0128 reduced liver metastases, determined by human-specific quantitative polymerase chain reaction, in two TSG cohorts, whereas temsirolimus failed to have any significant impact. Moreover, MLN0128 decreased levels of key components of the two mTOR subpathways including TORC1 targets 4EBP1, p-S6K1, HIF1α and MTA1 and the TORC2 target c-Myc, consistent with dual inhibition. Our results demonstrated that MLN0128 is superior to temsirolimus in inhibiting primary RCC growth as well as metastases, lending strong support for further clinical development of dual mTOR inhibitors for RCC treatment.
Collapse
Affiliation(s)
- Alexandre Ingels
- Department of Urology, Stanford University School of Medicine, Stanford, CA; Department of Urology, Centre Hospitalier Universitaire du Kremlin-Bicêtre, Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Carvalho FLF, Simons BW, Antonarakis ES, Rasheed Z, Douglas N, Villegas D, Matsui W, Berman DM. Tumorigenic potential of circulating prostate tumor cells. Oncotarget 2013; 4:413-21. [PMID: 23530114 PMCID: PMC3717304 DOI: 10.18632/oncotarget.895] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circulating tumor cells (CTCs) have received intense scientific scrutiny because they travel in the bloodstream and are therefore well situated to mediate hematogenous metastasis. However, the potential of CTCs to actually form new tumors has not been tested. Popular methods of isolating CTCs are biased towards larger, more differentiated, non-viable cells, creating a barrier to testing their tumor forming potential. Without relying on cell size or the expression of differentiation markers, our objective was to isolate viable prostate CTCs from mice and humans and assay their ability to initiate new tumors. Therefore, blood was collected from transgenic adenocarcinoma of the mouse prostate (TRAMP) mice and from human patients with metastatic castration-resistant prostate cancer (PCa). Gradient density centrifugation or red cell lysis was used to remove erythrocytes, and then leukocytes were depleted by magnetic separation using CD45 immunoaffinity beads. CTCs fractions from TRAMP mice and PCa patients were verified by immunocytochemical staining for cytokeratin 8 and EpCAM, and inoculated into immunodeficient mice. TRAMP tumor growth was monitored by palpation. Human tumor growth formation was monitored up to 8 months by ultrasensitive PSA assays performed on mouse serum. We found viable tumor cells present in the bloodstream that were successfully isolated from mice without relying on cell surface markers. Two out of nine immunodeficient mice inoculated with TRAMP CTCs developed massive liver metastases. CTCs were identified in blood from PCa patients but did not form tumors. In conclusion, viable CTCs can be isolated without relying on epithelial surface markers or size fractionation. TRAMP CTCs were tumorigenic, so CTCs isolated in this way contain viable tumor-initiating cells. Only two of nine hosts grew TRAMP tumors and none of the human CTCs formed tumors, which suggests that most CTCs have relatively low tumor-forming potential. Future studies should identify and target the highly tumorigenic cells.
Collapse
Affiliation(s)
- Filipe L F Carvalho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Risbridger G, Taylor R. To target or not to target the enemy within localized prostate cancer. Cell Cycle 2013; 12:3349-50. [PMID: 24091534 PMCID: PMC3895420 DOI: 10.4161/cc.26576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
39
|
Zhao H, Thong A, Nolley R, Reese SW, Santos J, Ingels A, Peehl DM. Patient-derived tissue slice grafts accurately depict response of high-risk primary prostate cancer to androgen deprivation therapy. J Transl Med 2013; 11:199. [PMID: 23985008 PMCID: PMC3766103 DOI: 10.1186/1479-5876-11-199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/16/2013] [Indexed: 12/18/2022] Open
Abstract
Background Effective eradication of high-risk primary prostate cancer (HRPCa) could significantly decrease mortality from prostate cancer. However, the discovery of curative therapies for HRPCa is hampered by the lack of authentic preclinical models. Methods We improved upon tumorgraft models that have been shown to predict drug response in other cancer types by implanting thin, precision-cut slices of HRPCa under the renal capsule of immunodeficient mice. Tissue slice grafts (TSGs) from 6 cases of HRPCa were established in mice. Following androgen deprivation by castration, TSGs were recovered and the presence and phenotype of cancer cells were evaluated. Results High-grade cancer in TSGs generated from HRPCa displayed characteristic Gleason patterns and biomarker expression. Response to androgen deprivation therapy (ADT) was as in humans, with some cases exhibiting complete pathologic regression and others showing resistance to castration. As in humans, ADT decreased cell proliferation and prostate-specific antigen expression in TSGs. Adverse pathological features of parent HRPCa were associated with lack of regression of cancer in corresponding TSGs after ADT. Castration-resistant cancer cells remaining in TSGs showed upregulated expression of androgen receptor target genes, as occurs in castration-resistant prostate cancer (CRPC) in humans. Finally, a rare subset of castration-resistant cancer cells in TSGs underwent epithelial-mesenchymal transition, a process also observed in CRPC in humans. Conclusions Our study demonstrates the feasibility of generating TSGs from multiple patients and of generating a relatively large number of TSGs from the same HRPCa specimen with similar cell composition and histology among control and experimental samples in an in vivo setting. The authentic response of TSGs to ADT, which has been extensively characterized in humans, suggests that TSGs can serve as a surrogate model for clinical trials to achieve rapid and less expensive screening of therapeutics for HRPCa and primary CRPC.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Thong AE, Zhao H, Ingels A, Valta MP, Nolley R, Santos J, Young SR, Peehl DM. Tissue slice grafts of human renal cell carcinoma: an authentic preclinical model with high engraftment rate and metastatic potential. Urol Oncol 2013; 32:43.e23-30. [PMID: 23911681 DOI: 10.1016/j.urolonc.2013.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Discovery of curative therapies for renal cell carcinoma (RCC) is hampered by lack of authentic preclinical models. Tumorgrafts, generated by direct implantation of patient-derived tissues into mice, have demonstrated superior ability to predict therapeutic response. We evaluated "tissue slice grafts" (TSGs) as an improved tumorgraft model of RCC. MATERIALS AND METHODS Cores of fresh RCC were precision-cut at 300 µm and implanted under the renal capsule of RAG2(-/-)γC(-/-) mice. Engraftment rate, histology, biomarker expression, genetic fidelity, and metastatic potential were evaluated. Magnetic resonance imaging (MRI) was tested as a noninvasive method to measure tumor volume, and response to a targeted therapy was determined. RESULTS All 13 cases of RCC engrafted and displayed characteristic histology and biomarkers. TSG volume quantified noninvasively by MRI highly correlated with graft weights, providing a unique tool for monitoring orthotopic growth. Moreover, in 2 cases, cancer cells from TSGs metastasized to clinically relevant sites, including bone. Microarray analysis and DNA sequencing demonstrated a high degree of correlation of global gene expression and von Hippel-Lindau (VHL) status between TSGs and parental tumors. Treatment of TSGs with sunitinib significantly decreased graft weight and mean vessel density compared with controls. CONCLUSION The TSG model of RCC faithfully recapitulates tumor pathology, gene expression, genetic mutation, and drug response. The high engraftment rate and metastatic potential of this authentic model, in conjunction with the ability to generate large first-generation animal cohorts and to quantitate tumor volume at the orthotopic site by MRI, proffer significant advantages compared with other preclinical platforms.
Collapse
Affiliation(s)
- Alan E Thong
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Alexandre Ingels
- Department of Urology, Stanford University School of Medicine, Stanford, CA; Department of Urology, Centre Hospitalier Universitaire du Kremlin-Bicêtre, Kremlin-Bicêtre, France
| | - Maija P Valta
- Department of Urology, Stanford University School of Medicine, Stanford, CA; Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Jennifer Santos
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Sarah R Young
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
41
|
Keshari KR, Sriram R, Van Criekinge M, Wilson DM, Wang ZJ, Vigneron DB, Peehl DM, Kurhanewicz J. Metabolic reprogramming and validation of hyperpolarized 13C lactate as a prostate cancer biomarker using a human prostate tissue slice culture bioreactor. Prostate 2013; 73:1171-81. [PMID: 23532911 PMCID: PMC3976546 DOI: 10.1002/pros.22665] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/26/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND The treatment of prostate cancer has been impeded by the lack of both clinically relevant disease models and metabolic markers that track tumor progression. Hyperpolarized (HP) (13) C MR spectroscopy has emerged as a new technology to investigate the metabolic shifts in prostate cancer. In this study, we investigate the glucose reprogramming using HP (13) C pyruvate MR in a patient-derived prostate tissue slice culture (TSC) model. METHODS The steady-state metabolite concentrations in freshly excised human prostate TSCs were assessed and compared to those from snap-frozen biopsy samples. The TSCs were then applied to a perfused cell (bioreactor) platform, and the bioenergetics and the dynamic pyruvate flux of the TSCs were investigated by (31) P and HP (13) C MR, respectively. RESULTS The prostate TSCs demonstrated steady-state glycolytic and phospholipid metabolism, and bioenergetics that recapitulate features of prostate cancer in vivo. (13) C spectra following injection of HP (13) C pyruvate showed significantly increased pyruvate to lactate flux in malignant as compared to the benign prostate TSCs. This increased flux in the malignant prostate TSCs correlated with both increased expression of monocarboxylate transporters (MCT) and activity of lactate dehydrogenase (LDH). CONCLUSIONS We provide the first mechanistic evidence for HP (13) C lactate as a prostate cancer biomarker in living human tissues, critical for the interpretation of in vivo studies. More broadly, the clinically relevant metabolic model system in combination with HP MR can facilitate the identification of clinically translatable biomarkers of prostate cancer presence, aggressiveness, and treatment response.
Collapse
Affiliation(s)
- Kayvan R. Keshari
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Zhen J. Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Donna M. Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- Correspondence to: Prof. John Kurhanewicz, PhD, Departments of Radiology and Biomedical Imaging, Urology and Pharmaceutical Chemistry, University of California, San Francisco, 1700 4th St., Byers Hall 203, San Francisco, CA 94158.
| |
Collapse
|
42
|
Zhao H, Sun N, Young SR, Nolley R, Santos J, Wu JC, Peehl DM. Induced pluripotency of human prostatic epithelial cells. PLoS One 2013; 8:e64503. [PMID: 23717621 PMCID: PMC3661502 DOI: 10.1371/journal.pone.0064503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/15/2013] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that iPS-like cells derived from prostatic epithelial cells are pluripotent and capable of prostatic differentiation; therefore, provide a novel model for investigating epigenetic changes involved in prostate cell lineage specification.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ning Sun
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sarah R. Young
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jennifer Santos
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Joseph C. Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Donna M. Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abstract
Most cases of prostate cancer are now diagnosed as moderate-grade localized disease. These tumor specimens are important tools in the discovery and translation of prostate cancer research; however, unlike more advanced tumors, they are notoriously difficult to grow in the laboratory. We developed a system for efficiently xenografting localized human prostate cancer tissue, and we adapted this protocol to study the interactions between the specific subsets of epithelial and stromal cells. Fresh prostate tissues or isolated epithelial cells are recombined with mouse seminal vesicle mesenchyme (SVM) and grafted under the renal capsule of immunodeficient mice for optimum growth and survival. Alternatively, mouse mesenchyme can be replaced with human prostate fibroblasts in order to determine their contribution to tumor progression. Grafts can be grown for several months to determine the effectiveness of novel therapeutic compounds when administered to host mice, thereby paving the way for personalizing the treatment of individual prostate cancers.
Collapse
|
44
|
Chen X, Liu B, Li Q, Honorio S, Liu X, Liu C, Multani AS, Calhoun-Davis T, Tang DG. Dissociated primary human prostate cancer cells coinjected with the immortalized Hs5 bone marrow stromal cells generate undifferentiated tumors in NOD/SCID-γ mice. PLoS One 2013; 8:e56903. [PMID: 23451107 PMCID: PMC3579939 DOI: 10.1371/journal.pone.0056903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/15/2013] [Indexed: 12/19/2022] Open
Abstract
Reconstitution of tumor development in immunodeficient mice from disaggregated primary human tumor cells is always challenging. The main goal of the present study is to establish a reliable assay system that would allow us to reproducibly reconstitute human prostate tumor regeneration in mice using patient tumor-derived single cells. Using many of the 114 untreated primary human prostate cancer (HPCa) samples we have worked on, here we show that: 1) the subcutaneum represents the most sensitive site that allows the grafting of the implanted HPCa pieces; 2) primary HPCa cells by themselves fail to regenerate tumors in immunodeficient hosts; 3) when coinjected in Matrigel with rUGM (rat urogenital sinus mesenchyme), CAF (carcinoma-associated fibroblasts), or Hs5 (immortalized bone marrow derived stromal) cells, primary HPCa cells fail to initiate serially transplantable tumors in NOD/SCID mice; and 4) however, HPCa cells coinjected with the Hs5 cells into more immunodeficient NOD/SCID-IL2Rγ(-/-) (NSG) mice readily regenerate serially transplantable tumors. The HPCa/Hs5 reconstituted 'prostate' tumors present an overall epithelial morphology, are of the human origin, and contain cells positive for AR, CK8, and racemase. Cytogenetic analysis provides further evidence for the presence of karyotypically abnormal HPCa cells in the HPCa/Hs5 tumors. Of importance, HPCa/Hs5 xenograft tumors contain EpCAM(+) cells that are both clonogenic and tumorigenic. Surprisingly, all HPCa/Hs5 reconstituted tumors are undifferentiated, even for HPCa cells derived from Gleason 7 tumors. Our results indicate that primary HPCa cells coinjected with the immortalized Hs5 stromal cells generate undifferentiated tumors in NSG mice and we provide evidence that undifferentiated HPCa cells might be the cells that possessed tumorigenic potential and regenerated HPCa/Hs5 xenograft tumors.
Collapse
Affiliation(s)
- Xin Chen
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Program in Molecular Carcinogenesis, Graduate School of Biomedical Sciences (GSBS), Houston, Texas, United States of America
| | - Bigang Liu
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Qiuhui Li
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sofia Honorio
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Xin Liu
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Department of Nutritional Science, University of Texas at Austin, Austin, Texas, United States of America
| | - Can Liu
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Program in Molecular Carcinogenesis, Graduate School of Biomedical Sciences (GSBS), Houston, Texas, United States of America
| | - Asha S. Multani
- Department of Genetics, the University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Tammy Calhoun-Davis
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
| | - Dean G. Tang
- Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, Texas, United States of America
- Program in Molecular Carcinogenesis, Graduate School of Biomedical Sciences (GSBS), Houston, Texas, United States of America
- Centers for Cancer Epigenetics, Stem Cell and Developmental Biology, RNA Interference and Non-coding RNAs, and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
45
|
Zhao H, Coram MA, Nolley R, Reese SW, Young SR, Peehl DM. Transcript levels of androgen receptor variant AR-V1 or AR-V7 do not predict recurrence in patients with prostate cancer at indeterminate risk for progression. J Urol 2012; 188:2158-64. [PMID: 23088973 DOI: 10.1016/j.juro.2012.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Indexed: 01/28/2023]
Abstract
PURPOSE AR-V7, a ligand independent splice variant of androgen receptor, may support the growth of castration resistant prostate cancer and have prognostic value. Another variant, AR-V1, interferes with AR-V7 activity. We investigated whether AR-V7 or V1 expression would predict biochemical recurrence in men at indeterminate (about 50%) risk for progression following radical prostatectomy. MATERIALS AND METHODS AR-V7 and V1 transcripts in a mixed grade cohort of 53 men in whom cancer contained 30% to 70% Gleason grade 4/5 and in a grade 3 only cohort of 52 were measured using a branched chain DNA assay. Spearman rank correlations of the transcripts, and histomorphological and clinical variables were determined. AR-V7 and V1 levels were assessed as determinants of recurrence in the mixed grade cohort by logistic regression and survival analysis. The impact of TMPRSS2-ERG gene fusion on prognosis was also evaluated. RESULTS Neither AR-V7 nor V1 levels in grade 3 or 4/5 cancer in the mixed grade cohort were associated with recurrence or time to recurrence. However, AR-V7 and V1 inversely correlated with serum prostate specific antigen and positively correlated with age. The AR-V1 level in grade 3 cancer in the grade 3 only cohort was higher than in grade 3 or grade 4/5 components of mixed grade cancer. TMPRSS2-ERG fusion was not associated with AR-V7, AR-V1 or recurrence but it was associated with the percent of grade 4/5 cancer. CONCLUSIONS The AR-V1 or V7 transcript level does not predict recurrence in patients with high grade prostate cancer at indeterminate risk for progression. Grade 3 cancer in mixed grade tumors may differ from 100% grade 3 cancer, at least in AR-V1 expression.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
46
|
Toivanen R, Taylor RA, Pook DW, Ellem SJ, Risbridger GP. Breaking through a roadblock in prostate cancer research: an update on human model systems. J Steroid Biochem Mol Biol 2012; 131:122-31. [PMID: 22342674 DOI: 10.1016/j.jsbmb.2012.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 12/11/2022]
Abstract
Prostate cancer is a prevalent disease that affects the aging male population. Whilst there have been significant advances of our biological understanding of the disease, clinical translation of promising agents continues to lag behind. In part, this is due to a paucity of relevant experimental and pre-clinical models required to further develop effective prevention and therapeutic strategies. Genetically modified cell lines fail to entirely represent the genetic and molecular diversity of primary human specimens, particularly from localised disease. Furthermore, primary prostate cancer tissues are extremely difficult to grow in the laboratory and virtually all human models, whether they grow as xenografts in immune-deficient animals or as cell cultures, are genetically modified by the investigator or derived from patients with advanced metastatic disease. In this review, we discuss the latest advances and improvements to current methods of xenografting human primary prostate cancer, and their potential application to translational research.
Collapse
Affiliation(s)
- R Toivanen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
47
|
Tian J, Zhao H, Nolley R, Reese SW, Young SR, Li X, Peehl DM, Knox SJ. Darinaparsin: solid tumor hypoxic cytotoxin and radiosensitizer. Clin Cancer Res 2012; 18:3366-76. [PMID: 22535156 DOI: 10.1158/1078-0432.ccr-11-3179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hypoxia is an important characteristic of the solid tumor microenvironment and constitutes a barrier for effective radiotherapy. Here, we studied the effects of darinaparsin (an arsenic cytotoxin) on survival and radiosensitivity of tumor cells in vitro under normoxia and hypoxia and in vivo using xenograft models, compared to effects on normal tissues. EXPERIMENTAL DESIGN The cytotoxicity and radiosensitization of darinaparsin were first tested in vitro in a variety of solid tumor cell lines under both normoxia and hypoxia and compared with arsenic trioxide (ATO, an arsenical with reported cytotoxic and radiosensitizing activities on tumor cells). The effects were then tested in mouse models of xenograft tumors derived from tumor cell lines and clinical tumor specimens. The potential mechanisms of darinaparsin effects, including reactive oxygen species (ROS) generation, cellular damage, and changes in global gene expression, were also investigated. RESULTS In comparison with ATO, darinaparsin had significantly higher in vitro cytotoxic and radiosensitizing activities against solid tumor cells under both normoxia and hypoxia. In vivo experiments confirmed these activities at doses that had no systemic toxicities. Importantly, darinaparsin did not radiosensitize normal bone marrow and actually radioprotected normal intestinal crypts. The darinaparsin-mediated antitumor effects under hypoxia were not dependent on ROS generation and oxidative damage, but were associated with inhibition of oncogene (RAS and MYC)-dependent gene expression. CONCLUSION Darinaparsin has significant and preferential cytotoxic and radiosensitizing effects on solid tumors as compared with normal cells. Darinaparsin may therefore increase the therapeutic index of radiation therapy and has near term translational potential.
Collapse
Affiliation(s)
- Junqiang Tian
- Department of Radiation Oncology and Urology, School of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Toivanen R, Berman DM, Wang H, Pedersen J, Frydenberg M, Meeker AK, Ellem SJ, Risbridger GP, Taylor RA. Brief report: a bioassay to identify primary human prostate cancer repopulating cells. Stem Cells 2011; 29:1310-4. [PMID: 21674698 DOI: 10.1002/stem.668] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cancer cells are heterogeneous in both their phenotypes and ability to promote tumor growth and spread. Xenografting is used to identify the most highly capable cells of regenerating tumors, referred to as cancer repopulating cells. Because prostate cancers (PCa's) rarely grow as xenografts, indentifying PCa repopulating cells has not been possible. Here, we report improved methods to xenograft localized primary PCa tissues using chimeric grafts with neonatal mouse mesenchyme. Xenograft survival of tumor tissue was significantly increased by neonatal mesenchyme (six of six patients, 66% of grafts, versus four of six patients, 41% of grafts) and doubled the proliferation index of xenografted cancer cells. When applied to isolated PCa cells, neonatal mesenchyme effectively reconstituted PCa's and increased xenograft survival (four of nine patients; 32% of grafts with mesenchyme and 0% without), and supported active cancer cell proliferation. Using this assay, we showed that unfractionated α2β1integrin(hi) and α2β1integrin(lo) cells from primary localized PCa's demonstrated tumor formation at comparable rates, similar to previous reports using metastatic specimens. Thus, this new protocol efficiently established tumors and enabled proliferative expansion of both intact tumor tissue and fractionated cancer cells, providing a bioassay to identify and therapeutically target PCa repopulating cells.
Collapse
Affiliation(s)
- Roxanne Toivanen
- Prostate and Breast Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Experimental models for the development of new medical treatments in prostate cancer. Eur J Cancer 2011; 47 Suppl 3:S200-14. [DOI: 10.1016/s0959-8049(11)70166-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Hu WY, Shi GB, Lam HM, Hu DP, Ho SM, Madueke IC, Kajdacsy-Balla A, Prins GS. Estrogen-initiated transformation of prostate epithelium derived from normal human prostate stem-progenitor cells. Endocrinology 2011; 152:2150-63. [PMID: 21427218 PMCID: PMC3100619 DOI: 10.1210/en.2010-1377] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/02/2011] [Indexed: 01/10/2023]
Abstract
The present study sought to determine whether estrogens with testosterone support are sufficient to transform the normal human prostate epithelium and promote progression to invasive adenocarcinoma using a novel chimeric prostate model. Adult prostate stem/early progenitor cells were isolated from normal human prostates through prostasphere formation in three-dimensional culture. The stem/early progenitor cell status and clonality of prostasphere cells was confirmed by immunocytochemistry and Hoechst staining. Normal prostate progenitor cells were found to express estrogen receptor α, estrogen receptor β, and G protein-coupled receptor 30 mRNA and protein and were responsive to 1 nm estradiol-17β with increased numbers and prostasphere size, implicating them as direct estrogen targets. Recombinants of human prostate progenitor cells with rat urogenital sinus mesenchyme formed chimeric prostate tissue in vivo under the renal capsule of nude mice. Cytodifferentiation of human prostate progenitor cells in chimeric tissues was confirmed by immunohistochemistry using epithelial cell markers (p63, cytokeratin 8/18, and androgen receptor), whereas human origin and functional differentiation were confirmed by expression of human nuclear antigen and prostate-specific antigen, respectively. Once mature tissues formed, the hosts were exposed to elevated testosterone and estradiol-17β for 1-4 months, and prostate pathology was longitudinally monitored. Induction of prostate cancer in the human stem/progenitor cell-generated prostatic tissue was observed over time, progressing from normal histology to epithelial hyperplasia, prostate intraepithelial neoplasia, and prostate cancer with local renal invasion. These findings provide the first direct evidence that human prostate progenitor cells are estrogen targets and that estradiol in an androgen-supported milieu is a carcinogen for human prostate epithelium.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|