1
|
Fatima G, Ashiquzzaman A, Kim SS, Kim YR, Kwon HS, Chung E. Vascular and glymphatic dysfunction as drivers of cognitive impairment in Alzheimer's disease: Insights from computational approaches. Neurobiol Dis 2025; 208:106877. [PMID: 40107629 DOI: 10.1016/j.nbd.2025.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Alzheimer's disease (AD) is driven by complex interactions between vascular dysfunction, glymphatic system impairment, and neuroinflammation. Vascular aging, characterized by arterial stiffness and reduced cerebral blood flow (CBF), disrupts the pulsatile forces necessary for glymphatic clearance, exacerbating amyloid-beta (Aβ) accumulation and cognitive decline. This review synthesizes insights into the mechanistic crosstalk between these systems and explores their contributions to AD pathogenesis. Emerging machine learning (ML) tools, such as DeepLabCut and Motion sequencing (MoSeq), offer innovative solutions for analyzing multimodal data and enhancing diagnostic precision. Integrating ML with imaging and behavioral analyses bridges gaps in understanding vascular-glymphatic dysfunction. Future research must prioritize these interactions to develop early diagnostics and targeted interventions, advancing our understanding of neurovascular health in AD.
Collapse
Affiliation(s)
- Gehan Fatima
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Akm Ashiquzzaman
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Sang Seong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Young Ro Kim
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea; AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Rep. of Korea; Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea; AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Rep. of Korea; Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.
| |
Collapse
|
2
|
Roura I, Pardo J, Martín-Barceló C, Falcon C, Oltra J, Campabadal A, Bargalló N, Serradell M, Mayà G, Montini A, Pont-Sunyer C, Gaig C, Buongiorno M, Junqué C, Iranzo A, Segura B. Clinical and brain volumetric correlates of decreased DTI-ALPS, suggestive of local glymphatic dysfunction, in iRBD. NPJ Parkinsons Dis 2025; 11:87. [PMID: 40268930 PMCID: PMC12018923 DOI: 10.1038/s41531-025-00942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Glymphatic alterations may underlie neurodegeneration in alpha-synucleinopathies. Reduced Diffusion-Tensor Imaging ALong the Perivascular Space (DTI-ALPS), a proxy of perivascular glymphatic activity, has been scarcely studied in isolated REM sleep behaviour disorder (iRBD), a prodromal synucleinopathy stage. Furthermore, its associations with clinical symptoms and brain structural abnormalities remain unexplored. We assessed the DTI-ALPS in sixty-two patients with iRBD and twenty-three healthy controls (HC), exploring its associations with clinical symptoms, cortical thickness and brain volumetric data. iRBD patients exhibited a lower DTI-ALPS and poorer odor identification, semantic fluency and processing speed relative to HC. The DTI-ALPS positively correlated with cognitive performance, olfactory function and amygdalar, hippocampal, brainstem and diencephalic volumes, and negatively with age in iRBD. Perivascular glymphatic activity is compromised in iRBD and is associated with brain atrophy and clinical risk factors of progression to alpha-synucleinopathies, supporting the potential of the DTI-ALPS index as an early imaging neurodegeneration marker.
Collapse
Affiliation(s)
- Ignacio Roura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Jèssica Pardo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Cristina Martín-Barceló
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Carles Falcon
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Imaging Group, Centro de Investigación Biomédica en Red sobre Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Catalonia, Spain
| | - Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Aging Research Center, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Neurology Service, Consorci Corporació Sanitària Parc Taulí de Sabadell, Barcelona, Catalonia, Spain
| | - Nuria Bargalló
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Imaging Diagnostic Center (CDI), Hospital Clínic Universitari de Barcelona, Barcelona, Catalonia, Spain
| | - Mònica Serradell
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Gerard Mayà
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Angelica Montini
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Claustre Pont-Sunyer
- Movement Disorders Unit, Neurology Service, Fundació Privada Hospital Asil de, Granollers, Barcelona, Catalonia, Spain
| | - Carles Gaig
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | | | - Carme Junqué
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Catalonia, Spain
| | - Alex Iranzo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
- Sleep Unit, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Catalonia, Spain.
| | - Bàrbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Peng T, Lin Y, Xu X, Li J, Liu M, Zhang C, Liao X, Ji X, Xiong Z, Gu Z, Cai X, Tao T, Zhang Y, Zhu L, Zhuang D, Huang X, Xiong M, Zhang P, Liu J, Cheng G. Assessing neonatal brain glymphatic system development using diffusion tensor imaging along the perivascular space and choroid plexus volume. BMC Med Imaging 2025; 25:126. [PMID: 40247273 PMCID: PMC12007372 DOI: 10.1186/s12880-025-01673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
PURPOSE Neonatal brain development constitutes a critical period of structural and functional maturation underpinning sensory, motor, and cognitive capacities. The glymphatic system-a cerebral waste clearance network-remains poorly understood in neonates. We investigated non-invasive magnetic resonance imaging (MRI) biomarkers of glymphatic system and their developmental correlates in neonates. METHODS In 117 neonates undergoing high-resolution T1-weighted and diffusion MRI, we quantified two glymphatic metrics: (1) diffusion tensor imaging along the perivascular space (DTI-ALPS) index, reflecting perivascular fluid dynamics; (2) choroid plexus (CP) volume, a cerebrospinal fluid (CSF) production marker. Associations with postmenstrual age (PMA) at MRI scan, gestational age (GA), birth weight (BW), and sex were analyzed using covariate-adjusted models. RESULTS Preterm neonates displayed significantly reduced DTI-ALPS indices versus term neonates (total index: 1.01 vs. 1.05, P = 0.002), with reductions persisting after adjustment (P < 0.05). CP volumes showed right-dominant pre-adjustment differences (preterm: 0.33 vs. term: 0.39, P = 0.039) that attenuated post-adjustment (P = 0.348). DTI-ALPS indices demonstrated transient correlations with PMA/GA/BW in unadjusted analyses (P < 0.05), whereas CP volumes maintained robust PMA associations post-adjustment in all neonates (P = 0.037) and term subgroup (P = 0.013). No significant effects of sex on both metrics were observed. CONCLUSION Our findings reveal prematurity-associated delays in glymphatic maturation, rather than biological sex. The persistent PMA-CP volume relationship suggests developmental regulation of CSF production, while attenuated DTI-ALPS correlations highlight covariate-mediated effects. These glymphatic metrics show potential for monitoring neurodevelopmental trajectories, though longitudinal validation is required to establish their clinical utility in neonatal care. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ting Peng
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Ying Lin
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Xin Xu
- Department of Neonatology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Jiaqi Li
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Miaoshuang Liu
- Department of Neonatology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Chaowei Zhang
- Department of Neonatology, People's Hospital of Longhua, Shenzhen, 518000, China
| | - Xiaohui Liao
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaoshan Ji
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Zhongmeng Xiong
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Zhuoyang Gu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Xinyi Cai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Tianli Tao
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Yajuan Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Lixuan Zhu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Deyi Zhuang
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Xianghui Huang
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peng Zhang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Jungang Liu
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China.
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China.
| |
Collapse
|
4
|
Marecek S, Rottova V, Nepozitek J, Krajca T, Krupicka R, Keller J, Zogala D, Trnka J, Sonka K, Ruzicka E, Dusek P. Exploring glymphatic system alterations in iRBD and Parkinson's disease using automated DTI-ALPS analysis. NPJ Parkinsons Dis 2025; 11:76. [PMID: 40234457 PMCID: PMC12000549 DOI: 10.1038/s41531-025-00921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
Diffusion tensor image analysis along the perivascular space (DTI-ALPS) is a potential non-invasive marker of glymphatic function that typically relies on manual region of interest (ROI) placement. This study compared ALPS indices in treatment-naïve, de novo diagnosed patients with Parkinson's disease (PD), patients with isolated REM behavior disorder (iRBD), and healthy controls using both manual and automatic approaches to the ROI selection used in ALPS-index calculation. ALPS indices were analyzed bilaterally and correlated with clinical severity (MDS-UPDRS) and nigrostriatal denervation (DAT-SPECT). ANCOVA revealed significant inter-group differences using both manual (p = 0.018) and automatic (p = 0.002) ROI selection methods. The automatic ROI selection approach showed significantly lower ALPS indices in PD compared to controls (p = 0.001) and iRBD (p = 0.009). ALPS indices correlated with symptom severity and nigrostriatal denervation. These findings underscore the reliability of the automatic ROI placement approach for ALPS index calculation and may indicate early glymphatic alterations in Parkinson's disease.
Collapse
Affiliation(s)
- S Marecek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - V Rottova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - J Nepozitek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - T Krajca
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - R Krupicka
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic
| | - J Keller
- Department of Radiodiagnostics, Na Homolce Hospital, Prague, Czech Republic
| | - D Zogala
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - J Trnka
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - K Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - E Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - P Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Peng T, Zhang C, Xie P, Lin Y, Zhang L, Lan Z, Yang M, Huang X, Liu J, Cheng G. Multimodal MRI analysis of COVID-19 effects on pediatric brain. Sci Rep 2025; 15:11691. [PMID: 40188214 PMCID: PMC11972372 DOI: 10.1038/s41598-025-96191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
The COVID-19 pandemic has raised significant concerns regarding its impact on the central nervous system, including the brain. While the effects on adult populations are well documented, less is known about its implications for pediatric populations. This study investigates alterations in cortical metrics and structural covariance networks (SCNs) based on the Local Gyrification Index (LGI) in children with mild COVID-19, alongside changes in non-invasive MRI proxies related to glymphatic function. We enrolled 19 children with COVID-19 and 22 age-comparable healthy controls. High-resolution T1-weighted and diffusion-weighted MRI images were acquired. Cortical metrics, including thickness, surface area, volume, and LGI, were compared using vertex-wise general linear models. SCNs were analyzed for differences in global and nodal metrics, and MRI proxies, including diffusion tensor imaging along the perivascular space and choroid plexus (CP) volume, were also assessed. Our results showed increased cortical area, volume, and LGI in the left superior parietal cortex, as well as increased cortical thickness in the left lateral occipital cortex among children with COVID-19. SCN analysis revealed altered network topology and larger CP volumes in the COVID group, suggesting virus-induced neuroinflammation. These findings provide evidence of potential brain alterations in children following mild COVID-19, emphasizing the need for further investigation into long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Ting Peng
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Chaowei Zhang
- Department of Neonatology, People's Hospital of Longhua, Shenzhen, 518000, China
| | - Pingping Xie
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Ying Lin
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China
| | - Lin Zhang
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China
| | - Zuozhen Lan
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China
| | - Mingwen Yang
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China
| | - Xianghui Huang
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China.
| | - Jungang Liu
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China.
| | - Guoqiang Cheng
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China.
| |
Collapse
|
6
|
Xu Y, Yin H, Li L, Wang X, Hou Q. Covert cerebrospinal fluid dynamics dysfunction: evolution from conventional to innovative therapies. Front Neurol 2025; 16:1554813. [PMID: 40144621 PMCID: PMC11936825 DOI: 10.3389/fneur.2025.1554813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Cerebrospinal fluid (CSF) dynamics disorders are intricately linked to diverse neurological pathologies, though they usually are mild and covert. Contemporary insights into glymphatic system function, particularly the CSF transport, drainage, and its role in clearing metabolic waste and toxic substances in both normal and pathological states, and the pivotal role of aquaporin-4 (AQP4) in CSF-interstitial fluid (ISF) exchange, have established novel theoretical frameworks of subclinical CSF dynamics dysfunction, and have promoted the development of non-surgical therapeutic approaches for them simultaneously. This review comprehensively analyzes the advancement of non-surgical interventions for CSF dynamics disorders, emphasizing the transition from established methodologies to innovative approaches. Current non-surgical treatment strategies primarily encompass three directions: pharmacological therapy, physical therapy, and biological regulation therapy. In terms of pharmacological interventions, developments from traditional diuretics to novel small-molecule drugs show promising therapeutic potential. In physical therapy, innovative techniques such as lower body negative pressure, transcranial magnetic stimulation, and vagus nerve stimulation have provided new options for clinical practice. Meanwhile, biological regulation therapy, exemplified by recombinant VEGF-C administration, has established novel therapeutic paradigms. These therapeutic strategies have demonstrated potential in improving CSF dynamics and enhancing CSF waste elimination. Future research should focus on developing individualized treatment protocols, elucidating of therapeutic mechanisms, and assessing longitudinal outcomes. This will facilitate the development of more precise therapeutic strategies and exploration of optimized multimodal treatment combinations in handling the so-called convert CSF dynamics dysfunction.
Collapse
Affiliation(s)
- Yi Xu
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hua Yin
- Class 6, 2020 Clinical Medicine Program, Sun Yat-Sen University, Shenzhen, China
| | - Lingge Li
- Class 2, 2020 Clinical Medicine Program, Sun Yat-Sen University, Shenzhen, China
| | - Xiaodi Wang
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qinghua Hou
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
7
|
Wang M, He K, Zhang L, Xu D, Li X, Wang L, Peng B, Qiu A, Dai Y, Zhao C, Jiang H. Assessment of glymphatic function and white matter integrity in children with autism using multi-parametric MRI and machine learning. Eur Radiol 2025; 35:1623-1636. [PMID: 39843628 DOI: 10.1007/s00330-025-11359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025]
Abstract
OBJECTIVES To assess glymphatic function and white matter integrity in children with autism spectrum disorder (ASD) using multi-parametric MRI, combined with machine learning to evaluate ASD detection performance. MATERIALS AND METHODS This retrospective study collected data from 110 children with ASD (80 exploratory, 43 validation) and 68 typically developing children (50 exploratory, 18 validation) from two centers. The automated diffusion tensor imaging along the perivascular space (aDTI-ALPS), fractional anisotropy (FA), cerebrospinal fluid volume, and perivascular space (PVS) volume indices were extracted from DTI, three-dimensional T1-weighted, and T2-weighted images. Intergroup comparisons were conducted using t-tests, Mann-Whitney U-test, and tract-based spatial statistics. Correlation analysis assessed the relationship between glymphatic function, white matter integrity, and clinical scales. Machine learning models based on MRI indices were developed using the AutoGluon framework. RESULTS The PVS volume (p < 0.001) was larger, and aDTI-ALPS index (p < 0.001) was lower in children with ASD compared to typically developing children. FA values were reduced in the ASD group and positively correlated with aDTI-ALPS index. The aDTI-ALPS index correlated with ASD severity (r = -0.27, p = 0.02) and developmental delays (r = 0.63, p < 0.001). Mediation analysis indicated the aDTI-ALPS index partially mediated the relationship between white matter integrity and developmental delay. The MRI-based model achieved an area under the curve of 0.84 for ASD diagnosis. CONCLUSION Analyzing glymphatic function and white matter integrity enhances understanding of ASD's neurobiological underpinnings. The multi-parametric MRI, combined with machine learning, can facilitate the early detection of ASD. KEY POINTS Question How can multi-parametric MRI based on the glymphatic system improve early diagnosis of autism spectrum disorder (ASD) beyond the limitations of current behavioral assessments? Findings Glymphatic dysfunction and disruptions in white matter integrity were associated with clinical symptoms of ASD. Multi-parametric MRI with machine learning can improve early ASD detection. Clinical relevance Multi-parametric MRI, focusing on glymphatic function and white matter integrity, enhances the diagnostic accuracy of ASD by serving as an objective complement to clinical scales.
Collapse
Affiliation(s)
- Miaoyan Wang
- Department of Radiology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Keyi He
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Lili Zhang
- Department of Child Healthcare, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Dandan Xu
- Department of Radiology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- Department of Child Healthcare, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Bo Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Anqi Qiu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Cailei Zhao
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Haoxiang Jiang
- Department of Radiology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
8
|
Choi Y, Jung HJ, Jung HK, Jeong E, Kim S, Kim JY, Lee EJ, Lim YM, Kim H. In vivo imaging markers of glymphatic dysfunction in amyotrophic lateral sclerosis: Analysis of ALPS index and choroid plexus volume. J Neurol Sci 2025; 469:123393. [PMID: 39818026 DOI: 10.1016/j.jns.2025.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND The glymphatic system, essential for brain waste clearance, has been implicated in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Emerging imaging markers, such as the analysis along the perivascular space (ALPS) index and choroid plexus volume (CPV), may provide insights into glymphatic function, but their relevance to ALS remains unclear. OBJECTIVE To assess glymphatic dysfunction in ALS patients using the ALPS index and CPV. METHODS In this prospective single-center study, we analyzed 51 ALS patients and 51 age- and sex-matched healthy controls (HC). The ALPS index was calculated using diffusion tensor imaging, and 3D T1-weighted MRI was used for automated estimation of CPV and its fraction (CPV/total intracranial volume). Diagnostic performance was assessed using area under the receiver operating curve (AUC). Correlations between imaging markers and clinical parameters were also examined. RESULTS ALS patients had a significantly lower ALPS index (ALS: 1.45 ± 0.15; HC: 1.55 ± 0.16; p = 0.002) and higher CPV fraction (ALS: 0.12 ± 0.04 %; HC: 0.10 ± 0.02 %; p < 0.001). The ALPS index and CPV fraction had AUCs of 0.70 and 0.72, respectively. A significant inverse correlation was observed between the ALPS index and CPV fraction (r = -0.31, p = 0.002). Both markers correlated with aging but not with clinical disability or progression rate. CONCLUSION This study identifies glymphatic dysfunction in ALS, as evidenced by changes in the ALPS index and CPV. Larger studies are warranted to validate these findings and assess their potential as biomarkers for ALS.
Collapse
Affiliation(s)
- Yangsean Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hee-Jae Jung
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ha-Kyung Jung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eunseon Jeong
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Shina Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ji-Yon Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eun-Jae Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Min Lim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyunjin Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Tanaka F, Maeda M, Kishi S, Kogue R, Umino M, Ishikawa H, Ii Y, Shindo A, Sakuma H. Updated imaging markers in cerebral amyloid angiopathy: What radiologists need to know. Jpn J Radiol 2024:10.1007/s11604-024-01720-2. [PMID: 39730931 DOI: 10.1007/s11604-024-01720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related small vessel disease pathologically characterized by the progressive accumulation of amyloid-beta (Aβ) peptide in cerebrovascular walls, affecting both cortical and leptomeningeal vessels. Amyloid deposition results in fragile vessels, which may lead to lobar intracerebral hemorrhage (ICH) and cognitive impairment. To evaluate the probability and severity of CAA, the imaging markers depicted on CT and MRI techniques are crucial, as brain pathological examination is highly invasive. Although the Boston criteria have established diagnostic value and have been updated to version 2.0, due to an aging population, the patients with CAA should also be assessed for their risk of future ICH or cognitive impairment. Furthermore, an increased awareness of CAA is essential when introducing anticoagulants for infarct in elderly patients or anti-amyloid antibodies for Alzheimer's disease, as these may worsen CAA-related hemorrhagic lesions. However, the radiological literature on CAA has not been comprehensively updated. Here, we review the imaging markers of CAA and clinical significance. We also discuss the clinical and imaging characteristics of CAA-related inflammation, amyloid-related imaging abnormalities, and iatrogenic-CAA.
Collapse
Affiliation(s)
- Fumine Tanaka
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Seiya Kishi
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yuichiro Ii
- Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
10
|
Park KM, Kim KT, Lee DA, Cho YW. Small vessel disease in patients with restless legs syndrome evidenced by elevated peak width of skeletonized mean diffusivity. J Neurol Sci 2024; 467:123310. [PMID: 39577321 DOI: 10.1016/j.jns.2024.123310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Peak width of skeletonized mean diffusivity (PSMD) is a novel marker of small vessel disease. This study aimed to investigate small vessel disease in patients with restless legs syndrome (RLS) using PSMD. We prospectively enrolled 65 patients with primary RLS and 59 age- and sex-matched healthy controls. Diffusion tensor imaging (DTI) was performed using a 3-T magnetic resonance imaging scanner in patients with RLS and healthy controls. We obtained PSMD by DTI in several steps, including preprocessing, skeletonization, application of a custom mask, and histogram analysis. We compared the PSMD between patients with RLS and healthy controls and performed a correlation analysis between the PSMD and clinical characteristics in patients with RLS. The PSMD significantly differed between patients with RLS and healthy controls; it was higher in patients with RLS than that in healthy controls (2.423 vs. 2.298 × 10-4 mm2/s, p = 0.017). The PSMD significantly differed according to the RLS severity (2.305 × 10-4 mm2/s, moderate RLS; 2.368 × 10-4 mm2/s, severe RLS; 2.477 × 10-4 mm2/s, very severe RLS; p = 0.003). Additionally, the PSMD was positively correlated with age (r = 0.522, p < 0.001) and RLS severity (r = 0.263, p = 0.033). Patients with RLS exhibited a higher PSMD than that in healthy controls, indicating the evidence of small-vessel disease in RLS and that the severity increased as RLS severity increased. These findings provide crucial information for clinical management and treatment strategies, highlighting the importance of addressing small vessel disease in patients with RLS.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Keun Tae Kim
- Department of Neurology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Yong Won Cho
- Department of Neurology, Keimyung University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Wu W, Li Q. Mechanisms of hydrocephalus after intraventricular haemorrhage: a review. Childs Nerv Syst 2024; 41:49. [PMID: 39674974 DOI: 10.1007/s00381-024-06711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Intraventricular haemorrhage (IVH) is bleeding within the ventricular system, which in adults is usually mainly secondary to cerebral haemorrhage and subarachnoid haemorrhage. Hydrocephalus is one of the most common complications of intraventricular haemorrhage, which is characterised by an increase in intracranial pressure due to an increased accumulation of cerebrospinal fluid within the ventricular system, and is closely related to the patient's prognosis. Surgical methods such as shunt surgery have been used to treat secondary hydrocephalus in recent years and have been effective in improving the survival and prognosis of patients with hydrocephalus. However, complications such as shunt blockage and intracranial infection are often faced after surgery. Moreover, little is known about the mechanism of hydrocephalus secondary to intraventricular haemorrhage. This review discusses the mechanisms regarding the occurrence of secondary hydrocephalus after intraventricular haemorrhage in adults in terms of blood clot obstruction, altered cerebrospinal fluid dynamics, inflammation, and blood composition.
Collapse
Affiliation(s)
- Wenchao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 157, Health Care RoadHeilongjiang Province, Harbin City, Harbin, China
| | - Qingsong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, No. 157, Health Care RoadHeilongjiang Province, Harbin City, Harbin, China.
| |
Collapse
|
12
|
Sharkey RJ, Cortese F, Goodyear BG, Korngut LW, Jacob SM, Sharkey KA, Kalra S, Nguyen MD, Frayne R, Pfeffer G. Longitudinal analysis of glymphatic function in amyotrophic lateral sclerosis and primary lateral sclerosis. Brain 2024; 147:4026-4032. [PMID: 39241118 PMCID: PMC11629681 DOI: 10.1093/brain/awae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/29/2024] [Accepted: 08/04/2024] [Indexed: 09/08/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons in the brain and spinal cord. Accumulation of misfolded proteins is central to the pathogenesis of ALS and the glymphatic system is emerging as a potential therapeutic target to reduce proteinopathy. Using diffusion tensor imaging analysis along the perivascular spaces (DTI-ALPS) to assess glymphatic function, we performed a longitudinal analysis of glymphatic function in ALS and compared it to a disorder in the motor neuron disease spectrum, primary lateral sclerosis (PLS). From a cohort of 45 participants from the Calgary site in the CALSNIC study (Canadian ALS Neuroimaging Consortium), including 18 ALS, 5 PLS and 22 control participants, DTI-ALPS was analysed and correlated to clinical features (age, sex, disease presentation, disease severity and progression rate) and white matter hyperintensity burden. This included longitudinal measurements at three time points, 4 months apart. The DTI-ALPS index was reduced in ALS participants compared with PLS and control participants across all three time points. There was no association with clinical factors; however, the index tended to decline with advancing age. Our study suggests heterogeneity in glymphatic dysfunction in motor neuron diseases that may be related to the underlying pathogenesis.
Collapse
Affiliation(s)
- Rachel J Sharkey
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Filomeno Cortese
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bradley G Goodyear
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Lawrence W Korngut
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarah M Jacob
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sanjay Kalra
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Richard Frayne
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
13
|
Le Bihan D. From Brownian motion to virtual biopsy: a historical perspective from 40 years of diffusion MRI. Jpn J Radiol 2024; 42:1357-1371. [PMID: 39289243 PMCID: PMC11588775 DOI: 10.1007/s11604-024-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024]
Abstract
Diffusion MRI was introduced in 1985, showing how the diffusive motion of molecules, especially water, could be spatially encoded with MRI to produce images revealing the underlying structure of biologic tissues at a microscopic scale. Diffusion is one of several Intravoxel Incoherent Motions (IVIM) accessible to MRI together with blood microcirculation. Diffusion imaging first revolutionized the management of acute cerebral ischemia by allowing diagnosis at an acute stage when therapies can still work, saving the outcomes of many patients. Since then, the field of diffusion imaging has expanded to the whole body, with broad applications in both clinical and research settings, providing insights into tissue integrity, structural and functional abnormalities from the hindered diffusive movement of water molecules in tissues. Diffusion imaging is particularly used to manage many neurologic disorders and in oncology for detecting and classifying cancer lesions, as well as monitoring treatment response at an early stage. The second major impact of diffusion imaging concerns the wiring of the brain (Diffusion Tensor Imaging, DTI), allowing to obtain from the anisotropic movement of water molecules in the brain white-matter images in 3 dimensions of the brain connections making up the Connectome. DTI has opened up new avenues of clinical diagnosis and research to investigate brain diseases, neurogenesis and aging, with a rapidly extending field of application in psychiatry, revealing how mental illnesses could be seen as Connectome spacetime disorders. Adding that water diffusion is closely associated to neuronal activity, as shown from diffusion fMRI, one may consider that diffusion MRI is ideally suited to investigate both brain structure and function. This article retraces the early days and milestones of diffusion MRI which spawned over 40 years, showing how diffusion MRI emerged and expanded in the research and clinical fields, up to become a pillar of modern clinical imaging.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, CEA, Paris-Saclay University, Bât 145, CEA-Saclay Center, 91191, Gif-sur-Yvette, France.
- Human Brain Research Center, Kyoto University, Kyoto, Japan.
- Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
14
|
Ohashi T, Ito R, Yamamoto R, Ukai K, Naganawa S. Association between the Presence of the Parasagittal Cyst-like Structures and Cognitive Function. Magn Reson Med Sci 2024:mp.2024-0138. [PMID: 39581589 DOI: 10.2463/mrms.mp.2024-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
PURPOSE A cyst-like structure near superior sagittal sinus (Arachnoid Cuff Exit Site cysts: ACES cysts) has been reported in MRI. The purpose of this study was to investigate the association between presence of ACES cysts and cognitive function, as assessed using mini-mental state examination (MMSE) scores. METHODS We retrospectively analyzed patients who underwent head MRI for dementia screening. Differences in patient ages and MMSE scores between patients with and without ACES cysts were examined using the Mann-Whitney U test. Correlations between patient ages and MMSE scores were examined for patients with and without ACES cysts using Spearman's rank correlation coefficient. Multivariate logistic regression analysis was performed to examine the influence of presence or absence of ACES cysts on MMSE score. RESULTS A total of 112 patients (male: 28, female: 84) were included for the analysis. The patient ages ranged from 66 to 94 years (median: 83 years). MMSE scores ranged from 6 to 30 (median: 24). ACES cysts were detected in 57 patients (50.9%). There was no significant difference in patient ages between the patients with and without ACES cysts (P = 0.058). The patients with ACES cysts showed significantly lower MMSE scores compared to the patients without ACES cysts (P < 0.001). In the patients with ACES cysts, there was no significant correlation between patient ages and MMSE scores (ρ = -0.178, P = 0.185), whereas a significant negative correlation was observed in the patients without ACES cysts (ρ = -0.347, P = 0.001). The presence of ACES cysts was determined as an independent predictor for the lower MMSE score (odds ratio = 15.2, 95% confidence interval = 5.59-41.4, P < 0.001). CONCLUSION The presence of the ACES cysts showed significant association with lower MMSE score. ACES cysts might be involved in the pathological processes affecting cognitive function.
Collapse
Affiliation(s)
- Toshio Ohashi
- Department of Radiology, Kamiiida Daiichi General Hospital, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, Nagoya, Aichi, Japan
| | - Ryo Yamamoto
- Department of Radiology, Kamiiida Daiichi General Hospital, Nagoya, Aichi, Japan
| | - Katsuyuki Ukai
- Department of Psychogeriatrics, Kamiiida Daiichi General Hospital, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
15
|
Onn-Margalit L, Weissbach T, Gafner M, Fried S, Wandel A, Ziv-Baran T, Katorza E. An Association Between Fetal Subarachnoid Space and Various Pathologies Using MR Imaging. Diagnostics (Basel) 2024; 14:2535. [PMID: 39594200 PMCID: PMC11592746 DOI: 10.3390/diagnostics14222535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: This study aimed to explore a relationship between the fetal subarachnoid space (SAS) width and various fetal pathologies, employing fetal brain MRI scans. Methods: A retrospective collection of fetal brain MRI scans of 78 fetuses was performed with sonographic indications of microcephaly, macrocephaly, or fetal growth restriction (FGR), during a 7-year period at a single tertiary center. The SAS width (named the SAS index) was manually measured in millimeters in ten specific anatomical locations (four in the axial plane and six in the coronal plane), and then converted to centiles by comparing it to (previously collected) data of apparently healthy fetuses. We evaluated the median SAS centiles using the Kruskal-Wallis and Mann-Whitney U tests for statistical comparison. Results: Seventy-eight subjects (mean gestational age of MRI scan 34.2 ± 2.2 weeks) were evaluated. The median SAS centiles were consistently higher in the macrocephaly group compared to the microcephaly group in all ten anatomical locations (statistically significant except coronal left inferior temporal gyri). Most pronounced difference was displayed in the insula gyri (axial and coronal). The median SAS centiles were higher in the microcephaly group when compared with FGR across all ten anatomical locations (all were statistically significant except for coronal frontal and insula gyri), and the maximal difference was found in the frontal gyri of both planes. The median SAS indexes (IQR) of the three groups in millimeters: macrocephaly 91.55 (86.35-101.05), microcephaly 59.46 (50.00-66.91), and FGR 53.21 (49.71-59.10), p < 0.001. Conclusions: We found a statistically significant association between the fetal subarachnoid space and various fetal pathologies: macrocephaly, microcephaly, and FGR.
Collapse
Affiliation(s)
- Lior Onn-Margalit
- Arrow Program for Medical Research Education, Sheba Medical Center, Ramat-Gan 5262000, Israel; (T.W.); (E.K.)
| | - Tal Weissbach
- Arrow Program for Medical Research Education, Sheba Medical Center, Ramat-Gan 5262000, Israel; (T.W.); (E.K.)
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan 5262000, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
| | - Michal Gafner
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
- Department of Pediatrics B, Schneider Children’s Medical Center of Israel, Petach Tikva 4917002, Israel
| | - Shalev Fried
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
- The Goldschleger Eye Institute, Sheba Medical Center, Ramat-Gan 5262000, Israel
| | - Ayelet Wandel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
- Department of Diagnostic Radiology, Shamir Medical Center, Be’er Yaakov 7033001, Israel
| | - Tomer Ziv-Baran
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
| | - Eldad Katorza
- Arrow Program for Medical Research Education, Sheba Medical Center, Ramat-Gan 5262000, Israel; (T.W.); (E.K.)
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan 5262000, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (S.F.); (A.W.); (T.Z.-B.)
- The Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Ramat-Gan 5262000, Israel
| |
Collapse
|
16
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Mandolesi S, Niglio T, Lenci C. May Glymphatic Drainage Improve Life Quality in Progressive Multiple Sclerosis Outpatients? MEDICAL DEVICES-EVIDENCE AND RESEARCH 2024; 17:417-426. [PMID: 39493439 PMCID: PMC11531284 DOI: 10.2147/mder.s480815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Background The cerebral fluid-dynamic system plays a critical role in maintaining brain health and function. Recent studies identify the glymphatic system as primarily responsible for removing waste products and toxins from brain tissue. In recent years, we have achieved beneficial improvements in MS patients' symptoms and lifestyle using a specific Fluid Dynamic Intensive MAM (FD-MAM) protocol. Methods We treated 40 outpatients with progressive MS, aged 45-55 years and with EDSS scores from 6 to 9. We applied FD-MAM in 10 daily sessions over two weeks. Before and after glymphatic drainage by FD-MAM, we assessed each patient's clinical status and quality of life using six validated questionnaires. Results Data from the six validated questionnaires administered to the 40 MS patients show an improvement in 83% of the scores. At the same time, we observed a shift from pathological to physiological values in 50% of the pathological scores after 10 sessions of FD-MAM protocol. Conclusion This study confirms the positive improvements on life quality in outpatients with progressive multiple sclerosis after one cycle of Fluid Dynamic Intensive MAM (FD-MAM) protocol. Initial follow-up on few patients treated with the FD-MAM protocol suggests that the results persist for six to ten months post-treatment. Future detailed studies, on MS outpatients' larger cohort, are essential to assess the duration of results and its effect on glymphatic system.
Collapse
Affiliation(s)
- Sandro Mandolesi
- Research Department of the Mediterranean Pole, Technoscience, Science and Technology Park, San Severo, Italy
| | | | | |
Collapse
|
18
|
Kinota N, Kameda H, Xiawei B, Fujii T, Kato D, Takahashi B, Morita R, Abo D, Majima R, Ishii H, Minowa K, Kudo K. Blockage of CSF Outflow in Rats after Deep Cervical Lymph Node Ligation Observed Using Gd-based MR Imaging. Magn Reson Med Sci 2024; 23:449-459. [PMID: 37258125 PMCID: PMC11447471 DOI: 10.2463/mrms.mp.2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
PURPOSE To investigate whether deep cervical lymph node (DCLN) ligation alters intracranial cerebrospinal fluid (CSF) tracer dynamics and outflow using a rat model with intrathecal dynamic contrast-enhanced (DCE) MRI. METHODS Six bilateral DCLN-ligated and six sham-operated rats were subjected to DCE MRI with Gd-BTDO3A, and dynamic T1-weighted images were acquired. ROIs were collected from the CSF at the C1 level (CSF_C1), CSF between the olfactory bulbs (CSF_OB), CSF at the pituitary recess (CSF_PitR), and CSF at the pineal recess (CSF_PinR), upper nasal turbinate (UNT), olfactory bulbs, cerebrum, and the jugular region. Time-intensity curves were evaluated, and the maximum slope, peak timing, peak signal ratio, and elimination half-life for the four CSF ROIs and UNT were calculated and compared. RESULTS Delayed tracer arrival in the rostral CSF space and the nasal cavity with tracer retention in the ventral CSF space were observed in the ligation group. The maximum slopes were smaller in the ligation group at UNT (sham: 0.075 ± 0.0061, ligation: 0.044 ± 0.0086/min, P = 0.011). A significant difference was not detected in peak timings. The peak signal ratio values were lower in the ligation group at UNT (sham: 2.12 ± 0.19, ligation: 1.72 ± 0.11, P = 0.011). The elimination half-life was delayed in the ligation group at CSF_C1 (sham: 30.5 ± 2.70, ligation: 44.4 ± 12.6 min, P = 0.043), CSF_OB (sham: 30.2 ± 2.67, ligation: 44.8 ± 7.47 min, P = 0.021), and CSF_PitR (sham: 30.2 ± 2.49, ligation: 41.3 ± 7.57 min, P = 0.021). CONCLUSION The DCLN ligation in rats blocked CSF outflow into the nasal cavity and caused CSF retention.
Collapse
Affiliation(s)
- Naoya Kinota
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Dental Radiology, Hokkaido University Hospital
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Dental Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
| | - Bai Xiawei
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
| | - Takaaki Fujii
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Daisuke Kato
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Bunya Takahashi
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Ryo Morita
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
| | - Daisuke Abo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
| | - Ryusei Majima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Radiology, Sapporo City General Hospital
| | - Hiroshi Ishii
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Radiology, Obihiro Kosei Hospital
| | - Kazuyuki Minowa
- Department of Dental Radiology, Hokkaido University Hospital
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University
| |
Collapse
|
19
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
20
|
Patel MY, Yang R, Chakraborty N, Miller SA, DeMar JC, Batuure A, Wilder D, Long J, Hammamieh R, Gautam A. Impact of dietary changes on retinal neuronal plasticity in rodent models of physical and psychological trauma. Front Genet 2024; 15:1373447. [PMID: 39346777 PMCID: PMC11427283 DOI: 10.3389/fgene.2024.1373447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Blast injury has been implicated as the major cause of traumatic brain injury (TBI) and ocular system injury, in military operations in Iraq and Afghanistan. Soldiers exposed to traumatic stress also have undiagnosed, chronic vision problems. Here we hypothesize that excessive intake of ω-6 fatty acid linoleic acid (LA) and insufficiency of dietary long chain ω-3 polyunsaturated fatty acids (PUFAs, e.g., docosahexaenoic acid; DHA) would dysregulate endocannabinoid-mediated neuronal plasticity and immune response. The study objective was to determine the effect of blast-TBI and traumatic stress on retinal gene expression and assess the role of dietary deficiency of long chain ω-3 PUFAs on the vulnerability to these injury models. Methods Linoleic acid was used as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% present in the current western diets, and these custom LA diets were also devoid of long chain ω-3 PUFAs. Animals were exposed to a simulated blast overpressure wave followed by a weight drop head-concussion to induce TBI. A Separate group of rats were subjected to traumatic stress by a forced immersion underwater. Results Our findings showed that blast-TBI exposure, post 14 days, produced significant neuropathological changes such as axonal degeneration in the brain optic tracts from all the three diet groups, especially in rats fed the DHA-deprived 1 en% LA diet. Transcriptomic analysis showed that presence of DHA in the house chow diet prevented blast-induced disruption of neuronal plasticity by activating molecular networks like SNARE signaling, endocannabinoid pathway, and synaptic long-term depression when compared to DHA-deprived 8 en% LA diet group. Under traumatic stress, retinal synaptic function, neurovascular coupling, and opioid signaling mechanisms were dysregulated in rodents fed DHA-deficient diets (i.e., 8 en% LA and 1 en% LA), where reducing the levels of ω-6 linoleic acid from 8 en% to 1 en% was associated with increased neuronal plasticity and suppressed immune signaling. Conclusion The findings of our study suggest that deprivation of long chain ω-3 PUFAs in the diet affects endocannabinoid-mediated neuronal plasticity, vascular function and inflammatory response that could influence the resistance of veterans to TBI and psychological trauma.
Collapse
Affiliation(s)
- Mital Y Patel
- TechWerks, Arlington, United States
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ruoting Yang
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James C DeMar
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Andrew Batuure
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna Wilder
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Joseph Long
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
21
|
Kato Y, Yuki K, Nishiguchi K, Naganawa S. Visualization of distribution in the vitreous cavity via eye drops using ultra-heavily T2-weighted sequences in MRI: a preliminary study with enucleated pig eyes. Radiol Phys Technol 2024; 17:715-724. [PMID: 39026060 PMCID: PMC11341737 DOI: 10.1007/s12194-024-00826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
We investigated whether magnetic resonance imaging can visualize the distribution in the vitreous cavity via eye drops of ophthalmic solutions, gadolinium-based contrast agent, and 17O-water, and to clarify the usefulness of ultra-heavily T2-weighted sequences in the research of intraocular distribution. Five different solutions (V-ROHTO, TRAVATANZ, gadobutrol, H217O, and saline) were administered to excised pig eye specimens. The samples were scanned using T1 mapping, T2 mapping, 3D T2-weighted (echo times (TE): 500, 3200, and 4500 ms), a half-Fourier single-shot turbo-spin echo sequence (HASTE; TE: 440 and 3000 ms), and 3D-real inversion-recovery before eye drops administration. Subsequently, we used a plastic dropper to drop a 0.5 mL solution each, and images were obtained up to 26 h later. Temporal changes in the T1 and T2 values of the anterior chamber and vitreous cavity were compared. The other sequences were evaluated by determining temporal signal changes as signal intensity ratio (SIR) compared to "No drop." The T1 and T2 values of samples treated with gadobutrol and H217O decreased over time. The SIR of samples treated with gadobutrol and H217O showed remarkable changes in the 3D T2-weighted images, whereas no remarkable temporal changes were observed in the other solutions. Longer TEs resulted in remarkable changes. We demonstrated that visualization of distribution in the vitreous cavity via eye drops could be achieved with excised pig eyes using gadobutrol and H217O, but not with ophthalmic solutions. Ultra-heavily T2-weighted sequences may be promising for the early and highly sensitive visualization of the intraocular distribution of eye drops.
Collapse
Affiliation(s)
- Yutaka Kato
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-Cho, Shouwa-Ku, Nagoya, Aichi, 466-8560, Japan.
| | - Kenya Yuki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Shouwa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Koji Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Shouwa-Ku, Nagoya, Aichi, 466-8560, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Shouwa-Ku, Nagoya, Aichi, 466-8560, Japan
| |
Collapse
|
22
|
Dong S, Zhao H, Nie M, Sha Z, Feng J, Liu M, Lv C, Chen Y, Jiang W, Yuan J, Qian Y, Wan H, Gao C, Jiang R. Cannabidiol Alleviates Neurological Deficits After Traumatic Brain Injury by Improving Intracranial Lymphatic Drainage. J Neurotrauma 2024; 41:e2009-e2025. [PMID: 38553903 DOI: 10.1089/neu.2023.0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Traumatic brain injury (TBI) persists as a substantial clinical dilemma, largely because of the absence of effective treatments. This challenge is exacerbated by the hindered clearance of intracranial metabolic byproducts and the continual accrual of deleterious proteins. The glymphatic system (GS) and meningeal lymphatic vessels (MLVs), key elements of the intracranial lymphatic network, play critical roles in the clearance of harmful substances. Cannabidiol (CBD) has shown promise in reducing metabolite overload and bolstering cognitive performance in various neurodegenerative diseases. The precise mechanisms attributing to its beneficial effects in TBI scenarios, however, are yet to be distinctly understood. Utilizing a fluid percussion injury paradigm, our research adopted a multifaceted approach, encompassing behavioral testing, immunofluorescence and immunohistochemical analyses, laser speckle imaging, western blot techniques, and bilateral cervical efferent lymphatic ligation. This methodology aimed to discern the influence of CBD on both neurological outcomes and intracranial lymphatic clearance in a murine TBI model. We observed that CBD administration notably ameliorated motor, memory, and cognitive functions, concurrently with a significant reduction in the concentration of phosphorylated tau protein and amyloid-β. In addition, CBD expedited the turnover and elimination of intracranial tracers, increased cerebral blood flow, and enhanced the efficacy of fluorescent tracer migration from MLVs to deep cervical lymph nodes (dCLNs). Remarkably, CBD treatment also induced a reversion in aquaporin-4 (AQP-4) polarization and curtailed neuroinflammatory indices. A pivotal discovery was that the surgical interruption of efferent lymphatic conduits in the neck nullified CBD's positive contributions to intracranial waste disposal and cognitive improvement, yet the anti-neuroinflammatory actions remained unaffected. These insights suggest that CBD may enhance intracranial metabolite clearance, potentially via the regulation of the intracranial lymphatic system, thereby offering neurofunctional prognostic improvement in TBI models. Our findings underscore the potential therapeutic applicability of CBD in TBI interventions, necessitating further comprehensive investigations and clinical validations to substantiate these initial conclusions.
Collapse
Affiliation(s)
- Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Hongwei Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Jiancheng Feng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Clinical Hospital, Jilin University, Changchun, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Yu Qian
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Honggang Wan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
23
|
Hladky SB, Barrand MA. Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventriculomegaly and hydrocephalus. Fluids Barriers CNS 2024; 21:57. [PMID: 39020364 PMCID: PMC11253534 DOI: 10.1186/s12987-024-00532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 07/19/2024] Open
Abstract
The principles of cerebrospinal fluid (CSF) production, circulation and outflow and regulation of fluid volumes and pressures in the normal brain are summarised. Abnormalities in these aspects in intracranial hypertension, ventriculomegaly and hydrocephalus are discussed. The brain parenchyma has a cellular framework with interstitial fluid (ISF) in the intervening spaces. Framework stress and interstitial fluid pressure (ISFP) combined provide the total stress which, after allowing for gravity, normally equals intracerebral pressure (ICP) with gradients of total stress too small to measure. Fluid pressure may differ from ICP in the parenchyma and collapsed subarachnoid spaces when the parenchyma presses against the meninges. Fluid pressure gradients determine fluid movements. In adults, restricting CSF outflow from subarachnoid spaces produces intracranial hypertension which, when CSF volumes change very little, is called idiopathic intracranial hypertension (iIH). Raised ICP in iIH is accompanied by increased venous sinus pressure, though which is cause and which effect is unclear. In infants with growing skulls, restriction in outflow leads to increased head and CSF volumes. In adults, ventriculomegaly can arise due to cerebral atrophy or, in hydrocephalus, to obstructions to intracranial CSF flow. In non-communicating hydrocephalus, flow through or out of the ventricles is somehow obstructed, whereas in communicating hydrocephalus, the obstruction is somewhere between the cisterna magna and cranial sites of outflow. When normal outflow routes are obstructed, continued CSF production in the ventricles may be partially balanced by outflow through the parenchyma via an oedematous periventricular layer and perivascular spaces. In adults, secondary hydrocephalus with raised ICP results from obvious obstructions to flow. By contrast, with the more subtly obstructed flow seen in normal pressure hydrocephalus (NPH), fluid pressure must be reduced elsewhere, e.g. in some subarachnoid spaces. In idiopathic NPH, where ventriculomegaly is accompanied by gait disturbance, dementia and/or urinary incontinence, the functional deficits can sometimes be reversed by shunting or third ventriculostomy. Parenchymal shrinkage is irreversible in late stage hydrocephalus with cellular framework loss but may not occur in early stages, whether by exclusion of fluid or otherwise. Further studies that are needed to explain the development of hydrocephalus are outlined.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd, Cambridge, CB2 1PD, UK.
| | | |
Collapse
|
24
|
Mishra S, Bapuraj J, Srinivasan A. Multiple Sclerosis Part 2: Advanced Imaging and Emerging Techniques. Magn Reson Imaging Clin N Am 2024; 32:221-231. [PMID: 38555138 DOI: 10.1016/j.mric.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Multiple advanced imaging methods for multiple sclerosis (MS) have been in investigation to identify new imaging biomarkers for early disease detection, predicting disease prognosis, and clinical trial endpoints. Multiple techniques probing different aspects of tissue microstructure (ie, advanced diffusion imaging, magnetization transfer, myelin water imaging, magnetic resonance spectroscopy, glymphatic imaging, and perfusion) support the notion that MS is a global disease with microstructural changes evident in normal-appearing white and gray matter. These global changes are likely better predictors of disability compared with lesion load alone. Emerging techniques in glymphatic and molecular imaging may improve understanding of pathophysiology and emerging treatments.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2A209, Ann Arbor, MI 48109-5030, USA.
| | - Jayapalli Bapuraj
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2A209, Ann Arbor, MI 48109-5030, USA
| | - Ashok Srinivasan
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2A209, Ann Arbor, MI 48109-5030, USA
| |
Collapse
|
25
|
Butler T, Schubert J, Karakatsanis NA, Hugh Wang X, Xi K, Kang Y, Chen K, Zhou L, Fung EK, Patchell A, Jaywant A, Li Y, Chiang G, Glodzik L, Rusinek H, de Leon M, Turkheimer F, Shah SA. Brain Fluid Clearance After Traumatic Brain Injury Measured Using Dynamic Positron Emission Tomography. Neurotrauma Rep 2024; 5:359-366. [PMID: 38655117 PMCID: PMC11035850 DOI: 10.1089/neur.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Brain fluid clearance by pathways including the recently described paravascular glymphatic system is a critical homeostatic mechanism by which metabolic products, toxins, and other wastes are removed from the brain. Brain fluid clearance may be especially important after traumatic brain injury (TBI), when blood, neuronal debris, inflammatory cells, and other substances can be released and/or deposited. Using a non-invasive dynamic positron emission tomography (PET) method that models the rate at which an intravenously injected radiolabeled molecule (in this case 11C-flumazenil) is cleared from ventricular cerebrospinal fluid (CSF), we estimated the overall efficiency of brain fluid clearance in humans who had experienced complicated-mild or moderate TBI 3-6 months before neuroimaging (n = 7) as compared to healthy controls (n = 9). While there was no significant difference in ventricular clearance between TBI subjects and controls, there was a significant group difference in dependence of ventricular clearance upon tracer delivery/blood flow to the ventricles. Specifically, in controls, ventricular clearance was highly, linearly dependent upon blood flow to the ventricle, but this relation was disrupted in TBI subjects. When accounting for blood flow and group-specific alterations in blood flow, ventricular clearance was slightly (non-significantly) increased in TBI subjects as compared to controls. Current results contrast with past studies showing reduced glymphatic function after TBI and are consistent with possible differential effects of TBI on glymphatic versus non-glymphatic clearance mechanisms. Further study using multi-modal methods capable of assessing and disentangling blood flow and different aspects of fluid clearance is needed to clarify clearance alterations after TBI.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Julia Schubert
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| | | | - Xiuyuan Hugh Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ke Xi
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Yeona Kang
- Department of Mathematics, Howard University, Washington, DC, USA
| | - Kewei Chen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Edward K. Fung
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Abigail Patchell
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Yi Li
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Gloria Chiang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Henry Rusinek
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Mony de Leon
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| | - Sudhin A. Shah
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
26
|
Eisen A, Nedergaard M, Gray E, Kiernan MC. The glymphatic system and Amyotrophic lateral sclerosis. Prog Neurobiol 2024; 234:102571. [PMID: 38266701 DOI: 10.1016/j.pneurobio.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The glymphatic system and the meningeal lymphatic vessels provide a pathway for transport of solutes and clearance of toxic material from the brain. Of specific relevance to ALS, this is applicable for TDP-43 and glutamate, both major elements in disease pathogenesis. Flow is propelled by arterial pulsation, respiration, posture, as well as the positioning and proportion of aquaporin-4 channels (AQP4). Non-REM slow wave sleep is the is key to glymphatic drainage which discontinues during wakefulness. In Parkinson's disease and Alzheimer's disease, sleep impairment is known to predate the development of characteristic clinical features by several years and is associated with progressive accumulation of toxic proteinaceous products. While sleep issues are well described in ALS, consideration of preclinical sleep impairment or the potential of a failing glymphatic system in ALS has rarely been considered. Here we review how the glymphatic system may impact ALS. Preclinical sleep impairment as an unrecognized major risk factor for ALS is considered, while potential therapeutic options to improve glymphatic flow are explored.
Collapse
Affiliation(s)
- Andrew Eisen
- Department of Neurology, University of British Columbia, Vancouver, Canada.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School and Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Emma Gray
- Department of Neurology, Royal Prince Alfred Hospital and University of Sydney, NSW 2050, Australia
| | | |
Collapse
|
27
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
28
|
Chen Y, Wang M, Su S, Dai Y, Zou M, Lin L, Qian L, Li X, Zhang H, Liu M, Chu J, Yang J, Yang Z. Assessment of the glymphatic function in children with attention-deficit/hyperactivity disorder. Eur Radiol 2024; 34:1444-1452. [PMID: 37673963 DOI: 10.1007/s00330-023-10220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVES Whether the alternation of the glymphatic system exists in neurodevelopmental disease still remains unclear. In this study, we investigated structural and functional changes in the glymphatic system in the treatment-naïve attention-deficit/hyperactivity disorder (ADHD) children by quantitatively measuring the Virchow-Robin spaces (VRS) volume and diffusion tensor image-analysis along the perivascular space (DTI-ALPS). METHODS Forty-seven pediatric ADHD patients and 52 age- and gender-matched typically developing (TD) children were recruited in this prospective study. The VRS volume was calculated using a semi-automated approach in axial T2-weighted images. Diffusivities along the x-, y-, and z-axes in the projection, association, and subcortical neural fiber areas were measured. The ALPS index, a ratio that accentuated water diffusion along the perivascular space, was calculated. The Mann-Whitney U test was used to compare the quantitative parameters; Pearson's correlation was used to analyze the correlation with clinical symptoms. RESULTS The cerebral VRS volume (mean, 15.514 mL vs. 11.702 mL) and the VRS volume ratio in the ADHD group were larger than those in the TD group (all p < 0.001). The diffusivity along the x-axis in association fiber area and ALPS index were significantly smaller in the ADHD group vs. TD group (mean, 1.40 vs.1.59, p < 0.05 after false discovery rate adjustment). Besides, the ALPS index was related to inattention symptoms of ADHD (r = - 0.323, p < 0.05). CONCLUSIONS Our study suggests that the glymphatic system alternation may participate in the pathogenesis of ADHD, which may be a new research direction for exploring the mechanisms of psycho-behavioral developmental disorders. Moreover, the VRS volume and ALPS index could be used as the metrics for diagnosing ADHD. CLINICAL RELEVANCE STATEMENT Considering the potential relevance of the glymphatic system for exploring the mechanisms of attention deficit/hyperactivity, the Virchow-Robin spaces volume and the analysis along the perivascular space index could be used as additional metrics for diagnosing the disorder. KEY POINTS • Increased Virchow-Robin space volume and decreased analysis along the perivascular space index were found in the treatment-naïve attention-deficit/hyperactivity disorder children. • The results of this study indicate that the glymphatic system alternation may have a valuable role in the pathogenesis of attention-deficit/hyperactivity disorder. • The analysis along the perivascular space index is correlated with inattention symptoms of attention-deficit/hyperactivity disorder children.
Collapse
Affiliation(s)
- Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Miaomiao Wang
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shu Su
- Department of Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Dai
- Department of Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengsha Zou
- Department of Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Lin
- Department of Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Xianjun Li
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Chu
- Department of Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Yang
- Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zhiyun Yang
- Department of Radiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Ozsahin I, Zhou L, Wang X, Garetti J, Jamison K, Xi K, Tanzi E, Jaywant A, Patchell A, Maloney T, de Leon MJ, Kuceyeski A, Shah SA, Li Y, Butler TA. Diffusion Tensor Imaging Along Perivascular Spaces (DTI-ALPS) to Assess Effects of Age, Sex, and Head Size on Interstitial Fluid Dynamics in Healthy Subjects. J Alzheimers Dis Rep 2024; 8:355-361. [PMID: 38405348 PMCID: PMC10894616 DOI: 10.3233/adr-230143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 02/27/2024] Open
Abstract
Diffusion tensor imaging along perivascular spaces (DTI-ALPS) is a novel MRI method for assessing brain interstitial fluid dynamics, potentially indexing glymphatic function. Failed glymphatic clearance is implicated in Alzheimer's disease (AD) pathophysiology. We assessed the contribution of age and female sex (strong AD risk factors) to DTI-ALPS index in healthy subjects. We also for the first time assessed the effect of head size. In accord with prior studies, we show reduced DTI-ALPS index with aging, and in men compared to women. However, head size may be a major contributing factor to this counterintuitive sex difference.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
- Operational Research Center in Healthcare, Near East University, Nicosia/TRNC, Turkey
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Xiuyuan Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Garetti
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Keith Jamison
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Abhishek Jaywant
- Department of Rehabilitation Medicine and Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Abigail Patchell
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sudhin A. Shah
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tracy A. Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
30
|
Fei X, Wu J, Tian H, Jiang D, Chen H, Yan K, Wang Y, Zhao Y, Chen H, Xie X, Wang Z, Zhu W, Huang Q. Glioma stem cells remodel immunotolerant microenvironment in GBM and are associated with therapeutic advancements. Cancer Biomark 2024; 41:1-24. [PMID: 39240627 PMCID: PMC11492047 DOI: 10.3233/cbm-230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Glioma is the most common primary tumor of the central nervous system (CNS). Glioblastoma (GBM) is incurable with current treatment strategies. Additionally, the treatment of recurrent GBM (rGBM) is often referred to as terminal treatment, necessitating hospice-level care and management. The presence of the blood-brain barrier (BBB) gives GBM a more challenging or "cold" tumor microenvironment (TME) than that of other cancers and gloma stem cells (GSCs) play an important role in the TME remodeling, occurrence, development and recurrence of giloma. In this review, our primary focus will be on discussing the following topics: niche-associated GSCs and macrophages, new theories regarding GSC and TME involving pyroptosis and ferroptosis in GBM, metabolic adaptations of GSCs, the influence of the cold environment in GBM on immunotherapy, potential strategies to transform the cold GBM TME into a hot one, and the advancement of GBM immunotherapy and GBM models.
Collapse
Affiliation(s)
- Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Haiyan Tian
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of GCP, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Dongyi Jiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Hanchun Chen
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Ke Yan
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Yuan Wang
- Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yaodong Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai, China
| | - Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangtong Xie
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
| | - Zhimin Wang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, China
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Wenyu Zhu
- Department of Neurosurgery, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing University Medical School, Suzhou, Jiangsu, China
| | - Qiang Huang
- Department of Neurosurgery, Second Affiliated Hospital of Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
31
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Interstitial Fluidopathy of the Central Nervous System: An Umbrella Term for Disorders with Impaired Neurofluid Dynamics. Magn Reson Med Sci 2024; 23:1-13. [PMID: 36436975 PMCID: PMC10838724 DOI: 10.2463/mrms.rev.2022-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2024] Open
Abstract
Interest in interstitial fluid dynamics has increased since the proposal of the glymphatic system hypothesis. Abnormal dynamics of the interstitial fluid have been pointed out to be an important factor in various pathological statuses. In this article, we propose the concept of central nervous system interstitial fluidopathy as a disease or condition in which abnormal interstitial fluid dynamics is one of the important factors for the development of a pathological condition. We discuss the aspects of interstitial fluidopathy in various diseases, including Alzheimer's disease, Parkinson's disease, normal pressure hydrocephalus, and cerebral small vessel disease. We also discuss a method called "diffusion tensor image analysis along the perivascular space" using MR diffusion images, which is used to evaluate the degree of interstitial fluidopathy or the activity of the glymphatic system.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
32
|
Naganawa S, Ito R, Kawamura M, Taoka T, Yoshida T, Sone M. Association between the Putative Meningeal Lymphatics at the Posterior Wall of the Sigmoid Sinus and Delayed Contrast-agent Elimination from the Cerebrospinal Fluid. Magn Reson Med Sci 2024; 23:80-91. [PMID: 36653154 PMCID: PMC10838717 DOI: 10.2463/mrms.mp.2022-0110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To investigate the characteristics of the putative meningeal lymphatics located at the posterior wall of the sigmoid sinus (PML-PSS) in human subjects imaged before and after intravenous administration (IV) of a gadolinium-based contrast agent (GBCA). The appearance of the PML-PSS and the enhancement of the perivascular space of the basal ganglia (PVS-BG) were analyzed for an association with gender, age, and clearance of the GBCA from the cerebrospinal fluid (CSF). METHODS Forty-two patients with suspected endolymphatic hydrops were included. Heavily T2-weighted 3D-fluid attenuated inversion recovery (hT2w-3D-FLAIR) and 3D-real inversion recovery (IR) images were obtained at pre-administration, immediately post-administration, and at 4 and 24 hours after IV-GBCA. The appearance of the PML-PSS and the presence of enhancement in the PVS-BG were analyzed for a relationship with age, gender, contrast enhancement of the CSF at 4 hours after IV-GBCA, and the washout ratio of the GBCA in the CSF from 4 to 24 hours after IV-GBCA. RESULTS The PML-PSS and PVS-BG were seen in 23 of 42 and 21 of 42 cases, respectively, at 4 hours after IV-GBCA. In all PML-PSS positive cases, hT2w-3D-FLAIR signal enhancement was highest at 4 hours after IV-GBCA. A multivariate analysis between gender, age, CSF signal elevation at 4 hours, and washout ratio indicated that only the washout ratio was independently associated with the enhancement of the PML-PSS or PVS-BG. The odds ratios (95% CIs; P value) were 4.09 × 10-5 (2.39 × 10-8 - 0.07; 0.0078) for the PML-PSS and 1.7 × 10-4 (1.66 × 10-7 - 0.174; 0.014) for the PVS-BG. CONCLUSION The PML-PSS had the highest signal enhancement at 4 hours after IV-GBCA. When the PML-PSS was seen, there was also often enhancement of the PVS-BG at 4 hours after IV-GBCA. Both observed enhancements were associated with delayed GBCA excretion from the CSF.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tadao Yoshida
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
33
|
Hagiwara A, Tomizawa Y, Hoshino Y, Yokoyama K, Kamagata K, Sekine T, Takabayashi K, Nakaya M, Maekawa T, Akashi T, Wada A, Taoka T, Naganawa S, Hattori N, Aoki S. Glymphatic System Dysfunction in Myelin Oligodendrocyte Glycoprotein Immunoglobulin G Antibody-Associated Disorders: Association with Clinical Disability. AJNR Am J Neuroradiol 2023; 45:66-71. [PMID: 38123957 PMCID: PMC10756584 DOI: 10.3174/ajnr.a8066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND PURPOSE Impaired glymphatic function has been suggested to be implicated in the pathophysiology of MS and aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder. This study aimed to investigate the interstitial fluid dynamics in the brain in patients with myelin oligodendrocyte glycoprotein antibody disorders (MOGAD), another demyelinating disorder, using a noninvasive imaging technique called the diffusivity along the perivascular space (ALPS) index. MATERIALS AND METHODS A prospective study was conducted on 16 patients with MOGAD in remission and 22 age- and sex-matched healthy control subjects. MR imaging was performed using a 3T scanner, and the ALPS index was calculated using diffusion MR imaging data with a b-value of 1000 s/mm2. The ALPS index and gray matter volumes were compared between the 2 groups, and these parameters were correlated with the Expanded Disability Status Scale. RESULTS The mean ALPS index of patients with MOGAD was significantly lower than that of healthy controls (Cohen d = 0.93, false discovery rate-corrected P = .02). The lower mean ALPS index was significantly associated with a worse Expanded Disability Status Scale score (Spearman ρ = -0.51; 95% CI, -0.85 to -0.02; P = .03). However, cortical volume and deep gray matter volume were not significantly different between the 2 groups, and they were not correlated with the Expanded Disability Status Scale. CONCLUSIONS This study suggests that patients with MOGAD may have impaired glymphatic function, as measured by the ALPS index, which is associated with patient disability. Further study is warranted with a larger sample size.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Yuji Tomizawa
- Department of Neurology (Y.T., Y.H., N.H.), Juntendo University School of Medicine, Tokyo, Japan
| | - Yasunobu Hoshino
- Department of Neurology (Y.T., Y.H., N.H.), Juntendo University School of Medicine, Tokyo, Japan
| | | | - Koji Kamagata
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Towa Sekine
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Kaito Takabayashi
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Moto Nakaya
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology (M.N.), Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoko Maekawa
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiaki Akashi
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiaki Taoka
- Department of Radiology (T.T., S.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology (T.T., S.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Nobutaka Hattori
- Department of Neurology (Y.T., Y.H., N.H.), Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Freund W, Weber F. The Function of Sleep and the Treatment of Primary Insomnia. DEUTSCHES ARZTEBLATT INTERNATIONAL 2023; 120:863-870. [PMID: 37942822 PMCID: PMC10840130 DOI: 10.3238/arztebl.m2023.0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Approximately 21 900 women and 35 300 men developed lung cancer in Germany in 2018, and 16 999 women and 27 882 men died of it. The outcome mainly depends on the tumor stage. In early stages (stage I or II), treatment can be curative; unfortunately, because early-stage lung cancers are generally asymptom - atic, 74% of women and 77% of men already have advanced-stage disease (stage III or IV) at the time of diagnosis. Screening with low-dose computed tomography is an option enabling early diagnosis and curative treatment. METHODS This review is based on pertinent articles retrieved by a selective search of the literature on screening for lung cancer. RESULTS In the studies of lung cancer screening that have been published to date, sensitivity ranged from 68.5% to 93.8%, and specificity from 73.4% to 99.2%. A meta-analysis by the German Federal Office for Radiation Protection revealed a 15% reduction in lung cancer mortality when low-dose computed tomography was used in persons who were judged to be at high risk for lung cancer (risk ratio [RR] 0.85, 95% confidence interval [0.77; 0.95]). 1.9% of subjects died in the screening arm of the meta-analysis, and 2.2% in the control group. The observation periods ranged from 6.6 to 10 years; false-positive rates ranged from 84.9% to 96.4%. Malignant findings were confirmed in 45% to 70% of the biopsies or resective procedures that were performed. CONCLUSION Systematic lung cancer screening with low-dose CT lowers mortality from lung cancer in (current or former) heavy smokers. This benefit must be weighed against the high rate of false-positive findings and overdiagnoses.
Collapse
Affiliation(s)
- Wolfgang Freund
- Neurocenter Biberach
- Diagnostic and Interventional Radiology, Ulm University Hospital, Ulm
| | | |
Collapse
|
35
|
Osuna-Ramos JF, Camberos-Barraza J, Torres-Mondragón LE, Rábago-Monzón ÁR, Camacho-Zamora A, Valdez-Flores MA, Angulo-Rojo CE, Guadrón-Llanos AM, Picos-Cárdenas VJ, Calderón-Zamora L, Magaña-Gómez JA, Norzagaray-Valenzuela CD, Cárdenas-Torres FI, De la Herrán-Arita AK. Interplay between the Glymphatic System and the Endocannabinoid System: Implications for Brain Health and Disease. Int J Mol Sci 2023; 24:17458. [PMID: 38139290 PMCID: PMC10743431 DOI: 10.3390/ijms242417458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The intricate mechanisms governing brain health and function have long been subjects of extensive investigation. Recent research has shed light on two pivotal systems, the glymphatic system and the endocannabinoid system, and their profound role within the central nervous system. The glymphatic system is a recently discovered waste clearance system within the brain that facilitates the efficient removal of toxic waste products and metabolites from the central nervous system. It relies on the unique properties of the brain's extracellular space and is primarily driven by cerebrospinal fluid and glial cells. Conversely, the endocannabinoid system, a multifaceted signaling network, is intricately involved in diverse physiological processes and has been associated with modulating synaptic plasticity, nociception, affective states, appetite regulation, and immune responses. This scientific review delves into the intricate interconnections between these two systems, exploring their combined influence on brain health and disease. By elucidating the synergistic effects of glymphatic function and endocannabinoid signaling, this review aims to deepen our understanding of their implications for neurological disorders, immune responses, and cognitive well-being.
Collapse
Affiliation(s)
- Juan F. Osuna-Ramos
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | - Josué Camberos-Barraza
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
- Doctorado en Biomedicina Molecular, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | - Laura E. Torres-Mondragón
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
- Maestría en Biomedicina Molecular, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | - Ángel R. Rábago-Monzón
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80019, Mexico
- Doctorado en Biomedicina Molecular, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | | | | | | | | | | | | | - Javier A. Magaña-Gómez
- Faculty of Nutrition Sciences and Gastronomy, Autonomous University of Sinaloa, Culiacán 80019, Mexico
| | | | | | | |
Collapse
|
36
|
Park KM, Kim KT, Lee DA, Motamedi GK, Cho YW. Glymphatic system dysfunction in restless legs syndrome: evidenced by diffusion tensor imaging along the perivascular space. Sleep 2023; 46:zsad239. [PMID: 37702251 DOI: 10.1093/sleep/zsad239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Indexed: 09/14/2023] Open
Abstract
STUDY OBJECTIVES There is growing evidence pointing at glymphatic system dysfunction in diseases with circadian disruption, such as sleep disorders. Lower diffusivity in the direction of perivascular space has been shown in several neurological and sleep-related disorders; however, its role in restless legs syndrome (RLS) is unclear. We hypothesized that similarly, in RLS the diffusivity in glymphatic system is decreased. Here, we aimed to evaluate glymphatic system functionality in patients with RLS, compare it to healthy controls, and analyze the correlation between its function and clinical characteristics. METHODS Sixty-nine patients with primary RLS and 51 healthy controls were recruited at a tertiary hospital. All participants underwent diffusion tensor imaging (DTI) and magnetic resonance imaging (MRI) using a 3T MRI scanner, and the DTI along the perivascular space (DTI-ALPS) index was calculated using DTI data. We compared the DTI-ALPS index between the patients with RLS and healthy controls. We also conducted the correlation analysis between the DTI-ALPS index and clinical characteristics, including age, age of onset, symptom duration, and RLS severity. RESULTS DTI-ALPS index differed significantly between the patients with RLS and healthy controls; the DTI-ALPS index in the patients with RLS was lower than that in the healthy controls (1.48 vs. 0.60, p = 0.008). There was no significant correlation between the DTI-ALPS index and clinical characteristics. CONCLUSION A significantly lower DTI-ALPS index in patients with RLS suggests that the glymphatic system function is impaired in patients with RLS.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Keun Tae Kim
- Department of Neurology, Keimyung University School of Medicine, Daegu, South Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Gholam K Motamedi
- Department of Neurology, Georgetown University Hospital, Washington, DC, USA
| | - Yong Won Cho
- Department of Neurology, Keimyung University School of Medicine, Daegu, South Korea
| |
Collapse
|
37
|
Zhang M, Tang J, Xia D, Xue Y, Ren X, Huang Q, Shi L, Tang W, Fu J. Evaluation of glymphatic-meningeal lymphatic system with intravenous gadolinium-based contrast-enhancement in cerebral small-vessel disease. Eur Radiol 2023; 33:6096-6106. [PMID: 37410111 DOI: 10.1007/s00330-023-09796-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVE To investigate the feasibility of using noninvasive neuroimaging methods in visualizing and evaluating the clearance of the glymphatic-meningeal lymphatic system (GMLS) in patients with arteriosclerotic cerebral small-vessel disease (CSVD) and controls. METHODS This observational study recruited patients with high-burden CSVD and controls (age 50-80 years). At multiple time points before and after intravenous administration of a contrast agent, three-dimensional (3D) brain volume T1-weighted imaging and 3D Cube T2-fluid attenuated inversion recovery imaging were performed to visualize and assess the clearance of the glymphatics and meningeal lymphatic vessels (mLVs). We measured the signal intensity ratio (SIR) of four regions of interest representing the glymphatics and mLVs at each time point. The clearance rate at 24 h (CR24h) and changes in the SIR from baseline to 24 h (∆SIR) were defined as the clearance function. The analysis of variance was used to evaluate the group differences after adjusting for hypertension. RESULTS A total of 20 CSVD patients and 15 controls were included. Cortical periarterial enhancement and the enhancement of enlarged perivascular spaces in the basal ganglia were respectively observed in 11 (55.00%) and 16 (80.00%) CSVD patients, but in none of controls. All CSVD patients and most of controls (80.00%) showed cortical perivenous enhancement. Para-sinus enhancement was observed in all participants. CSVD patients showed lower CR24h and higher ∆SIR of the glymphatics and mLVs (all p < 0.05). CONCLUSION The impaired drainage of the GMLS in patients with high-burden CSVD could be visually evaluated using noninvasive neuroimaging methods with intravenous gadolinium-based contrast-enhancement. CLINICAL RELEVANCE STATEMENT Dynamic intravenous contrast-enhanced MRI could visually evaluate the impaired drainage of the glymphatic-meningeal lymphatic system in patients with high-burden cerebral small-vessel disease and could help to explore a new therapeutic target. KEY POINTS • Signal intensity changes in regions representing the glymphatic-meningeal lymphatic system (GMLS) can reflect the drainage function based on contrast-enhanced 3D-FLAIR and 3D T1-weighted MRI. • Impaired drainage of the GMLS in patients with high-burden CSVD can be visually evaluated using dynamic intravenous contrast-enhanced MRI. • This direct, noninvasive technique could serve as a basis for further GMLS studies and could help to explore a new therapeutic target in CSVD patients.
Collapse
Affiliation(s)
- Miaoyi Zhang
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jie Tang
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ding Xia
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yang Xue
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xue Ren
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Qi Huang
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Langfeng Shi
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
38
|
Voumvourakis KI, Sideri E, Papadimitropoulos GN, Tsantzali I, Hewlett P, Kitsos D, Stefanou M, Bonakis A, Giannopoulos S, Tsivgoulis G, Paraskevas GP. The Dynamic Relationship between the Glymphatic System, Aging, Memory, and Sleep. Biomedicines 2023; 11:2092. [PMID: 37626589 PMCID: PMC10452251 DOI: 10.3390/biomedicines11082092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
The process of memory entails the activation of numerous neural networks and biochemical pathways throughout the brain. The phenomenon of memory decline in relation to aging has been the subject of extensive research for several decades. The correlation between the process of aging and memory is intricate and has various aspects to consider. Throughout the aging process, there are various alterations that take place within the brain and, as expected, affect other functions that have already been linked to memory and its function such as involving microcirculation and sleep. Recent studies provide an understanding of how these mechanisms may be interconnected through the relatively new concept of the glymphatic system. The glymphatic system is strongly correlated to sleep processes. Sleep helps the glymphatic system remove brain waste solutes. Astrocytes expand and contract to form channels for cerebrospinal fluid (CSF) to wash through the brain and eliminate waste. However, the details have not been totally elusive, but the discovery of what we call the glymphatic system enables us to connect many pieces of physiology to understand how such factors are interconnected and the interplay between them. Thus, the purpose of this review is to discuss how the glymphatic system, sleep, memory, and aging are interconnected through a network of complex mechanisms and dynamic interactions.
Collapse
Affiliation(s)
- Konstantinos I. Voumvourakis
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Eleni Sideri
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
- Applied Psychology Department, Llandaff Campus, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | - Georgios N. Papadimitropoulos
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Ioanna Tsantzali
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Paul Hewlett
- Applied Psychology Department, Llandaff Campus, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | - Dimitrios Kitsos
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Marianna Stefanou
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Anastasios Bonakis
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Sotirios Giannopoulos
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - Georgios Tsivgoulis
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| | - George P. Paraskevas
- 2nd Department of Neurology, School of Medicine, “Attikon” General University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (K.I.V.); (E.S.); (A.B.)
| |
Collapse
|
39
|
Su M, Nizamutdinov D, Liu H, Huang JH. Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119272. [PMID: 37298224 DOI: 10.3390/ijms24119272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.
Collapse
Affiliation(s)
- Matthew Su
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jason H Huang
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
40
|
Butler T, Zhou L, Ozsahin I, Wang XH, Garetti J, Zetterberg H, Blennow K, Jamison K, de Leon MJ, Li Y, Kuceyeski A, Shah SA. Glymphatic clearance estimated using diffusion tensor imaging along perivascular spaces is reduced after traumatic brain injury and correlates with plasma neurofilament light, a biomarker of injury severity. Brain Commun 2023; 5:fcad134. [PMID: 37188222 PMCID: PMC10176239 DOI: 10.1093/braincomms/fcad134] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
The glymphatic system is a perivascular fluid clearance system, most active during sleep, considered important for clearing the brain of waste products and toxins. Glymphatic failure is hypothesized to underlie brain protein deposition in neurodegenerative disorders like Alzheimer's disease. Preclinical evidence suggests that a functioning glymphatic system is also essential for recovery from traumatic brain injury, which involves release of debris and toxic proteins that need to be cleared from the brain. In a cross-sectional observational study, we estimated glymphatic clearance using diffusion tensor imaging along perivascular spaces, an MRI-derived measure of water diffusivity surrounding veins in the periventricular region, in 13 non-injured controls and 37 subjects who had experienced traumatic brain injury ∼5 months previously. We additionally measured the volume of the perivascular space using T2-weighted MRI. We measured plasma concentrations of neurofilament light chain, a biomarker of injury severity, in a subset of subjects. Diffusion tensor imaging along perivascular spaces index was modestly though significantly lower in subjects with traumatic brain injury compared with controls when covarying for age. Diffusion tensor imaging along perivascular spaces index was significantly, negatively correlated with blood levels of neurofilament light chain. Perivascular space volume did not differ in subjects with traumatic brain injury as compared with controls and did not correlate with blood levels of neurofilament light chain, suggesting it may be a less sensitive measure for injury-related perivascular clearance changes. Glymphatic impairment after traumatic brain injury could be due to mechanisms such as mislocalization of glymphatic water channels, inflammation, proteinopathy and/or sleep disruption. Diffusion tensor imaging along perivascular spaces is a promising method for estimating glymphatic clearance, though additional work is needed to confirm results and assess associations with outcome. Understanding changes in glymphatic functioning following traumatic brain injury could inform novel therapies to improve short-term recovery and reduce later risk of neurodegeneration.
Collapse
Affiliation(s)
- Tracy Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York NY 10044, USA
| | - Liangdong Zhou
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York NY 10044, USA
| | - Ilker Ozsahin
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York NY 10044, USA
| | - Xiuyuan Hugh Wang
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York NY 10044, USA
| | - Jacob Garetti
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York NY 10044, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 40530, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 41345, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London W1T 7NF, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 999077, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 40530, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 41345, Sweden
| | - Keith Jamison
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York NY 10044, USA
| | - Mony J de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York NY 10044, USA
| | - Yi Li
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York NY 10044, USA
| | - Amy Kuceyeski
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York NY 10044, USA
| | - Sudhin A Shah
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York NY 10044, USA
| |
Collapse
|
41
|
Renard D, Castelnovo G, Hackius M. Unilateral subcortical extensive dilated perivascular spaces associated with superior sagittal sinus perivenous dilated spaces. Neurol Sci 2023; 44:405-407. [PMID: 36097204 DOI: 10.1007/s10072-022-06384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/03/2022] [Indexed: 01/10/2023]
Abstract
We present the MRI of a 70-year-old patient showing unilateral subcortical extensive dilated perivascular spaces with surrounding fluid-attenuated inversion recovery hyperintensities associated with the presence of small cysts and tubular hypointensities in and near the superior sagittal sinus co-locating with draining cortical veins on gadolinium-enhanced T1-weighted imaging representing probably (dilated) spaces between pial sheath and cortical vein walls. These (peri)venous superior sagittal sinus cysts seem to represent either hydrops cause (by blocking interstitial fluid flow in perivenous subpial space, via meningeal lymphatics) or consequence (where cysts might have been formed due to subpial fluid flow obstruction by unknown cause).
Collapse
Affiliation(s)
- Dimitri Renard
- Department of Neurology, CHU de Nîmes, Hôpital Caremeau, Univ. Montpellier, 4 Rue du Pr Debré, Nîmes, 30900, France.
| | - Giovanni Castelnovo
- Department of Neurology, CHU de Nîmes, Hôpital Caremeau, Univ. Montpellier, 4 Rue du Pr Debré, Nîmes, 30900, France
| | - Marc Hackius
- Department of Neurology, CHU de Nîmes, Hôpital Caremeau, Univ. Montpellier, 4 Rue du Pr Debré, Nîmes, 30900, France
| |
Collapse
|
42
|
Morita Y, Kamagata K, Andica C, Takabayashi K, Kikuta J, Fujita S, Samoyeau T, Uchida W, Saito Y, Tabata H, Naito H, Someya Y, Kaga H, Tamura Y, Miyata M, Akashi T, Wada A, Taoka T, Naganawa S, Watada H, Kawamori R, Abe O, Aoki S. Glymphatic system impairment in nonathlete older male adults who played contact sports in their youth associated with cognitive decline: A diffusion tensor image analysis along the perivascular space study. Front Neurol 2023; 14:1100736. [PMID: 36873446 PMCID: PMC9977161 DOI: 10.3389/fneur.2023.1100736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
Background and purpose Exposure to contact sports in youth causes brain health problems later in life. For instance, the repetitive head impacts in contact sports might contribute to glymphatic clearance impairment and cognitive decline. This study aimed to assess the effect of contact sports participation in youth on glymphatic function in old age and the relationship between glymphatic function and cognitive status using the analysis along the perivascular space (ALPS) index. Materials and methods A total of 52 Japanese older male subjects were included in the study, including 12 who played heavy-contact sports (mean age, 71.2 years), 15 who played semicontact sports (mean age, 73.1 years), and 25 who played noncontact sports (mean age, 71.3 years) in their youth. All brain diffusion-weighted images (DWIs) of the subjects were acquired using a 3T MRI scanner. The ALPS indices were calculated using a validated semiautomated pipeline. The ALPS indices from the left and right hemispheres were compared between groups using a general linear model, including age and years of education. Furthermore, partial Spearman's rank correlation tests were performed to assess the correlation between the ALPS indices and cognitive scores (Mini-Mental State Examination and the Japanese version of the Montreal Cognitive Assessment [MoCA-J]) after adjusting for age years of education and HbA1c. Results The left ALPS index was significantly lower in the heavy-contact and semicontact groups than that in the noncontact group. Although no significant differences were observed in the left ALPS index between the heavy-contact and semicontact groups and in the right ALPS index among groups, a trend toward lower was found in the right ALPS index in individuals with semicontact and heavy-contact compared to the noncontact group. Both sides' ALPS indices were significantly positively correlated with the MoCA-J scores. Conclusion The findings indicated the potential adverse effect of contact sports experience in youth on the glymphatic system function in old age associated with cognitive decline.
Collapse
Affiliation(s)
- Yuichi Morita
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Kaito Takabayashi
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Junko Kikuta
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Thomas Samoyeau
- Department of Radiology, Necker Hospital, Paris University, Paris, France
| | - Wataru Uchida
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroki Tabata
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hitoshi Naito
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuki Someya
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshifumi Tamura
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Mari Miyata
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Toshiaki Akashi
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hirotaka Watada
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ryuzo Kawamori
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
43
|
Hsu JL, Wei YC, Toh CH, Hsiao IT, Lin KJ, Yen TC, Liao MF, Ro LS. Magnetic Resonance Images Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction in Alzheimer Disease. Ann Neurol 2023; 93:164-174. [PMID: 36214568 PMCID: PMC10091747 DOI: 10.1002/ana.26516] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The glymphatic system cleans amyloid and tau proteins from the brain in animal studies of Alzheimer disease (AD). However, there is no direct evidence showing this in humans. METHODS Participants (n = 50, 62.6 ± 5.4 years old, 36 women) with AD and normal controls underwent amyloid positron emission tomography (PET), tau PET, structural T1-weighted magnetic resonance imaging, and neuropsychological evaluation. Whole-brain glymphatic activity was measured by diffusion tensor image analysis along the perivascular space (DTI-ALPS). RESULTS ALPS-indexes showed negative correlations with deposition of amyloid and tau on PET images and positive correlations with cognitive scores even after adjusting for age, sex, years of education, and APOE4 genotype covariates in multiple AD-related brain regions (all p < 0.05). Mediation analysis showed that ALPS-index acted as a significant mediator between regional standardized uptake value ratios of amyloid and tau images and cognitive dysfunction even after correcting for multiple covariates in AD-related brain regions. These regions are responsible for attention, memory, and executive function, which are vulnerable to sleep deprivation. INTERPRETATION Glymphatic system activity may act as a significant mediator in AD-related cognitive dysfunction even after adjusting for multiple covariates and gray matter volumes. ALPS-index may provide useful disease progression or treatment biomarkers for patients with AD as an indicator of modulation of glymphatic activity. ANN NEUROL 2023;93:164-174.
Collapse
Affiliation(s)
- Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center Neuroscience Research Center, and College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Taipei Medical University, Graduate Institute of Humanities in Medicine and Research Center for Brain and Consciousness, Shuang Ho Hospital, Taipei, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan.,Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng Hong Toh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | | | - Ming-Feng Liao
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center Neuroscience Research Center, and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center Neuroscience Research Center, and College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
44
|
Cerebral Folate Metabolism in Post-Mortem Alzheimer's Disease Tissues: A Small Cohort Study. Int J Mol Sci 2022; 24:ijms24010660. [PMID: 36614107 PMCID: PMC9820589 DOI: 10.3390/ijms24010660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
We investigated the cerebral folate system in post-mortem brains and matched cerebrospinal fluid (CSF) samples from subjects with definite Alzheimer's disease (AD) (n = 21) and neuropathologically normal brains (n = 21) using immunohistochemistry, Western blot and dot blot. In AD the CSF showed a significant decrease in 10-formyl tetrahydrofolate dehydrogenase (FDH), a critical folate binding protein and enzyme in the CSF, as well as in the main folate transporter, folate receptor alpha (FRα) and folate. In tissue, we found a switch in the pathway of folate supply to the cerebral cortex in AD compared to neurologically normal brains. FRα switched from entry through FDH-positive astrocytes in normal, to entry through glial fibrillary acidic protein (GFAP)-positive astrocytes in the AD cortex. Moreover, this switch correlated with an apparent change in metabolic direction to hypermethylation of neurons in AD. Our data suggest that the reduction in FDH in CSF prohibits FRα-folate entry via FDH-positive astrocytes and promotes entry through the GFAP pathway directly to neurons for hypermethylation. This data may explain some of the cognitive decline not attributable to the loss of neurons alone and presents a target for potential treatment.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The purpose of this review article is to summarize the current in-vivo imaging techniques for the evaluation of the glymphatic function and discuss the factors influencing the glymphatic function and research directions in the future. RECENT FINDINGS The glymphatic system allows the clearance of metabolic waste from the central nervous system (CNS). The glymphatic pathway has been investigated using intrathecal or intravenous injection of a gadolinium-based contrast agent (GBCA) on MRI, so-called glymphatic MRI. The glymphatic MRI indirectly visualizes the dynamic CSF flow and evaluated the glymphatic function in the animal and human models. Several clinical and preclinical studies using glymphatic MRI have confirmed that the glymphatic function is impaired in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and idiopathic normal pressure hydrocephalus. Furthermore, physiologic process such as sleep facilitates the glymphatic clearance, thus clearing accumulation of protein deposition, such as amyloid or tau, potentially delaying the progression of neurodegenerative diseases. SUMMARY The glymphatic system plays a crucial role in clearing metabolic wastes in the brain. Glymphatic MR imaging using GBCA administration serves as a functional imaging tool to measure the glymphatic function and investigate various pathophysiologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyochul Lee
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine
- Department of Radiology, Seoul National University College of Medicine, and Seoul National University Hospital
| | - Seung Hong Choi
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine
- Department of Radiology, Seoul National University College of Medicine, and Seoul National University Hospital
- Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | - Yoshimi Anzai
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
46
|
Langheinrich T, Chen C, Thomas O. Update on the Cognitive Presentations of iNPH for Clinicians. Front Neurol 2022; 13:894617. [PMID: 35937049 PMCID: PMC9350547 DOI: 10.3389/fneur.2022.894617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
This mini-review focuses on cognitive impairment in iNPH. This symptom is one of the characteristic triad of symptoms in a condition long considered to be the only treatable dementia. We present an update on recent developments in clinical, neuropsychological, neuroimaging and biomarker aspects. Significant advances in our understanding have been made, notably regarding biomarkers, but iNPH remains a difficult diagnosis. Stronger evidence for permanent surgical treatment is emerging but selection for treatment remains challenging, particularly with regards to cognitive presentations. Encouragingly, there has been increasing interest in iNPH, but more research is required to better define the underlying pathology and delineate it from overlapping conditions, in order to inform best practise for the clinician managing the cognitively impaired patient. In the meantime, we strongly encourage a multidisciplinary approach and a structured service pathway to maximise patient benefit.
Collapse
Affiliation(s)
- Tobias Langheinrich
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- *Correspondence: Tobias Langheinrich
| | - Cliff Chen
- Department of Neuropsychology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Owen Thomas
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Department of Neuroradiology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| |
Collapse
|
47
|
Okada T, Fujimoto K, Fushimi Y, Akasaka T, Thuy DHD, Shima A, Sawamoto N, Oishi N, Zhang Z, Funaki T, Nakamoto Y, Murai T, Miyamoto S, Takahashi R, Isa T. Neuroimaging at 7 Tesla: a pictorial narrative review. Quant Imaging Med Surg 2022; 12:3406-3435. [PMID: 35655840 PMCID: PMC9131333 DOI: 10.21037/qims-21-969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/05/2022] [Indexed: 01/26/2024]
Abstract
Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dinh H. D. Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medial Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhilin Zhang
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
48
|
Obata T. Invited Reviews for a Special 20th Anniversary Issue of MRMS. Magn Reson Med Sci 2022; 21:A1. [PMID: 33250471 PMCID: PMC10767364 DOI: 10.2463/mrms.e.2020-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Takayuki Obata
- The Editorial Committee of Magnetic Resonance in Medical Sciences
| |
Collapse
|
49
|
Ahn SJ, Taoka T, Moon WJ, Naganawa S. Contrast-Enhanced Fluid-Attenuated Inversion Recovery in Neuroimaging: A Narrative Review on Clinical Applications and Technical Advances. J Magn Reson Imaging 2022; 56:341-353. [PMID: 35170148 DOI: 10.1002/jmri.28117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
While contrast-enhanced fluid-attenuated inversion recovery (FLAIR) has long been regarded as an adjunct sequence to evaluate leptomeningeal disease in addition to contrast-enhanced T1-weighted imaging, it is gradually being used for more diverse pathologies beyond leptomeningeal disease. Contrast-enhanced FLAIR is known to be highly sensitive to low concentrations of gadolinium within the fluid. Accordingly, recent research has suggested the potential utility of contrast-enhanced FLAIR in various kinds of disease, such as Meniere's disease, seizure, stroke, traumatic brain injury, and brain metastasis, in addition to being used for visualizing glymphatic dysfunction. However, its potential applications have been reported sporadically in an unorganized manner. Furthermore, the exact mechanism for its superior sensitivity to low concentrations of gadolinium has not been fully understood. Rapidly developing magnetic resonance technology and unoptimized parameters for FLAIR may challenge its accurate application in clinical practice. This review provides the fundamental mechanism of contrast-enhanced FLAIR, systematically describes its current and potential clinical application, and elaborates on technical considerations for its optimization. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 5.
Collapse
Affiliation(s)
- Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, South Korea
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
50
|
Taoka T, Ito R, Nakamichi R, Kamagata K, Sakai M, Kawai H, Nakane T, Abe T, Ichikawa K, Kikuta J, Aoki S, Naganawa S. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn J Radiol 2022; 40:147-158. [PMID: 34390452 PMCID: PMC8803717 DOI: 10.1007/s11604-021-01187-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE The diffusion tensor image analysis along the perivascular space (DTI-ALPS) method was developed to evaluate the brain's glymphatic function or interstitial fluid dynamics. This study aimed to evaluate the reproducibility of the DTI-ALPS method and the effect of modifications in the imaging method and data evaluation. MATERIALS AND METHODS Seven healthy volunteers were enrolled in this study. Image acquisition was performed for this test-retest study using a fixed imaging sequence and modified imaging methods which included the placement of region of interest (ROI), imaging plane, head position, averaging, number of motion-proving gradients, echo time (TE), and a different scanner. The ALPS-index values were evaluated for the change of conditions listed above. RESULTS This test-retest study by a fixed imaging sequence showed very high reproducibility (intraclass coefficient = 0.828) for the ALPS-index value. The bilateral ROI placement showed higher reproducibility. The number of averaging and the difference of the scanner did not influence the ALPS-index values. However, modification of the imaging plane and head position impaired reproducibility, and the number of motion-proving gradients affected the ALPS-index value. The ALPS-index values from 12-axis DTI and 3-axis diffusion-weighted image (DWI) showed good correlation (r = 0.86). Also, a shorter TE resulted in a larger value of the ALPS-index. CONCLUSION ALPS index was robust under the fixed imaging method even when different scanners were used. ALPS index was influenced by the imaging plane, the number of motion-proving gradient axes, and TE in the imaging sequence. These factors should be uniformed in the planning ALPS method studies. The possibility to develop a 3-axis DWI-ALPS method using three axes of the motion-proving gradient was also suggested.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan.
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mayuko Sakai
- Canon Medical Systems Corporation, Otawara, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Abe
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Kazushige Ichikawa
- Department of Radiological Technology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|