1
|
Li L, Liu J, Lu J, Wu J, Zhang X, Ma T, Wu X, Zhu Q, Chen Z, Tai Z. Interventions in cytokine signaling: novel horizons for psoriasis treatment. Front Immunol 2025; 16:1573905. [PMID: 40303401 PMCID: PMC12037536 DOI: 10.3389/fimmu.2025.1573905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Intricate interactions between immune cells and cytokines define psoriasis, a chronic inflammatory skin condition that is immunological-mediated. Cytokines, including interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, and transforming growth factor-β (TGF-β), are essential for controlling cellular activity and immunological responses, maintaining homeostasis and contributing to the pathogenesis of psoriasis. These molecules modulate the immune microenvironment by either promoting or suppressing inflammation, which significantly impacts therapeutic outcomes. Recent research indicates that treatment strategies targeting cytokines and chemokines have significant potential, offering new approaches for regulating the immune system, inhibiting the progression of psoriasis, and reducing adverse effects of traditional therapies. This review consolidates current knowledge on cytokine and chemokine signaling pathways in psoriasis and examines their significance in treatment. Specific attention is given to cytokines like IL-17, IL-23, and TNF-α, underscoring the necessity for innovative therapies to modulate these pathways and address inflammatory processes. This review emphasizes the principal part of cytokines in the -pathological process of psoriasis and explores the challenges and opportunities they present for therapeutic intervention. Furthermore, we examine recent advancements in targeted therapies, with a particular focus on monoclonal antibodies, in ongoing research and clinical trials.
Collapse
Affiliation(s)
- Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Jiaye Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Tianyou Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Keller J, Danis J, Krehl I, Girousi E, Satoh TK, Meier-Schiesser B, Kemény L, Széll M, Wong WWL, Pascolo S, French LE, Kündig TM, Mellett M. LL37 complexed to double-stranded RNA induces RIG-I-like receptor signalling and Gasdermin E activation facilitating IL-36γ release from keratinocytes. Cell Death Dis 2025; 16:198. [PMID: 40121229 PMCID: PMC11929817 DOI: 10.1038/s41419-025-07537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The Interleukin-36 (IL-36) cytokine family have emerged as important players in mounting an inflammatory response at epithelial barriers and tailoring appropriate adaptive immune responses. As members of the Interleukin-1 superfamily, IL-36 cytokines lack a signal peptide for conventional secretion and require extracellular proteolysis to generate bioactive cytokines. Although the IL-36 family plays an important role in the pathogenesis of plaque and pustular psoriasis, little is known about the release mechanisms of these cytokines from keratinocytes and the physiological stimuli involved. Nucleic acid released from damaged or dying keratinocytes initiates early inflammatory signals that result in the breaking of tolerance associated with psoriasis pathogenesis onset. Cathelicidin peptide, LL37 binds to DNA or double-stranded RNA (dsRNA) and activates a type I Interferon responses in plasmacytoid dendritic cells and keratinocytes. Here, we demonstrate that LL37 binds to dsRNA and induces IL-36γ release from human primary keratinocytes. LL37/dsRNA complexes activate RIG-I-like Receptor signalling, resulting in Caspase-3 and Gasdermin E (GSDME) cleavage. Subsequent GSDME pore formation facilitates IL-36γ release. This response is magnified by priming with psoriasis-associated cytokines, IL-17A and IFNγ. IL-36γ release in this manner is largely independent of cell death in primary keratinocytes and lacked extracellular proteolysis of IL-36γ. Conversely, transfection of keratinocytes directly with dsRNA synthetic analogue, Poly(I:C) induces NLRP1 inflammasome activation, which facilitates IL-36γ expression and release in a GSDMD-dependent manner. Inflammasome-associated cell death also enables extracellular processing of IL-36γ by the release of keratinocyte-derived proteases. These data highlight the distinct responses triggered by dsRNA sensors in keratinocytes. Depending on the inflammatory context and magnitude of the exogenous threat, keratinocytes will release IL-36γ coupled with cell death and extracellular cleavage or release the inactive pro-form, which requires subsequent processing by neutrophil proteases to unleash full biological activity, as occurring in psoriatic skin. Cytoplasmic sensing of dsRNA in keratinocytes mediates IL-36γ release via caspase activity and GSDM pore formation Keratinocytes release IL-36γ upon stimulation with intracellular dsRNA alone or complexed to the psoriasis-associated cathelicidin anti-microbial peptide LL37. Left: Transfected dsRNA triggers NLRP1 inflammasome assembly and IL-1β release, which can enhance IL-36γ expression, resulting in IL-36γ release and extracellular cleavage by released proteases. Right: LL37/dsRNA complexes activate a MDA5-MAVS pathway facilitating the release of IL-36γ through Caspase-3 activation and GSDME pore formation.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Judit Danis
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Department of Immunology, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Isabella Krehl
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Eleftheria Girousi
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, LMU Münich, Germany
| | - Barbara Meier-Schiesser
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Lajos Kemény
- Department of Immunology, University of Szeged, Szeged, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- HCEMM-USZ Skin Research Group, University of Szeged, Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Functional Clinical Genetics Research Group, University of Szeged, Szeged, Hungary
| | - W Wei-Lynn Wong
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Münich, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, USA
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland.
| |
Collapse
|
3
|
Saavedra-Almarza J, Malgue F, García-Gómez M, Gouët S, Edwards N, Palma V, Rosemblatt M, Sauma D. Unveiling the role of resident memory T cells in psoriasis. J Leukoc Biol 2025; 117:qiae254. [PMID: 39689031 DOI: 10.1093/jleuko/qiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by periods of remission and relapse. In this pathology, keratinocytes, dendritic cells, and different subpopulations of T cells are critical to developing psoriatic lesions. Although current treatments can reduce symptoms, they reappear in previously injured areas months after stopping treatment. Evidence has pointed out that besides T-helper 17 cells, other T-cell subsets may be involved in relapses. This review focuses on the leading evidence linking resident memory T cells and P2X7 receptor to psoriasis' pathogenesis and their role in this pathology. Finally, we discuss some of the most widely used experimental murine models and novel strategies to investigate further the role of resident memory T cells in psoriasis.
Collapse
Affiliation(s)
- Juan Saavedra-Almarza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Felipe Malgue
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Moira García-Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Solange Gouët
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Natalie Edwards
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Providencia, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
- Centro Ciencia & Vida, Av. del Valle Norte 725, Huechuraba, Santiago, Chile
| |
Collapse
|
4
|
Velcicky J, Cremosnik G, Scheufler C, Meier P, Wirth E, Felber R, Ramage P, Schaefer M, Kaiser C, Lehmann S, Kutil R, Singeisen S, Mueller-Ristig D, Popp S, Cebe R, Lehr P, Kaupmann K, Erbel P, Röhn TA, Giovannoni J, Dumelin CE, Martiny-Baron G. Discovery of selective low molecular weight interleukin-36 receptor antagonists by encoded library technologies. Nat Commun 2025; 16:1669. [PMID: 39955284 PMCID: PMC11829961 DOI: 10.1038/s41467-025-56601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/20/2025] [Indexed: 02/17/2025] Open
Abstract
Interleukin-36 receptor (IL-36R), belonging to the IL-1 receptor family, is crucial for host defense and tissue repair. Targeting cytokine receptors with low molecular weight (LMW) compounds remains challenging due to their interaction with the large surface area of cytokine. In this study, two encoded library technologies are used to identify LMW molecules binding to IL-36R's extracellular domain. The mRNA-based display technique identifies 36R-P138, a macrocyclic peptide blocking IL-36R signaling. Importantly, its optimized analog (36R-P192) also effectively suppresses expression of marker genes induced by IL-36 in human skin biopsies. DNA encoded libraries (DEL) screening delivers 36R-D481, a high affinity LMW IL-36R binder, effectively inhibiting IL-36 signaling. X-ray crystallography analysis reveals that both the cyclic peptide and DEL-compound bind to the IL-36R's D1 domain, potentially disrupting IL-36 cytokine binding. This study demonstrates that it is possible to target a cytokine receptor within the IL-1 receptor family using a small molecule ( < 1000 Da).
Collapse
Affiliation(s)
- Juraj Velcicky
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland.
| | - Gregor Cremosnik
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Clemens Scheufler
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Peter Meier
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Emmanuelle Wirth
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Richard Felber
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Paul Ramage
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Michael Schaefer
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Christian Kaiser
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Sylvie Lehmann
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Raphaela Kutil
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Sandra Singeisen
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | | | - Simone Popp
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Regis Cebe
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Philipp Lehr
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Klemens Kaupmann
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Paulus Erbel
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Till A Röhn
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | - Jerome Giovannoni
- Novartis Biomedical Research, Novartis Campus, CH-4002, Basel, Switzerland
| | | | | |
Collapse
|
5
|
Diaz-Barreiro A, Talabot-Ayer D, Huard A, Cereghetti G, Tonacini J, Maillasson M, Francés-Monerris A, Mortier E, Palmer G. Full-length and N-terminally truncated recombinant interleukin-38 variants are similarly inefficient in antagonizing interleukin-36 and interleukin-1 receptors. Cell Commun Signal 2025; 23:34. [PMID: 39833821 PMCID: PMC11744908 DOI: 10.1186/s12964-025-02035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Interleukin (IL)-38 is an IL-1 family cytokine that was proposed to exert anti-inflammatory effects. However, its mechanisms of action are not well understood and the identity of the IL-38 receptor(s) remains debated. Proposed candidates include the IL-1 receptor (IL-1R1), the IL-36 receptor (IL-36R) and the orphan receptor IL-1RAPL1. Yet, in literature, IL-38 is often presented as an IL-36R antagonist. METHODS The N-terminus of the IL-38 protein produced in a human keratinocyte cell line and of endogenous epidermal IL-38 isolated from healthy human skin was characterized by mass spectrometry. The effects of various recombinant forms of IL-38 on IL-36R- and IL-1R1-mediated responses were assessed in IL-36R HEK Blue reporter cells and in a normal human keratinocyte cell line. IL-8 and IL-6 production was quantified by ELISA. Binding of recombinant IL-38 proteins to the IL-36R was assessed by surface plasmon resonance. RESULTS Analysis of its native N-terminus revealed that the IL-38 protein produced by human keratinocytes starts at cysteine 2. In cell-based assays, neither full-length amino acid 2-152 IL-38 nor two N-terminally truncated forms of the protein showed efficient antagonist activity on IL-36R- and IL-1R1-mediated responses. The recombinant IL-38 proteins bound to the IL-36R with only moderate affinity, which may provide a mechanistic explanation for inefficient IL-36R antagonism. CONCLUSIONS Our results argue against meaningful inhibitory effects of any of the recombinant IL-38 variants tested on IL-36R or IL-1R1-mediated responses. The mechanisms underlying reported anti-inflammatory effects of IL-38 are thus still unclear, but seem unlikely to be mediated by classical IL-36R or IL-1R1 antagonism.
Collapse
Affiliation(s)
- Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Dominique Talabot-Ayer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Arnaud Huard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Gea Cereghetti
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jenna Tonacini
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI 2 NA, Nantes, France
- Nantes Université, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, Imp@ct Platform, Inserm, Nantes, France
| | | | - Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI 2 NA, Nantes, France
- Nantes Université, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, Imp@ct Platform, Inserm, Nantes, France
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, CH-1211, Switzerland.
- Geneva Centre for Inflammation Research, Geneva, Switzerland.
| |
Collapse
|
6
|
Qin X, Wang C, Li J, Zhang X, Zhang T. Sublingual Immunotherapy Decreased the Serum Levels of Interleukin-36 γ in Allergic Rhinitis. Mediators Inflamm 2024; 2024:9692031. [PMID: 39544181 PMCID: PMC11561173 DOI: 10.1155/2024/9692031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Background: Allergy immunotherapy (AIT), a treatment approach for allergic rhinitis (AR), is recognized for its potential to modify the disease course beyond mere symptom relief. Interleukin-36γ (IL-36γ), a key player in immune responses, has been implicated in promoting eosinophilic inflammation in AR by activating eosinophils. We aimed to investigate the effect of IL-36γ on group II lymphoid cell (ILC2) in AR patients who underwent sublingual immunotherapy (SLIT). Methods: Twenty-four AR patients were enrolled and administered with SLIT. Serum proteins of IL-36γ, interleukin-5 (IL-5), and interleukin-13 (IL-13) during SLIT were quantitatively assessed using enzyme-linked immunosorbent assay (ELISA). The proportion of ILC2 was determined by flow cytometry. Sorted ILC2s were stimulated by IL-36γ and ILC2 cell differentiation, and type II cytokines expression were examined. Results: SLIT treatment decreased the serum protein levels of IL-36γ, IL-5, IL-13, and the proportion of ILC2 significantly. IL-36γ suppressed the proliferation of ILC2 by inhibiting the levels of ILC2 transcription factor. IL-36γ also inhibited IL-5 and IL-13 expression from ILC2. Conclusion: The changes of IL-36γ during SLIT were related to the inhibited function of ILC2, implying that IL-36γ may be used as a new biomarker for monitoring the efficacy of SLIT in AR.
Collapse
Affiliation(s)
- Xiaowei Qin
- Department of Otolaryngology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunrui Wang
- Department of Otolaryngology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jueqi Li
- Department of Otolaryngology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaopeng Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianhong Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Keller J, O' Siorain JR, Kündig TM, Mellett M. Molecular aspects of Interleukin-36 cytokine activation and regulation. Biochem Soc Trans 2024; 52:1591-1604. [PMID: 38940747 DOI: 10.1042/bst20230548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Interleukin-36 (IL-36) cytokines are structurally similar to other Interleukin-1 superfamily members and are essential to convey inflammatory responses at epithelial barriers including the skin, lung, and gut. Due to their potent effects on immune cells, IL-36 cytokine activation is regulated on multiple levels, from expression and activation to receptor binding. Different IL-36 isoforms convey specific responses as a consequence of particular danger- or pathogen-associated molecular patterns. IL-36 expression and activation are regulated by exogenous pathogens, including fungi, viruses and bacteria but also by endogenous factors such as antimicrobial peptides or cytokines. Processing of IL-36 into potent bioactive forms is necessary for host protection but can elevate tissue damage. Indeed, exacerbated IL-36 signalling and hyperactivation are linked to the pathogenesis of diseases such as plaque and pustular psoriasis, emphasising the importance of understanding the molecular aspects regulating IL-36 activation. Here, we summarise facets of the electrochemical properties, regulation of extracellular cleavage by various proteases and receptor signalling of the pro-inflammatory and anti-inflammatory IL-36 family members. Additionally, this intriguing cytokine subfamily displays many characteristics that are unique from prototypical members of the IL-1 family and these key distinctions are outlined here.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Science, University of Zürich, 8091 Zürich, Switzerland
| | - James R O' Siorain
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
8
|
Huard A, Rodriguez E, Talabot-Ayer D, Weigert A, Palmer G. Interleukin-38 overexpression in keratinocytes limits desquamation but does not affect the global severity of imiquimod-induced skin inflammation in mice. Front Immunol 2024; 15:1387921. [PMID: 39119344 PMCID: PMC11306934 DOI: 10.3389/fimmu.2024.1387921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease that significantly impacts the patients' quality of life. Recent studies highlighted the function of the interleukin (IL)-1 family member IL-38 in skin homeostasis and suggested an anti-inflammatory role for this cytokine in psoriasis. In this study, we generated mice specifically overexpressing the IL-38 protein in epidermal keratinocytes. We confirmed IL-38 overexpression in the skin by Western blotting. We further detected the protein by ELISA in the plasma, as well as in conditioned media of skin explants isolated from IL-38 overexpressing mice, indicating that IL-38 produced in the epidermis is released from keratinocytes and can be found in the circulation. Unexpectedly, epidermal IL-38 overexpression did not impact the global severity of imiquimod (IMQ)-induced skin inflammation, Similarly, keratinocyte activation and differentiation in IMQ-treated skin were not affected by increased IL-38 expression and there was no global effect on local or systemic inflammatory responses. Nevertheless, we observed a selective inhibition of CXCL1 and IL-6 production in response to IMQ in IL-38 overexpressing skin, as well as reduced Ly6g mRNA levels, suggesting decreased neutrophil infiltration. Epidermal IL-38 overexpression also selectively affected the desquamation process during IMQ-induced psoriasis, as illustrated by reduced plaque formation. Taken together, our results validate the generation of a new mouse line allowing for tissue-specific IL-38 overexpression. Interestingly, epidermal IL-38 overexpression selectively affected specific disease-associated readouts during IMQ-induced psoriasis, suggesting a more complex role of IL-38 in the inflamed skin than previously recognized. In particular, our data highlight a potential involvement of IL-38 in the regulation of skin desquamation.
Collapse
Affiliation(s)
- Arnaud Huard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Emiliana Rodriguez
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Dominique Talabot-Ayer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| |
Collapse
|
9
|
Ahmad F, Alam MA, Ansari AW, Jochebeth A, Leo R, Al-Abdulla MN, Al-Khawaga S, AlHammadi A, Al-Malki A, Al Naama K, Ahmad A, Buddenkotte J, Steinhoff M. Emerging Role of the IL-36/IL-36R Axis in Multiple Inflammatory Skin Diseases. J Invest Dermatol 2024; 144:206-224. [PMID: 38189700 DOI: 10.1016/j.jid.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36β, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Wahid Ansari
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Khalifa Al Naama
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jörg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Medical School, Qatar University, Doha, Qatar; Weill Cornell Medicine, Weill Cornell University, New York, New York, USA; Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
10
|
Li L, Lu J, Liu J, Wu J, Zhang X, Meng Y, Wu X, Tai Z, Zhu Q, Chen Z. Immune cells in the epithelial immune microenvironment of psoriasis: emerging therapeutic targets. Front Immunol 2024; 14:1340677. [PMID: 38239345 PMCID: PMC10794746 DOI: 10.3389/fimmu.2023.1340677] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Psoriasis is a chronic autoimmune inflammatory disease characterized by erroneous metabolism of keratinocytes. The development of psoriasis is closely related to abnormal activation and disorders of the immune system. Dysregulated skin protective mechanisms can activate inflammatory pathways within the epithelial immune microenvironment (EIME), leading to the development of autoimmune-related and inflammatory skin diseases. In this review, we initially emphasized the pathogenesis of psoriasis, paying particular attention to the interactions between the abnormal activation of immune cells and the production of cytokines in psoriasis. Subsequently, we delved into the significance of the interactions between EIME and immune cells in the emergence of psoriasis. A thorough understanding of these immune processes is crucial to the development of targeted therapies for psoriasis. Finally, we discussed the potential novel targeted therapies aimed at modulating the EIME in psoriasis. This comprehensive examination sheds light on the intricate underlying immune mechanisms and provides insights into potential therapeutic avenues of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jiaye Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Yu Meng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Fischer B, Kübelbeck T, Kolb A, Ringen J, Waisman A, Wittmann M, Karbach S, Kölsch SM, Kramer D. IL-17A-driven psoriasis is critically dependent on IL-36 signaling. Front Immunol 2023; 14:1256133. [PMID: 38162658 PMCID: PMC10754973 DOI: 10.3389/fimmu.2023.1256133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Plaque psoriasis is an autoinflammatory and autoimmune skin disease, affecting 1-3% of the population worldwide. Previously, high levels of IL-36 family cytokines were found in psoriatic skin lesions, thereby contributing to keratinocyte hyperproliferation and infiltration of immune cells such as neutrophils. While treatment with anti-IL36 receptor (IL36R) antibodies was recently approved for generalized pustular psoriasis (GPP), it remains unclear, if targeting the IL36R might also inhibit plaque psoriasis. Here we show that antibody-mediated inhibition of IL36R is sufficient to suppress imiquimod-induced psoriasis-like skin inflammation and represses the disease's development in a model that depends on IL-17A overexpression in the skin. Importantly, treatment with anti-IL36R antibodies inhibited skin inflammation and attenuated psoriasis-associated, systemic inflammation. This is possibly due to a widespread effect of IL36R inhibition, which not only suppresses pro-inflammatory gene expression in keratinocytes, but also the activation of other immune cells such as T-cells or dendritic cells. In conclusion, we propose that inhibition of the IL-36 signaling pathway might constitute an attractive, alternative approach for treating IL-17A-driven psoriasis and psoriasis-linked comorbidities.
Collapse
Affiliation(s)
- Berenice Fischer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Tanja Kübelbeck
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Antonia Kolb
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Julia Ringen
- Center for Cardiology- Cardiology I, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ari Waisman
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Miriam Wittmann
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Susanne Karbach
- Center for Cardiology- Cardiology I, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) – Partner Site Rhine-Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stephan Marcus Kölsch
- Boehringer Ingelheim Pharma GmbH & Co. KG, Medical Affairs, Ingelheim am Rhein, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
12
|
Hawkes JE, Visvanathan S, Krueger JG. The role of the interleukin-36 axis in generalized pustular psoriasis: a review of the mechanism of action of spesolimab. Front Immunol 2023; 14:1292941. [PMID: 38077370 PMCID: PMC10703363 DOI: 10.3389/fimmu.2023.1292941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Generalized pustular psoriasis (GPP) is a rare, chronic, inflammatory skin disorder characterized by recurrent flares associated with skin erythema, desquamation, and widespread superficial sterile pustules, which may be severe ("lakes of pus"). Systemic symptoms are often present, including malaise, fever, and skin pain. In GPP, innate immune responses are driven by abnormal activation of the interleukin (IL)-36-chemokine-neutrophil axis and excessive neutrophil infiltration. This review highlights the IL-36 pathway in the context of the IL-1 superfamily and describes how unopposed IL-36 signaling can lead to the development of GPP. Targeted inhibition of the IL-36 receptor (IL-36R) is an attractive therapeutic strategy in the treatment of GPP, including flare prevention and sustained disease control. Spesolimab is a first-in-class, humanized, monoclonal antibody that binds specifically to the IL-36R and antagonizes IL-36 signaling. Spesolimab was approved by the US Food and Drug Administration in September 2022 to treat GPP flares in adults and was subsequently approved for GPP flare treatment in other countries across the world. Anti-IL-36R therapy, such as spesolimab, can mitigate flares and address flare prevention in GPP, presumably through rebalancing IL-36 signaling and modulating the pro-inflammatory response of the downstream effectors.
Collapse
Affiliation(s)
- Jason E. Hawkes
- Integrative Skin Science and Research and Pacific Skin Institute, Sacramento, CA, United States
| | - Sudha Visvanathan
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
13
|
Zhang M, Qin X, Gao Y, Liang J, Xiao D, Zhang X, Zhou M, Lin Y. Transcutaneous Immunotherapy for RNAi: A Cascade-Responsive Decomposable Nanocomplex Based on Polyphenol-Mediated Framework Nucleic Acid in Psoriasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303706. [PMID: 37797168 PMCID: PMC10667853 DOI: 10.1002/advs.202303706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Skin is the first barrier against external threats, and skin immune dysfunction leads to multiple diseases. Psoriasis is an inflammatory, chronic, common, immune-related skin disease that affects more than 125 million people worldwide. RNA interference (RNAi) therapy is superior to traditional therapies, but rapid degradation and poor cell uptake are the greatest obstacles to its clinical transformation. The transdermal delivery of siRNA and controllable assembly/disassembly of nanodrug delivery systems can maximize the therapeutic effect. Tetrahedral framework nucleic acid (tFNA) is undoubtedly the best carrier for the transdermal transport of genes due to its excellent noninvasive transdermal effect and editability. The authors combine acid-responsive tannic acid (TA), RNase H-responsive sequences, siRNA, and tFNA into a novel transdermal RNAi drug with controllable assembly and disassembly: STT. STT has heightened resistance to enzyme, serum, and lysosomal degradation, and its size is similar to that of tFNA, enabling easy transdermal transport. After transdermal administration, STT can specifically silence nuclear factor kappa-B (NF-κB) p65, thereby maintaining the stability of the skin's microenvironment and reshaping normal skin immune defense. This work demonstrates the advantages of STT in RNAi therapy and the potential for future treatment of skin-related diseases.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Jiale Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiaolin Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Mi Zhou
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
14
|
Givony T, Leshkowitz D, Del Castillo D, Nevo S, Kadouri N, Dassa B, Gruper Y, Khalaila R, Ben-Nun O, Gome T, Dobeš J, Ben-Dor S, Kedmi M, Keren-Shaul H, Heffner-Krausz R, Porat Z, Golani O, Addadi Y, Brenner O, Lo DD, Goldfarb Y, Abramson J. Thymic mimetic cells function beyond self-tolerance. Nature 2023; 622:164-172. [PMID: 37674082 DOI: 10.1038/s41586-023-06512-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection1.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells2-7. Here, using multiomic analysis, we provide further insights into the functional and developmental diversity of TECs in mice, and reveal a detailed atlas of the TEC compartment according to cell transcriptional states and chromatin landscapes. Our analysis highlights unconventional TEC subsets that are similar to functionally well-defined parenchymal populations, including endocrine cells, microfold cells and myocytes. By focusing on the endocrine and microfold TEC populations, we show that endocrine TECs require Insm1 for their development and are crucial to maintaining thymus cellularity in a ghrelin-dependent manner; by contrast, microfold TECs require Spib for their development and are essential for the generation of thymic IgA+ plasma cells. Collectively, our study reveals that medullary TECs have the potential to differentiate into various types of molecularly distinct and functionally defined cells, which not only contribute to the induction of central tolerance, but also regulate the homeostasis of other thymus-resident populations.
Collapse
Affiliation(s)
- Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Diana Del Castillo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Shir Nevo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Gruper
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Razi Khalaila
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Dobeš
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Keren-Shaul
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | | | - Ziv Porat
- Flow Cytometry Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- MICC Cell Observatory, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- MICC Cell Observatory, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Chen Q, Gao N, Yu FS. Interleukin-36 Receptor Signaling Attenuates Epithelial Wound Healing in C57BL/6 Mouse Corneas. Cells 2023; 12:1587. [PMID: 37371057 PMCID: PMC10297323 DOI: 10.3390/cells12121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The IL-36 cytokines are known to play various roles in mediating the immune and inflammatory response to tissue injury in a context-dependent manner. This study investigated the role of IL-36R signaling in mediating epithelial wound healing in normal (NL) and diabetic (DM) C57BL/6 mouse corneas. The rate of epithelial wound closure was significantly accelerated in IL-36 receptor-deficient (IL-36R-/-) compared to wild-type (WT) mice. Wounding increased IL-36α and -36γ but repressed IL-36R antagonist (IL-36Ra) expression in B6 mouse corneal epithelial cells. The wound-induced proinflammatory cytokines CXCL1 and CXCL2 were dampened, while the antimicrobial peptides (AMPs) S100A8 and A9 were augmented in IL-36R-/- mouse corneas. Intriguingly, the expression of AMP LCN2 was augmented at the mRNA level. LCN2 deficiency resulted in an acceleration of epithelial wound healing. IL-36R deficiency also greatly increased the healing rate of the corneal epithelial wound in DM mice. IL-36R deficiency also suppressed IL-1β, IL-1Ra, and ICAM expression in unwounded-DM mice and wounded NL corneas. Opposing IL-1β and ICAM, the expression of IL-Ra in DM corneas of IL-36R-/- mice was augmented. The presence of recombinant IL-1Ra and IL-36Ra accelerated epithelial wound closure in T1DM corneas of B6 mice. Our study revealed an unprecedented role of IL-36R signaling in controlling corneal epithelial wound healing in normal (NL) and diabetic (DM) mice. Our data suggest that IL-36Ra, similar to IL-1Ra, might be a therapeutic reagent for improving wound healing and reducing wound-associated ulceration, particularly in the cornea and potentially in the skin of DM patients.
Collapse
Affiliation(s)
| | | | - Fu-Shin Yu
- Departments of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA (N.G.)
| |
Collapse
|
16
|
Shen Q, Liu R, Tan S, Xu X, Fang J, Li R. Advances in pathogenesis and nanoparticles (NPs)-mediated treatment of psoriasis. Front Immunol 2022; 13:1089262. [PMID: 36618400 PMCID: PMC9815006 DOI: 10.3389/fimmu.2022.1089262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Psoriasis is a chronic papulosquamous skin disease with an autoimmune pathogenic traits and strong genetic predisposition. In the past few decades, with the rapid development of molecular biology and cell biology, the inherent pathogenesis of psoriasis has been gradually elucidated, in which cytokine inflammatory loops, cell signaling pathways, and epigenetic factors such as miRNAs have been demonstrated to play important roles in regulating the development and progression of psoriasis. More importantly, understanding the pathogenesis of psoriasis has promoted the development of effective treatment for psoriasis. In this review, we systemically summarized the molecular mechanisms regulating the development and progression psoriasis, introduced various therapeutics used for clinical psoriasis therapy, and highlighted the recent advances in nanoparticles (NPs)-mediated drug delivery for psoriasis treatment.
Collapse
Affiliation(s)
- Qian Shen
- Department of Pharmacy & Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rong Liu
- Department of Pharmacy & Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shiyu Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoding Xu
- Department of Pharmacy & Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China,*Correspondence: Rong Li, ; Junyue Fang, ; Xiaoding Xu,
| | - Junyue Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China,Cellular and Molecular Diagnostics Center, Sun Yat-Sen University, Guangzhou, Guangdong, China,*Correspondence: Rong Li, ; Junyue Fang, ; Xiaoding Xu,
| | - Rong Li
- Department of Pharmacy & Pharmacology and the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Rong Li, ; Junyue Fang, ; Xiaoding Xu,
| |
Collapse
|
17
|
Miura S, Garcet S, Li X, Cueto I, Salud-Gnilo C, Kunjravia N, Yamamura K, Gonzalez J, Murai-Yamamura M, Rambhia D, Krueger JG. Cathelicidin Antimicrobial Peptide LL37 Induces Toll-Like Receptor 8 and Amplifies IL-36γ and IL-17C in Human Keratinocytes. J Invest Dermatol 2022; 143:832-841.e4. [PMID: 36496195 DOI: 10.1016/j.jid.2022.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022]
Abstract
LL37 is produced by skin injury and bacterial infection and plays an important role in the early stages of psoriasis. In particular, the intracellular receptors toll-like receptors (TLR)3, TLR7, TLR8, and TLR9 are thought to be involved in the pathogenesis of psoriasis in conjunction with LL37, but the interaction between TLR7/8 and LL37 in keratinocytes (KCs) remains unclear. This study aimed to clarify the relationship between LL37 and TLR7/8 in KCs and their involvement in the pathogenetic pathways seen in psoriasis using cultured KCs and skin samples of patients with psoriasis. TLR7/8 was induced by LL37 in KCs. TLR8 but not TLR7 functionally induced many psoriasis-related molecules, whereas IL-17C was not altered by the blockade of TLR7/8. Although costimulation of LL37 with self-RNA/DNA did not show any interaction, LL37 itself would promote psoriasis-related genes. IL-36 receptor antagonistic antibody suppressed IL-17C induced by LL37. In psoriatic epidermis, LL37, TLRs, IL-17C, and IL-36γ expressions were increased and coexpressed with each other. Thus, we concluded that LL37 activates TLR8 in KCs and induces IL-17C through the induction of IL-36γ. Regulation of TLR8 or LL37 in KCs could be a potential therapeutic strategy for psoriatic inflammation.
Collapse
Affiliation(s)
- Shunsuke Miura
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Xuan Li
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Inna Cueto
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Charissa Salud-Gnilo
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Norma Kunjravia
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Kazuhiko Yamamura
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Juana Gonzalez
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Mika Murai-Yamamura
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Darshna Rambhia
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
18
|
Jin JQ, Wu D, Spencer R, Elhage KG, Liu J, Davis M, Hakimi M, Kumar S, Huang ZM, Bhutani T, Liao W. Biologic insights from single-cell studies of psoriasis and psoriatic arthritis. Expert Opin Biol Ther 2022; 22:1449-1461. [PMID: 36317702 DOI: 10.1080/14712598.2022.2142465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Psoriasis (PSO) and psoriatic arthritis (PSA) represent a large burden of global inflammatory disease, but sustained treatment response and early diagnosis remain challenging. Both conditions arise from complex immune cell dysregulation. Single-cell techniques, including single-cell RNA sequencing (scRNA-seq), have revolutionized our understanding of pathogenesis by illuminating heterogeneous cell populations and their interactions. AREAS COVERED We discuss the transcriptional profiles and cellular interactions unique to PSO/PSA affecting T cells, myeloid cells, keratinocytes, innate lymphoid cells, and stromal cells. We also review advances, limitations, and future challenges associated with single-cell studies. EXPERT OPINION Following analyses of 22 single-cell studies, several themes emerged. A small subpopulation of cells can have a large impact on disease pathogenesis. Multiple cell types identified via scRNA-seq play supporting roles in PSO pathogenesis, contrary to the traditional paradigm focusing on IL-23/IL-17 signaling among dendritic cells and T cells. Immune cell states are dynamic, with psoriatic subpopulations aberrantly re-activating and differentiating into inflammatory phenotypes depending on surrounding signaling cues. Comparison of circulating immune cells with resident skin/joint cells has uncovered specific T cell clonotypes associated with the disease. Finally, machine learning models demonstrate great promise in identifying biomarkers to diagnose clinically ambiguous rashes and PSA at earlier stages.
Collapse
Affiliation(s)
- Joy Q Jin
- Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA.,Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - David Wu
- Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA.,Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Riley Spencer
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Kareem G Elhage
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Jared Liu
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Mitchell Davis
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Marwa Hakimi
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Sugandh Kumar
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Zhi-Ming Huang
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Tina Bhutani
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Wilson Liao
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Sachen KL, Arnold Greving CN, Towne JE. Role of IL-36 cytokines in psoriasis and other inflammatory skin conditions. Cytokine 2022; 156:155897. [DOI: 10.1016/j.cyto.2022.155897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
|
20
|
Molecular and cellular regulation of psoriatic inflammation. Clin Sci (Lond) 2022; 136:935-952. [PMID: 35730381 DOI: 10.1042/cs20210916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023]
Abstract
This review highlights the molecular and cellular mechanisms underlying psoriatic inflammation with an emphasis on recent developments which may impact on treatment approaches for this chronic disease. We consider both the skin and the musculoskeletal compartment and how different manifestations of psoriatic inflammation are linked. This review brings a focus to the importance of inflammatory feedback loops that exist in the initiation and chronic stages of the condition, and how close interaction between the epidermis and both innate and adaptive immune compartments drives psoriatic inflammation. Furthermore, we highlight work done on biomarkers to predict the outcome of therapy as well as the transition from psoriasis to psoriatic arthritis.
Collapse
|
21
|
Yang Y, Zhang Y, Chen X, Su Z, Deng Y, Zhao Q. Khasianine ameliorates psoriasis-like skin inflammation and represses TNF-α/NF-κB axis mediated transactivation of IL-17A and IL-33 in keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115124. [PMID: 35183690 DOI: 10.1016/j.jep.2022.115124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Khasianine is recently identified as a bioactive compound from Solanum nigrum L. (SNL) which is a traditional Chinese herb (named LongKui in China) and has been clinically applied for treating psoriasis in China but with limited knowledge about the active ingredients. AIM OF THE STUDY This study tried to explore the bioactivity of Khasianine and showed that Khasianine possessed highly anti-inflammatory bioactivity which rapidly alleviated psoriasis-like mice skin inflammation. MATERIALS AND METHODS Imiquimod induced psoriasis-like mouse model, and human keratinocytes were employed in this study. In vivo, immunohistochemistry and immunofluorescence were performed to evaluate the pathological improvement in psoriatic lesions after Khasianine treatment. In vitro, tumor necrosis factor α (TNF-α) treated HaCaT cells with or without Khasianine, were used to analyze the expression and cellular location of NF-κB p65, the expression of IL-17A and IL-33, and the binding intensity of NF-κB p65 on the promoter of IL-17A and IL-33 to understand the molecular mechanism of Khasianine mediated anti-inflammatory effect. RESULTS Khasianine reduced infiltration of CD4+ T helper cells (Th cells) and macrophages in mice psoriatic lesions. Immunohistochemistry analysis revealed that Khasianine reduced TNF-α levels in lesions and suppressed NF-κB p65 activation as well as expression of IL-17A and IL-33 in mice epidermal keratinocytes. Further studies in human keratinocytes demonstrated that Khasianine inhibited TNF-α-induced transcriptional activation (transactivation) of NF-κB p65 such as evicting NF-κB p65 binding from the promoter regions of IL-17A and IL-33 and preventing NF-κB nuclear translocation. CONCLUSIONS Our results suggested that Khasianine is a potent anti-inflammatory compound with the bioactivity of NF-κB inhibition and is a promising candidate for psoriasis topical therapy.
Collapse
Affiliation(s)
- Yixi Yang
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yujin Zhang
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xun Chen
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhou Su
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yu Deng
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China; Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
22
|
Park YJ, Kim YH, Lee ES, Kim YC. Comparative Analysis of Single-Cell Transcriptome Data Reveals a Novel Role of Keratinocyte-Derived IL-23 in Psoriasis. Front Immunol 2022; 13:905239. [PMID: 35693818 PMCID: PMC9174585 DOI: 10.3389/fimmu.2022.905239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriasis, a common inflammatory skin disease, is critically dependent on the IL-23/IL-17 cytokine axis. Although immune cell-derived IL-23 is generally associated with the disease pathogenesis, there have been reports of IL-23 production in keratinocytes. To determine the presence and potential role of keratinocyte-derived IL-23 in psoriasis, we investigated its expression levels using publicly available single-cell RNA sequencing data from human samples. We discovered that the expression of IL23A was detectable in keratinocytes as well as dendritic cells. Furthermore, we examined the IL-23p19 expression in an imiquimod-induced mouse model of psoriasis and found a close relationship between keratinocyte-produced IL-23 and IL-36, another key cytokine in psoriasis pathogenesis. The blockade of IL-23 signaling resulted in the reduced expression of IL-36 in the keratinocytes. Our findings reveal the novel association between keratinocyte-derived IL-23 and IL-36 in psoriasis progression.
Collapse
Affiliation(s)
- Young Joon Park
- Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| | - Yul Hee Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| | - You Chan Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
23
|
Hernandez Santana YE, Irwin N, Walsh PT. IL-36: a therapeutic target for ulcerative colitis? Expert Opin Ther Targets 2022; 26:507-512. [PMID: 35634891 DOI: 10.1080/14728222.2022.2084381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yasmina E Hernandez Santana
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin 12, Ireland.,Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Naoise Irwin
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin 12, Ireland.,Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Patrick T Walsh
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin 12, Ireland.,Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
24
|
Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. The IL-1 cytokine family as custodians of barrier immunity. Cytokine 2022; 154:155890. [DOI: 10.1016/j.cyto.2022.155890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
|
25
|
Lopez DV, Kongsbak‐Wismann M. Role of IL-22 in homeostasis and diseases of the skin. APMIS 2022; 130:314-322. [PMID: 35316548 PMCID: PMC9324963 DOI: 10.1111/apm.13221] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
Interleukin-22 (IL-22) is a cytokine mainly produced by T cells and innate lymphoid cells (ILC). IL-22 primarily targets non-hematopoietic cells such as epithelial cells and fibroblasts. In the skin, IL-22 promotes the proliferation of keratinocytes and dermal fibroblasts. IL-22 furthermore regulates innate immune responses as it induces the production of antimicrobial proteins and neutrophil-attracting chemokines. IL-22 plays an important role in wound healing and in the protection against skin infections. However, IL-22 can also contribute to the pathogenesis of several inflammatory skin diseases such as psoriasis, atopic dermatitis and allergic contact dermatitis. In this review, current information regarding the structure, function and regulation of IL-22 is discussed with a special focus on the role of IL-22 in the skin and in skin diseases.
Collapse
Affiliation(s)
- Daniel Villalba Lopez
- The LEO Foundation Skin Immunology Research CenterDepartment of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Martin Kongsbak‐Wismann
- The LEO Foundation Skin Immunology Research CenterDepartment of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
26
|
Manzanares-Meza LD, Valle-Rios R, Medina-Contreras O. Interleukin-1 Receptor-Like 2: One Receptor, Three Agonists, and Many Implications. J Interferon Cytokine Res 2022; 42:49-61. [PMID: 35171706 DOI: 10.1089/jir.2021.0173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.
Collapse
Affiliation(s)
- Laura D Manzanares-Meza
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico.,Molecular Biomedicine Department, CINVESTAV, Mexico City, Mexico
| | - Ricardo Valle-Rios
- Research Division, School of Medicine, UNAM, Mexico City, Mexico.,Immunology and Proteomics Research Unit, Mexico Children's Hospital, Mexico City, Mexico
| | - Oscar Medina-Contreras
- Epidemiology, Endocrinology & Nutrition Research Unit, Mexico Children's Hospital (HIMFG), Mexico City, Mexico
| |
Collapse
|
27
|
Role of Interleukin 36 in Generalised Pustular Psoriasis and Beyond. Dermatol Ther (Heidelb) 2022; 12:315-328. [PMID: 35060076 PMCID: PMC8850521 DOI: 10.1007/s13555-021-00677-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 12/30/2022] Open
|
28
|
Macleod T, Berekmeri A, Bridgewood C, Stacey M, McGonagle D, Wittmann M. The Immunological Impact of IL-1 Family Cytokines on the Epidermal Barrier. Front Immunol 2022; 12:808012. [PMID: 35003136 PMCID: PMC8733307 DOI: 10.3389/fimmu.2021.808012] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
The skin barrier would not function without IL-1 family members, but their physiological role in the immunological aspects of skin barrier function are often overlooked. This review summarises the role of IL-1 family cytokines (IL-1α, IL-1β, IL-1Ra, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, IL-36Ra, IL-37 and IL-38) in the skin. We focus on novel aspects of their interaction with commensals and pathogens, the important impact of proteases on cytokine activity, on healing responses and inflammation limiting mechanisms. We discuss IL-1 family cytokines in the context of IL-4/IL-13 and IL-23/IL-17 axis-driven diseases and highlight consequences of human loss/gain of function mutations in activating or inhibitory pathway molecules. This review highlights recent findings that emphasize the importance of IL-1 family cytokines in both physiological and pathological cutaneous inflammation and emergent translational therapeutics that are helping further elucidate these cytokines.
Collapse
Affiliation(s)
- Tom Macleod
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Anna Berekmeri
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Martin Stacey
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
29
|
Shefler A, Patrick MT, Wasikowski R, Chen J, Sarkar MK, Gudjonsson JE, Tsoi LC. Skin-Expressing lncRNAs in Inflammatory Responses. Front Genet 2022; 13:835740. [PMID: 35559048 PMCID: PMC9086234 DOI: 10.3389/fgene.2022.835740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have attracted attention for their potential roles in modulating keratinocyte differentiation and inflammatory response; however, for many identified skin-expressing lncRNAs, there is no comprehensive characterization regarding their biological roles. In addition, the reported expression profiles for lncRNAs can be ambiguous due to their low-expressing nature. The objective of this review is to utilize large scale genomic data to characterize the prominent skin-expressing lncRNAs, aiming to provide additional insights for their potential roles in the pathology of inflammatory skin of psoriasis and atopic dermatitis by integrating in vitro and in vivo data. We highlighted the different skin-expressing lncRNAs, including H19, which is significantly down-regulated in lesional skin of AD/psoriasis and upon cytokine stimulation in keratinocytes; it is also negatively correlated with CYP1A1 (r = -0.75, p = 8 × 10-73), a gene involved in drug metabolism and skin barrier homeostasis, in keratinocytes. In addition, SPRR2C, a potential regulator that modulates IL-22 stimulation, was upregulated in both atopic dermatitis and psoriasis lesional skin and was also downstream of the IL-17A and IL-17 + TNF signaling in keratinocytes. Using scRNAseq, we further revealed the cell type specificity of lncRNAs, including basal-expressing nature of H19 in the epidermis. Interestingly, instead of having cell type specific expression profile, we found few lncRNAs that are express across different cell types in skin, including MALAT1, NEAT1, and GAS5. While lncRNAs in general have lower expression, our results combining in vitro and in vivo experimental data demonstrate how some of these lncRNAs can play mediator roles in the cytokine-stimulated pathway.
Collapse
Affiliation(s)
- Alanna Shefler
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jiahan Chen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
| | - Mrinal K. Sarkar
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Lam C. Tsoi,
| |
Collapse
|
30
|
The Extracellular Vesicles from the Commensal Staphylococcus Epidermidis ATCC12228 Strain Regulate Skin Inflammation in the Imiquimod-Induced Psoriasis Murine Model. Int J Mol Sci 2021; 22:ijms222313029. [PMID: 34884834 PMCID: PMC8657977 DOI: 10.3390/ijms222313029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are evaginations of the cytoplasmic membrane, containing nucleic acids, proteins, lipids, enzymes, and toxins. EVs participate in various bacterial physiological processes. Staphylococcus epidermidis interacts and communicates with the host skin. S. epidermidis’ EVs may have an essential role in this communication mechanism, modulating the immunological environment. This work aimed to evaluate if S. epidermidis’ EVs can modulate cytokine production by keratinocytes in vitro and in vivo using the imiquimod-induced psoriasis murine model. S. epidermidis’ EVs were obtained from a commensal strain (ATC12228EVs) and a clinical isolated strain (983EVs). EVs from both origins induced IL-6 expression in HaCaT keratinocyte cultures; nevertheless, 983EVs promoted a higher expression of the pro-inflammatory cytokines VEGF-A, LL37, IL-8, and IL-17F than ATCC12228EVs. Moreover, in vivo imiquimod-induced psoriatic skin treated with ATCC12228EVs reduced the characteristic psoriatic skin features, such as acanthosis and cellular infiltrate, as well as VEGF-A, IL-6, KC, IL-23, IL-17F, IL-36γ, and IL-36R expression in a more efficient manner than 983EVs; however, in contrast, Foxp3 expression did not significantly change, and IL-36 receptor antagonist (IL-36Ra) was found to be increased. Our findings showed a distinctive immunological profile induction that is dependent on the clinical or commensal EV origin in a mice model of skin-like psoriasis. Characteristically, proteomics analysis showed differences in the EVs protein content, dependent on origin of the isolated EVs. Specifically, in ATCC12228EVs, we found the proteins glutamate dehydrogenase, ornithine carbamoyltransferase, arginine deiminase, carbamate kinase, catalase, superoxide dismutase, phenol-soluble β1/β2 modulin, and polyglycerol phosphate α-glucosyltransferase, which could be involved in the reduction of lesions in the murine imiquimod-induced psoriasis skin. Our results show that the commensal ATCC12228EVs have a greater protective/attenuating effect on the murine imiquimod-induced psoriasis by inducing IL-36Ra expression in comparison with EVs from a clinical isolate of S. epidermidis.
Collapse
|
31
|
Gupta RK, Gracias DT, Figueroa DS, Miki H, Miller J, Fung K, Ay F, Burkly L, Croft M. TWEAK functions with TNF and IL-17 on keratinocytes and is a potential target for psoriasis therapy. Sci Immunol 2021; 6:eabi8823. [PMID: 34797693 DOI: 10.1126/sciimmunol.abi8823] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rinkesh K Gupta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Donald T Gracias
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Salgado Figueroa
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Haruka Miki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jacqueline Miller
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kai Fung
- Bioinformatics Core, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ferhat Ay
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Linda Burkly
- Biogen Inc., 115 Broadway, Cambridge, MA 02142, USA
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
32
|
Generalized Pustular Psoriasis: Divergence of Innate and Adaptive Immunity. Int J Mol Sci 2021; 22:ijms22169048. [PMID: 34445754 PMCID: PMC8396665 DOI: 10.3390/ijms22169048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Generalized pustular psoriasis (GPP) is a severe, relapsing, immune-mediated disease characterized by the presence of multiple sterile pustules all over the body. The exact pathomechanisms behind GPP remain elusive, although increased interest in the genetic basis and immunological disturbances have provided some revealing insights into the underlying signaling pathways and their mutual interaction. The genetic background of GPP has been thoroughly investigated over the past few years. The conducted studies have identified genetic variants that predispose to pustular forms of psoriasis. The loss-of-function mutation of the interleukin 36 receptor antagonist gene, along with rare gain-of-function mutations in the gene that encodes the keratinocyte signaling molecule (CARD14), are examples of the uncovered abnormalities. Interleukin 36 (IL-36), along with neutrophils, is now considered a central cytokine in GPP pathogenesis, with IL-36 signaling providing a link between innate and adaptive immune responses. More recently, a new concept of inflammation, caused by a predominantly genetically determined abnormal activation of innate immune response and leading to inflammatory keratinization, has arisen. GPP is currently considered a representative of this novel group of skin conditions, called autoinflammatory keratinization diseases. As no therapeutic agents have been approved for GPP to date in the United States and Europe, the novel anti-IL-36R antibodies are particularly promising and may revolutionize management of the disease.
Collapse
|
33
|
Visser MJE, Tarr G, Pretorius E. Thrombosis in Psoriasis: Cutaneous Cytokine Production as a Potential Driving Force of Haemostatic Dysregulation and Subsequent Cardiovascular Risk. Front Immunol 2021; 12:688861. [PMID: 34335591 PMCID: PMC8324086 DOI: 10.3389/fimmu.2021.688861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriasis (PsO) is a common T cell-mediated inflammatory disorder of the skin with an estimated prevalence of 2%. The condition manifests most commonly as erythematous plaques covered with scales. The aetiology of PsO is multifactorial and disease initiation involves interactions between environmental factors, susceptibility genes, and innate and adaptive immune responses. The underlying pathology is mainly driven by interleukin-17. In addition, various inflammatory mediators from specific T helper (TH) cell subsets, namely TH1, TH17, and TH22, are overexpressed in cutaneous lesions and may also be detected in the peripheral blood of psoriatic patients. Moreover, these individuals are also at greater risk, compared to the general population, of developing multiple comorbid conditions. Cardiovascular disease (CVD) has been recognised as a prominent comorbidity of PsO. A potential mechanism contributing to this association may be the presence of a hypercoagulable state in these individuals. Inflammation and coagulation are closely related. The presence of chronic, low-grade systemic inflammation may promote thrombosis – one of the major determinants of CVD. A pro-inflammatory milieu may induce the expression of tissue factor, augment platelet activity, and perturb the vascular endothelium. Altogether, these changes will result in a prothrombotic state. In this review, we describe the aetiology of PsO, as well as the pathophysiology of the condition. We also consider its relationship to CVD. Given the systemic inflammatory nature of PsO, we evaluate the potential contribution of prominent inflammatory mediators (implicated in PsO pathogenesis) to establishing a prothrombotic state in psoriatic patients.
Collapse
Affiliation(s)
- Maria J E Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Gareth Tarr
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Division of Rheumatology, Institute of Orthopaedics and Rheumatology, Winelands Mediclinic Orthopaedic Hospital, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
34
|
Giannoudaki E, Stefanska AM, Lawler H, Leon G, Hernandez Santana YE, Hassan N, Russell SE, Horan R, Sweeney C, Preston RS, Mantovani A, Garlanda C, Fallon PG, Walsh PT. SIGIRR Negatively Regulates IL-36-Driven Psoriasiform Inflammation and Neutrophil Infiltration in the Skin. THE JOURNAL OF IMMUNOLOGY 2021; 207:651-660. [PMID: 34253575 DOI: 10.4049/jimmunol.2100237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
SIGIRR has been described as a negative regulator of several IL-1R/TLR family members and has been implicated in several inflammatory disease conditions. However, it is unknown whether it can suppress IL-36 family cytokines, which are members of the broader IL-1 superfamily that have emerged as critical orchestrators of psoriatic inflammation in both humans and mice. In this study, we demonstrate that SIGIRR is downregulated in psoriatic lesions in humans and mice, and this correlates with increased expression of IL-36 family cytokines. Using Sigirr -/- mice, we identify, for the first time (to our knowledge), SIGIRR as a negative regulator of IL-36 responses in the skin. Mechanistically, we identify dendritic cells and keratinocytes as the primary cell subsets in which IL-36 proinflammatory responses are regulated by SIGIRR. Both cell types displayed elevated IL-36 responsiveness in absence of SIGIRR activity, characterized by enhanced expression of neutrophil chemoattractants, leading to increased neutrophil infiltration to the inflamed skin. Blockade of IL-36R signaling ameliorated exacerbated psoriasiform inflammation in Sigirr-/- mice and inhibited neutrophil infiltration. These data identify SIGIRR activity as an important regulatory node in suppressing IL-36-dependent psoriatic inflammation in humans and mice.
Collapse
Affiliation(s)
- Eirini Giannoudaki
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Anna M Stefanska
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Hazel Lawler
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Gemma Leon
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Yasmina E Hernandez Santana
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Najma Hassan
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Shane E Russell
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Rachel Horan
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Cheryl Sweeney
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Roger S Preston
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alberto Mantovani
- Scientific Institute for Research, Hospitalization and Healthcare, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; and.,The William Harvey Research Institute, Queen Mary University, London, United Kingdom
| | - Cecilia Garlanda
- Scientific Institute for Research, Hospitalization and Healthcare, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; and
| | - Padraic G Fallon
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland.,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College, Dublin, Ireland; .,National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
35
|
Wang X, Yi P, Liang Y. The Role of IL-36 in Infectious Diseases: Potential Target for COVID-19? Front Immunol 2021; 12:662266. [PMID: 34054828 PMCID: PMC8155493 DOI: 10.3389/fimmu.2021.662266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
IL-36 is a member of the interleukin 1 cytokine family, which is currently experiencing a renaissance due to the growing understanding of its context-dependent roles and advances in our understanding of the inflammatory response. The immunological role of IL-36 has revealed its profound and indispensable functional roles in psoriasis, as well as in several inflammatory diseases, including inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis (RA) and cancer. More recently, an increasing body of evidence suggests that IL-36 plays a crucial role in viral, bacterial and fungal infections. There is a growing interest as to whether IL-36 contributes to host protective immune responses against infection as well as the potential implications of IL-36 for the development of new therapeutic strategies. In this review, we summarize the recent progress in understanding cellular expression, regulatory mechanisms and biological roles of IL-36 in infectious diseases, which suggest more specific strategies to maneuver IL-36 as a diagnostic or therapeutic target, especially in COVID-19.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
36
|
Yamanaka K, Yamamoto O, Honda T. Pathophysiology of psoriasis: A review. J Dermatol 2021; 48:722-731. [PMID: 33886133 DOI: 10.1111/1346-8138.15913] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
Psoriasis is a complex chronic inflammatory skin disease caused by the dynamic interplay between multiple genetic risk foci, environmental risk factors, and excessive immunological abnormalities. Psoriasis affects approximately 2% of the population worldwide, and dramatic advances have been achieved in the understanding and treatment options for psoriasis. Recent progress in biological therapies has revealed the fundamental roles of tumor necrosis factor-α, interleukin (IL)-23p19, and the IL-17A axis together with skin-resident immune cells and major signal transduction pathways in the pathogenesis of psoriasis. In addition to IL-17-producing T helper17 cells, innate lymphoid cell (ILC)3 induces psoriasis rashes directly without T-cell/antigen interaction in response to the released antimicrobial peptides from activated keratinocytes and inflammatory cytokines. ILC3 typically expresses retinoic acid receptor-related orphan receptor gamma t in the nucleus, matures in the presence of IL-7 and IL-23, and produces IL-17 and IL-22. The number of ILC3s is increased in the blood, psoriasis rash, and even in nonrash areas of psoriatic skin. Psoriasis is significantly associated with cardiovascular disease, metabolic syndrome, and inflammatory disorders, particularly the severe type. The similarity of enterobacteria in the psoriasis gut to that in diabetic patients may be related to its pathogenesis. In the current review, we focus on the pathophysiology of psoriasis in the accelerated immunological inflammatory loop, danger signal from keratinocytes, and cytokines, particularly IL-17 and IL-23p19. In addition, pathophysiological speculation with regard to morphology has been supplemented. Finally, the differences and similarities between psoriasis and atopic dermatitis are discussed.
Collapse
Affiliation(s)
- Keiichi Yamanaka
- Department of Dermatology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Osamu Yamamoto
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
37
|
Martin P, Goldstein JD, Mermoud L, Diaz-Barreiro A, Palmer G. IL-1 Family Antagonists in Mouse and Human Skin Inflammation. Front Immunol 2021; 12:652846. [PMID: 33796114 PMCID: PMC8009184 DOI: 10.3389/fimmu.2021.652846] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-1 family cytokines initiate inflammatory responses, and shape innate and adaptive immunity. They play important roles in host defense, but excessive immune activation can also lead to the development of chronic inflammatory diseases. Dysregulated IL-1 family signaling is observed in a variety of skin disorders. In particular, IL-1 family cytokines have been linked to the pathogenesis of psoriasis and atopic dermatitis. The biological activity of pro-inflammatory IL-1 family agonists is controlled by the natural receptor antagonists IL-1Ra and IL-36Ra, as well as by the regulatory cytokines IL-37 and IL-38. These four anti-inflammatory IL-1 family members are constitutively and highly expressed at steady state in the epidermis, where keratinocytes are a major producing cell type. In this review, we provide an overview of the current knowledge concerning their regulatory roles in skin biology and inflammation and their therapeutic potential in human inflammatory skin diseases. We further highlight some common misunderstandings and less well-known observations, which persist in the field despite recent extensive interest for these cytokines.
Collapse
Affiliation(s)
- Praxedis Martin
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérémie D. Goldstein
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Loïc Mermoud
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alejandro Diaz-Barreiro
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Afonina IS, Van Nuffel E, Beyaert R. Immune responses and therapeutic options in psoriasis. Cell Mol Life Sci 2021; 78:2709-2727. [PMID: 33386888 PMCID: PMC11072277 DOI: 10.1007/s00018-020-03726-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
Abstract
Psoriasis is a chronic inflammatory disease of the skin that affects about 2-3% of the population and greatly impairs the quality of life of affected individuals. Psoriatic skin is characterized by excessive proliferation and aberrant differentiation of keratinocytes, as well as redness caused by increased dilation of the dermal blood vessels and infiltration of immune cells. Although the pathogenesis of psoriasis has not yet been completely elucidated, it is generally believed to arise from a complex interplay between hyperproliferating keratinocytes and infiltrating, activated immune cells. So far, the exact triggers that elicit this disease are still enigmatic, yet, it is clear that genetic predisposition significantly contributes to the development of psoriasis. In this review, we summarize current knowledge of important cellular and molecular mechanisms driving the initiation and amplification stages of psoriasis development, with a particular focus on cytokines and emerging evidence illustrating keratinocyte-intrinsic defects as key drivers of inflammation. We also discuss mouse models that have contributed to a better understanding of psoriasis pathogenesis and the preclinical development of novel therapeutics, including monoclonal antibodies against specific cytokines or cytokine receptors that have revolutionized the treatment of psoriasis. Future perspectives that may have the potential to push basic research and open up new avenues for therapeutic intervention are provided.
Collapse
Affiliation(s)
- Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, Ghent University - VIB, Technologiepark 71, B-9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
| | - Elien Van Nuffel
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, Ghent University - VIB, Technologiepark 71, B-9052, Ghent, Belgium
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, Ghent University - VIB, Technologiepark 71, B-9052, Ghent, Belgium.
- Department for Biomedical Molecular Biology, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium.
| |
Collapse
|
39
|
Ngo VL, Kuczma M, Maxim E, Denning TL. IL-36 cytokines and gut immunity. Immunology 2021; 163:145-154. [PMID: 33501638 DOI: 10.1111/imm.13310] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin 36 (IL-36) constitutes a group of cytokines that belong to the IL-1 superfamily. Emerging evidence has suggested a role of IL-36 in the pathogenesis of many inflammatory disorders. Intriguingly, in the gastrointestinal tract, IL-36 has a rather complex function. IL-36 receptor ligands are overexpressed in both animal colitis models and human IBD patients and may play both pathogenic and protective roles, depending on the context. IL-36 cytokines comprise three receptor agonists: IL-36α, IL-36β and IL-36γ, and two receptor antagonists: IL-36Ra and IL-38. All IL-36 receptor agonists bind to the IL-36R complex and exert pleiotropic effects during inflammatory settings. Here, we first briefly review the processing and secretion of IL-36 cytokines. We then focus on the current understanding of the immunology effects of IL-36 in gut immunity. In addition, we also discuss the ongoing trials that aim to blockage IL-36R signalling for treating chronic intestinal inflammation and present some unexplored questions regarding IL-36 research.
Collapse
Affiliation(s)
- Vu L Ngo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Estera Maxim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
40
|
Leon G, Hussey S, Walsh PT. The Diverse Roles of the IL-36 Family in Gastrointestinal Inflammation and Resolution. Inflamm Bowel Dis 2021; 27:440-450. [PMID: 32860042 DOI: 10.1093/ibd/izaa232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 12/16/2022]
Abstract
The interleukin (IL)-36 family is a member of the IL-1 superfamily of cytokines and, in common with other IL-1 family members, has been shown to exhibit pleiotropic effects in homeostasis and inflammation. Although the important role these cytokines play in the skin has been widely reported, recent evidence suggests that IL-36 family members are expressed and can also exert significant influence at the intestinal mucosa. In this review, we summarize current knowledge surrounding the role of the IL-36 in the intestines. In particular, we examine its likely dichotomous role as a mediator of both inflammation and resolution, highlighting its overlapping roles in innate and adaptive inflammation at the mucosa and its contribution to pathophysiology of inflammatory bowel disease. We also summarize the complexities of targeting this cytokine family in a clinical setting.
Collapse
Affiliation(s)
- Gemma Leon
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Seamus Hussey
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Patrick T Walsh
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
41
|
Watanabe S, Iwata Y, Fukushima H, Saito K, Tanaka Y, Hasegawa Y, Akiyama M, Sugiura K. Neutrophil extracellular traps are induced in a psoriasis model of interleukin-36 receptor antagonist-deficient mice. Sci Rep 2020; 10:20149. [PMID: 33214582 PMCID: PMC7678853 DOI: 10.1038/s41598-020-76864-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/03/2020] [Indexed: 01/15/2023] Open
Abstract
Loss-of-function mutations in the interleukin (IL)-36 gene IL36RN are associated with psoriasis. The importance of neutrophil extracellular traps (NETs), web-like structures composed of neutrophil DNA, in the pathogenesis of psoriasis has been unclear. Here, we aimed to clarify the role of NET signaling in the deficiency of IL36 receptor antagonist (DITRA). We evaluated the severity of psoriasis-like lesions induced by imiquimod cream treatment in Il36rn-/- mice. The mRNA levels of psoriasis-related cytokines were measured via real-time reverse transcription polymerase chain reaction, and the effects of Cl-amidine, a peptidyl arginine deiminase 4 (PAD4) inhibitor, on psoriasis-like lesions were evaluated. PAD4 is a histone-modifying enzyme that is involved in NET formation. Psoriasis area and severity index scores, epidermal thickness, and infiltrated neutrophil counts were significantly increased in Il36rn-/- mice; NET formation was confirmed pathologically. Several cytokines and chemokines were upregulated in the skin lesions of Il36rn-/- mice and Cl-amidine treatment improved these psoriasis-like lesions. These results suggest that NET formation plays an important role in the pathology of psoriasis-like lesions in these mice and might represent a promising therapeutic target for DITRA.
Collapse
Affiliation(s)
- Soichiro Watanabe
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hidehiko Fukushima
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kenta Saito
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yoshihito Tanaka
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yurie Hasegawa
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
42
|
Ngo VL, Abo H, Kuczma M, Szurek E, Moore N, Medina-Contreras O, Nusrat A, Merlin D, Gewirtz AT, Ignatowicz L, Denning TL. IL-36R signaling integrates innate and adaptive immune-mediated protection against enteropathogenic bacteria. Proc Natl Acad Sci U S A 2020; 117:27540-27548. [PMID: 33087566 PMCID: PMC7959549 DOI: 10.1073/pnas.2004484117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic bacterial infections are a global health issue associated with high mortality, particularly in developing countries. Efficient host protection against enteropathogenic bacterial infection is characterized by coordinated responses between immune and nonimmune cells. In response to infection in mice, innate immune cells are activated to produce interleukin (IL)-23 and IL-22, which promote antimicrobial peptide (AMP) production and bacterial clearance. IL-36 cytokines are proinflammatory IL-1 superfamily members, yet their role in enteropathogenic bacterial infection remains poorly defined. Using the enteric mouse pathogen, C.rodentium, we demonstrate that signaling via IL-36 receptor (IL-36R) orchestrates a crucial innate-adaptive immune link to control bacterial infection. IL-36R-deficient mice (Il1rl2-/- ) exhibited significant impairment in expression of IL-22 and AMPs, increased intestinal damage, and failed to contain C. rodentium compared to controls. These defects were associated with failure to induce IL-23 and IL-6, two key IL-22 inducers in the early and late phases of infection, respectively. Treatment of Il1rl2-/- mice with IL-23 during the early phase of C. rodentium infection rescued IL-22 production from group 3 innate lymphoid cells (ILCs), whereas IL-6 administration during the late phase rescued IL-22-mediated production from CD4+ T cell, and both treatments protected Il1rl2-/- mice from uncontained infection. Furthermore, IL-36R-mediated IL-22 production by CD4+ T cells was dependent upon NFκB-p65 and IL-6 expression in dendritic cells (DCs), as well as aryl hydrocarbon receptor (AhR) expression by CD4+ T cells. Collectively, these data demonstrate that the IL-36 signaling pathway integrates innate and adaptive immunity leading to host defense against enteropathogenic bacterial infection.
Collapse
Affiliation(s)
- Vu L Ngo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Hirohito Abo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Edyta Szurek
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Nora Moore
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | | | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303;
| |
Collapse
|
43
|
Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020; 5:142067. [PMID: 33055429 PMCID: PMC7605526 DOI: 10.1172/jci.insight.142067] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin serves as the primary interface between our body and the external environment and acts as a barrier against entry of physical agents, chemicals, and microbes. Keratinocytes make up the main cellular constitute of the outermost layer of the skin, contributing to the formation of the epidermis, and they are crucial for maintaining the integrity of this barrier. Beyond serving as a physical barrier component, keratinocytes actively participate in maintaining tissue homeostasis, shaping, amplifying, and regulating immune responses in skin. Keratinocytes act as sentinels, continuously monitoring changes in the environment, and, through microbial sensing, stretch, or other physical stimuli, can initiate a broad range of inflammatory responses via secretion of various cytokines, chemokines, and growth factors. This diverse function of keratinocytes contributes to the highly variable clinical manifestation of skin immune responses. In this Review, we highlight the highly diverse functions of epidermal keratinocytes and their contribution to various immune-mediated skin diseases.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Ward
- Department of Nutrition and Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| |
Collapse
|
44
|
Neurath MF. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor Rev 2020; 55:70-79. [DOI: 10.1016/j.cytogfr.2020.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
|
45
|
Han Y, Huard A, Mora J, da Silva P, Brüne B, Weigert A. IL-36 family cytokines in protective versus destructive inflammation. Cell Signal 2020; 75:109773. [PMID: 32898612 DOI: 10.1016/j.cellsig.2020.109773] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The IL-1 family of cytokines and receptors are critical regulators of inflammation. Within the IL-1 family and in contrast to its IL-1 and IL-18 subfamilies, the IL-36 subfamily is still poorly characterized. Three pro-inflammatory agonists IL-36α, IL-36β, IL-36γ, one IL-36 receptor (IL-1R6) antagonist, IL-36RA, and one putative IL-1R6 antagonist, IL-38, have been grouped into the IL-36 cytokine subfamily. IL-36 agonists signal through a common receptor complex to serve as early triggers of inflammatory responses by activating and cross-regulating a number of inflammatory pathways including NF-κB, MAPK and IFN signaling. IL-36RA binds to IL-1R6 to limit inflammatory signaling, while IL-38 may be an antagonist of more than one IL-1 family receptor. Expression patterns of IL-36 family cytokines, being most prominently expressed in epithelial barrier tissues such as the skin and intestines as well as in immune cells, suggest a role in protecting these barriers from infection. Dysregulation of IL-36 family cytokine signaling at physiological barriers, most prominently the skin, induces autoimmune inflammation. However, transferring the potential of IL-36 to induce tissue damage to tumors might benefit cancer patients. Here we summarize signaling pathways regulated by IL-36 family cytokines, including IL-38, and the consequences for physiological protective and pathophysiological destructive inflammation. Moreover, we discuss the limits of current knowledge on IL-36 family function to open potential avenues for research in the future.
Collapse
Affiliation(s)
- Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Special Key Laboratory of Oral Diseases Research, Higher Education Institutions of Guizhou Province, Zunyi Medical University, Zunyi 563006, Guizhou, China; School of Stomatology, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany
| | - Javier Mora
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Faculty of Microbiology, University of Costa Rica, San José 2060, Costa Rica
| | - Priscila da Silva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.
| |
Collapse
|