1
|
Alzahrani KR, Gomez-Cardona E, Gandhi VD, Palikhe NS, Laratta C, Julien O, Vliagoftis H. German cockroach extract prevents IL-13-induced CCL26 expression in airway epithelial cells through IL-13 degradation. FASEB J 2024; 38:e23531. [PMID: 38466220 DOI: 10.1096/fj.202300828rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Inhaled aeroallergens can directly activate airway epithelial cells (AECs). Exposure to cockroach allergens is a strong risk factor for asthma. Cockroach allergens mediate some of their effects through their serine protease activity; protease activity is also a major contributor to allergenicity. The Th2 cytokine interleukin-13 (IL-13) induces upregulation of the eosinophil chemotactic factor CCL26. CCL26 induces eosinophil migration in allergic inflammation. In this work, we studied the effect of cockroach proteases on IL-13-induced effects. Immersed cultures of the human bronchial epithelial cell line BEAS-2B and air-liquid interface (ALI) cultures of primary normal human bronchial epithelial (NHBE) cells were stimulated with IL-13, Blattella Germanica cockroach extract (CE), or both. IL-13-induced genes were analyzed with qRT-PCR. IL-13 induced upregulation of CCL26, periostin, and IL-13Rα2 in bronchial epithelial cells which were decreased by CE. CE was heat-inactivated (HICE) or pre-incubated with protease inhibitors. HICE and CE preincubated with serine protease inhibitors did not prevent IL-13-induced CCL26 upregulation. CE-degraded IL-13 and specific cleavage sites were identified. CE also decreased IL-4-induced CCL26 upregulation and degraded IL-4. Other serine proteases such as bovine trypsin and house dust mite (HDM) serine proteases did not have the same effects on IL-13-induced CCL26. We conclude that CE serine proteases antagonize IL-13-induced effects in AECs, and this CE effect is mediated primarily through proteolytic cleavage of IL-13. IL-13 cleavage by cockroach serine proteases may modulate CCL26-mediated effects in allergic airway inflammation by interfering directly with the pro-inflammatory effects of IL-13 in vivo.
Collapse
Affiliation(s)
- Khadija Rashed Alzahrani
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Erik Gomez-Cardona
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vivek D Gandhi
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Cheryl Laratta
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Olivier Julien
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Rothen-Rutishauser B, Gibb M, He R, Petri-Fink A, Sayes CM. Human lung cell models to study aerosol delivery - considerations for model design and development. Eur J Pharm Sci 2023; 180:106337. [PMID: 36410570 DOI: 10.1016/j.ejps.2022.106337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Human lung tissue models range from simple monolayer cultures to more advanced three-dimensional co-cultures. Each model system can address the interactions of different types of aerosols and the choice of the model and the mode of aerosol exposure depends on the relevant scenario, such as adverse outcomes and endpoints of interest. This review focuses on the functional, as well as structural, aspects of lung tissue from the upper airway to the distal alveolar compartments as this information is relevant for the design of a model as well as how the aerosol properties determine the interfacial properties with the respiratory wall. The most important aspects on how to design lung models are summarized with a focus on (i) choice of appropriate scaffold, (ii) selection of cell types for healthy and diseased lung models, (iii) use of culture condition and assembly, (iv) aerosol exposure methods, and (v) endpoints and verification process. Finally, remaining challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland.
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Ruiwen He
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA.
| |
Collapse
|
3
|
Hsieh HL, Liu SH, Chen YL, Huang CY, Wu SJ. Astragaloside IV suppresses inflammatory response via suppression of NF-κB, and MAPK signalling in human bronchial epithelial cells. Arch Physiol Biochem 2022; 128:757-766. [PMID: 32057253 DOI: 10.1080/13813455.2020.1727525] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Astragaloside IV isolated from Astragalus membranaceus (Fisch.), which was reported to have anti-tumor, anti-asthma, and suppressed cigarette smoke-induced lung inflammation in mice. OBJECTIVES This study investigated whether astragaloside IV reduced the expression of inflammatory mediators and oxidative stress in BEAS-2B cells. METHODS BEAS-2B cells treated with astragaloside IV, and then stimulated with TNF-α or TNF-α/IL-4. The levels of cytokine and chemokine were analysed with ELISA and real-time PCR. RESULTS Astragaloside IV significantly inhibited the levels of CCL5, MCP-1, IL-6 and IL-8. Astragaloside IV also reduced ICAM-1 expression for blocked THP-1 monocyte adhesion to BEAS-2B cells. Furthermore, astragaloside IV attenuated the phosphorylation of MAPK, and reduced the translocation of p65 into the nucleus. Astragaloside IV could increase the expression of HO-1 and Nrf2 for promoting the oxidant protective effect. CONCLUSION Aastragaloside IV has an anti-inflammatory and oxidative effect via regulated NF-κB, MAPK and HO-1/Nrf2 signalling pathways in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Shih-Hai Liu
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yi Huang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
4
|
In vitro impact preliminary assessment of airborne particulate from metalworking and woodworking industries. Sci Rep 2021; 11:20181. [PMID: 34642423 PMCID: PMC8511069 DOI: 10.1038/s41598-021-99815-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023] Open
Abstract
Inhalation is the main route of exposure to airborne pollutants. To evaluate the safety and assess the risks of occupational hazards different testing approaches are used. 3D airway epithelial tissues allow to mimic exposure conditions in vitro, generates human-relevant toxicology data, allows to elucidate the mode of action of pollutants. Gillian3500 pumps were used to collect the airborne particulate from woodworking and metalworking environments. EpiAirway tissues were used to model half working day (4 h), full working day (8 h), and 3 working day exposures to occupational pollutants. Tissue viability was assessed using an MTT assay. For preliminary assessment, RT-qPCR analyses were performed to analyze the expression of gelsolin, caspase-3, and IL-6. Tissue morphology was assessed by hematoxylin/eosin staining. An effect on the proliferation of lung epithelial cell line A549 was assessed. Acute exposure to workspace pollutants slightly affected tissue viability and did not change the morphology. No inhibiting effect was observed on the proliferation of A549 cells. Preliminary analysis showed that both types of particles suppressed the expression of gelsolin, with the effect of metalworking samples being more pronounced. A slight reduction in caspase-3 expression was observed. Particles from metalworking suppressed IL-6 expression.
Collapse
|
5
|
Bianchi M, Sivarajan R, Walles T, Hackenberg S, Steinke M. Susceptibility of primary human airway epithelial cells to Bordetella pertussis adenylate cyclase toxin in two- and three-dimensional culture conditions. Innate Immun 2020; 27:89-98. [PMID: 33317363 PMCID: PMC7780358 DOI: 10.1177/1753425920979354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The human pathogen Bordetella pertussis targets the respiratory epithelium and causes whooping cough. Its virulence factor adenylate cyclase toxin (CyaA) plays an important role in the course of infection. Previous studies on the impact of CyaA on human epithelial cells have been carried out using cell lines derived from the airways or the intestinal tract. Here, we investigated the interaction of CyaA and its enzymatically inactive but fully pore-forming toxoid CyaA-AC– with primary human airway epithelial cells (hAEC) derived from different anatomical sites (nose and tracheo-bronchial region) in two-dimensional culture conditions. To assess possible differences between the response of primary hAEC and respiratory cell lines directly, we included HBEC3-KT in our studies. In comparative analyses, we studied the impact of both the toxin and the toxoid on cell viability, intracellular cAMP concentration and IL-6 secretion. We found that the selected hAEC, which lack CD11b, were differentially susceptible to both CyaA and CyaA-AC–. HBEC3-KT appeared not to be suitable for subsequent analyses. Since the nasal epithelium first gets in contact with airborne pathogens, we further studied the effect of CyaA and its toxoid on the innate immunity of three-dimensional tissue models of the human nasal mucosa. The present study reveals first insights in toxin–cell interaction using primary hAEC.
Collapse
Affiliation(s)
- Maria Bianchi
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
| | - Rinu Sivarajan
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
| | - Thorsten Walles
- Department of Thoracic Surgery, University Medicine Magdeburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Germany
| | - Maria Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
| |
Collapse
|
6
|
Paplinska-Goryca M, Misiukiewicz-Stepien P, Nejman-Gryz P, Proboszcz M, Mlacki M, Gorska K, Krenke R. Epithelial-macrophage-dendritic cell interactions impact alarmins expression in asthma and COPD. Clin Immunol 2020; 215:108421. [PMID: 32302698 DOI: 10.1016/j.clim.2020.108421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/05/2020] [Accepted: 04/11/2020] [Indexed: 11/30/2022]
Abstract
In the respiratory system macrophages and dendritic cells collaborate as sentinels against foreign particulate antigens. The study used a triple-cell co-culture model, utilizing nasal epithelial cells, along with: monocyte derived macrophages (moMφs), and monocyte derived DCs (moDCs). Cell cultures from 15 controls, 14 asthma and 11 COPD patients were stimulated with IL-13 and poly I:C for 24 h. Co-cultivation of epithelial cells with moMφs and moDCs increased TSLP level only in asthma and the effect of IL-13 and poly I:C stimulation differed in all groups. Asthma epithelial cells expressed higher level of receptors TSLPR, ST2 and IL-17RA than controls and increased number of ST2 + ciliated and IL17RA + secretory cells. Cytokine expression in respiratory epithelium may be influenced by structural and immunological cell interaction. TSLP pathway may be associated with secretory, while IL-33 with ciliated cells. The impaired function of respiratory epithelium may impact cell-to-cell interactions in asthma.
Collapse
Affiliation(s)
| | | | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Poland
| | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Poland
| | | | - Katarzyna Gorska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Poland
| |
Collapse
|
7
|
Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Martin EM, Clapp PW, Rebuli ME, Pawlak EA, Glista-Baker E, Benowitz NL, Fry RC, Jaspers I. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am J Physiol Lung Cell Mol Physiol 2016; 311:L135-44. [PMID: 27288488 DOI: 10.1152/ajplung.00170.2016] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/06/2016] [Indexed: 01/17/2023] Open
Abstract
Exposure to cigarette smoke is known to result in impaired host defense responses and immune suppressive effects. However, the effects of new and emerging tobacco products, such as e-cigarettes, on the immune status of the respiratory epithelium are largely unknown. We conducted a clinical study collecting superficial nasal scrape biopsies, nasal lavage, urine, and serum from nonsmokers, cigarette smokers, and e-cigarette users and assessed them for changes in immune gene expression profiles. Smoking status was determined based on a smoking history and a 3- to 4-wk smoking diary and confirmed using serum cotinine and urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels. Total RNA from nasal scrape biopsies was analyzed using the nCounter Human Immunology v2 Expression panel. Smoking cigarettes or vaping e-cigarettes resulted in decreased expression of immune-related genes. All genes with decreased expression in cigarette smokers (n = 53) were also decreased in e-cigarette smokers. Additionally, vaping e-cigarettes was associated with suppression of a large number of unique genes (n = 305). Furthermore, the e-cigarette users showed a greater suppression of genes common with those changed in cigarette smokers. This was particularly apparent for suppressed expression of transcription factors, such as EGR1, which was functionally associated with decreased expression of 5 target genes in cigarette smokers and 18 target genes in e-cigarette users. Taken together, these data indicate that vaping e-cigarettes is associated with decreased expression of a large number of immune-related genes, which are consistent with immune suppression at the level of the nasal mucosa.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Phillip W Clapp
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Meghan E Rebuli
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Erica A Pawlak
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - Ellen Glista-Baker
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - Neal L Benowitz
- Division of Clinical Pharmacology, Departments of Medicine and Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and Division of Clinical Pharmacology, Departments of Medicine and Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California
| |
Collapse
|
9
|
Huang WC, Wu SJ, Tu RS, Lai YR, Liou CJ. Phloretin inhibits interleukin-1β-induced COX-2 and ICAM-1 expression through inhibition of MAPK, Akt, and NF-κB signaling in human lung epithelial cells. Food Funct 2016; 6:1960-7. [PMID: 25996641 DOI: 10.1039/c5fo00149h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phloretin, a flavonoid isolated from the apple tree, is reported to have anti-inflammatory, anti-oxidant, and anti-adiposity effects. In this study, we evaluated the suppressive effects of phloretin on intercellular adhesion molecule 1 (ICAM-1) and cyclooxygenase (COX)-2 expression in IL-1β-stimulated human lung epithelial A549 cells. The cells were pretreated with various concentrations of phloretin (3-100 μM), followed by induced inflammation by IL-1β. Phloretin inhibited levels of prostaglandin E2, decreased COX-2 expression, and suppressed IL-8, monocyte chemotactic protein 1, and IL-6 production. It also decreased ICAM-1 gene and protein expression and suppressed monocyte adhesion to inflammatory A549 cells. Phloretin also significantly inhibited Akt and mitogen-activated protein kinase (MAPK) phosphorylation and decreased nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. In addition, ICAM-1 and COX-2 expression was suppressed by pretreatment with both MAPK inhibitors and phloretin in inflammatory A549 cells. However, phlorizin, a derivative of phloretin, did not suppress the inflammatory response in IL-1β-stimulated A549 cells. These results suggest that phloretin might have an anti-inflammatory effect by inhibiting proinflammatory cytokine, COX-2, and ICAM-1 expression via blocked NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33303, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Larose MC, Chakir J, Archambault AS, Joubert P, Provost V, Laviolette M, Flamand N. Correlation between CCL26 production by human bronchial epithelial cells and airway eosinophils: Involvement in patients with severe eosinophilic asthma. J Allergy Clin Immunol 2015; 136:904-13. [PMID: 25936567 DOI: 10.1016/j.jaci.2015.02.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/13/2015] [Accepted: 02/17/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND High pulmonary eosinophil counts are associated with asthma symptoms and severity. Bronchial epithelial cells (BECs) produce CC chemokines, notably CCL26 (eotaxin-3), which recruits and activates eosinophils from asthmatic patients. This suggests that CCL26 production by BECs might be involved in persistent eosinophilia in patients with severe asthma despite treatment with high corticosteroid doses. OBJECTIVE We sought to determine whether CCL26 levels correlate with eosinophilia and asthma severity. METHODS Human CC chemokine expression was assessed by means of quantitative PCR or a quantitative PCR array in vehicle- or IL-13-treated BECs. CCL26 was quantitated by means of ELISA. Immunohistochemistry analyses of CCL26 and major basic protein were done on bronchial biopsy specimens. RESULTS IL-13 selectively induced CCL26 expression by BECs. This increase was time-dependent and more prominent in BECs from patients with severe eosinophilic asthma. CCL26 levels measured in supernatants of IL-13-stimulated BECs also increased with asthma severity as follows: patients with severe eosinophilic asthma > patients with mild asthma ≈ healthy subjects. Immunohistochemistry analyses of bronchial biopsy specimens confirmed increased levels of CCL26 in the epithelium of patients with mild and those with severe eosinophilic asthma. Tissue eosinophil counts did not correlate with CCL26 staining. However, sputum CCL26 levels significantly correlated with sputum eosinophil counts (P < .0001), suggesting that CCL26 participates in the movement of eosinophils from the tissues to the airway lumen. CONCLUSIONS These results show a relation between CCL26 production by IL-13-stimulated BECs, sputum eosinophil counts, and asthma severity. They also suggest a role for CCL26 in the sustained inflammation observed in patients with severe eosinophilic asthma and reveal CCL26 as a potential target for treating patients with eosinophilic asthma that are refractory to classic therapies.
Collapse
Affiliation(s)
- Marie-Chantal Larose
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Jamila Chakir
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Philippe Joubert
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Véronique Provost
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
11
|
Management of chronic rhinosinusitis in asthma patients: is there still a debate? Curr Allergy Asthma Rep 2014; 14:440. [PMID: 24682772 DOI: 10.1007/s11882-014-0440-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The united airway concept in which upper and lower respiratory conditions are present in one patient requires special consideration. There is some evidence linking chronic rhinosinusitis and asthma, but a good understanding of the pathophysiology and combined management is still lacking, a fact that leads to discussion. Bronchial asthma is more prevalent in patients who suffer chronic rhinosinusitis. On the other hand, patients with asthma have a greater prevalence of rhinosinusitis than patients without asthma. The effect of chronic rhinosinusitis in patients with or without nasal polyps on asthma treatment, whether medical or surgical, is controversial. Some studies show worsening, other trials improvement, and others no effect. Direct comparisons between surgical and medical treatments are few. Most of the current literature available about this intriguing combination does not provide a good level of evidence. Thus, randomized clinical trials should be performed to better understand the management when asthma and CRS occur together. This review aims to summarize the current state of this association regarding the effects of different types of treatment.
Collapse
|