1
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Popescu-Vâlceanu HC, Stoicea MC, Enache V, Bratu RM, Mustăţea P, Drăguţ RM, Rusu E, Ionescu-Tîrgovişte C, Radulian G. Bcl-2 and p53 immunophenotypes in colorectal adenocarcinoma in type 2 diabetes mellitus versus non-diabetic patients. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:521-528. [PMID: 36588490 PMCID: PMC9926153 DOI: 10.47162/rjme.63.3.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We aimed to investigate immunohistochemical expression of the p53 tumor suppressor protein, and the B-cell lymphoma-2 (Bcl-2) apoptotic protein in colorectal adenocarcinoma patients with or without type 2 diabetes mellitus (T2DM). Tissue sections from 95 paraffin-embedded colorectal adenocarcinomas, originating from 52 T2DM and 43 non-diabetic patients, were immunostained for p53 [Ventana mouse monoclonal primary antibody (mAb) in vitro diagnostic (IVD) anti-p53, clone Bp53-11] and Bcl-2 (Ventana mAb IVD anti-Bcl-2, clone Bcl-2/124). Immunohistochemistry analysis did not find statistically significant differences between the two groups, but analysis on subgroups of patients in terms of presence or absence of obesity identified overexpression of p53 (>70% of cells) in the T2DM obese patients compared to non-diabetics. Overexpression of p53 was present in 80% of tumor cells coming from T2DM obese patients compared to 37.2% of tumor cells coming from non-diabetics obese and non-obese, and in 36.6% of tumor cells coming from non-diabetic non-obese patients (p=0.024). There was a single non-diabetic obese patient with p53 overexpression. Most cancer cells of T2DM obese patients presented more frequently p53 overexpression by comparison with cancer cells of the T2DM non-obese patients (80% vs 40.5%, p=0.028). Bcl-2/p53 co-expression was an infrequent event in T2DM patients' group. The results of this study suggest that patients with colorectal adenocarcinoma that associate T2DM and obesity exhibit higher p53 protein expression in malignant cells. In conclusion, our research highlights that obesity is a potential key factor in the relationship between T2DM and colorectal cancer.
Collapse
Affiliation(s)
| | - Mihai Ciprian Stoicea
- Department of Pathology, Regina Maria Central Reference Laboratory, Bucharest, Romania
| | - Valentin Enache
- Department of Pathology, Emergency Clinical Hospital, Bucharest, Romania
| | - Răzvan Matei Bratu
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Petronel Mustăţea
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ramona Maria Drăguţ
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Emilia Rusu
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Constantin Ionescu-Tîrgovişte
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania , Department of Diabetes, Nutrition and Metabolic Diseases, Prof. Dr. N. C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
| | - Gabriela Radulian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania , Department of Diabetes, Nutrition and Metabolic Diseases, Prof. Dr. N. C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
| |
Collapse
|
3
|
Kern TS, Du Y, Tang J, Lee CA, Liu H, Dreffs A, Leinonen H, Antonetti DA, Palczewski K. Regulation of Adrenergic, Serotonin, and Dopamine Receptors to Inhibit Diabetic Retinopathy: Monotherapies versus Combination Therapies. Mol Pharmacol 2021; 100:470-479. [PMID: 34393108 PMCID: PMC9175131 DOI: 10.1124/molpharm.121.000278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022] Open
Abstract
We compared monotherapies and combinations of therapies that regulate G-protein-coupled receptors (GPCRs) with respect to their abilities to inhibit early stages of diabetic retinopathy (DR) in streptozotocin-diabetic mice. Metoprolol (MTP; 0.04-1.0 mg/kg b.wt./day), bromocriptine (BRM; 0.01-0.1 mg/kg b.wt./day), doxazosin (DOX; 0.01-1.0 mg/kg b.wt./day), or tamsulosin (TAM; 0.05-0.25 mg/kg b.wt./day) were injected individually daily for 2 months in dose-response studies to assess their effects on the diabetes-induced increases in retinal superoxide and leukocyte-mediated cytotoxicity against vascular endothelial cells, both of which abnormalities have been implicated in the development of DR. Each of the individual drugs inhibited the diabetes-induced increase in retinal superoxide at the higher concentrations tested, but the inhibition was lost at lower doses. To determine whether combination therapies had superior effects over individual drugs, we intentionally selected for each drug a low dose that had little or no effect on the diabetes-induced retinal superoxide for use separately or in combinations in 8-month studies of retinal function, vascular permeability, and capillary degeneration in diabetes. At the low doses used, combinations of the drugs generally were more effective than individual drugs, but the low-dose MTP alone totally inhibited diabetes-induced reduction in a vision task, BRM or DOX alone totally inhibited the vascular permeability defect, and DOX alone totally inhibited diabetes-induced degeneration of retinal capillaries. Although low-dose MTP, BRM, DOX, or TAM individually had beneficial effects on some endpoints, combination of the therapies better inhibited the spectrum of DR lesions evaluated. SIGNIFICANCE STATEMENT: The pathogenesis of early stages of diabetic retinopathy remains incompletely understood, but multiple different cell types are believed to be involved in the pathogenic process. We have compared the effects of monotherapies to those of combinations of drugs that regulate GPCR signaling pathways with respect to their relative abilities to inhibit the development of early diabetic retinopathy.
Collapse
Affiliation(s)
- Timothy S Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Yunpeng Du
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Jie Tang
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Chieh Allen Lee
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Haitao Liu
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Alyssa Dreffs
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Henri Leinonen
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - David A Antonetti
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| |
Collapse
|
4
|
Dissecting the Pathogenesis of Diabetic Retinopathy Based on the Biological ceRNA Network and Genome Variation Disturbance. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9833142. [PMID: 34707685 PMCID: PMC8545528 DOI: 10.1155/2021/9833142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
Background Diabetic retinopathy (DR) is the most important manifestation of diabetic microangiopathy. It is essential to explore the gene regulatory relationship and genomic variation disturbance of biological networks in DR progression. Methods In this study, we constructed a comprehensive lncRNA-mRNA ceRNA network of DR procession (CLMN) and explored its topological characteristics. Results Modular and functional analysis indicated that the organization of CLMN performed fundamental and specific functions in diabetes and DR pathology. The differential expression of hub ceRNA nodes and positive correlation reveals the highly connected ceRNA regulation and important roles in the regulating of DR pathology. A large proportion of SNPs in the TFBS, DHS, and enhancer regions of lncRNAs will affect lncRNA transcription and further cause expression variation. Some SNPs were found to disrupt the lncRNA functional elements such as miRNA target binding sites. These results indicate the complex nature of genotypic effects in the disturbing of CLMN and further contribute to gene expression variation and different disease phenotypes. Conclusion The identification of individual genomic variations and analysis of biological network disturbance by these genomic variations will help provide more personalized treatment plans and promote the development of precision medicine for DR.
Collapse
|
5
|
Icel E, Ucak T. The effects of vitamin B12 deficiency on retina and optic disk vascular density. Int Ophthalmol 2021; 41:3145-3151. [PMID: 34047909 DOI: 10.1007/s10792-021-01879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE In this study, we aimed to determine the alterations in the retina and peripapillary vascular density in patients with vitamin B12 deficiency. MATERIAL AND METHOD The patients were divided into two groups regarding their vitamin B12 levels as the low vitamin B12 group (< 200 pg/ml) and the normal vitamin B12 group (≥ 200 pg/ml). The retinal nerve fiber layer thickness (RNFLT) and the central macular thickness (CMT) were measured through an SD-OCT analysis. The foveal avascular zone (FAZ), vessel density (VD) of the superficial capillary plexus (SCP), and deep capillary plexus (DCP) of the macula, and the VD of the radial peripapillary capillary plexus (RPCP) for the optic disk were determined by OCT-A. RESULTS Thirty-three patients were in the low vitamin B12 group and 54 were in the normal group. The mean RNFLT measurements were significantly lower in the low vitamin B12 group (p = 0.001). The RPCP values in all quadrants were significantly lower in the patients with vitamin B12 deficiency (p = 0.001); moreover, there was a significant increase in the FAZ value with a decrease in both superficial (p = 0.001) and deep (p = 0.001) VDs. There was a significant positive correlation between the serum vitamin B12 levels and the RPCP values and superficial and deep VDs, while the FAZ value was negatively correlated with the vitamin B12 levels. CONCLUSION Vitamin B12 deficiency has diverse effects on ocular structures and retinal vasculature. Decreased VDs and increased FAZ may be associated with severe ocular alterations in the long term, which should be further investigated.
Collapse
Affiliation(s)
- Erel Icel
- Department of Ophthalmology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Turgay Ucak
- Department of Ophthalmology, University of Health Sciences Turkey, Sisli Hamidiye Etfal Training and Research Hospital, İstanbul, Turkey.
| |
Collapse
|
6
|
Implication of Hyperhomocysteinemia in Blood Retinal Barrier (BRB) Dysfunction. Biomolecules 2020; 10:biom10081119. [PMID: 32751132 PMCID: PMC7463551 DOI: 10.3390/biom10081119] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated plasma homocysteine (Hcy) level, known as hyperhomocysteinemia (HHcy) has been linked to different systemic and neurological diseases, well-known as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and has been identified as a risk factor for several ocular disorders, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Different mechanisms have been proposed to explain HHcy-induced visual dysfunction, including oxidative stress, upregulation of inflammatory mediators, retinal ganglion cell apoptosis, and extracellular matrix remodeling. Our previous studies using in vivo and in vitro models of HHcy have demonstrated that Hcy impairs the function of both inner and outer blood retinal barrier (BRB). Dysfunction of BRB is a hallmark of vision loss in DR and AMD. Our findings highlighted oxidative stress, ER stress, inflammation, and epigenetic modifications as possible mechanisms of HHcy-induced BRB dysfunction. In addition, we recently reported HHcy-induced brain inflammation as a mechanism of blood–brain barrier (BBB) dysfunction and pathogenesis of Alzheimer’s disease (AD). Moreover, we are currently investigating the activation of glutamate receptor N-methyl-d-aspartate receptor (NMDAR) as the molecular mechanism for HHcy-induced BRB dysfunction. This review focuses on the studied effects of HHcy on BRB and the controversial role of HHcy in the pathogenesis of aging neurological diseases such as DR, AMD, and AD. We also highlight the possible mechanisms for such deleterious effects of HHcy.
Collapse
|
7
|
Hydrogen sulfide serves as a biomarker in the anterior segment of patients with diabetic retinopathy. Int Ophthalmol 2020; 40:891-899. [DOI: 10.1007/s10792-019-01252-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
|
8
|
Yong YX, Yang H, Lian J, Xu XW, Han K, Hu MY, Wang HC, Zhou LM. Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis. Cell Cycle 2019; 18:1868-1881. [PMID: 31204565 DOI: 10.1080/15384101.2019.1632133] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key mediators of posttranscriptional gene silencing in both pathogenic and pathological aspects of ischemic stroke biology. Therefore, the purpose of present study was to explore the effect of microRNA-199b-3p (miR-199b-3p) on the cerebral microvascular endothelial cells (CMECs) in middle cerebral artery occlusion-reperfusion (MCAO-R) mice by regulating MAPK/ERK/EGR1 axis. Mice were used to establish MCAO-R models and to measure the expression of miR-199b-3p and the MAPK/ERK/EGR1 axis-related genes. CMECs were extracted from the MCAO-R mice. A series of mimic or inhibitor for miR-199b-3p, or U0126 (an inhibitor for the MAPK/ERK/EGR1 axis) were introduced to treat these CMECs. The levels of miR-199b-3p and MAPK/ERK/EGR1 axis-related genes in tissues and cells were detected. The effects miR-199b-3p on the process of CMECs, including cell viability, cell cycle and cell apoptosis were evaluated. miR-199b-3p expressed poorly in the brain tissues after MCAO-R, along with activated MAPK/ERK/EGR1 axis and increased CMECs apoptosis. CMECs transfected with miR-199b-3p mimics and U0126 manifested with increased cell viability, more cells arrested at the S stage, and inhibited apoptosis of CMECs. In conclusion, these key results demonstrated up-regulated miR-199b-3p could protect mice against ischemic stroke by inhibiting the apoptosis of CMECs through blockade of MAPK/ERK/EGR1 axis.
Collapse
Affiliation(s)
- Ya-Xiong Yong
- a Guizhou Medical University , Guiyang , P. R. China.,b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Hua Yang
- a Guizhou Medical University , Guiyang , P. R. China.,c Institute of Medical Sciences, Guizhou Medical University , Guiyang , P.R. China.,d Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University , Guiyang , P. R. China
| | - Jia Lian
- e Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P.R. China
| | - Xiao-Wei Xu
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Ke Han
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Ming-Yi Hu
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Hua-Cheng Wang
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| | - Lie-Min Zhou
- b Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University , Shenzhen , P. R. China
| |
Collapse
|
9
|
Homocysteine: A Potential Biomarker for Diabetic Retinopathy. J Clin Med 2019; 8:jcm8010121. [PMID: 30669482 PMCID: PMC6352029 DOI: 10.3390/jcm8010121] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common cause of blindness in people under the age of 65. Unfortunately, the current screening process for DR restricts the population that can be evaluated and the disease goes undetected until irreversible damage occurs. Herein, we aimed to evaluate homocysteine (Hcy) as a biomarker for DR screening. Hcy levels were measured by enzyme-linked immuno sorbent assay (ELISA) and immunolocalization methods in the serum, vitreous and retina of diabetic patients as well as in serum and retina of different animal models of DM representing type 1 diabetes (streptozotocin (STZ) mice, Akita mice and STZ rats) and db/db mice which exhibit features of human type 2 diabetes. Our results revealed increased Hcy levels in the serum, vitreous and retina of diabetic patients and experimental animal models of diabetes. Moreover, optical coherence tomography (OCT) and fluorescein angiography (FA) were used to evaluate the retinal changes in mice eyes after Hcy-intravitreal injection into normal wild-type (WT) and diabetic (STZ) mice. Hcy induced changes in mice retina which were aggravated under diabetic conditions. In conclusion, our data reported Hcy as a strong candidate for use as a biomarker in DR screening. Targeting the clearance of Hcy could also be a future therapeutic target for DR.
Collapse
|
10
|
Saemisch M, Balcells M, Riesinger L, Nickmann M, Bhaloo SI, Edelman ER, Methe H. Subendothelial matrix components influence endothelial cell apoptosis in vitro. Am J Physiol Cell Physiol 2018; 316:C210-C222. [PMID: 30566394 DOI: 10.1152/ajpcell.00005.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The programmed form of cell death (apoptosis) is essential for normal development of multicellular organisms. Dysregulation of apoptosis has been linked with embryonal death and is involved in the pathophysiology of various diseases. Specifically, endothelial apoptosis plays pivotal roles in atherosclerosis whereas prevention of endothelial apoptosis is a prerequisite for neovascularization in tumors and metastasis. Endothelial biology is intertwined with the composition of subendothelial basement membrane proteins. Apoptosis was induced by addition of tumor necrosis factor-α to cycloheximide-sensitized endothelial cells. Cells were either grown on polystyrene culture plates or on plates precoated with healthy basement membrane proteins (collagen IV, fibronectin, or laminin) or collagen I. Our results reveal that proteins of healthy basement membrane alleviate cytokine-induced apoptosis whereas precoating with collagen type I had no significant effect on apoptosis by addition of tumor necrosis factor-α to cycloheximide-sensitized endothelial cells compared with cells cultured on uncoated plates. Yet, treatment with transforming growth factor-β1 significantly reduced the rate of apoptosis endothelial cells grown on collagen I. Detailed analysis reveals differences in intracellular signaling pathways for each of the basement membrane proteins studied. We provide additional insights into the importance of basement membrane proteins and the respective cytokine milieu on endothelial biology. Exploring outside-in signaling by basement membrane proteins may constitute an interesting target to restore vascular function and prevent complications in the atherosclerotic cascade.
Collapse
Affiliation(s)
- Michael Saemisch
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany.,Department of Internal Medicine, Kliniken Neumarkt, Neumarkt, Germany
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Biological Engineering, IQS School of Engineering, Universitat Ramon Llull , Barcelona , Spain
| | - Lisa Riesinger
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany
| | - Markus Nickmann
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany.,Department of Internal Medicine/Cardiology, Kliniken an der Paar, Aichach, Germany
| | - Shirin Issa Bhaloo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Heiko Methe
- Department of Cardiology, Ludwig-Maximilians-University Munich, Munich , Germany.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Department of Internal Medicine/Cardiology, Kliniken an der Paar, Aichach, Germany
| |
Collapse
|
11
|
Human decidua basalis mesenchymal stem/stromal cells protect endothelial cell functions from oxidative stress induced by hydrogen peroxide and monocytes. Stem Cell Res Ther 2018; 9:275. [PMID: 30359307 PMCID: PMC6202803 DOI: 10.1186/s13287-018-1021-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 01/28/2023] Open
Abstract
Background Human decidua basalis mesenchymal stem/multipotent stromal cells (DBMSCs) inhibit endothelial cell activation by inflammation induced by monocytes. This property makes them a promising candidate for cell-based therapy to treat inflammatory diseases, such as atherosclerosis. This study was performed to examine the ability of DBMSCs to protect endothelial cell functions from the damaging effects resulting from exposure to oxidatively stress environment induced by H2O2 and monocytes. Methods DBMSCs were co-cultured with endothelial cells isolated from human umbilical cord veins in the presence of H2O2 and monocytes, and various functions of endothelial cell were then determined. The effect of DBMSCs on monocyte adhesion to endothelial cells in the presence of H2O2 was also examined. In addition, the effect of DBMSCs on HUVEC gene expression under the influence of H2O2 was also determined. Results DBMSCs reversed the effect of H2O2 on endothelial cell functions. In addition, DBMSCs reduced monocyte adhesion to endothelial cells and also reduced the stimulatory effect of monocytes on endothelial cell proliferation in the presence of H2O2. Moreover, DBMSCs modified the expression of many genes mediating important endothelial cell functions. Finally, DBMSCs increased the activities of glutathione and thioredoxin reductases in H2O2-treated endothelial cells. Conclusions We conclude that DBMSCs have potential for therapeutic application in inflammatory diseases, such as atherosclerosis by protecting endothelial cells from oxidative stress damage. However, more studies are needed to elucidate this further.
Collapse
|
12
|
Basmaeil YS, Al Subayyil AM, Khatlani T, Bahattab E, Al-Alwan M, Abomaray FM, Kalionis B, Alshabibi MA, AlAskar AS, Abumaree MH. Human chorionic villous mesenchymal stem/stromal cells protect endothelial cells from injury induced by high level of glucose. Stem Cell Res Ther 2018; 9:238. [PMID: 30241570 PMCID: PMC6150972 DOI: 10.1186/s13287-018-0984-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells derived from chorionic villi of human term placentae (pMSCs) protect human endothelial cells from injury induced by hydrogen peroxide (H2O2). In diabetes, elevated levels of glucose (hyperglycaemia) induce H2O2 production, which causes the endothelial dysfunction that underlies the enhanced immune responses and adverse complications associated with diabetes, which leads to thrombosis and atherosclerosis. In this study, we examined the ability of pMSCs to protect endothelial cell functions from the negative impact of high level of glucose. METHODS pMSCs isolated from the chorionic villi of human term placentae were cultured with endothelial cells isolated from human umbilical cord veins in the presence of glucose. Endothelial cell functions were then determined. The effect of pMSCs on gene expression in glucose-treated endothelial cells was also determined. RESULTS pMSCs reversed the effect of glucose on key endothelial cell functions including proliferation, migration, angiogenesis, and permeability. In addition, pMSCs altered the expression of many genes that mediate important endothelial cell functions including survival, apoptosis, adhesion, permeability, and angiogenesis. CONCLUSIONS This is the first comprehensive study to provide evidence that pMSCs protect endothelial cells from glucose-induced damage. Therefore, pMSCs have potential therapeutic value as a stem cell-based therapy to repair glucose-induced vascular injury and prevent the adverse complications associated with diabetes and cardiovascular disease. However, further studies are necessary to reveal more detailed aspects of the mechanism of action of pMSCs on glucose-induced endothelial damage in vitro and in vivo.
Collapse
Affiliation(s)
- Y S Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - A M Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - T Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - E Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia
| | - M Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Collage of Medicine, Al-Faisal University, MBC-03, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - F M Abomaray
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - B Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre and University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - M A Alshabibi
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - A S AlAskar
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia.,Adult Hematology and Stem Cell Transplantation, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia
| | - M H Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Mail Code 1515, Riyadh, 11426, Saudi Arabia. .,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, Mail Code 3124, Riyadh, 11481, Saudi Arabia.
| |
Collapse
|
13
|
Tang X, Dai Y, Wang X, Zeng J, Li G. MicroRNA-27a protects retinal pigment epithelial cells under high glucose conditions by targeting TLR4. Exp Ther Med 2018; 16:452-458. [PMID: 29896271 DOI: 10.3892/etm.2018.6150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/21/2017] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to investigate whether microRNA-27a (miRNA27a) is associated with the pathogenesis of diabetic retinopathy, and to elucidate the underlying molecular mechanism of any potential association. In retinal pigment epithelial (RPE) cells treated with high glucose, miRNA27a expression, determined by reverse transcription-quantitative polymerase chain reaction analysis, was decreased. Caspase-3/9 activity and B-cell lymphoma 2-associated X (Bax) protein expression was increased in RPE cells subjected to high glucose. Inhibition of miRNA27a suppressed the viability, and increased the caspase-3/9 activity and Bax protein expression of RPE cells treated with high glucose. Inhibition of miRNA27a expression also increased the expression of interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α and Toll-like receptor 4 (TLR4) in RPE cells treated with high glucose. Treatment with immunostimulatory (is)RNA directed against TLR4 was observed to inhibit caspase-3/9 activity, decrease the expression of TLR4, Bax, IL-6, IL-1β and TNF-α, and increase the viability of RPE cells subjected to high glucose following the inhibition miRNA27a. In conclusion, the results of the present study suggest that miRNA27a protects RPE cells subjected to high glucose via inhibiting inflammation and apoptosis through targeting TLR4.
Collapse
Affiliation(s)
- Xiaolei Tang
- Department of Ophthalmology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Yan Dai
- Department of Ophthalmology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Xiaoli Wang
- Department of Ophthalmology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Jian Zeng
- Department of Ophthalmology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Guirong Li
- Department of Ophthalmology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
14
|
Liu H, Tang J, Du Y, Saadane A, Tonade D, Samuels I, Veenstra A, Palczewski K, Kern TS. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes. Invest Ophthalmol Vis Sci 2017; 57:4272-81. [PMID: 27548901 PMCID: PMC5015983 DOI: 10.1167/iovs.16-19415] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States
| | - Jie Tang
- Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States
| | - Yunpeng Du
- Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States
| | - Aicha Saadane
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, Ohio, United States
| | - Deoye Tonade
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ivy Samuels
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
| | - Alex Veenstra
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Timothy S Kern
- Department of Medicine Case Western Reserve University, Cleveland, Ohio, United States 2Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, Ohio, United States 3Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States 4Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
| |
Collapse
|
15
|
Nutrition for diabetic retinopathy: plummeting the inevitable threat of diabetic vision loss. Eur J Nutr 2017; 56:2013-2027. [PMID: 28258307 DOI: 10.1007/s00394-017-1406-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
Abstract
Diabetic retinopathy (DR) is among the leading causes of preventable blindness. Hyperglycemia, hypertension, hyperlipidemia and anemia majorly predispose its pathogenesis. The current treatment modalities of DR include laser photocoagulation therapy, intravitreal corticosteroids, intravitreal anti-vascular endothelial growth factor (VEGF) agents and vitreo-retinal surgery which are costly, highly invasive, unproven for prolonged use and opted in advanced stages of DR. By then retina already encounters a vast damage. Nutrients by their natural physiological, biochemical and molecular action can preserve retinal structure and functions by interfering with the various pathological steps prompting DR incidence, thereby altering the risk of developing this ocular morbidity. Nutrients can also play a central role in DR patients resistant towards the conventional medical treatments. However due to the byzantine interplay existing between nutrients and DR, the worth of nutrition in curbing this vision-threatening ocular morbidity remains silent. This review highlights how nutrients can halt DR development. A nutritional therapy, if adopted in the initial stages, can provide superior-efficacy over the current treatment modalities and can be a complementary, inexpensive, readily available, anodyne option to the clinically unmet requirement for preventing DR. Assessment of nutritional status is presently considered relevant in various clinical conditions except DR. Body Mass Index (BMI) conferred inconclusive results in DR subjects. Subjective Global Assessment (SGA) of nutritional status has recently furnished relevant association with DR status. By integrating nutritional strategies, the risk of developing DR can be reduced substantially. This review summarizes the subsisting knowledge on nutrition, potentially beneficial for preventing DR and sustaining good vision among diabetic subjects.
Collapse
|
16
|
Sayed LH, Badr G, Omar HM, Abd El-Rahim AM, Mahmoud MH. Camel whey protein improves oxidative stress and histopathological alterations in lymphoid organs through Bcl-XL/Bax expression in a streptozotocin-induced type 1 diabetic mouse model. Biomed Pharmacother 2017; 88:542-552. [PMID: 28129627 DOI: 10.1016/j.biopha.2017.01.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/11/2023] Open
Abstract
Type I diabetes (T1D) is a characterized by the inflammation of pancreatic islets and destruction of β cells. Long and persistent uncontrolled diabetes tends to degenerate the immune system and increase the incidence of infections in diabetic individuals. Most serious diabetic complications are mediated by the free radicals, which damage multiple cellular components through direct effects of the cell cycle regulatory proteins. Camel whey protein (CWP) has antioxidant activity and decreases the effects of free radicals. However, the effects of CWP on lymphoid organs have not been studied in the context of diabetes. Therefore, the present study was designed to investigate the dietary influence of CWP supplementation on the lymphoid organs in streptozotocin (STZ)-induced type 1 diabetic mouse model. Three experimental groups were used: non diabetic control mice, diabetic mice, and diabetic mice treated with CWP. Induction of diabetes was associated with a marked reduction in glutathione (GSH) levels; decreased activities of GSH peroxidase (GSH Px), manganese superoxide dismutase (MnSOD) and catalase; increased reactive oxygen species (ROS) levels and iNOS activity in plasma and lymphoid organs. Furthermore, diabetic mice exhibited alterations in the expression of Bax and Bcl-XL, and subsequently pathological alterations in the architecture of the bone marrow, pancreas, thymus, and spleen. Interestingly, treatment of diabetic mice with CWP robustly restored glucose, insulin, GSH, and ROS levels and the activities of GSH Px, MnSOD, catalase and iNOS. Additionally, supplementation of diabetic mice with CWP improvement in the architecture of lymphoid tissues and rescued from apoptosis through direct effects on the Bax and Bcl-XL proteins. These data revealed the therapeutic potential of CWP against diabetic complications mediated damages of lymphoid organs.
Collapse
Affiliation(s)
- Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Laboratory of Immunology and Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Laboratory of Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Laboratory of Immunology and Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Hossam M Omar
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Laboratory of Physiology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Ali M Abd El-Rahim
- Dairy Department, Faculty of Agriculture, Assiut University, 71516 Assiut, Egypt
| | - Mohamed H Mahmoud
- Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia; Food Science and Nutrition Department, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
17
|
Kadłubowska J, Malaguarnera L, Wąż P, Zorena K. Neurodegeneration and Neuroinflammation in Diabetic Retinopathy: Potential Approaches to Delay Neuronal Loss. Curr Neuropharmacol 2017; 14:831-839. [PMID: 27306035 PMCID: PMC5333588 DOI: 10.2174/1570159x14666160614095559] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 08/11/2015] [Accepted: 01/01/1970] [Indexed: 02/06/2023] Open
Abstract
In spite of the extensive research the complex pathogenesis of diabetic retinopathy (DR) has not been fully elucidated. For many years it has been thought that diabetic retinopathy manifests only with microangiopathic lesions, which are totally responsible for the loss of vision in diabetic patients. In view of the current knowledge on the microangiopathic changes in the fundus of the eye, diabetic retinopathy is perceived as a neurodegenerative disease. Several clinical tools are available to detect neuronal dysfunction at early stages of diabetes. Many functional changes in the retina can be identified before vascular pathology develops, suggesting that they result from a direct effect of diabetes on the neural retina. In the course of diabetes there is a chronic loss of retinal neurons due to increased frequency of apoptosis. The neuronal apoptosis begins very early in the course of diabetes. This observation has led to suggestions that precautions against DR should be implemented immediately after diabetes is diagnosed. Neurodegeneration cannot be reversed; therefore treatments preventing neuronal cell loss in the retina need to be developed to protect diabetic patients. This review is an attempt to summarize what is currently known about the mechanisms of neuronal apoptosis in the context of diabetic retinopathy and vascular degeneration as well as about potential treatments of DR
Collapse
Affiliation(s)
| | | | | | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| |
Collapse
|
18
|
Srivastav K, Saxena S, Mahdi AA, Shukla RK, Meyer CH, Akduman L, Khanna VK. Increased serum level of homocysteine correlates with retinal nerve fiber layer thinning in diabetic retinopathy. Mol Vis 2016; 22:1352-1360. [PMID: 27994434 PMCID: PMC5135738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/30/2016] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To study the correlation between serum levels of vitamin B12, folic acid, and homocysteine and the severity of diabetic retinopathy and the correlation with retinal nerve fiber layer (RNFL) thinning on spectral domain optical coherence tomography (SD-OCT). METHODS In a tertiary care center-based prospective cross-sectional study, 60 consecutive cases and 20 healthy controls in the age group of 40-65 years were included. The eyes of the cases were divided into three groups according to Early Treatment Diabetic Retinopathy Study (ETDRS) classification: diabetes mellitus without retinopathy (n = 20), non-proliferative diabetic retinopathy with macular edema (n = 20), and proliferative diabetic retinopathy with macular edema (n = 20). The serum levels of vitamin B12 and folic acid were measured using a standard protocol. The serum homocysteine assay was performed using an enzyme-linked immunosorbent assay (ELISA) kit. Average RNFL thickness was measured using SD-OCT. Statistical analysis was used to assess the correlations between the study variables. RESULTS Increased severity of diabetic retinopathy was found to correlate with an increase in the serum levels of homocysteine (F = 53.79; p<0.001). The mean serum levels of vitamin B12 and folic acid were found to be within the normal reference range. A positive correlation was found between retinal nerve fiber layer thinning and serum levels of homocysteine (p<0.001). CONCLUSIONS This study, for the first time, demonstrated a correlation between increased homocysteine with a decrease in RNFL thickness and increased severity of diabetic retinopathy.
Collapse
Affiliation(s)
- Khushboo Srivastav
- Retina Service, Department of Ophthalmology, King George’s Medical University, Lucknow, India
| | - Sandeep Saxena
- Retina Service, Department of Ophthalmology, King George’s Medical University, Lucknow, India
| | - Abbas A. Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow, India
| | | | | | - Levent Akduman
- Vitreoretinal and uveitis service, Department of Ophthalmology, Saint Louis University School of Medicine,St. Louis, MO
| | - Vinay K. Khanna
- CSIR - Indian Institute of Toxicology and Research, Lucknow, India
| |
Collapse
|
19
|
Qiu Y, Zhao D, Butenschön VM, Bauer AT, Schneider SW, Skolnik EY, Hammes HP, Wieland T, Feng Y. Nucleoside diphosphate kinase B deficiency causes a diabetes-like vascular pathology via up-regulation of endothelial angiopoietin-2 in the retina. Acta Diabetol 2016; 53:81-9. [PMID: 25900369 DOI: 10.1007/s00592-015-0752-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/30/2015] [Indexed: 11/25/2022]
Abstract
AIMS Nucleoside diphosphate kinase B (NDPKB) is capable of maintaining the cellular nucleotide triphosphate pools. It might therefore supply UTP for the formation of UDP-GlcNAc from glucose. As NDPKB contributes to vascular dysfunction, we speculate that NDPKB might play a role in microangiopathies, such as diabetic retinopathy (DR). Therefore, we investigated the impact of NDPKB on retinal vascular damage using NDPKB(-/-) mice during development of DR and its possible mechanisms. METHODS Pericyte loss and acellular capillary (AC) formation were assessed in streptozotocin-induced diabetic NDPKB(-/-) and wild-type (WT) mice. Expression of angiopoietin-2 (Ang2) and protein N-acetylglucosamine modification (GlcNAcylation) were assessed by western blot and/or immunofluorescence in the diabetic retinas as well as in endothelial cells depleted of NDPKB by siRNA and stimulated with high glucose. RESULTS Similar to diabetic WT retinas, non-diabetic NDPKB(-/-) retinas showed a significant decrease in pericyte coverage in comparison with non-diabetic WT retinas. Hyperglycemia further aggravates pericyte loss in diabetic NDPKB(-/-) retinas. AC formation was detected in the diabetic NDPKB(-/-) retinas. Similar to hyperglycemia, NDPKB deficiency induced Ang2 expression and protein GlcNAcylation that were not further altered in the diabetic retinas. In cultured endothelial cells, stimulation with high glucose and NDPKB depletion comparably increased Ang2 expression and protein GlcNAcylation. CONCLUSIONS Our data identify NDPKB as a protective factor in the retina, which controls Ang2 expression and the hexosamine pathway. NDPKB-deficient mice are a suitable model for studying mechanisms underlying diabetic retinal vascular damage.
Collapse
Affiliation(s)
- Yi Qiu
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Di Zhao
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Vicki-Marie Butenschön
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Alexander T Bauer
- Division of Experimental Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stefan W Schneider
- Division of Experimental Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Edward Y Skolnik
- Division of Nephrology, New York University Langone Medical Center, 560 1st Ave, New York, NY, 10016, USA
| | - Hans-Peter Hammes
- 5th Medical Clinic, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Wieland
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Yuxi Feng
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany.
| |
Collapse
|
20
|
Srivastav K, Saxena S, Mahdi AA, Kruzliak P, Khanna VK. Increased serum urea and creatinine levels correlate with decreased retinal nerve fibre layer thickness in diabetic retinopathy. Biomarkers 2015; 20:470-3. [PMID: 26474118 DOI: 10.3109/1354750x.2015.1094142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Correlation of increased levels of serum urea and creatinine with retinal nerve fibre layer (RNFL) thinning on spectral domain optical coherence tomography (SD-OCT) was studied in diabetic retinopathy (DR). Sixty consecutive cases and 20 healthy controls were included. Cases were divided into three groups: without DR, non-proliferative DR with macular oedema and proliferative DR with oedema. Serum urea and creatinine were measured using a standard protocol. Average (RNFL) was measured using SD-OCT. Increased severity of DR was associated with decrease in levels of serum urea and serum creatinine levels. RNFL thinning correlated positively with increase in serum urea and creatinine levels.
Collapse
Affiliation(s)
| | | | - Abbas A Mahdi
- b Department of Biochemistry , King George's Medical University , Lucknow , India
| | - Peter Kruzliak
- c International Clinical Research Center, St. Anne's University Hospital and Masaryk University , Brno , Czech Republic , and
| | - Vinay K Khanna
- d Indian Institute of Toxicology and Research , Lucknow , India
| |
Collapse
|
21
|
Berkowitz BA, Kern TS, Bissig D, Patel P, Bhatia A, Kefalov VJ, Roberts R. Systemic Retinaldehyde Treatment Corrects Retinal Oxidative Stress, Rod Dysfunction, and Impaired Visual Performance in Diabetic Mice. Invest Ophthalmol Vis Sci 2015; 56:6294-303. [PMID: 26431483 PMCID: PMC4594469 DOI: 10.1167/iovs.15-16990] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Diabetes appears to induce a visual cycle defect because rod dysfunction is correctable with systemic treatment of the visual cycle chromophore 11-cis-retinaldehyde. However, later studies have found no evidence for visual cycle impairment. Here, we further examined whether photoreceptor dysfunction is corrected with 11-cis-retinaldehyde. Because antioxidants correct photoreceptor dysfunction in diabetes, the hypothesis that exogenous visual chromophores have antioxidant activity in the retina of diabetic mice in vivo was tested. METHODS Rod function in 2-month-old diabetic mice was evaluated using transretinal electrophysiology in excised retinas and apparent diffusion coefficient (ADC) MRI to measure light-evoked expansion of subretinal space (SRS) in vivo. Optokinetic tracking was used to evaluate cone-based visual performance. Retinal production of superoxide free radicals, generated mostly in rod cells, was biochemically measured with lucigenin. Diabetic mice were systemically treated with a single injection of either 11-cis-retinaldehyde, 9-cis-retinaldehyde (a chromophore surrogate), or all-trans-retinaldehyde (the photoisomerization product of 11-cis-retinaldehyde). RESULTS Consistent with previous reports, diabetes significantly reduced (1) dark-adapted rod photo responses (transretinal recording) by ∼18%, (2) rod-dominated light-stimulated SRS expansion (ADC MRI) by ∼21%, and (3) cone-dominated contrast sensitivity (using optokinetic tracking [OKT]) by ∼30%. Both 11-cis-retinaldehyde and 9-cis-retinaldehyde largely corrected these metrics of photoreceptor dysfunction. Higher-than-normal retinal superoxide production in diabetes by ∼55% was also significantly corrected following treatment with 11-cis-retinaldehyde, 9-cis-retinaldehyde, or all-trans-retinaldehyde. CONCLUSIONS Collectively, data suggest that retinaldehydes improve photoreceptor dysfunction in diabetic mice, independent of the visual cycle, via an antioxidant mechanism.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Timothy S. Kern
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - David Bissig
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Priya Patel
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ankit Bhatia
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Robin Roberts
- Department of Anatomy and Cell Biology Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
22
|
Liu H, Tang J, Du Y, Lee CA, Golczak M, Muthusamy A, Antonetti DA, Veenstra AA, Amengual J, von Lintig J, Palczewski K, Kern TS. Retinylamine Benefits Early Diabetic Retinopathy in Mice. J Biol Chem 2015; 290:21568-79. [PMID: 26139608 DOI: 10.1074/jbc.m115.655555] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Indexed: 12/12/2022] Open
Abstract
Recent evidence suggests an important role for outer retinal cells in the pathogenesis of diabetic retinopathy (DR). Here we investigated the effect of the visual cycle inhibitor retinylamine (Ret-NH2) on the development of early DR lesions. Wild-type (WT) C57BL/6J mice (male, 2 months old when diabetes was induced) were made diabetic with streptozotocin, and some were given Ret-NH2 once per week. Lecithin-retinol acyltransferase (LRAT)-deficient mice and P23H mutant mice were similarly studied. Mice were euthanized after 2 (WT and Lrat(-/-)) and 8 months (WT) of study to assess vascular histopathology, accumulation of albumin, visual function, and biochemical and physiological abnormalities in the retina. Non-retinal effects of Ret-NH2 were examined in leukocytes treated in vivo. Superoxide generation and expression of inflammatory proteins were significantly increased in retinas of mice diabetic for 2 or 8 months, and the number of degenerate retinal capillaries and accumulation of albumin in neural retina were significantly increased in mice diabetic for 8 months compared with nondiabetic controls. Administration of Ret-NH2 once per week inhibited capillary degeneration and accumulation of albumin in the neural retina, significantly reducing diabetes-induced retinal superoxide and expression of inflammatory proteins. Superoxide generation also was suppressed in Lrat(-/-) diabetic mice. Leukocytes isolated from diabetic mice treated with Ret-NH2 caused significantly less cytotoxicity to retinal endothelial cells ex vivo than did leukocytes from control diabetics. Administration of Ret-NH2 once per week significantly inhibited the pathogenesis of lesions characteristic of early DR in diabetic mice. The visual cycle constitutes a novel target for inhibition of DR.
Collapse
Affiliation(s)
| | - Jie Tang
- From the Departments of Medicine and
| | | | | | - Marcin Golczak
- Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Arivalagan Muthusamy
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, and
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, and
| | | | - Jaume Amengual
- Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | - Timothy S Kern
- From the Departments of Medicine and Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, Veterans Affairs Medical Center, Cleveland, Ohio 44106
| |
Collapse
|
23
|
Ye EA, Steinle JJ. miR-15b/16 protects primary human retinal microvascular endothelial cells against hyperglycemia-induced increases in tumor necrosis factor alpha and suppressor of cytokine signaling 3. J Neuroinflammation 2015; 12:44. [PMID: 25888955 PMCID: PMC4355155 DOI: 10.1186/s12974-015-0265-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/10/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mechanisms underlying the pathology of diabetic retinopathy are still not completely understood. Increased understanding of potential cellular pathways responsive to hyperglycemia is essential to develop novel therapeutic strategies for diabetic retinopathy. Emerging evidence shows the impact of microRNA (miR) as a potential novel therapeutic target. The purpose of our study was to test the hypothesis that miR-15b and miR-16 are altered by hyperglycemia in retinal endothelial cells (REC), and that miR-15b/16 play key roles in regulating insulin signaling through a reduction in TNFα- and suppressor of cytokine signaling 3 (SOCS3)-mediated insulin resistance pathways. METHODS Human REC were maintained in normal (5 mM) glucose or transferred to high-glucose medium (25 mM) for 3 days. REC were transfected with miRNA mimics (hsa-miR-15b-5p and hsa-miR-16-5p) 48 h before cell harvest. A final concentration of 30 nM was used when transfected separately (miR-15b and miR-16) and 15 nM was used in combination (miR-15b + miR-16). A negative control group was treated with an equal concentration of a mimic negative control. The levels of miRNA overexpression were verified using quantitative reverse transcription-polymerase chain reaction and real-time PCR. Western blot analyses were performed to study the levels of phosphorylated Akt (Serine 473), Akt, SOCS3, insulin receptor, phosphorylated insulin receptor (tyrosine 1150/1151), and insulin receptor phosphorylated on Tyr960. In addition, ELISA was used to examine cleaved caspase 3 and TNFα. Analyses were done using unpaired Student t test. Data are presented as mean ± S.E.M. RESULTS We demonstrated that the expression of miR-15b and miR-16 was reduced in human REC cultured in hyperglycemia. Overexpression of miR-15b and/or miR-16 reduced TNFα and SOCS3 levels, while increasing insulin-like growth factor binding protein-3 (IGFBP-3) levels and the phosphorylation of insulin receptor (IR)(Tyr1150/1151) in REC cultured in hyperglycemia. These, in turn, led to an increase of Akt phosphorylation and decreased cleavage of caspase 3. CONCLUSIONS miR-15b and miR-16 play a role in the inhibition of insulin resistance via reduced TNFα and SOCS3 signaling and increased IGFBP-3 levels, resulting in REC protection from hyperglycemia-induced apoptosis. This outcome suggests that both miR-15b and miR-16 are potential therapeutic targets for therapeutics for the diabetic retina.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, 48201, Detroit, MI, USA.
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, 48201, Detroit, MI, USA. .,Department of Ophthalmology, Wayne State University, 9314 Scott Hall, 48201, Detroit, MI, USA.
| |
Collapse
|
24
|
Du Y, Cramer M, Lee CA, Tang J, Muthusamy A, Antonetti DA, Jin H, Palczewski K, Kern TS. Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability. FASEB J 2015; 29:2194-204. [PMID: 25667222 DOI: 10.1096/fj.14-269431] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/13/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species play an important role in the pathogenesis of diabetic retinopathy. We studied the role of adrenergic and serotonin receptors in the generation of superoxide by retina and 661W retinal cells in high glucose and of the α1-adrenergic receptor (AR) on vascular lesions of the retinopathy in experimentally diabetic C57Bl/6J mice (and controls) after 2 and 8 months. Compared with 5 mM glucose, incubating cells or retinal explants in 30 mM glucose induced superoxide generation. This response was reduced or ablated by pharmacologic inhibition of the α1-AR (a Gq-coupled receptor) or Gs-coupled serotonin (5-HT2, 5-HT4, 5-HT6, and 5-HT7) receptors or by activation of the Gi-coupled α2-AR. In elevated glucose, the α1-AR produced superoxide via phospholipase C, inositol triphosphate-induced Ca(2+) release, and NADPH oxidase, and pharmacologic inhibition of these reactions prevented the superoxide increase. Generation of retinal superoxide, expression of proinflammatory proteins, and degeneration of retinal capillaries in diabetes all were significantly inhibited with daily doxazosin or apocynin (inhibitors of α1-AR and NADPH oxidase, respectively), but increased vascular permeability was not significantly affected. Adrenergic receptors, and perhaps other GPCRs, represent novel targets for inhibiting the development of important features of diabetic retinopathy.
Collapse
Affiliation(s)
- Yunpeng Du
- *Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Ophthalmology and Visual Sciences, The University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA; and Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, USA
| | - Megan Cramer
- *Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Ophthalmology and Visual Sciences, The University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA; and Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, USA
| | - Chieh Allen Lee
- *Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Ophthalmology and Visual Sciences, The University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA; and Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, USA
| | - Jie Tang
- *Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Ophthalmology and Visual Sciences, The University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA; and Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, USA
| | - Arivalagan Muthusamy
- *Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Ophthalmology and Visual Sciences, The University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA; and Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, USA
| | - David A Antonetti
- *Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Ophthalmology and Visual Sciences, The University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA; and Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, USA
| | - Hui Jin
- *Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Ophthalmology and Visual Sciences, The University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA; and Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, USA
| | - Krzysztof Palczewski
- *Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Ophthalmology and Visual Sciences, The University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA; and Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, USA
| | - Timothy S Kern
- *Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Ophthalmology and Visual Sciences, The University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA; and Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Liu H, Tang J, Lee CA, Kern TS. Metanx and early stages of diabetic retinopathy. Invest Ophthalmol Vis Sci 2015; 56:647-53. [PMID: 25574044 DOI: 10.1167/iovs.14-15220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE l-Methylfolate, pyridoxal 5'-phosphate, and methylcobalamin, individually have been reported to have beneficial effects on diabetes-induced defects. The possibility that combining these therapeutic approaches might have additional benefit led us to investigate the effect of Metanx against development of early stages of diabetic retinopathy in a mouse model. METHODS C57BL/6J mice were made diabetic with streptozotocin, and some were given Metanx (a combination food product) mixed in the food at a dose of 5 mg/kg of body weight. Mice were killed at 2 months and 10 months of study for assessment of retinal function, retinal vascular histopathology, accumulation of albumin in neural retina, and biochemical and physiological abnormalities in retina. RESULTS Two months of diabetes significantly increased leukostasis within retinal vessels and superoxide generation by the retina. Diabetes also significantly increased expression of intercellular adhesion molecule-1 (ICAM-1) and phosphorylation of IκB. Daily consumption of Metanx significantly inhibited all of these abnormalities. Ten months of diabetes significantly increased the degeneration of retinal capillaries and impaired visual function (spatial frequency threshold (SFT) and a parameter of contrast sensitivity) compared to nondiabetic controls. Daily consumption of Metanx for 10 months inhibited impairment of SFT but had no significant beneficial effect on capillary degeneration, pericyte loss, or the estimate of contrast sensitivity. CONCLUSIONS Metanx inhibited a diabetes-induced defect in retinal spatial frequency threshold and inhibited measures of oxidative stress and inflammation. It had no significant effect on contrast sensitivity or retinal capillary degeneration. Nutritional management with Metanx may help inhibit diabetes-induced defects in visual function.
Collapse
Affiliation(s)
- Haitao Liu
- Case Western Reserve University, Cleveland, Ohio, United States The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Tang
- Case Western Reserve University, Cleveland, Ohio, United States
| | - Chieh Allen Lee
- Case Western Reserve University, Cleveland, Ohio, United States
| | - Timothy S Kern
- Case Western Reserve University, Cleveland, Ohio, United States Cleveland Veterans' Affairs Medical Center Research Service, Cleveland, Ohio, United States
| |
Collapse
|
26
|
Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy. Mol Neurobiol 2014; 51:878-84. [PMID: 24826918 DOI: 10.1007/s12035-014-8732-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) was earlier recognized as a vascular disease, but nowadays, it is considered as a neurovascular disorder. Neuronal death is the primary change which leads to various vascular changes which are visible to an ophthalmologist. But these changes are feature of an advanced disease and can affect vision at any moment of time. There are various evidences which suggests that glutamate excitotoxicity, hyperhomocysteinemia, kynurenic acid, and erythro-poietin plays important role in causation of retinal ganglionic cell apoptosis in diabetic patients. Adaptive optics, a new imaging technique, also showed that loss of photoreceptors (specialized neurons) is the early change in diabetic retinopathy. These changes suggest DR as a neurovascular disorder. Neuroprotective agents also showed good results in delaying progression of DR especially memantine, insulin receptor activation, and neurotrophic factors. More research in this field will help us to find novel therapeutic measures for DR, which can delay or even stop progression of DR at a very early stage.
Collapse
Affiliation(s)
- Vishal Jindal
- , H. No. 102 GHS 51 sector 20, Panchkula, Haryana, India,
| |
Collapse
|
27
|
Tang WH, Stitham J, Jin Y, Liu R, Lee SH, Du J, Atteya G, Gleim S, Spollett G, Martin K, Hwa J. Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets. Circulation 2014; 129:1598-609. [PMID: 24474649 DOI: 10.1161/circulationaha.113.005224] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Platelet abnormalities are well-recognized complications of diabetes mellitus. Mitochondria play a central role in platelet metabolism and activation. Mitochondrial dysfunction is evident in diabetes mellitus. The molecular pathway for hyperglycemia-induced mitochondrial dysfunction in platelets in diabetes mellitus is unknown. METHODS AND RESULTS Using both human and humanized mouse models, we report that hyperglycemia-induced aldose reductase activation and subsequent reactive oxygen species production lead to increased p53 phosphorylation (Ser15), which promotes mitochondrial dysfunction, damage, and rupture by sequestration of the antiapoptotic protein Bcl-xL. In a glucose dose-dependent manner, severe mitochondrial damage leads to loss of mitochondrial membrane potential and platelet apoptosis (cytochrome c release, caspase 3 activation, and phosphatidylserine exposure). Although platelet hyperactivation, mitochondrial dysfunction, aldose reductase activation, reactive oxygen species production, and p53 phosphorylation are all induced by hyperglycemia, we demonstrate that platelet apoptosis and hyperactivation are 2 distinct states that depend on the severity of the hyperglycemia and mitochondrial damage. Combined, both lead to increased thrombus formation in a mouse blood stasis model. CONCLUSIONS Aldose reductase contributes to diabetes-mediated mitochondrial dysfunction and damage through the activation of p53. The degree of mitochondrial dysfunction and damage determines whether hyperactivity (mild damage) or apoptosis (severe damage) will ensue. These signaling components provide novel therapeutic targets for thrombotic complications in diabetes mellitus.
Collapse
Affiliation(s)
- Wai Ho Tang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (W.H.T., J.S., Y.J., R.L., S.H.L., J.D., G.A., S.G., K.M., J.H.) and Section of Endocrinology and Metabolism, Department of Internal Medicine (G.S.), Yale University School of Medicine, New Haven, CT
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci U S A 2013; 110:16586-91. [PMID: 24067647 DOI: 10.1073/pnas.1314575110] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accumulating evidence suggests that photoreceptor cells play a previously unappreciated role in the development of early stages of diabetic retinopathy, but the mechanism by which this occurs is not clear. Inhibition of oxidative stress is known to inhibit the vascular lesions of early diabetic retinopathy, and we investigated whether the diabetes-induced oxidative stress in the retina emanates from photoreceptors. Superoxide generation was assessed in retinas of male C57BL/6J mice made diabetic for 2 mo (4 mo of age when killed) using histochemical (dichlorofluorescein and dihydroethidine) and bioluminescence (lucigenin) methods. Photoreceptors were eliminated in vivo by genetic (opsin(-/-)) and chemical (iodoacetic acid) techniques. Immunoblots were used to measure expression of intercellular adhesion molecule 1 and the inducible form of nitric oxide synthase. Diabetes increased the generation of superoxide by diabetic mouse retina more at night than during the day. Photoreceptors were the major source of reactive oxygen species in the retina, and their deletion (either genetically in opsin(-/-) mice or acutely with iodoacetic acid) inhibited the expected diabetes-induced increase in superoxide and inflammatory proteins in the remaining retina. Both mitochondria and NADPH oxidase contributed to the observed retinal superoxide generation, which could be inhibited in vivo with either methylene blue or apocynin. Photoreceptors are the major source of superoxide generated by retinas of diabetic mice. Pharmaceuticals targeting photoreceptor oxidative stress could offer a unique therapy for diabetic retinopathy.
Collapse
|
29
|
Ola MS, Nawaz MI, Khan HA, Alhomida AS. Neurodegeneration and neuroprotection in diabetic retinopathy. Int J Mol Sci 2013; 14:2559-2572. [PMID: 23358247 PMCID: PMC3588002 DOI: 10.3390/ijms14022559] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal ganglion cells and glial cells, both of which have been found to be compromised. A number of retinal function tests also indicated a functional deficit in diabetic retina, which further supports dysfunction of neuronal cells. As an endocrinological disorder, diabetes alters metabolism both systemically and locally in several body organs, including the retina. A growing body of evidences indicates increased levels of excitotoxic metabolites, including glutamate, branched chain amino acids and homocysteine in cases of diabetic retinopathy. Also present, early in the disease, are decreased levels of folic acid and vitamin-B12, which are potential metabolites capable of damaging neurons. These altered levels of metabolites are found to activate several metabolic pathways, leading to increases in oxidative stress and decreases in the level of neurotrophic factors. As a consequence, they may damage retinal neurons in diabetic patients. In this review, we have discussed those potential excitotoxic metabolites and their implications in neuronal damage. Possible therapeutic targets to protect neurons are also discussed. However, further research is needed to understand the exact molecular mechanism of neurodegeneration so that effective neuroprotection strategies can be developed. By protecting retinal neurons early in diabetic retinopathy cases, damage of retinal vessels can be protected, thereby helping to ameliorate the progression of diabetic retinopathy, a leading cause of blindness worldwide.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, Faculty of Science, King Saud University, Riyadh 11415, Saudi Arabia; E-Mails: (M.I.N.); (H.A.K.); (A.S.A.)
| | - Mohd Imtiaz Nawaz
- Department of Biochemistry, Faculty of Science, King Saud University, Riyadh 11415, Saudi Arabia; E-Mails: (M.I.N.); (H.A.K.); (A.S.A.)
| | - Haseeb A. Khan
- Department of Biochemistry, Faculty of Science, King Saud University, Riyadh 11415, Saudi Arabia; E-Mails: (M.I.N.); (H.A.K.); (A.S.A.)
| | - Abdullah S. Alhomida
- Department of Biochemistry, Faculty of Science, King Saud University, Riyadh 11415, Saudi Arabia; E-Mails: (M.I.N.); (H.A.K.); (A.S.A.)
| |
Collapse
|
30
|
Feenstra DJ, Yego EC, Mohr S. Modes of Retinal Cell Death in Diabetic Retinopathy. ACTA ACUST UNITED AC 2013; 4:298. [PMID: 24672740 DOI: 10.4172/2155-9570.1000298] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell death seems to be a prominent feature in the progression of diabetic retinopathy. Several retinal cell types have been identified to undergo cell death in a diabetic environment. Most emphasis has been directed towards identifying apoptosis in the diabetic retina. However, new research has established that there are multiple forms of cell death. This review discusses the different modes of cell death and attempts to classify cell death of retinal cells known to die in diabetic retinopathy. Special emphasis is given to apoptosis, necrosis, autophagic cell death, and pyroptosis. It seems that different retinal cell types are dying by diverse types of cell death. Whereas endothelial cells predominantly undergo apoptosis, pericytes might die by apoptosis as well as necrosis. On the other hand, Müller cells are suggested to die by a pyroptotic mechanism. Diabetes leads to significant Müller cell loss at 7 months duration of diabetes in retinas of diabetic mice compared to non-diabetic, which is prevented by the inhibition of the caspase-1/IL-1β (interleukin-1beta) pathway using the IL-1 receptor knockout mouse. Since pyroptosis is characterized by the activation of the caspase-1/IL-1β pathway subsequently leading to cell death, Müller cells seem to be a prime candidate for this form of inflammation-driven cell death. Considering that diabetic retinopathy is now discussed to potentially be a chronic inflammatory disease, pyroptotic cell death might play an important role in disease progression. Understanding mechanisms of cell death will lead to a more targeted approach in the development of new therapies to treat diabetic retinopathy.
Collapse
Affiliation(s)
- Derrick J Feenstra
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - E Chepchumba Yego
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving, Ground, MD, USA
| | - Susanne Mohr
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
31
|
Li G, Veenstra AA, Talahalli RR, Wang X, Gubitosi-Klug RA, Sheibani N, Kern TS. Marrow-derived cells regulate the development of early diabetic retinopathy and tactile allodynia in mice. Diabetes 2012; 61:3294-303. [PMID: 22923475 PMCID: PMC3501859 DOI: 10.2337/db11-1249] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The hypothesis that marrow-derived cells, and specifically proinflammatory proteins in those cells, play a critical role in the development of diabetes-induced retinopathy and tactile allodynia was investigated. Abnormalities characteristic of the early stages of retinopathy and allodynia were measured in chimeric mice lacking inducible nitric oxide synthase (iNOS) or poly(ADP-ribosyl) polymerase (PARP1) in only their marrow-derived cells. Diabetes-induced capillary degeneration, proinflammatory changes, and superoxide production in the retina and allodynia were inhibited in diabetic animals in which iNOS or PARP1 was deleted from bone marrow cells only. Of the various marrow cells, neutrophils (and monocytes) play a major role in retinopathy development, because retinal capillary degeneration likewise was significantly inhibited in diabetic mice lacking the receptor for granulocyte colony-stimulating factor in their marrow-derived cells. Immunodepletion of neutrophils or monocytes inhibited the endothelial death otherwise observed when coculturing leukocytes from wild-type diabetic animals with retinal endothelium. iNOS and PARP1 are known to play a role in inflammatory processes, and we conclude that proinflammatory processes within marrow-derived cells play a central role in the development of diabetes complications in the retina and nerve.
Collapse
Affiliation(s)
- Guangyuan Li
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | | | | | - Xiaoqi Wang
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio
| | | | | | - Timothy S. Kern
- Case Western Reserve University and Case Medical Center, Cleveland, Ohio
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio
- Corresponding author: Timothy S. Kern,
| |
Collapse
|
32
|
Hypoxia-induced oxidative stress in ischemic retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:426769. [PMID: 23125893 PMCID: PMC3483772 DOI: 10.1155/2012/426769] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/24/2012] [Accepted: 09/17/2012] [Indexed: 12/28/2022]
Abstract
Oxidative stress plays a crucial role in the pathogenesis of retinal ischemia/hypoxia, a complication of ocular diseases such as diabetic retinopathy (DR) and retinopathy of prematurity (ROP). Oxidative stress refers to the imbalance between the production of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidative systems. Free radicals and ROS are implicated in the irreversible damage to cell membrane, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Anti-oxidants that can inhibit the oxidative processes can protect retinal cells from ischemic/hypoxic insults. In particular, treatment using anti-oxidants such as vitamin E and lutein, inhibition of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) or related signaling pathways, and administration of catalase and superoxide dismutase (SOD) are possible therapeutic regimens for DR, ROP, and other retinal ischemic diseases. The role of oxidative stress in the pathogenesis of DR and ROP as well as the underlying mechanisms involved in the hypoxia/ischemia-induced oxidative damage is discussed. The information provided will be beneficial in understanding the underlying mechanisms involved in the pathogenesis of the diseases as well as in developing effective therapeutic interventions to treat oxidative stress-induced damages.
Collapse
|
33
|
Silencing of insulin receptor substrate-1 increases cell death in retinal Müller cells. Mol Vis 2012; 18:271-9. [PMID: 22328823 PMCID: PMC3275635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 01/27/2012] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To determine whether β-adrenergic receptors require insulin receptor substrate (IRS)-1 activity to regulate apoptosis in retinal Müller cells. METHODS Müller cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) medium grown in normal (5 mm) or high glucose (25 mM) conditions. The medium was supplemented with 10% fetal bovine serum and antibiotics. Cells were allowed to reach 80%-90% confluence. After becoming appropriately confluent, cells were placed in medium with reduced serum (2%) for 18-24 h to eliminate any effects of fetal bovine serum. Cells were then transfected with 10 ug of IRS-1 small hairpin RNA (shRNA). Forty-eight hours following transfection, cells were lysed and harvested for protein analysis using western blotting. In additional experiments, some cells were treated with 10 uM salmeterol for 24 h following transfection with IRS-1 shRNA. To determine whether IRS-1 directly regulates apoptotic events in the insulin-signaling pathway in retinal Müller cells, a cell death assay kit was used. In tumor necrosis factor (TNF)α inhibitory studies, cells were treated with 5 ng/ml of TNFα alone for 30 min or 30 min pretreatment with TNFα followed by salmeterol for 4 h. RESULTS Müller cells treated with 5 ng/ml TNFα in 25 mM glucose significantly increased phosphorylation of IRS-1(Ser307). Treatment with the selective beta-2-adrenergic receptor agonist, salmeterol, significantly decreased phosphorylation of IRS-1(Ser307). Following IRS-1 shRNA transfection+salmeterol treatment, Bcl-2-associated X protein (Bax) and cytochrome c levels were significantly decreased. Salmeterol+IRS-1 shRNA also decreased cell death and increased protein levels of B-cell lymphoma-extra large (Bcl-xL), an anti-apoptotic factor. CONCLUSIONS In these studies, we show for the first time that salmeterol, a beta-2-adrenergic receptor agonist, can reduce retinal Müller cell death through IRS-1 actions. These findings also suggest the importance of IRS-1 in beta-adrenergic receptor signaling in the prevention of cell death in retinal Müller cells.
Collapse
|
34
|
Lim SK, Park MJ, Lim JC, Kim JC, Han HJ, Kim GY, Cravatt BF, Woo CH, Ma SJ, Yoon KC, Park SH. Hyperglycemia induces apoptosis via CB1 activation through the decrease of FAAH 1 in retinal pigment epithelial cells. J Cell Physiol 2012; 227:569-77. [PMID: 21442624 DOI: 10.1002/jcp.22756] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the main endocannabinoid, anandamide, and related fatty acid amides, has emerged as a regulator of endocannabinoid signaling. Retinal pigment epithelial (RPE) cells are believed to be important cells in the pathogenesis of diabetic retinopathy. However, the pathophysiology of FAAH in diabetic retinopathy has not been determined. Thus, we examined the effect of high glucose (HG) on the expression of FAAH and CB(1)R in the ARPE-19 human RPE cells. We found that HG downregulated the expression of FAAH 1 mRNA and protein in ARPE-19 cells. In contrast, it upregulated the expression of CB(1)R mRNA and protein. HG-induced internalization of CB(1)R in HEK 293 cells and ARPE-19 cells was blocked by overexpression of FAAH 1 and treatment with the CB(1)R blocker, AM 251. HG-induced generation of reactive oxygen species and lipid peroxide formation were blocked by the overexpression of FAAH 1. FAAH 1 overexpression also blocked HG-induced expression of CB(1)R in the cytosolic fraction. We also investigated whether the overexpression of FAAH 1 protected against HG-induced apoptosis. High glucose increased the Bax/Bcl-2 ratio and levels of cleaved PARP, cleaved caspase-9 and caspase-3, and reduced cell viability. HG-induced apoptotic effects were reduced by the overexpression of FAAH 1, treatment with the CB(1)R-specific antagonist AM 251 and CB(1)R siRNA transfection. In conclusion, HG-induced apoptosis in ARPE-19 cells by inducing CB(1)R expression through the downregulation of FAAH 1 expression. Our results provide evidence that CB(1)R blockade through the recovery of FAAH 1 expression may be a potential anti-diabetic therapy for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Seul Ki Lim
- Bio-Therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ola MS, Nawaz MI, Siddiquei MM, Al-Amro S, Abu El-Asrar AM. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complications 2012; 26:56-64. [PMID: 22226482 DOI: 10.1016/j.jdiacomp.2011.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 02/07/2023]
Abstract
One of the major complications in patients with diabetes is diabetic retinopathy (DR), a leading cause of blindness worldwide. It takes several years before any clinical signs of retinopathy appear in diabetic patients, which gives an ample opportunity for scientists to uncover biochemical and molecular mechanism implicated early in the development and progression of the disease. During the past few decades, research progress has been made in investigating the pathophysiology of the disease; however, due to nonavailability of human retinal samples at different stages of the disease and also due to lack of a proper animal model of DR, the exact molecular mechanism has not been elucidated, making therapeutic a difficult task. In this review article, we have discussed a number of diabetes-induced metabolites such as glucose, lipids, amino acids, and other related factors and molecules that are implicated in the pathophysiology of the DR. Furthermore, we have highlighted neurodegeneration and regulation of neurotrophic factors, being recognized as early events that may be involved in the pathology of the disease in the course of DR. An understanding of the biochemical and molecular changes especially early in the diabetic retina may lead to new and effective therapies towards prevention and amelioration of DR, which is important for the millions of individuals who already have or are likely to develop the disease before a cure becomes available.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Ophthalmology, College of Medicine, King Saud University, KAUH, Riyadh, KSA.
| | | | | | | | | |
Collapse
|
36
|
Diabetes induced testicular dysfunction amelioration by ethyl acetate fraction of hydromethanolic extract of root of Musa paradisiaca L. in streptozotocin-induced diabetic rat. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60158-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res 2011; 30:343-58. [PMID: 21635964 PMCID: PMC3433044 DOI: 10.1016/j.preteyeres.2011.05.002] [Citation(s) in RCA: 834] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/14/2011] [Accepted: 05/16/2011] [Indexed: 12/14/2022]
Abstract
Diabetes causes a number of metabolic and physiologic abnormalities in the retina, but which of these abnormalities contribute to recognized features of diabetic retinopathy (DR) is less clear. Many of the molecular and physiologic abnormalities that have been found to develop in the retina in diabetes are consistent with inflammation. Moreover, a number of anti-inflammatory therapies have been found to significantly inhibit development of different aspects of DR in animal models. Herein, we review the inflammatory mediators and their relationship to early and late DR, and discuss the potential of anti-inflammatory approaches to inhibit development of different stages of the retinopathy. We focus primarily on information derived from in vivo studies, supplementing with information from in vitro studies were important.
Collapse
Affiliation(s)
- Johnny Tang
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
38
|
Huang H, Gandhi JK, Zhong X, Wei Y, Gong J, Duh EJ, Vinores SA. TNFalpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Invest Ophthalmol Vis Sci 2011; 52:1336-44. [PMID: 21212173 DOI: 10.1167/iovs.10-5768] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Blood-retinal barrier [BRB] breakdown, characteristic of diabetic retinopathy (DR), is believed to depend on inflammation and apoptosis. Retinal inflammation is almost completely suppressed in the absence of TNFα, which is also associated with apoptosis. This study was conducted to determine the role of TNFα in these diabetic complications. METHODS Diabetes was induced with streptozotocin in Tnfa knockout (KO) mice, to provide a chemical model of diabetes, and Tnfa (KO) mice were crossed with Ins2(Akita) mice to generate a genetic model, with both models being devoid of TNFα. The BRB was assessed at 1, 1.5, 3, and 6 months. Leukostasis was assessed using FITC-conjugated ConA to label leukocytes. Apoptosis was assessed with TUNEL and activated caspase-3 staining. PECAM1 identified endothelial cells, and SMA identified pericytes. RESULTS At 1 month of diabetes, the absence of TNFα had no effect on DR-associated BRB breakdown, even though it prevented retinal leukostasis, demonstrating that neither TNFα nor inflammation is essential for early BRB breakdown in DR in either model of diabetes. At 3 months of diabetes, BRB breakdown was significantly suppressed and at 6 months, it was completely prevented in the absence of TNFα in both models, showing that TNFα is essential for progressive BRB breakdown. DR-mediated apoptosis in the retina, which appears to involve endothelial cells, pericytes, and neurons, was inhibited in the absence of TNFα in both models. CONCLUSIONS Although neither TNFα nor inflammation is necessary for early BRB breakdown in DR, TNFα is critical for later complications and would be a good therapeutic target for the prevention of the progressive BRB breakdown, retinal leukostasis, and apoptosis associated with DR.
Collapse
Affiliation(s)
- Hu Huang
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Santos JM, Mohammad G, Zhong Q, Kowluru RA. Diabetic retinopathy, superoxide damage and antioxidants. Curr Pharm Biotechnol 2011; 12:352-61. [PMID: 20939803 PMCID: PMC3214730 DOI: 10.2174/138920111794480507] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 05/31/2010] [Indexed: 01/01/2023]
Abstract
Retinopathy, the leading cause of acquired blindness in young adults, is one of the most feared complications of diabetes, and hyperglycemia is considered as the major trigger for its development. The microvasculature of the retina is constantly bombarded by high glucose, and this insult results in many metabolic, structural and functional changes. Retinal mitochondria become dysfunctional, its DNA is damaged and proteins encoded by its DNA are decreased. The electron transport chain system becomes compromised, further producing superoxide and providing no relief to the retina from a continuous cycle of damage. Although the retina attempts to initiate repair mechanisms by inducing gene expressions of the repair enzymes, their mitochondrial accumulation remains deficient. Understanding the molecular mechanism of mitochondrial damage should help identify therapies to treat/retard this sight threatening complication of diabetes. Our hope is that if the retinal mitochondria are maintained healthy with adjunct therapies, the development and progression of diabetic retinopathy can be inhibited.
Collapse
Affiliation(s)
- Julia M Santos
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
40
|
Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 2011; 351:41-58. [PMID: 21210296 DOI: 10.1007/s11010-010-0709-x] [Citation(s) in RCA: 702] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/13/2010] [Indexed: 12/12/2022]
Abstract
Apoptosis, or programmed cell death, plays a pivotal role in the elimination of unwanted, damaged, or infected cells in multicellular organisms and also in diverse biological processes, including development, cell differentiation, and proliferation. Apoptosis is a highly regulated form of cell death, and dysregulation of apoptosis results in pathological conditions including cancer, autoimmune and neurodegenerative diseases. The Bcl-2 family proteins are key regulators of apoptosis, which include both anti- and pro-apoptotic proteins, and a slight change in the dynamic balance of these proteins may result either in inhibition or promotion of cell death. Execution of apoptosis by various stimuli is initiated by activating either intrinsic or extrinsic pathways which lead to a series of downstream cascade of events, releasing of various apoptotic mediators from mitochondria and activation of caspases, important for the cell fate. In view of recent research advances about underlying mechanism of apoptosis, this review highlights the basics concept of apoptosis and its regulation by Bcl-2 family of protein. Furthermore, this review discusses the interplay of various apoptotic mediators and caspases to decide the fate of the cell. We expect that this review will add to the pool of basic information necessary to understand the mechanism of apoptosis which may implicate in designing better strategy to develop biomedical therapy to control apoptosis.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, KSA
| | | | | |
Collapse
|