1
|
Gao F, Zhang Y, Jin L, Gong H, Zhang X, Zheng Q, Chen Z, Qin X. Motor protein KIF5B inhibition as a novel strategy of controlled reperfusion against myocardial ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167785. [PMID: 40057204 DOI: 10.1016/j.bbadis.2025.167785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025]
Abstract
Metabolic dysregulation triggered by nutrient influx at reperfusion onset induces reactive oxygen species (ROS) burst and cellular injury, contributing to the detrimental effects observed in ischemia/reperfusion (I/R) injury. Thus, implementing controlled reperfusion emerges as a superior cardioprotective strategy to alleviate reperfusion injury. Kinesin KIF5B transports GLUT4- and CD36-containing vesicles to the plasma membrane, facilizing the import of glucose and fatty acids into cells, suggesting a role in controlled reperfusion. Herein, we aim to investigate its specific role in myocardial I/R injury. By genetic and pharmacological modulation of KIF5B, we investigated its role in myocardial I/R injury both in vivo and in vitro. During reperfusion, a coordinated inhibition of metabolism-related genes and KIF5B expression occurred, probably mitigating the metabolic stress encountered as a compensatory mechanism. Genetic inhibition of KIF5B using AAV9-shRNA attenuated myocardial I/R injury, as evidenced by reduced infarct size, decreased cardiac biomarkers, and reduced cell apoptosis. Additionally, KIF5B inhibition mitigated post-reperfusion oxidative stress and arrhythmias. Mechanistically, concurrent decrease in CD36 membrane translocation following KIF5B ablation post-reperfusion was confirmed by immunofluorescence double staining, and siRNA knockdown of Kif5b inhibited fatty acids uptake in isolated primary neonatal rat cardiomyocytes. Intraperitoneal administration of rose bengal lactone (RBL, 1 mg/kg), a selective inhibitor of KIF5B, was shown to confer cardioprotective effects against myocardial I/R injury. Our findings demonstrate that the inhibition of KIF5B, as a novel strategy of controlled reperfusion, provides cardioprotection against myocardial I/R injury, and highlights the clinical potential of its inhibitor, RBL, to ameliorate reperfusion injury.
Collapse
Affiliation(s)
- Feng Gao
- Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yudi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Lingyan Jin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haoyu Gong
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xing Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ziwei Chen
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China.
| | - Xinghua Qin
- Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
2
|
Li D, Yu Q, Shao F, Wang J, Wu R, Guo Y, Yoo KH, Wang Z, Wei W, Feng D. Decoding the crossroads of aging and cancer through single-cell analysis: Implications for precision oncology. Int J Cancer 2025. [PMID: 40268523 DOI: 10.1002/ijc.35456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Single-cell analysis is a transformative approach to understanding cellular heterogeneity in aging and cancer, interconnected processes driven by mechanisms like senescence and immune modulation. This review explores how aging influences cancer initiation, progression, and treatment resistance within the tumor microenvironment (TME). By examining recent studies using single-cell technologies, we reveal the nuanced roles of aging in tumorigenesis, immune interactions, and therapeutic outcomes. Aging is closely tied to cancer progression, with senescent cells demonstrating heightened proliferative, invasive, and metastatic capabilities. Emerging senolytic therapies targeting aging-related pathways hold promise for enhancing treatment efficacy. Advanced tools such as spatial transcriptomics, molecular probes, and artificial intelligence further refine our understanding of aging-related heterogeneity in the TME. By integrating single-cell analysis with these technologies, future research can clarify the intricate interactions between aging and cancer, advancing precision oncology and improving outcomes for aging cancer patients.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, China
- Department of Pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo City, Zhejiang Province, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, South Korea
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
3
|
Saadh MJ, Saeed TN, Alfarttoosi KH, Sanghvi G, Roopashree R, Thakur V, Lakshmi L, Kubaev A, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. Exosomes and MicroRNAs: key modulators of macrophage polarization in sepsis pathophysiology. Eur J Med Res 2025; 30:298. [PMID: 40247413 PMCID: PMC12007276 DOI: 10.1186/s40001-025-02561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Sepsis is a highly dangerous and complex condition that can result in death. It is characterized by a strong reaction to an infection, causing dysfunction in multiple bodily systems and a high risk of mortality. The transformation of macrophages is a vital stage in the procedure as they possess the capability to interchange between two separate types: M1, which promotes inflammation, and M2, which inhibits inflammation. The choice greatly affects the immune response of the host. This analysis underscores the rapidly expanding roles of exosomes and microRNAs (miRNAs) in regulating the trajectory of macrophage polarization during episodes of sepsis. Exosomes, extremely small extracellular vesicles, facilitate cellular communication by transferring biologically active compounds, including miRNAs, proteins, and lipids. We investigate the impact of changes in exosome production and composition caused by sepsis on macrophage polarization and function. Unique microRNAs present in exosomes play a significant role in controlling crucial signaling pathways that govern the phenotype of macrophages. Through thorough examination of recent progress in this area, we clarify the ways in which miRNAs derived from exosomes can either aggravate or alleviate the inflammatory reactions that occur during sepsis. This revelation not only deepens our comprehension of the underlying mechanisms of sepsis, but it also reveals potential new biomarkers and targets for treatment. This assessment aims to amalgamate diverse research investigations and propose potential avenues for future investigations on the influence that exosomes and miRNAs have on macrophage polarization and the body's response to sepsis. These entities are essential for controlling the host's reaction to sepsis and hold important functions in this mechanism.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Tamara Nazar Saeed
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - L Lakshmi
- Department of Nursing, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
4
|
Bai Y, Hu Y, Chen X, Hu L, Wu K, Liang S, Zheng J, Gänzle MG, Chen C. Comparative metagenome-associated analysis of gut microbiota and antibiotic resistance genes in acute gastrointestinal injury patients with the risk of in-hospital mortality. mSystems 2025; 10:e0144424. [PMID: 40013797 PMCID: PMC11915821 DOI: 10.1128/msystems.01444-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Acute gastrointestinal injury (AGI) is known for its poor long-term prognosis and the associated increase in mortality among intensive care unit (ICU) patients. As the role of the gut microbiome and resistome in AGI remains unclear, the present study aimed to explore the possible associations between dysbacteriosis and in-hospital mortality in ICU patients with gastrointestinal dysfunction. Fecal samples were collected from a prospective cohort of 210 ICU patients with AGI, and shotgun metagenomic sequencing was used to determine the taxonomic composition of gut microbiota and the differences of antibiotic resistance genes (ARGs) between the Death and Survival groups. Compared to the Survival group, patients in the Death group shifted from strict anaerobes to facultative anaerobes in the fecal microbial community, with more Klebsiella but less Prevotella. The co-occurrence patterns revealed that more ARG subtypes were enriched in microbial taxa in the Death group, especially for Clostridium and Methanobrevibacter. Furthermore, the ARG type had large area under the curve (AUCs) in receiver operating characteristic for predicting the disease severity, and a combined gut microbiota-ARG subtype classifiers showed better performance than either of them. Thus, comparative metagenome-associated analysis can help to obtain valuable information about gut microbiota and gene coding for antibiotic resistance in AGI patients. IMPORTANCE A metagenomic-related strategy was conducted to obtain a highly valuable resource to improve understanding of intestinal microbiota dysbiosis and antibiotic resistance genes (ARGs) profiles. The results indicate that intestinal microbiota, including Klebsiella and Prevotella, changed dramatically in intensive care unit (ICU) patients with acute gastrointestinal injury (AGI). Due to longer ICU stays and receiving more antibiotic treatment, the types and correlations of ARGs in the Death group were significantly higher than those in the Survival group. The findings of this study are expected to expand our knowledge of gut microbiota and resistome profiles reflecting gastrointestinal status, accelerate the identification of disease biomarkers, and provide new insights into the prevention and treatment of AGI-related diseases.
Collapse
Affiliation(s)
- Yunpeng Bai
- Department of Pharmacy, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yali Hu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyin Chen
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Surgery Intensive Care Medicine, Maoming People’s Hospital, Maoming, China
| | - Linhui Hu
- Department of Critical Care Medicine, Maoming People’s Hospital, Maoming, China
| | - Kunyong Wu
- Center of Scientific Research, Maoming People’s Hospital, Maoming, China
- Biological Resource Center of Maoming People’s Hospital, Maoming, China
| | - Silin Liang
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Michael G. Gänzle
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, 4-10 Ag/For Center, Edmonton, Canada
- Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Hu XQ, Zhang G, Zhao L, Huang H, Wang C. Deciphering peripheral neuroimmune crosstalk for translational therapeutics. J Transl Int Med 2025; 13:4-6. [PMID: 40115031 PMCID: PMC11921811 DOI: 10.1515/jtim-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Affiliation(s)
- Xiao-Qian Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Guifang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Liping Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Huanjie Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
6
|
Hu Y, Schnabl B, Stärkel P. Origin, Function, and Implications of Intestinal and Hepatic Macrophages in the Pathogenesis of Alcohol-Associated Liver Disease. Cells 2025; 14:207. [PMID: 39936998 PMCID: PMC11816606 DOI: 10.3390/cells14030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Macrophages are members of the human innate immune system, and the majority reside in the liver. In recent years, they have been recognized as essential players in the maintenance of liver and intestinal homeostasis as well as key guardians of their respective immune systems, and they are increasingly being recognized as such. Paradoxically, they are also likely involved in chronic pathologies of the gastrointestinal tract and potentially in the alteration of the gut-liver axis in alcohol use disorder (AUD) and alcohol-associated liver disease (ALD). To date, the causal relationship between macrophages, the pathogenesis of ALD, and the immune dysregulation of the gut remains unclear. In this review, we will discuss our current understanding of the heterogeneity of intestinal and hepatic macrophages, their ontogeny, the potential factors that regulate their origin, and the evidence of how they are associated with the manifestation of chronic inflammation. We will also illustrate how the micro-environment of the intestine shapes the phenotypes and functionality of the macrophage compartment in both the intestines and liver and how they change during chronic alcohol abuse. Finally, we highlight the obstacles to current research and the prospects for this field.
Collapse
Affiliation(s)
- Yifan Hu
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
7
|
Koh YC, Hsu HW, Ho PY, Lin WS, Hsu KY, Majeed A, Ho CT, Pan MH. Feruloylacetone and Its Analog Demethoxyferuloylacetone Mitigate Obesity-Related Muscle Atrophy and Insulin Resistance in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1231-1243. [PMID: 39754576 PMCID: PMC11741112 DOI: 10.1021/acs.jafc.4c07798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/07/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies. This study investigates the impact of FER and DFER on obesity-related glucose intolerance and muscle atrophy. High-fat diet (HFD) feeding resulted in muscle mass reduction and increased intramuscular triglyceride accumulation, both of which were mitigated by FER and DFER supplementation. The supplements activated the PI3K/Akt/mTOR signaling pathway, enhanced muscle protein synthesis, and decreased markers of muscle protein degradation. Additionally, FER and DFER supplementation improved glucose homeostasis in HFD-fed mice. The supplements also promoted the formation of a gut microbial consortium comprising Blautia intestinalis, Dubosiella newyorkensis, Faecalicatena fissicatena, Waltera intestinalis, Clostridium viride, and Caproiciproducens galactitolivorans, which contributed to the reduction of obesity-induced chronic inflammation. These findings suggest, for the first time, that FER and DFER may prevent obesity-related complications, including muscle atrophy and insulin resistance, thereby warranting further research into their long-term efficacy and safety.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Han-Wen Hsu
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Pin-Yu Ho
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Wei-Sheng Lin
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
- Department
of Food Science, National Quemoy University, 89250 Quemoy, Taiwan
| | - Kai-Yu Hsu
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
| | - Anju Majeed
- Sami-Sabinsa
Group Limited, Bengaluru 560058, Karnataka, India
| | - Chi-Tang Ho
- Department
of Food Science, Rutgers University, New Brunswick 08901, New Jersey, United
States
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, 10617 Taipei, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, 40402 Taichung, Taiwan
| |
Collapse
|
8
|
Zheng ZL, Zheng QF, Wang LQ, Liu Y. Bowel preparation before colonoscopy: Consequences, mechanisms, and treatment of intestinal dysbiosis. World J Gastroenterol 2025; 31:100589. [PMID: 39811511 PMCID: PMC11684204 DOI: 10.3748/wjg.v31.i2.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The term "gut microbiota" primarily refers to the ecological community of various microorganisms in the gut, which constitutes the largest microbial community in the human body. Although adequate bowel preparation can improve the results of colonoscopy, it may interfere with the gut microbiota. Bowel preparation for colonoscopy can lead to transient changes in the gut microbiota, potentially affecting an individual's health, especially in vulnerable populations, such as patients with inflammatory bowel disease. However, measures such as oral probiotics may ameliorate these adverse effects. We focused on the bowel preparation-induced changes in the gut microbiota and host health status, hypothesized the factors influencing these changes, and attempted to identify measures that may reduce dysbiosis, thereby providing more information for individualized bowel preparation for colonoscopy in the future.
Collapse
Affiliation(s)
- Ze-Long Zheng
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Qing-Fan Zheng
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Li-Qiang Wang
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yi Liu
- Department of Gastroenterology (Endoscopy Center), China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
9
|
Hou FF, Mi JH, Wang Q, Tao YL, Guo SB, Ran GH, Wang JC. Macrophage polarization in sepsis: Emerging role and clinical application prospect. Int Immunopharmacol 2025; 144:113715. [PMID: 39626538 DOI: 10.1016/j.intimp.2024.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Sepsis is a severe, potentially fatal condition defined by organ dysfunction due to excessive inflammation. Its complex pathogenesis and poor therapeutic outcomes pose significant challenges in treatment. Macrophages, with their high heterogeneity and plasticity, play crucial roles in both the innate and adaptive immune systems. They can polarize into M1-like macrophages, which promote pro-inflammatory responses, or M2-like macrophages, which mediate anti-inflammatory responses, positioning them as critical mediators in the immune response during sepsis.Macrophages are the main regulators of inflammatory responses, and their polarization is also regulated by inflammatory signaling pathways. This review highlights recent advances in the inflammatory signaling pathways involved in sepsis, mechanism of macrophage polarization mediated by inflammation-related signaling pathways in sepsis, and the role of signaling pathway mediated macrophage polarization in organ dysfunction involved in sepsis. We also explore the therapeutic potential of targeting macrophage polarization for immunotherapy, offering new perspectives on macrophage-targeted treatments for sepsis.
Collapse
Affiliation(s)
- Fei Fei Hou
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Jun Hao Mi
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou 545001, China
| | - Qiong Wang
- Burn and Plastic Surgery Department of Hohhot First Hospital, Hohhot 010030, China
| | - Yan Lin Tao
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Shuai Bin Guo
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Guang He Ran
- Chongqing Changshou Traditional Cinese Medicine Hospital, 401200 Chongqing, China.
| | - Jing Chao Wang
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China.
| |
Collapse
|
10
|
Li D, Wu R, Yu Q, Tuo Z, Wang J, Yoo KH, Wei W, Yang Y, Ye L, Guo Y, Chaipanichkul P, Okoli UA, Poolman TM, Burton JP, Cho WC, Heavey S, Feng D. Microbiota and urinary tumor immunity: Mechanisms, therapeutic implications, and future perspectives. Chin J Cancer Res 2024; 36:596-615. [PMID: 39802902 PMCID: PMC11724181 DOI: 10.21147/j.issn.1000-9604.2024.06.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo 315211, China
| | - Zhouting Tuo
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul 100-744, Republic of Korea
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Chongqing 404000, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, China
| | | | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK
- Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Toryn M Poolman
- Structural & Molecular Biology Faculty of Life Sciences, UCL, London W1W 7TS, UK
| | - Jeremy P Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London ON N6A 3K7, Canada
- Department of Microbiology & Immunology, the University of Western Ontario, London ON N6C 2R5, Canada
- Division of Urology, Department of Surgery, the University of Western Ontario, London ON N6A 3K7, Canada
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR 999077, China
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK
| |
Collapse
|
11
|
Zou Y, Zhang H, Liu F, Chen ZS, Tang H. Intratumoral microbiota in orchestrating cancer immunotherapy response. J Transl Int Med 2024; 12:540-542. [PMID: 39802449 PMCID: PMC11720933 DOI: 10.1515/jtim-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Affiliation(s)
- Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Hanqi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Feng Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang421001, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, NY 11439, New YorkUSA
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| |
Collapse
|
12
|
Mi K, Wang X, Ma C, Tan Y, Zhao G, Cao X, Yuan H. NLRX1 attenuates endoplasmic reticulum stress via STING in cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119852. [PMID: 39357547 DOI: 10.1016/j.bbamcr.2024.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Endoplasmic reticulum stress-induced cell apoptosis is a pivotal mechanism underlying the progression of cardiac hypertrophy. NLRX1, a member of the NOD-like receptor family, modulates various cellular processes, including STING, NF-κB, MAPK pathways, reactive oxygen species production, essential metabolic pathways, autophagy and cell death. Emerging evidence suggests that NLRX1 may offer protection against diverse cardiac diseases. However, the impacts and mechanisms of NLRX1 on endoplasmic reticulum stress in cardiac hypertrophy remains largely unexplored. In our study, we observed that the NLRX1 and phosphorylated STING (p-STING) were highly expressed in both hypertrophic mouse heart and cellular model of cardiac hypertrophy. Whereas over-expression of NLRX1 mitigated the expression levels of p-STING, as well as the endoplasmic reticulum stress markers, including transcription activating factor 4 (ATF4), C/EBP homologous protein (CHOP) and the ratios of phosphorylated PERK to PERK, phosphorylated IRE1 to IRE1 and phosphorylated eIF2α to eIF2α in an Angiotensin II (Ang II)-induced cellular model of cardiac hypertrophy. Importantly, the protective effects of NLRX1 were attenuated upon pretreatment with the STING agonist, DMXAA. Our findings provide the evidence that NLRX1 attenuates the PERK-eIF2α-ATF4-CHOP axis of endoplasmic reticulum stress response via inhibition of p-STING in Ang II-treated cardiomyocytes, thereby ameliorating the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Keying Mi
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xiaoyan Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Chao Ma
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Yinghua Tan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xinran Cao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| |
Collapse
|
13
|
Yue Z, Zhang Y, Zhang W, Zheng N, Wen J, Ren L, Rong X, Bai L, Wang R, Zhao S, Liu E, Wang W. Kaempferol alleviates myocardial ischemia injury by reducing oxidative stress via the HDAC3-mediated Nrf2 signaling pathway. J Adv Res 2024:S2090-1232(24)00491-0. [PMID: 39505146 DOI: 10.1016/j.jare.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Kaempferol (KAE) is a flavonoid found in various plants. Recent studies showed that high dietary intake of KAE was associated with a lower risk of myocardial infarction; however, the cardioprotective mechanism of KAE remains unknown. OBJECTIVES To determine the effect of KAE on cardiac injury in isoproterenol (ISO)-induced rats and cobalt chloride (CoCl2)-treated cardiomyocytes, and the underlying mechanisms. METHODS Male rats were pretreated with different doses of KAE for 14 days, and then injected with ISO to induce myocardial ischemia injury. We also established a model of myocardial cell injury using rat H9c2 cardiomyocytes stimulated with CoCl2. RESULTS We found that KAE pretreatment significantly alleviated myocardial injury and improved cardiac function in ISO-injected rats. In addition, KAE reduced oxidative stress in rats with myocardial ischemia by decreasing malondialdehyde concentration and increasing superoxide dismutase activity, and protection of the myocardial mitochondrial structure. KAE also attenuated CoCl2-induced injuryof H9c2 cardiomyocytes via suppression ofoxidative stress. With regard to the mechanism, we found that KAE down-regulated HDAC3 expression and up-regulated Nrf2 expression in ISO-induced rats and CoCl2-stimulated cardiomyocytes. Incubation of cardiomyocytes with HDAC3-selective inhibitor RGFP966 augmented the protective effect of KAE and reduced oxidative stress. By contrast, HDAC3 overexpression by adenovirus attenuated the effect of KAE on oxidative stress compared with KAE treatment group. HDAC3 also regulated Nrf2 expression in the cardiomyocytes with RGFP966 or an adenovirus overexpressing HDAC3; but Nrf2 inhibition reduced the effect of KAE on ROS generation in CoCl2-induced cardiomyocytes. Immunoprecipitation assay showed that HDAC3 interacted with Nrf2 in cardiomyocytes. Further studies found that KAE increased the acetylation level of Nrf2, while HDAC3 overexpression decreased the acetylation of Nrf2 compared with KAE treatment group. CONCLUSION Our data show that KAE ameliorates cardiac injury by reducing oxidative stress via the HDAC3-mediated Nrf2 signaling pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Zejun Yue
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yirong Zhang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Zhang
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Nanbo Zheng
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jiazheng Wen
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lingxuan Ren
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xiaoyu Rong
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Bai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Rong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihai Zhao
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
14
|
Chen Y, Liang J, Chen S, Lin N, Xu S, Miao J, Zhang J, Chen C, Yuan X, Xie Z, Zhu E, Cai M, Wei X, Hou S, Tang H. Discovery of vitexin as a novel VDR agonist that mitigates the transition from chronic intestinal inflammation to colorectal cancer. Mol Cancer 2024; 23:196. [PMID: 39272040 PMCID: PMC11395219 DOI: 10.1186/s12943-024-02108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colitis-associated colorectal cancer (CAC) frequently develops in patients with inflammatory bowel disease (IBD) who have been exposed to a prolonged state of chronic inflammation. The investigation of pharmacological agents and their mechanisms to prevent precancerous lesions and inhibit their progression remains a significant focus and challenge in CAC research. Previous studies have demonstrated that vitexin effectively mitigates CAC, however, its precise mechanism of action warrants further exploration. This study reveals that the absence of the Vitamin D receptor (VDR) accelerates the progression from chronic colitis to colorectal cancer. Our findings indicate that vitexin can specifically target the VDR protein, facilitating its translocation into the cell nucleus to exert transcriptional activity. Additionally, through a co-culture model of macrophages and cancer cells, we observed that vitexin promotes the polarization of macrophages towards the M1 phenotype, a process that is dependent on VDR. Furthermore, ChIP-seq analysis revealed that vitexin regulates the transcriptional activation of phenazine biosynthesis-like domain protein (PBLD) via VDR. ChIP assays and dual luciferase reporter assays were employed to identify the functional PBLD regulatory region, confirming that the VDR/PBLD pathway is critical for vitexin-mediated regulation of macrophage polarization. Finally, in a mouse model with myeloid VDR gene knockout, we found that the protective effects of vitexin were abolished in mid-stage CAC. In summary, our study establishes that vitexin targets VDR and modulates macrophage polarization through the VDR/PBLD pathway, thereby alleviating the transition from chronic colitis to colorectal cancer.
Collapse
Affiliation(s)
- Yonger Chen
- School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University; The Affiliated Panyu Central Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jian Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shuxian Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shuoxi Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jindian Miao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jing Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chen Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xin Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhuoya Xie
- State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research, Center for Cancer Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, 510060, China
| | - Enlin Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Mingsheng Cai
- School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University; The Affiliated Panyu Central Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Xiaoli Wei
- State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research, Center for Cancer Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, 510060, China.
| | - Shaozhen Hou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research, Center for Cancer Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, 510060, China.
| |
Collapse
|
15
|
Liang J, Dai W, Liu C, Wen Y, Chen C, Xu Y, Huang S, Hou S, Li C, Chen Y, Wang W, Tang H. Gingerenone A Attenuates Ulcerative Colitis via Targeting IL-17RA to Inhibit Inflammation and Restore Intestinal Barrier Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400206. [PMID: 38639442 PMCID: PMC11267284 DOI: 10.1002/advs.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Indexed: 04/20/2024]
Abstract
Ulcerative colitis (UC) is a complicated and recurrent intestinal disease. Currently available drugs for UC treatment are scarce, therefore, novel therapeutic drugs for the UC are urgently to be developed. Gingerenone A (GA) is a phenolic compound known for its anti-inflammatory effect, but its effect on UC remains unknown. Here, it is shown that GA protects mice against UC, which is closely associated with inhibiting intestinal mucosal inflammation and enhancing intestinal barrier integrity in vivo and in vitro. Of note, RNA sequencing analysis demonstrates an evident correlation with IL-17 signaling pathway after GA treatment, and this effect is further corroborated by Western blot. Mechanistically, GA directly interacts with IL-17RA protein through pull-down, surface plasmon resonance analysis and molecular dynamics simulation. Importantly, lentivirus-mediated IL-17RA/Act1 knock-down or GA co-treatment with brodalumab/ixekizumab significantly impairs the protective effects of GA against DSS-induced inflammation and barrier dysfunction, suggesting a critical role of IL-17RA signaling for GA-mediated protection against UC. Overall, these results indicate that GA is an effective agent against UC mainly through the direct binding of IL-17RA to inhibit inflammatory signaling activation.
Collapse
Affiliation(s)
- Jian Liang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Weigang Dai
- Center of Ganstric CancerThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510062China
| | - Chuanghui Liu
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifan Wen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chen Chen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen518033China
| | - Song Huang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Shaozhen Hou
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chun Li
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yongming Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Wei Wang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
16
|
Wang L, Chen Y, Wu H, Yu HH, Ma L. Slit2-Robo4 signal pathway and tight junction in intestine mediate LPS-induced inflammation in mice. Eur J Med Res 2024; 29:349. [PMID: 38937814 PMCID: PMC11209965 DOI: 10.1186/s40001-024-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Sepsis is one of the most common clinical diseases, which is characterized by a serious and uncontrollable inflammatory response. LPS-induced inflammation is a critical pathological event in sepsis, but the underlying mechanism has not yet been fully elucidated. METHODS The animal model was established for two batches. In the first batch of experiments, Adult C57BL/6J mice were randomly divided into control group and LPS (5 mg/kg, i.p.)group . In the second batch of experiments, mice were randomly divided into control group, LPS group, and LPS+VX765(10 mg/kg, i.p., an inhibitor of NLRP3 inflammasome) group. After 24 hours, mice were anesthetized with isoflurane, blood and intestinal tissue were collected for tissue immunohistochemistry, Western blot analysis and ELISA assays. RESULTS The C57BL/6J mice injected with LPS for twenty-four hours could exhibit severe inflammatory reaction including an increased IL-1β, IL-18 in serum and activation of NLRP3 inflammasome in intestine. The injection of VX765 could reverse these effects induced by LPS. These results indicated that the increased level of IL-1β and IL-18 in serum induced by LPS is related to the increased intestinal permeability and activation of NLRP3 inflammasome. In the second batch of experiments, results of western blot and immunohistochemistry showed that Slit2 and Robo4 were significant decreased in intestine of LPS group, while the expression of VEGF was significant increased. Meanwhile, the protein level of tight junction protein ZO-1, occludin, and claudin-5 were significantly lower than in control group, which could also be reversed by VX765 injection. CONCLUSIONS In this study, we revealed that Slit2-Robo4 signaling pathway and tight junction in intestine may be involved in LPS-induced inflammation in mice, which may account for the molecular mechanism of sepsis.
Collapse
Affiliation(s)
- Lv Wang
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Yingtai Chen
- Emergency Department, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200444, People's Republic of China
| | - Hao Wu
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China
| | - He-Hua Yu
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China.
| | - Linhao Ma
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China.
| |
Collapse
|