1
|
Langedijk AC, Vrancken B, Lebbink RJ, Wilkins D, Kelly EJ, Baraldi E, Mascareñas de Los Santos AH, Danilenko DM, Choi EH, Palomino MA, Chi H, Keller C, Cohen R, Papenburg J, Pernica J, Greenough A, Richmond P, Martinón-Torres F, Heikkinen T, Stein RT, Hosoya M, Nunes MC, Verwey C, Evers A, Kragten-Tabatabaie L, Suchard MA, Kosakovsky Pond SL, Poletto C, Colizza V, Lemey P, Bont LJ. The genomic evolutionary dynamics and global circulation patterns of respiratory syncytial virus. Nat Commun 2024; 15:3083. [PMID: 38600104 PMCID: PMC11006891 DOI: 10.1038/s41467-024-47118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infection in young children and the second leading cause of infant death worldwide. While global circulation has been extensively studied for respiratory viruses such as seasonal influenza, and more recently also in great detail for SARS-CoV-2, a lack of global multi-annual sampling of complete RSV genomes limits our understanding of RSV molecular epidemiology. Here, we capitalise on the genomic surveillance by the INFORM-RSV study and apply phylodynamic approaches to uncover how selection and neutral epidemiological processes shape RSV diversity. Using complete viral genome sequences, we show similar patterns of site-specific diversifying selection among RSVA and RSVB and recover the imprint of non-neutral epidemic processes on their genealogies. Using a phylogeographic approach, we provide evidence for air travel governing the global patterns of RSVA and RSVB spread, which results in a considerable degree of phylogenetic mixing across countries. Our findings highlight the potential of systematic global RSV genomic surveillance for transforming our understanding of global RSV spread.
Collapse
Affiliation(s)
- Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Herestraat 49, 3000, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Deidre Wilkins
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1 MedImmune Way, Gaithersburg, MD, USA
| | - Elizabeth J Kelly
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1 MedImmune Way, Gaithersburg, MD, USA
| | - Eugenio Baraldi
- Department of Woman's and Child's Health, University Hospital of Padova, Padova, Italy
- ReSViNET Foundation, Zeist, the Netherlands
- Institute of Pediatric Research "Città della Speranza", Padova, Italy
| | | | - Daria M Danilenko
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | - Eun Hwa Choi
- Seoul National University Children's Hospital, Seoul, South Korea
| | | | - Hsin Chi
- MacKay Children's Hospital, New Taipei, Taiwan, ROC
| | - Christian Keller
- Institute of Virology, University Hospital Giessen and Marburg, Marburg, Germany
| | | | | | | | - Anne Greenough
- ReSViNET Foundation, Zeist, the Netherlands
- King's College London, London, UK
| | | | - Federico Martinón-Torres
- ReSViNET Foundation, Zeist, the Netherlands
- Hospital Clínico Universitario de Santiago, Galicia, Spain
| | - Terho Heikkinen
- ReSViNET Foundation, Zeist, the Netherlands
- University of Turku and Turku University Hospital, Turku, Finland
| | - Renato T Stein
- ReSViNET Foundation, Zeist, the Netherlands
- Pontificia Universidade Catolica de Rio Grande do Sul, Porto Alegre, Brazil
| | - Mitsuaki Hosoya
- Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Marta C Nunes
- ReSViNET Foundation, Zeist, the Netherlands
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Vaccines & Infectious Diseases Analytics Research Unit, and Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charl Verwey
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Hospices Civils de Lyon and the Centre International de Recherche en Infectiologie (CIRI) Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Anouk Evers
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | | | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, 801 N Broad St, Philadelphia, PA, 19122, USA
| | - Chiara Poletto
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, F75012, Paris, France
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, F75012, Paris, France
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Louis J Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, the Netherlands.
- ReSViNET Foundation, Zeist, the Netherlands.
| |
Collapse
|
2
|
Avila-Rios S, García-Morales C, Reyes-Terán G, González-Rodríguez A, Matías-Florentino M, Mehta SR, Chaillon A. Phylodynamics of HIV in the Mexico City Metropolitan Region. J Virol 2022; 96:e0070822. [PMID: 35762759 PMCID: PMC9327710 DOI: 10.1128/jvi.00708-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Evolutionary analyses of viral sequences can provide insights into transmission dynamics, which in turn can optimize prevention interventions. Here, we characterized the dynamics of HIV transmission within the Mexico City metropolitan area. HIV pol sequences from persons recently diagnosed at the largest HIV clinic in Mexico City (between 2016 and 2021) were annotated with demographic/geographic metadata. A multistep phylogenetic approach was applied to identify putative transmission clades. A data set of publicly available sequences was used to assess international introductions. Clades were analyzed with a discrete phylogeographic model to evaluate the timing and intensity of HIV introductions and transmission dynamics among municipalities in the region. A total of 6,802 sequences across 96 municipalities (5,192 from Mexico City and 1,610 from the neighboring State of Mexico) were included (93.6% cisgender men, 5.0% cisgender women, and 1.3% transgender women); 3,971 of these sequences formed 1,206 clusters, involving 78 municipalities, including 89 clusters of ≥10 sequences. Discrete phylogeographic analysis revealed (i) 1,032 viral introductions into the region, over one-half of which were from the United States, and (ii) 354 migration events between municipalities with high support (adjusted Bayes factor of ≥3). The most frequent viral migrations occurred between northern municipalities within Mexico City, i.e., Cuauhtémoc to Iztapalapa (5.2% of events), Iztapalapa to Gustavo A. Madero (5.4%), and Gustavo A. Madero to Cuauhtémoc (6.5%). Our analysis illustrates the complexity of HIV transmission within the Mexico City metropolitan area but also identifies a spatially active transmission area involving a few municipalities in the north of the city, where targeted interventions could have a more pronounced effect on the entire regional epidemic. IMPORTANCE Phylogeographic investigation of the Mexico City HIV epidemic illustrates the complexity of HIV transmission in the region. An active transmission area involving a few municipalities in the north of the city, with transmission links throughout the region, is identified and could be a location where targeted interventions could have a more pronounced effect on the entire regional epidemic, compared with those dispersed in other manners.
Collapse
Affiliation(s)
- Santiago Avila-Rios
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Claudia García-Morales
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Coordinating Commission of the National Institutes of Health and High Specialty Hospitals, Ministry of Health, Mexico City, Mexico
| | | | | | - Sanjay R. Mehta
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, San Diego, California, USA
- Veterans Affairs Health System, San Diego, California, USA
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
3
|
Li N, Feng Y, Vrancken B, Chen Y, Dong L, Yang Q, Kraemer MU, Pybus OG, Zhang H, Brady OJ, Tian H. Assessing the impact of COVID-19 border restrictions on dengue transmission in Yunnan Province, China: an observational epidemiological and phylogenetic analysis. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2021; 14:100259. [PMID: 34528006 PMCID: PMC8387751 DOI: 10.1016/j.lanwpc.2021.100259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND In response to the COVID-19 pandemic, China implemented strict restrictions on cross-border travel to prevent disease importation. Yunnan, a Chinese province that borders dengue-endemic countries in Southeast Asia, experienced unprecedented reduction in dengue, from 6840 recorded cases in 2019 to 260 in 2020. METHODS Using a combination of epidemiological and virus genomic data, collected from 2013 to 2020 in Yunnan and neighbouring countries, we conduct a series of analyses to characterise the role of virus importation in driving dengue dynamics in Yunnan and assess the association between recent international travel restrictions and the decline in dengue reported in Yunnan in 2020. FINDINGS We find strong evidence that dengue incidence between 2013-2019 in Yunnan was closely linked with international importation of cases. A 0-2 month lag in incidence not explained by seasonal differences, absence of local transmission in the winter, effective reproductive numbers < 1 (as estimated independently using genetic data) and diverse cosmopolitan dengue virus phylogenies all suggest dengue is non-endemic in Yunnan. Using a multivariate statistical model we show that the substantial decline in dengue incidence observed in Yunnan in 2020 but not in neighbouring countries is closely associated with the timing of international travel restrictions, even after accounting for other environmental drivers of dengue incidence. INTERPRETATION We conclude that Yunnan is a regional sink for DENV lineage movement and that border restrictions may have substantially reduced dengue burden in 2020, potentially averting thousands of cases. Targeted testing and surveillance of travelers returning from high-risk areas could help to inform public health strategies to minimise or even eliminate dengue outbreaks in non-endemic settings like southern China. FUNDING Funding for this study was provided by National Key Research and Development Program of China, Beijing Science and Technology Planning Project (Z201100005420010); Beijing Natural Science Foundation (JQ18025); Beijing Advanced Innovation Program for Land Surface Science; National Natural Science Foundation of China (82073616); Young Elite Scientist Sponsorship Program by CAST (YESS) (2018QNRC001); H.T., O.P.G. and M.U.G.K. acknowledge support from the Oxford Martin School. O.J.B was supported by a Wellcome Trust Sir Henry Wellcome Fellowship (206471/Z/17/Z). Chinese translation of the abstract (Appendix 2).
Collapse
Affiliation(s)
- Naizhe Li
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China,College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yun Feng
- Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Bram Vrancken
- Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, KU Leuven, Leuven, Belgium
| | - Yuyang Chen
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China,College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lu Dong
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiqi Yang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Moritz U.G. Kraemer
- Department of Zoology, University of Oxford, Oxford, UK,Harvard Medical School, Harvard University, Boston, MA, USA,Boston Children's Hospital, Boston, MA, USA
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, UK,Department of Pathobiology and Population Science, The Royal Veterinary College, London, UK
| | - Hailin Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, China,Corresponding author
| | - Oliver J. Brady
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK,Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK,Corresponding author
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China,College of Life Sciences, Beijing Normal University, Beijing, China,Corresponding author
| |
Collapse
|
4
|
Chaillon A, Smith DM. Phylogenetic analyses of SARS-CoV-2 B.1.1.7 lineage suggest a single origin followed by multiple exportation events versus convergent evolution. Clin Infect Dis 2021; 73:2314-2317. [PMID: 33772259 PMCID: PMC8083653 DOI: 10.1093/cid/ciab265] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) herald a new phase of the pandemic. This study used state-of-the-art phylodynamic methods to ascertain that the rapid rise of B.1.1.7 “Variant of Concern” most likely occurred by global dispersal rather than convergent evolution from multiple sources.
Collapse
Affiliation(s)
- A Chaillon
- Division of Infectious Diseases and Global Public Health, University of California San Diego, CA, USA
| | - D M Smith
- Division of Infectious Diseases and Global Public Health, University of California San Diego, CA, USA
| |
Collapse
|
5
|
Genomic and phylodynamic analysis of sapoviruses isolated in Henan Province, China. Arch Virol 2020; 166:265-270. [PMID: 33164116 DOI: 10.1007/s00705-020-04876-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
In this study, we determined the near-complete and partial genome sequences of ten SaV isolates. Phylogenetic analysis based on full-length VP1 and RdRp nucleotide sequences indicated that nine isolates were of GI.1 and one was GII.3. Evolutionary dynamics analysis indicated that GI.1 and GII.3 SaVs evolved at different rates, the latter evolving more rapidly. Cluster analysis indicated that distantly related GI.1 SaVs were more similar in their amino acid compositions than were GII.3 SaVs. The data provided in this study may facilitate studies on SaV genomic diversity and epidemiological patterns in China and worldwide.
Collapse
|
6
|
Vrancken B, Zhao B, Li X, Han X, Liu H, Zhao J, Zhong P, Lin Y, Zai J, Liu M, Smith DM, Dellicour S, Chaillon A. Comparative Circulation Dynamics of the Five Main HIV Types in China. J Virol 2020; 94:e00683-20. [PMID: 32938762 PMCID: PMC7654276 DOI: 10.1128/jvi.00683-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023] Open
Abstract
The HIV epidemic in China accounts for 3% of the global HIV incidence. We compared the patterns and determinants of interprovincial spread of the five most prevalent circulating types. HIV pol sequences sampled across China were used to identify relevant transmission networks of the five most relevant HIV-1 types (B and circulating recombinant forms [CRFs] CRF01_AE, CRF07_BC, CRF08_BC, and CRF55_01B) in China. From these, the dispersal history across provinces was inferred. A generalized linear model (GLM) was used to test the association between migration rates among provinces and several measures of human mobility. A total of 10,707 sequences were collected between 2004 and 2017 across 26 provinces, among which 1,962 are newly reported here. A mean of 18 (minimum and maximum, 1 and 54) independent transmission networks involving up to 17 provinces were identified. Discrete phylogeographic analysis largely recapitulates the documented spread of the HIV types, which in turn, mirrors within-China population migration flows to a large extent. In line with the different spatiotemporal spread dynamics, the identified drivers thereof were also heterogeneous but are consistent with a central role of human mobility. The comparative analysis of the dispersal dynamics of the five main HIV types circulating in China suggests a key role of large population centers and developed transportation infrastructures as hubs of HIV dispersal. This advocates for coordinated public health efforts in addition to local targeted interventions.IMPORTANCE While traditional epidemiological studies are of great interest in describing the dynamics of epidemics, they struggle to fully capture the geospatial dynamics and factors driving the dispersal of pathogens like HIV as they have difficulties capturing linkages between infections. To overcome this, we used a discrete phylogeographic approach coupled to a generalized linear model extension to characterize the dynamics and drivers of the across-province spread of the five main HIV types circulating in China. Our results indicate that large urbanized areas with dense populations and developed transportation infrastructures are facilitators of HIV dispersal throughout China and highlight the need to consider harmonized country-wide public policies to control local HIV epidemics.
Collapse
Affiliation(s)
- Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Computational and Evolutionary Virology, KU Leuven, Leuven, Belgium
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xingguang Li
- Department of Hospital Office, The First People's Hospital of Fangchenggang, Fangchenggang, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haizhou Liu
- Centre for Emerging Infectious Diseases, The State Key Laboratory of Virology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, China
| | - Jin Zhao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ping Zhong
- Department of AIDS and STD, Shanghai Municipal Center for Disease Control and Prevention; Shanghai Municipal Institutes for Preventive Medicine, Shanghai, China
| | - Yi Lin
- Department of AIDS and STD, Shanghai Municipal Center for Disease Control and Prevention; Shanghai Municipal Institutes for Preventive Medicine, Shanghai, China
| | - Junjie Zai
- Immunology innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang China
| | - Mingchen Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, University of California San Diego, California, USA
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Computational and Evolutionary Virology, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, University of California San Diego, California, USA
| |
Collapse
|
7
|
Vrancken B, Mehta SR, Ávila-Ríos S, García-Morales C, Tapia-Trejo D, Reyes-Terán G, Navarro-Álvarez S, Little SJ, Hoenigl M, Pines HA, Patterson T, Strathdee SA, Smith DM, Dellicour S, Chaillon A. Dynamics and Dispersal of Local HIV Epidemics Within San Diego and Across The San Diego-Tijuana Border. Clin Infect Dis 2020; 73:e2018-e2025. [PMID: 33079188 DOI: 10.1093/cid/ciaa1588] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Evolutionary analyses of well-annotated HIV sequence data can provide insights into viral transmission patterns and associated factors. Here, we explored the transmission dynamics of the HIV-1 subtype B epidemic across the San Diego (US) - Tijuana (Mexico) border region to identify factors that could help guide public health policy. METHODS HIV pol sequences were collected from people with HIV in San Diego County and from Tijuana between 1996-2018. A multistep phylogenetic approach was used to characterize the dynamics of spread. The contribution of geospatial factors and HIV risk group to the local dynamics were evaluated. RESULTS Phylogeographic analyses of the 2,034 sequences revealed an important contribution of local transmission in sustaining the epidemic, as well as a complex viral migration network across the region. Geospatial viral dispersal between San Diego communities occurred predominantly among men-who-have-sex with-men with central San Diego being the main source (34.9%) and recipient (39.5%) of migration events. HIV migration was more frequent from San Diego county towards Tijuana than vice versa. Migrations were best explained by driving time between locations. CONCLUSION The US-Mexico border may not be a major barrier to the spread of HIV, which may stimulate coordinated transnational intervention approaches. Whereas a focus on central San Diego has the potential to avert most spread, the substantial viral migration independent of central San Diego shows that county-wide efforts will be more effective. Combined, this work shows that epidemiological information gleaned from pathogen genomes can uncover mechanisms that underlie sustained spread and, in turn, can be a building block of public health decision making.
Collapse
Affiliation(s)
- Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Computational and Evolutionary Virology, KU Leuven, Herestraat, Leuven, Belgium
| | - Sanjay R Mehta
- Division of Infectious Diseases and Global Public Health, University of California San Diego, CA
| | - Santiago Ávila-Ríos
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan, Colonia Sección XVI, CP, Mexico City, Mexico
| | - Claudia García-Morales
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan, Colonia Sección XVI, CP, Mexico City, Mexico
| | - Daniela Tapia-Trejo
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan, Colonia Sección XVI, CP, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Coordinating Commission of the Mexican National Institutes of Health, Periférico Sur, Arenal Tepepan, Mexico City, Mexico
| | | | - Susan J Little
- Division of Infectious Diseases and Global Public Health, University of California San Diego, CA
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Public Health, University of California San Diego, CA
| | - Heather A Pines
- Division of Infectious Diseases and Global Public Health, University of California San Diego, CA
| | - Thomas Patterson
- Division of Infectious Diseases and Global Public Health, University of California San Diego, CA
| | - Steffanie A Strathdee
- Division of Infectious Diseases and Global Public Health, University of California San Diego, CA
| | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, University of California San Diego, CA
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Computational and Evolutionary Virology, KU Leuven, Herestraat, Leuven, Belgium.,Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, av. FD Roosevelt, Bruxelles, Belgium
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, University of California San Diego, CA
| |
Collapse
|
8
|
Matías-Florentino M, Chaillon A, Ávila-Ríos S, Mehta SR, Paz-Juárez HE, Becerril-Rodríguez MA, del Arenal-Sánchez SJ, Piñeirúa-Menéndez A, Ruiz V, Iracheta-Hernández P, Macías-González I, Tena-Sánchez J, Badial-Hernández F, González-Rodríguez A, Reyes-Terán G. Pretreatment HIV drug resistance spread within transmission clusters in Mexico City. J Antimicrob Chemother 2020; 75:656-667. [PMID: 31819984 PMCID: PMC7021100 DOI: 10.1093/jac/dkz502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pretreatment HIV drug resistance (HIVDR) to NNRTIs has consistently increased in Mexico City during the last decade. OBJECTIVES To infer the HIV genetic transmission network in Mexico City to describe the dynamics of the local HIV epidemic and spread of HIVDR. PATIENTS AND METHODS HIV pol sequences were obtained by next-generation sequencing from 2447 individuals before initiation of ART at the largest HIV clinic in Mexico City (April 2016 to June 2018). Pretreatment HIVDR was estimated using the Stanford algorithm at a Sanger-like threshold (≥20%). Genetic networks were inferred with HIV-TRACE, establishing putative transmission links with genetic distances <1.5%. We examined demographic associations among linked individuals with shared drug resistance mutations (DRMs) using a ≥ 2% threshold to include low-frequency variants. RESULTS Pretreatment HIVDR reached 14.8% (95% CI 13.4%-16.2%) in the cohort overall and 9.6% (8.5%-10.8%) to NNRTIs. Putative links with at least one other sequence were found for 963/2447 (39%) sequences, forming 326 clusters (2-20 individuals). The inferred network was assortative by age and municipality (P < 0.001). Clustering individuals were younger [adjusted OR (aOR) per year = 0.96, 95% CI 0.95-0.97, P < 0.001] and less likely to include women (aOR = 0.46, 95% CI 0.28-0.75, P = 0.002). Among clustering individuals, 175/963 (18%) shared DRMs (involving 66 clusters), of which 66/175 (38%) shared K103N/S (24 clusters). Eight municipalities (out of 75) harboured 65% of persons sharing DRMs. Among all persons sharing DRMs, those sharing K103N were younger (aOR = 0.93, 95% CI 0.88-0.98, P = 0.003). CONCLUSIONS Our analyses suggest age- and geographically associated transmission of DRMs within the HIV genetic network in Mexico City, warranting continuous monitoring and focused interventions.
Collapse
Affiliation(s)
- Margarita Matías-Florentino
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
| | - Antoine Chaillon
- University of California San Diego, 9500 Gilman Drive 0679, La Jolla, CA 92093, USA
| | - Santiago Ávila-Ríos
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
| | - Sanjay R Mehta
- University of California San Diego, 9500 Gilman Drive 0679, La Jolla, CA 92093, USA
| | - Héctor E Paz-Juárez
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
| | - Manuel A Becerril-Rodríguez
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
- Clínica Especializada Condesa, Gral, Benjamín Hill 24, Hipódromo Condesa, CP 06170 Mexico City, Mexico
| | - Silvia J del Arenal-Sánchez
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
| | - Alicia Piñeirúa-Menéndez
- Clínica Especializada Condesa Iztapalapa, Av. Combate de Celaya S/N, Colonia Unidad Habitacional Vicente Guerrero, CP 09730 Mexico City, Mexico
| | - Verónica Ruiz
- Clínica Especializada Condesa, Gral, Benjamín Hill 24, Hipódromo Condesa, CP 06170 Mexico City, Mexico
| | - Patricia Iracheta-Hernández
- Clínica Especializada Condesa Iztapalapa, Av. Combate de Celaya S/N, Colonia Unidad Habitacional Vicente Guerrero, CP 09730 Mexico City, Mexico
| | - Israel Macías-González
- Clínica Especializada Condesa, Gral, Benjamín Hill 24, Hipódromo Condesa, CP 06170 Mexico City, Mexico
| | - Jehovani Tena-Sánchez
- Clínica Especializada Condesa, Gral, Benjamín Hill 24, Hipódromo Condesa, CP 06170 Mexico City, Mexico
| | - Florentino Badial-Hernández
- Clínica Especializada Condesa Iztapalapa, Av. Combate de Celaya S/N, Colonia Unidad Habitacional Vicente Guerrero, CP 09730 Mexico City, Mexico
| | - Andrea González-Rodríguez
- Clínica Especializada Condesa, Gral, Benjamín Hill 24, Hipódromo Condesa, CP 06170 Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080 Mexico City, Mexico
| |
Collapse
|
9
|
Hong SL, Dellicour S, Vrancken B, Suchard MA, Pyne MT, Hillyard DR, Lemey P, Baele G. In Search of Covariates of HIV-1 Subtype B Spread in the United States-A Cautionary Tale of Large-Scale Bayesian Phylogeography. Viruses 2020; 12:v12020182. [PMID: 32033422 PMCID: PMC7077180 DOI: 10.3390/v12020182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Infections with HIV-1 group M subtype B viruses account for the majority of the HIV epidemic in the Western world. Phylogeographic studies have placed the introduction of subtype B in the United States in New York around 1970, where it grew into a major source of spread. Currently, it is estimated that over one million people are living with HIV in the US and that most are infected with subtype B variants. Here, we aim to identify the drivers of HIV-1 subtype B dispersal in the United States by analyzing a collection of 23,588 pol sequences, collected for drug resistance testing from 45 states during 2004-2011. To this end, we introduce a workflow to reduce this large collection of data to more computationally-manageable sample sizes and apply the BEAST framework to test which covariates associate with the spread of HIV-1 across state borders. Our results show that we are able to consistently identify certain predictors of spread under reasonable run times across datasets of up to 10,000 sequences. However, the general lack of phylogenetic structure and the high uncertainty associated with HIV trees make it difficult to interpret the epidemiological relevance of the drivers of spread we are able to identify. While the workflow we present here could be applied to other virus datasets of a similar scale, the characteristic star-like shape of HIV-1 phylogenies poses a serious obstacle to reconstructing a detailed evolutionary and spatial history for HIV-1 subtype B in the US.
Collapse
Affiliation(s)
- Samuel L. Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (S.D.); (B.V.); (P.L.); (G.B.)
- Correspondence:
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (S.D.); (B.V.); (P.L.); (G.B.)
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (S.D.); (B.V.); (P.L.); (G.B.)
| | - Marc A. Suchard
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA;
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Michael T. Pyne
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA;
| | - David R. Hillyard
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA;
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (S.D.); (B.V.); (P.L.); (G.B.)
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (S.D.); (B.V.); (P.L.); (G.B.)
| |
Collapse
|
10
|
Macías J. Reply to: "Cross-country migration linked to people who inject drugs challenges the long-term impact of national HCV elimination programmes". J Hepatol 2019; 71:1272. [PMID: 31610894 DOI: 10.1016/j.jhep.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/04/2022]
Affiliation(s)
- Juan Macías
- Infectious Diseases and Microbiology Unit, Hospital Universitario de Valme, Seville, Spain.
| |
Collapse
|
11
|
Vrancken B, Cuypers L, Pérez AB, Chueca N, Anton-Basantas J, de la Iglesia A, Fuentes J, Pineda JA, Téllez F, Bernal E, Rincón P, Von Wichman MA, Fuentes A, Vera F, Rivero-Juárez A, Jiménez M, Vandamme AM, García F. Cross-country migration linked to people who inject drugs challenges the long-term impact of national HCV elimination programmes. J Hepatol 2019; 71:1270-1272. [PMID: 31585736 DOI: 10.1016/j.jhep.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Bram Vrancken
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium.
| | - Lize Cuypers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium.
| | - Ana Belen Pérez
- Clinical Microbiology, University Hospital San Cecilio, Research Institute Ibs, Granada, Spain
| | - Natalia Chueca
- Clinical Microbiology, University Hospital San Cecilio, Research Institute Ibs, Granada, Spain
| | | | | | - Javier Fuentes
- Hepatology Unit, Hospital Miguel Servet, Zaragoza, Spain
| | | | - Francisco Téllez
- Infectious Diseases Unit, University Hospital of Puerto Real, Cádiz, Spain
| | - Enrique Bernal
- Infectious Diseases, University Hospital Reina Sofía, Murcia, Spain
| | - Pilar Rincón
- Infectious Diseases Unit, University Hospital of Valme, Sevilla, Spain
| | | | - Ana Fuentes
- Clinical Microbiology, University Hospital San Cecilio, Research Institute Ibs, Granada, Spain
| | - Francisco Vera
- Infectious Disease Unit, University Hospital Santa Lucía, Cartagena, Murcia, Spain
| | | | | | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium; Center for Global Health and Tropical Medicine, Microbiology Unit, Institute of Hygiene and Tropical Medicine, University Nova Lisbon, Lisbon, Portugal
| | - Federico García
- Clinical Microbiology, University Hospital San Cecilio, Research Institute Ibs, Granada, Spain
| |
Collapse
|
12
|
Hostager R, Ragonnet-Cronin M, Murrell B, Hedskog C, Osinusi A, Susser S, Sarrazin C, Svarovskaia E, Wertheim JO. Hepatitis C virus genotype 1 and 2 recombinant genomes and the phylogeographic history of the 2k/1b lineage. Virus Evol 2019; 5:vez041. [PMID: 31616569 PMCID: PMC6785677 DOI: 10.1093/ve/vez041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recombination is an important driver of genetic diversity, though it is relatively uncommon in hepatitis C virus (HCV). Recent investigation of sequence data acquired from HCV clinical trials produced twenty-one full-genome recombinant viruses belonging to three putative inter-subtype forms 2b/1a, 2b/1b, and 2k/1b. The 2k/1b chimera is the only known HCV circulating recombinant form (CRF), provoking interest in its genetic structure and origin. Discovered in Russia in 1999, 2k/1b cases have since been detected throughout the former Soviet Union, Western Europe, and North America. Although 2k/1b prevalence is highest in the Caucasus mountain region (i.e., Armenia, Azerbaijan, and Georgia), the origin and migration patterns of CRF 2k/1b have remained obscure due to a paucity of available sequences. We assembled an alignment which spans the entire coding region of the HCV genome containing all available 2k/1b sequences (>500 nucleotides; n = 109) sampled in ninteen countries from public databases (102 individuals), additional newly sequenced genomic regions (from 48 of these 102 individuals), unpublished isolates with newly sequenced regions (5 additional individuals), and novel complete genomes (2 additional individuals) generated in this study. Analysis of this expanded dataset reconfirmed the monophyletic origin of 2k/1b with a recombination breakpoint at position 3,187 (95% confidence interval: 3,172–3,202; HCV GT1a reference strain H77). Phylogeography is a valuable tool used to reveal viral migration dynamics. Inference of the timed history of spread in a Bayesian framework identified Russia as the ancestral source of the CRF 2k/1b clade. Further, we found evidence for migration routes leading out of Russia to other former Soviet Republics or countries under the Soviet sphere of influence. These findings suggest an interplay between geopolitics and the historical spread of CRF 2k/1b.
Collapse
Affiliation(s)
- Reilly Hostager
- Department of Medicine, University of California, San Diego, CA, USA
| | | | - Ben Murrell
- Department of Medicine, University of California, San Diego, CA, USA
| | | | | | - Simone Susser
- Goethe-University Hospital, Medical Clinic, Frankfurt, Germany
| | - Christoph Sarrazin
- Gilead Sciences, Foster City, CA, USA.,St. Josefs-Hospital, Medical Clinic 2, Wiesbaden, Germany
| | | | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
13
|
Cuypers L, Thijssen M, Shakibzadeh A, Sabahi F, Ravanshad M, Pourkarim MR. Next-generation sequencing for the clinical management of hepatitis C virus infections: does one test fits all purposes? Crit Rev Clin Lab Sci 2019; 56:420-434. [PMID: 31317801 DOI: 10.1080/10408363.2019.1637394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While the prospect of viral cure is higher than ever for individuals infected with the hepatitis C virus (HCV) due to ground-breaking progress in antiviral treatment, success rates are still negatively influenced by HCV's high genetic variability. This genetic diversity is represented in the circulation of various genotypes and subtypes, mixed infections, recombinant forms and the presence of numerous drug resistant variants among infected individuals. Common misclassifications by commercial genotyping assays in combination with the limitations of currently used targeted population sequencing approaches have encouraged researchers to exploit alternative methods for the clinical management of HCV infections. Next-generation sequencing (NGS), a revolutionary and powerful tool with a variety of applications in clinical virology, can characterize viral diversity and depict viral dynamics in an ultra-wide and ultra-deep manner. The level of detail it provides makes it the method of choice for the diagnosis and clinical assessment of HCV infections. The sequence library provided by NGS is of a higher magnitude and sensitivity than data generated by conventional methods. Therefore, these technologies are helpful to guide clinical practice and at the same time highly valuable for epidemiological studies. The decreasing costs of NGS to determine genotypes, mixed infections, recombinant strains and drug resistant variants will soon make it feasible to employ NGS in clinical laboratories, to assist in the daily care of patients with HCV.
Collapse
Affiliation(s)
- Lize Cuypers
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium
| | - Marijn Thijssen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium
| | - Arash Shakibzadeh
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Farzaneh Sabahi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mehrdad Ravanshad
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Mahmoud Reza Pourkarim
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium.,Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences , Shiraz , Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran
| |
Collapse
|
14
|
Cuypers L, Thijssen M, Shakibzadeh A, Deboutte W, Sarvari J, Sabahi F, Ravanshad M, Pourkarim MR. Signature of natural resistance in NS3 protease revealed by deep sequencing of HCV strains circulating in Iran. INFECTION GENETICS AND EVOLUTION 2019; 75:103966. [PMID: 31323326 DOI: 10.1016/j.meegid.2019.103966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/10/2019] [Accepted: 07/14/2019] [Indexed: 12/15/2022]
Abstract
A tremendous upscale of screening and treatment strategies is required to achieve elimination of the hepatitis C virus (HCV) in Iran by 2030. Among treated patients, at least 5-10% is expected to experience treatment failure. To efficiently retreat cases with prior exposure to NS5A and NS5B drugs, knowledge on the natural prevalence of NS3 resistance is key. The NS3 region of 32 samples from sixteen Iranian HCV patients, among which 6 injecting drug users, was amplified and subjected to deep sequencing. Amplification and sequencing were successful in 29 samples. The reads were assembled to consensus sequences and showed that 6 patients were infected with HCV1a (37.5%), 7 with HCV1b (43.8%) and 3 with HCV3a (18.7%). Nucleotide identities were shared for >97% between intra-host sequences. Two patients were infected with natural resistant viruses, of which one solely comprising low frequency variants. Inferred phylogenies showed that Iranian sequences clustered together for HCV1a and HCV1b, while for HCV3a a potential recombination event was detected. We firstly report the use of deep sequencing for HCV in Iran, demonstrate the use of NS3 inhibitors as salvage therapy in case of retreatment and stress the importance for Iran to prioritize drug users for screening and treatment.
Collapse
Affiliation(s)
- Lize Cuypers
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, 3000 Leuven, Belgium
| | - Marijn Thijssen
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, 3000 Leuven, Belgium
| | - Arash Shakibzadeh
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ward Deboutte
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Viral Metagenomics, 3000 Leuven, Belgium
| | - Jamal Sarvari
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Sabahi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Ravanshad
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Reza Pourkarim
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, 3000 Leuven, Belgium; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Hemmat Exp Way, 14665-1157 Tehran, Iran.
| |
Collapse
|