1
|
Ahmed MF, Raby KH, Tasnim N, Islam MT, Chowdhury M, Juthi ZT, Mia MA, Jahan L, Hossain AZ, Ahmed S. Optimization of the extraction methods and evaluation of the hypoglycemic effect of Adhatoda Zeylanica extracts on artificially induced diabetic mice. Heliyon 2025; 11:e41627. [PMID: 39866458 PMCID: PMC11758211 DOI: 10.1016/j.heliyon.2025.e41627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Synthetic antidiabetic drugs are often associated with various adverse side effects, including hypoglycemia, nausea, gastrointestinal disturbances, headaches, and even liver damage. In contrast, plant-derived natural antidiabetic bioactive compounds typically exhibit lower toxicity and fewer side effects and have been reported to aid effectively in diabetes management. These plant extracts regulate diabetes by restoring pancreatic function, enhancing insulin secretion, inhibiting intestinal glucose absorption, and facilitating insulin dependent metabolism. This study explored four extraction methods, including reflux distillation (RD), ultrasound assisted extraction (UAE), microwave assisted extraction (MAE), and enzyme assisted extraction (EAE) to optimize the yield of crude leaf extract and vasicine from Adhatoda zeylanica. RD produced the highest crude extract yield (98.29 g/kg of dried leaf), while MAE was the most effective for vasicine extraction, yielding 2.44 g vasicine per kg dried leaf. High Performance Liquid Chromatography (HPLC) with a diode array detector (DAD) was used to identify and quantify vasicine, a quinazoline alkaloid with known antidiabetic properties. The hypoglycemic effects of leaf extracts were evaluated in alloxan-induced diabetic mice, and the effect of A. zeylanica extract was compared to the extracts of Centella asiatica, Allamanda cathartica, and the standard drug metformin. At a dose of 400 mg/kg body weight (BW), methanolic leaf extracts of A. zeylanica, C. asiatica, and A. cathartica reduced blood glucose level by 78.95 %, 74.50 %, and 70.19 %, respectively, compared to the standard drug metformin, which reduced blood glucose levels by 85.84 %. A. zeylanica at 400 mg/kg BW dose and metformin demonstrated statistically similar and significant blood glucose level reduction (p < 0.001). Additionally, therapeutic doses of A. zeylanica leaf extract exhibited low cytotoxicity (cell survival rate >89 %), highlighting its potential as a safe and effective source of antidiabetic agent.
Collapse
Affiliation(s)
- Md Fahim Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Khalid Hasan Raby
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Nishat Tasnim
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Tariful Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Mahbub Chowdhury
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Zarin Tasnim Juthi
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Ashik Mia
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Lubna Jahan
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - A.K.M. Zakir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shoeb Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
2
|
Mistry PS, Chorawala MR, Sivamaruthi BS, Prajapati BG, Kumar A, Chaiyasut C. The Role of Dietary Anthocyanins for Managing Diabetes Mellitus-Associated Complications. Curr Diabetes Rev 2025; 21:e15733998322754. [PMID: 39136514 DOI: 10.2174/0115733998322754240802063730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Diabetes mellitus (DM) is an intricate metabolic disorder marked by persistent hyperglycemia, arising from disruptions in glucose metabolism, with two main forms, type 1 and type 2, involving distinct etiologies affecting β-cell destruction or insulin levels and sensitivity. The islets of Langerhans, particularly β-cells and α-cells, play a pivotal role in glucose regulation, and both DM types lead to severe complications, including retinopathy, nephropathy, and neuropathy. Plant-derived anthocyanins, rich in anti-inflammatory and antioxidant properties, show promise in mitigating DM-related complications, providing a potential avenue for prevention and treatment. Medicinal herbs, fruits, and vegetables, abundant in bioactive compounds like phenolics, offer diverse benefits, including glucose regulation and anti-inflammatory, antioxidant, anticancer, anti-mutagenic, and neuroprotective properties. Anthocyanins, a subgroup of polyphenols, exhibit diverse isoforms and biosynthesis involving glycosylation, making them potential natural replacements for synthetic food colorants. Clinical trials demonstrate the efficacy and safety of anthocyanins in controlling glucose, reducing oxidative stress, and enhancing insulin sensitivity in diabetic patients, emphasizing their therapeutic potential. Preclinical studies revealed their multifaceted mechanisms, positioning anthocyanins as promising bioactive compounds for managing diabetes and its associated complications, including retinopathy, nephropathy, and neuropathy.
Collapse
Affiliation(s)
- Priya S Mistry
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India
| | - Akash Kumar
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
- Department of Food Technology, SRM University, Delhi-NCR, Sonepat 131029, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Tsai MC, Wang CC, Tsai IN, Yu MH, Yang MY, Lee YJ, Chan KC, Wang CJ. Improving the Effects of Mulberry Leaves and Neochlorogenic Acid on Glucotoxicity-Induced Hepatic Steatosis in High Fat Diet Treated db/db Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6339-6346. [PMID: 38488910 PMCID: PMC10979445 DOI: 10.1021/acs.jafc.3c09033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
There are many complications of type 2 diabetes mellitus. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two complications related to the increased lipid accumulation in the liver. Previous studies have shown that mulberry leaf water extract (MLE) has the effect of lowering lipid levels in peripheral blood, inhibiting the expression of fatty acid synthase (FASN) and increasing the activity of liver antioxidant enzymes superoxide dismutase (SOD) and catalase. Our study aimed to investigate the role of MLE and its main component, neochlorogenic acid (nCGA), in reducing serum lipid profiles, decreasing lipid deposition in the liver, and improving steatohepatitis levels. We evaluated the antioxidant activity including glutathione (GSH), glutathione reductase (GRd), glutathione peroxidase (GPx), glutathione S-transferase (GST), and superoxide dismutase (SOD), and catalase was tested in mice fed with MLE and nCGA. The results showed a serum lipid profile, and fatty liver scores were significantly increased in the HFD group compared to the db/m and db mice groups, while liver antioxidant activity significantly decreased in the HFD group. When fed with HFD + MLE or nCGA, there was a significant improvement in serum lipid profiles, liver fatty deposition conditions, steatohepatitis levels, and liver antioxidant activity compared to the HFD group. Although MLE and nCGA do not directly affect the blood sugar level of db/db mice, they do regulate abnormalities in lipid metabolism. These results demonstrate the potential of MLE/nCGA as a treatment against glucotoxicity-induced diabetic fatty liver disease in animal models.
Collapse
Affiliation(s)
- Ming-Chang Tsai
- Division
of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School
of Medical, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chi-Chih Wang
- Division
of Gastroenterology and Hepatology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School
of Medical, Chung Shan Medical University, Taichung 402, Taiwan
| | - I-Ning Tsai
- Institute
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Meng-Hsun Yu
- Department
of Nutrition, Chung Shan Medical University, No. 110, Section 1, Jianguo North
Road, Taichung 402, Taiwan
| | - Mon-Yuan Yang
- Department
of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Ju Lee
- Department
of Pathology, Chung Shan Medical University
Hospital, Taichung 402, Taiwan
| | - Kuei-Chuan Chan
- School
of Medical, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Internal Medicine, Chung-Shan Medical
University Hospital, No. 110, Section 1, Jianguo North Road, Taichung 402 and Taiwan
| | - Chau-Jong Wang
- Department
of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 402, Taiwan
| |
Collapse
|
4
|
Chang YR, Cheng WC, Hsiao YC, Su GW, Lin SJ, Wei YS, Chou HC, Lin HP, Lin GY, Chan HL. Links between oral microbiome and insulin resistance: Involvement of MAP kinase signaling pathway. Biochimie 2023; 214:134-144. [PMID: 37442534 DOI: 10.1016/j.biochi.2023.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Oral dysbiosis contributes to periodontitis and has implications for systemic diseases. Diabetes mellitus is a common metabolic disorder characterized by impaired glucose regulation. AMP-activated protein kinase (AMPK) plays a vital role in regulating glucose uptake and glycogenesis in the liver. This study aimed to investigate the association between periodontal bacteria and diabetes mellitus. A clinical trial was conducted to explore the association between oral bacteria and hyperglycemia. Additionally, we elucidated the molecular mechanisms by which periodontal bacteria cause insulin resistance. In the clinical trial, we discovered significant alterations in the expression levels of Fusobacterium nucleatum (Fn) and Tannerella forsythia (Tf) in patients with diabetes compared with healthy controls. Furthermore, Fn and Tf levels positively correlated with fasting blood glucose and glycated hemoglobin (HbA1C) levels. Moreover, we explored and elucidated the molecular mechanism by which Fusobacterium nucleatum culture filtrate (FNCF) induces cytokine release via the Toll-like receptor 2 (TLR2) signaling pathway in human gingival epithelial Smulow-Glickman (S-G) cells. This study investigated the effects of cytokines on insulin resistance pathways in liver cells. The use of an extracellular signal-regulated kinase (ERK) inhibitor (U0126) demonstrated that FNCF regulates the insulin receptor substrate 1 and protein kinase B (IRS1/AKT) signaling pathway, which affects key proteins involved in hepatic glycogen synthesis, including glycogen synthase kinase-3 beta (GSK3β) and glycogen synthase (GS), ultimately leading to insulin resistance. These findings suggest that ERK plays a crucial role in hepatocyte insulin resistance.
Collapse
Affiliation(s)
- Yi-Ru Chang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; General Biologicals Corporation, Hsinchu, Taiwan
| | - Wen-Chi Cheng
- SDGs Teaching and Research Headquarters, Tzu Chi University, Hualien, Taiwan
| | - Ya-Chun Hsiao
- Department of Endocrinology and Metabolism, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Guan-Wei Su
- Dental Department of Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Shan-Jen Lin
- Dental Department of Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Guan-Yu Lin
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Hung TW, Yang MY, Yu MH, Tsai IN, Tsai YC, Chan KC, Wang CJ. Mulberry leaf extract and neochlorogenic acid ameliorate glucolipotoxicity-induced diabetic nephropathy in high-fat diet-fed db/db mice. Food Funct 2023; 14:8975-8986. [PMID: 37732507 DOI: 10.1039/d3fo02640j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Diabetic nephropathy, a major diabetes complication, is often exacerbated by glucolipotoxicity. The potential benefits of mulberry leaf extract (MLE) and its primary component, neochlorogenic acid (nCGA), in combating this condition have not been extensively explored. High-fat diet-fed db/db mice were employed as a model for glucolipotoxicity-induced diabetic nephropathy. The mice were treated with MLE or nCGA, and their body weight, insulin sensitivity, blood lipid profiles, and kidney function were assessed. In addition, modulation of the JAK-STAT, pAKT, Ras, and NF-κB signaling pathways by MLE and nCGA was evaluated. MLE and nCGA did not significantly decrease blood glucose level but effectively mitigated the adverse effects of a high-fat diet on blood lipid profile and kidney function. Improvements in body weight, insulin sensitivity, and kidney structure, along with a reduction in fibrosis, were observed. Both MLE and nCGA regulated lipid metabolism abnormalities, significantly inhibited the accumulation of glycosylated substances in glomeruli, and modulated crucial signaling pathways involved in diabetic nephropathy. Although they do not directly affect blood glucose level, MLE and nCGA show significant potential in managing glucolipotoxicity-induced diabetic nephropathy by targeting lipid metabolism and key molecular pathways. The present findings suggest MLE and nCGA may be promising therapeutic agents for diabetic nephropathy, and further exploration in human patients is warranted.
Collapse
Affiliation(s)
- Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medicine, Division of Nephrology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Mon-Yuan Yang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Meng-Hsun Yu
- Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - I-Ning Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yung-Che Tsai
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Kuei-Chuan Chan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| |
Collapse
|
6
|
Tang C, Bao T, Zhang Q, Qi H, Huang Y, Zhang B, Zhao L, Tong X. Clinical potential and mechanistic insights of mulberry (Morus alba L.) leaves in managing type 2 diabetes mellitus: Focusing on gut microbiota, inflammation, and metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116143. [PMID: 36632855 DOI: 10.1016/j.jep.2023.116143] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural herbs are gradually gaining recognition for their efficacy and safety in preventing diabetes and improving quality of life. Morus alba L. is a plant widely grown in Asia and is a traditional Chinese herb with a long history of use. Furthermore, several parts of Morus alba L. have been found to have significant health benefits. In particular, mulberry (Morus alba L.) leaves (ML) have been shown in human and animal studies to be promising hypoglycemic agents that can reduce or prevent glucolipid metabolism disorders caused by imbalances in the gut microbiota, inflammation, and oxidative stress and have demonstrated significant improvements in glucose metabolism-related markers, effectively lowering blood glucose, and reducing hyperglycemia-induced target organ damage. AIM OF THE STUDY This review briefly summarizes the methods for obtaining ML's bioactive components, elaborates on the clinical potential of the relevant components in managing type 2 diabetes mellitus (T2DM), and focuses on the therapeutic mechanisms of gut microbiota, inflammation, oxidative stress, and metabolism, to provide more inspiration and directions for future research in the field of traditional natural plants for the management of T2DM and its complications. MATERIALS AND METHODS Research on ML and its bioactive components was mainly performed using electronic databases, including PubMed, Google Scholar, and ScienceNet, to ensure the review's quality. In addition, master's and doctoral theses and ancient documents were consulted. RESULTS In clinical studies, we found that ML could effectively reduce blood glucose, glycated hemoglobin, and homeostasis model assessment of insulin resistance in T2DM patients. Furthermore, many in vitro and in vivo experiments have found that ML is involved in various pathways that regulate glucolipid metabolism and resist diabetes while alleviating liver and kidney damage. CONCLUSIONS As a potential natural anti-diabetic phytomedicine, an in-depth study of ML can provide new ideas and valuable references for applying traditional Chinese medicine to treat T2DM. While continuously exploring its clinical efficacy and therapeutic mechanism, the extraction method should be optimized to improve the efficacy of the bioactive components. in addition, further research on the dose-response relationship of drugs to determine the effective dose range is required.
Collapse
Affiliation(s)
- Cheng Tang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tingting Bao
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Zhang
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, China
| | - Hongyu Qi
- Changchun University of Chinese Medicine, Changchun, 130117, China; Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Changchun, China; Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun, China
| | - Yishan Huang
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boxun Zhang
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolin Tong
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Zhang X, Zhang L, Zhang B, Liu K, Sun J, Li Q, Zhao L. Herbal tea, a novel adjuvant therapy for treating type 2 diabetes mellitus: A review. Front Pharmacol 2022; 13:982387. [PMID: 36249806 PMCID: PMC9561533 DOI: 10.3389/fphar.2022.982387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic, endocrine disease characterized by persistent hyperglycemia. Several studies have shown that herbal tea improves glucose metabolism disorders in patients with T2DM. This study summarizes the published randomized controlled trials (RCTs) on herbal tea as a adjuvant therapy for treating T2DM and found that herbal teas have potential add-on effects in lowering blood glucose levels. In addition, we discussed the polyphenol contents in common herbal teas and their possible adverse effects. To better guide the application of herbal teas, we further summarized the hypoglycemic mechanisms of common herbal teas, which mainly involve: 1) improving insulin resistance, 2) protecting islet β-cells, 3) anti-inflammation and anti-oxidation, 4) inhibition of glucose absorption, and 5) suppression of gluconeogenesis. In conclusion, herbal tea, as a novel adjuvant therapy for treating T2DM, has the potential for further in-depth research and product development.
Collapse
Affiliation(s)
- Xiangyuan Zhang
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Lili Zhang
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boxun Zhang
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Liu
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Sun
- Graduate College, Changchun University of Traditional Chinese Medicine, Jilin, China
| | - Qingwei Li
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qingwei Li, ; Linhua Zhao,
| | - Linhua Zhao
- Department of Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qingwei Li, ; Linhua Zhao,
| |
Collapse
|
8
|
Improvement of Glycemic Control by a Functional Food Mixture Containing Maltodextrin, White Kidney Bean Extract, Mulberry Leaf Extract, and Niacin-Bound Chromium Complex in Obese Diabetic db/db Mice. Metabolites 2022; 12:metabo12080693. [PMID: 35893259 PMCID: PMC9394435 DOI: 10.3390/metabo12080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Steady-fiber granule (SFG) is a mixture containing maltodextrin, white kidney bean extract, mulberry leaf extract, and niacin-bound chromium complex. These active ingredients have been shown to be associated with improving either hyperglycemia or hyperlipidemia. This study was undertaken to evaluate the potential of SFG in the regulation of blood glucose homeostasis under obese diabetic conditions. Accordingly, db/db mice (8 weeks old) were administered with SFG at doses of 1.025, 2.05, or 5.125 g/kg BW daily via oral gavage for 4 weeks. No body weight loss was observed after SFG supplementation at all three doses during the experimental period. Supplementation of SFG at 2.05 g/kg BW decreased fasting blood glucose, blood fructosamine, and HbA1c levels in db/db mice. Insulin sensitivity was also improved, as indicated by HOMA-IR assessment and oral glucose tolerance test, although the fasting insulin levels were no different in db/db mice with or without SFG supplementation. Meanwhile, the plasma levels of triglyceride were reduced by SFG at all three doses. These findings suggest that SFG improves glycemic control and insulin sensitivity in db/db mice and can be available as an option for functional foods to aid in management of type 2 diabetes mellitus in daily life.
Collapse
|
9
|
Luo Z, Yang J, Zhang J, Meng G, Lu Q, Yang X, Zhao P, Li Y. Physicochemical Properties and Elimination of the Activity of Anti-Nutritional Serine Protease Inhibitors from Mulberry Leaves. Molecules 2022; 27:molecules27061820. [PMID: 35335184 PMCID: PMC8948906 DOI: 10.3390/molecules27061820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Mulberry leaf is an excellent protein resource that can be used as feed additive for livestock and poultry. Nevertheless, the use of mulberry leaves in animal diets is limited by its protease inhibitors, tannic acid and other anti-nutritional factors. This study systematically analyzed the type and activity of serine protease inhibitors (SPIs) from the leaves of 34 mulberry varieties, aiming to reveal the physicochemical properties and inactivation mechanism of SPIs. The types and activities of trypsin inhibitors (TIs) and chymotrypsin inhibitors (CIs) exhibited polymorphisms among different mulberry varieties. The highest number of types of inhibitors was detected in Jinshi, with six TIs (TI-1~TI-6) and six CIs (CI-1~CI-6). TIs and CIs exhibited strong thermal and acid–base stability. High-temperature and high-pressure treatment could reduce the activities of TIs and CIs to a certain extent. β-mercaptoethanol treatment could completely abolish TIs and CIs, suggesting that the disulfide bridges were critical for their inhibitory activities. The Maillard reaction could effectively eliminate the inhibitory activities of TI-1~TI-4 and CI-1~CI-4. This study reveals the physicochemical properties and inactivation mechanisms of the anti-nutritional SPIs from mulberry leaves, which is helpful to exploit mulberry-leaf food with low-activity SPIs, promote the development and utilization of mulberry-leaf resources in animal feed and provide reference for mulberry breeding with different functions.
Collapse
Affiliation(s)
- Zhuxing Luo
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.L.); (J.Z.); (Q.L.); (X.Y.)
| | - Jinhong Yang
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang 725099, China; (J.Y.); (G.M.)
| | - Jie Zhang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.L.); (J.Z.); (Q.L.); (X.Y.)
| | - Gang Meng
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang 725099, China; (J.Y.); (G.M.)
| | - Qingjun Lu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.L.); (J.Z.); (Q.L.); (X.Y.)
| | - Xi Yang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.L.); (J.Z.); (Q.L.); (X.Y.)
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China;
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.L.); (J.Z.); (Q.L.); (X.Y.)
- Correspondence: or
| |
Collapse
|
10
|
Wu Q, Hu Y. Systematic Evaluation of the Mechanisms of Mulberry Leaf (Morus alba Linne) Acting on Diabetes Based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2021; 24:668-682. [PMID: 32928080 DOI: 10.2174/1386207323666200914103719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus is one of the most common endocrine metabolic disorder- related diseases. The application of herbal medicine to control glucose levels and improve insulin action might be a useful approach in the treatment of diabetes. Mulberry leaves (ML) have been reported to exert important activities of anti-diabetic. OBJECTIVE In this work, we aimed to explore the multi-targets and multi-pathways regulatory molecular mechanism of Mulberry leaves (ML, Morus alba Linne) acting on diabetes. METHODS Identification of active compounds of Mulberry leaves using Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was carried out. Bioactive components were screened by FAF-Drugs4 website (Free ADME-Tox Filtering Tool). The targets of bioactive components were predicted from SwissTargetPrediction website, and the diabetes related targets were screened from GeneCards database. The common targets of ML and diabetes were used for Gene Ontology (GO) and pathway enrichment analysis. The visualization networks were constructed by Cytoscape 3.7.1 software. The biological networks were constructed to analyze the mechanisms as follows: (1) compound-target network; (2) common target-compound network; (3) common targets protein interaction network; (4) compound-diabetes protein-protein interactions (ppi) network; (5) target-pathway network; and (6) compound-target-pathway network. At last, the prediction results of network pharmacology were verified by molecular docking method. RESULTS 17 active components were obtained by TCMSP database and FAF-Drugs4 website. 51 potential targets (11 common targets and 40 associated indirect targets) were obtained and used to build the PPI network by the String database. Furthermore, the potential targets were used for GO and pathway enrichment analysis. Eight key active compounds (quercetin, Iristectorigenin A, 4- Prenylresveratrol, Moracin H, Moracin C, Isoramanone, Moracin E and Moracin D) and 8 key targets (AKT1, IGF1R, EIF2AK3, PPARG, AGTR1, PPARA, PTPN1 and PIK3R1) were obtained to play major roles in Mulberry leaf acting on diabetes. And the signal pathways involved in the mechanisms mainly include AMPK signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, insulin signaling pathway and insulin resistance. The molecular docking results show that the 8 key active compounds have good affinity with the key target of AKT1, and the 5 key targets (IGF1R, EIF2AK3, PPARG, PPARA and PTPN1) have better affinity than AKT1 with the key compound of quercetin. CONCLUSION Based on network pharmacology and molecular docking, this study provided an important systematic and visualized basis for further understanding of the synergy mechanism of ML acting on diabetes.
Collapse
Affiliation(s)
- Qiguo Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yeqing Hu
- Department of Pharmacy, Anqing Medical College, Anqing 246052, China
| |
Collapse
|
11
|
Molecular Insights into the Multifunctional Role of Natural Compounds: Autophagy Modulation and Cancer Prevention. Biomedicines 2020; 8:biomedicines8110517. [PMID: 33228222 PMCID: PMC7699596 DOI: 10.3390/biomedicines8110517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a vacuolar, lysosomal degradation pathway for injured and damaged protein molecules and organelles in eukaryotic cells, which is controlled by nutrients and stress responses. Dysregulation of cellular autophagy may lead to various diseases such as neurodegenerative disease, obesity, cardiovascular disease, diabetes, and malignancies. Recently, natural compounds have come to attention for being able to modulate the autophagy pathway in cancer prevention, although the prospective role of autophagy in cancer treatment is very complex and not yet clearly elucidated. Numerous synthetic chemicals have been identified that modulate autophagy and are favorable candidates for cancer treatment, but they have adverse side effects. Therefore, different phytochemicals, which include natural compounds and their derivatives, have attracted significant attention for use as autophagy modulators in cancer treatment with minimal side effects. In the current review, we discuss the promising role of natural compounds in modulating the autophagy pathway to control and prevent cancer, and provide possible therapeutic options.
Collapse
|
12
|
Zhang H, Hui J, Yang J, Deng J, Fan D. Eurocristatine, a plant alkaloid from Eurotium cristatum, alleviates insulin resistance in db/db diabetic mice via activation of PI3K/AKT signaling pathway. Eur J Pharmacol 2020; 887:173557. [PMID: 32946868 DOI: 10.1016/j.ejphar.2020.173557] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023]
Abstract
Eurocristatine (ECT) is an alkaloid isolated from Eurotium cristatum, and it has been used in multiple applications. However, its use as a treatment for type 2 diabetes mellitus (T2DM) has not yet been reported. In this study, we investigated the anti-T2DM effect of ECT and explored its potential molecular mechanism. In vivo, after treatment with ECT (20, 40 mg/kg) for 6 weeks, fasting blood glucose (FBG) was remarkably reduced in db/db mice. Moreover, glucose tolerance, insulin sensitivity and hyperinsulinemia were ameliorated treatment with ECT. The values of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) also showed that ECT could alleviate liver toxicity caused by diabetes in db/db mice. In vitro, ECT (15 and 30 μM) alleviated insulin resistance by increasing glucose consumption, glucose uptake and glycogen content in high glucose-induced HepG2 cells. The Western blotting (WB) results showed that ECT could upregulate the expression of phosphatidylinositol 3-kinase (PI3K), increase the phosphorylation of insulin receptor substrate 1 (IRS1) and protein kinase B (AKT) in vivo and in vitro. Besides, ECT improved the glycogen content by inhibiting the expression of glycogen synthase kinase3β (GSK3β) and promoting that of glycogen synthase (GS). Furthermore, administration of the PI3K/AKT signaling pathway inhibitor LY294002 abolished the beneficial effects of ECT. These findings are the first to verify that ECT has the potential to improve glucose metabolism and alleviate insulin resistance by activating the PI3K/AKT signaling pathway in db/db mice.
Collapse
Affiliation(s)
- Hui Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Jing Yang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
13
|
Zhong Y, Song B, Zheng C, Zhang S, Yan Z, Tang Z, Kong X, Duan Y, Li F. Flavonoids from Mulberry Leaves Alleviate Lipid Dysmetabolism in High Fat Diet-Fed Mice: Involvement of Gut Microbiota. Microorganisms 2020; 8:microorganisms8060860. [PMID: 32517288 PMCID: PMC7355566 DOI: 10.3390/microorganisms8060860] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Here, we investigated the roles and mechanisms of flavonoids from mulberry leaves (FML) on lipid metabolism in high fat diet (HFD)-fed mice. ICR mice were fed either a control diet (Con) or HFD with or without FML (240 mg/kg/day) by oral gavage for six weeks. FML administration improved lipid accumulation, alleviated liver steatosis and the whitening of brown adipose tissue, and improved gut microbiota composition in HFD-fed mice. Microbiota transplantation from FML-treated mice alleviated HFD-induced lipid metabolic disorders. Moreover, FML administration restored the production of acetic acid in HFD-fed mice. Correlation analysis identified a significant correlation between the relative abundances of Bacteroidetes and the production of acetic acid, and between the production of acetic acid and the weight of selected adipose tissues. Overall, our results demonstrated that in HFD-fed mice, the lipid metabolism improvement induced by FML administration might be mediated by gut microbiota, especially Bacteroidetes-triggered acetic acid production.
Collapse
Affiliation(s)
- Yinzhao Zhong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineeritng Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China; (Y.Z.); (B.S.); (X.K.)
| | - Bo Song
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineeritng Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China; (Y.Z.); (B.S.); (X.K.)
| | - Changbing Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou 510642, China;
| | - Shiyu Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Z.); (Z.Y.); (Z.T.)
| | - Zhaoming Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Z.); (Z.Y.); (Z.T.)
| | - Zhiyi Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Z.); (Z.Y.); (Z.T.)
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineeritng Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China; (Y.Z.); (B.S.); (X.K.)
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineeritng Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China; (Y.Z.); (B.S.); (X.K.)
- Correspondence: (Y.D.); (F.L.)
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineeritng Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China; (Y.Z.); (B.S.); (X.K.)
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients; Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha 410125, China
- Correspondence: (Y.D.); (F.L.)
| |
Collapse
|
14
|
Long XS, Liao ST, Wen P, Zou YX, Liu F, Shen WZ, Hu TG. Superior hypoglycemic activity of mulberry lacking monosaccharides is accompanied by better activation of the PI3K/Akt and AMPK signaling pathways. Food Funct 2020; 11:4249-4258. [PMID: 32356550 DOI: 10.1039/d0fo00427h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mulberry has been used as a functional food to treat type 2 diabetes mellitus (T2DM). However, it contains relatively high levels of fructose and glucose, which are not suitable for excess consumption by diabetic patients. In this study we used microbial fermentation to remove fructose and glucose from mulberry fruit, and then determined the effects on glycemia, the phosphatidylinositol 3-hydroxykinase/Akt (PI3K/Akt) and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways and their downstream effectors in T2DM mice. After 5 weeks of administration, fermented mulberry (FM) significantly reduced fasting blood glucose, and also improved insulin sensitivity and glucose tolerance, more effectively than unfermented mulberry (MP). Moreover, compared with MP, FM had a more marked effect on the protein expression of intermediates in the PI3K/Akt and AMPK signaling pathways and their effectors: insulin receptor, phosphorylated Akt (Ser 308), phosphorylated glycogen synthase kinase-3β (Ser 9), glycogen synthetase, phosphorylated forkhead transcription factor 1 (Ser 256), pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1, 6-bisphosphatase, glucose-6-phosphatase, lipoprotein lipase, and phosphorylated AMPK (Thr 172), glucose transporter 4 and pyruvate kinase. These findings indicate that mulberry fruit modified to remove fructose and glucose may be more promising than whole mulberry as a treatment for diabetes.
Collapse
Affiliation(s)
- Xiao-Shan Long
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng St., Dongguanzhuang Rd, Tianhe District, Guangzhou 510610, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Shih CK, Chen CM, Varga V, Shih LC, Chen PR, Lo SF, Shyur LF, Li SC. White sweet potato ameliorates hyperglycemia and regenerates pancreatic islets in diabetic mice. Food Nutr Res 2020; 64:3609. [PMID: 32425738 PMCID: PMC7217293 DOI: 10.29219/fnr.v64.3609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/28/2019] [Accepted: 01/06/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND White sweet potato (WSP) has many potential beneficial effects on metabolic control and on diabetes-related insulin resistance. The antihyperglycemic effects of Tainung No. 10 (TNG10), a variety of WSP in Taiwan, warrant investigation. OBJECTIVE To investigate the antidiabetic activity of WSP (Ipomoea batatas L. TNG10) and the mechanisms for interventions using whole leaves or tubers of WSP in diabetic mice. DESIGN Mice were co-administered with streptozotocin and nicotinamide to induce diabetes and then treated with an experimental diet including either 10% WSP tuber (10%-T) and 30% WSP tuber (30%-T) or 0.5% WSP leaf (0.5%-L) and 5% WSP leaf (5%-L). After 8 weeks' treatment, their plasma glycemic parameters, lipid profiles, and inflammatory marker were analyzed. Their pancreases were removed for histopathologic image analysis; proteins were also extracted from their muscles for phosphoinositide 3-kinase pathway analysis. RESULTS The 30%-T or 5%-L mice had lower plasma glucose, insulin, glucose area under the curve (AUC), homeostatic model assessment of insulin resistance (HOMA-IR), alanine transaminase, triglyceride, and tumor necrosis factor alpha levels. In all diabetic mice, their Langerhans's area was reduced by 60%; however, after 30% WSP-T or 5% WSP-L diets, the mice demonstrated significant restoration of the Langerhans's areas (approximately 30%). Only in 5%-L mice, slightly increased expression of insulin-signaling pathway-related proteins, phosphorylated insulin receptor and protein kinase B and membrane glucose transporter 4 was noted. CONCLUSIONS WSP has antihyperglycemic effects by inducing pancreatic islet regeneration and insulin resistance amelioration. Therefore, WSP has potential applications in dietary diabetes management.
Collapse
Affiliation(s)
- Chun-Kuang Shih
- School of Nutrition and Health Science, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Chiao-Ming Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan
| | - Viola Varga
- School of Nutrition and Health Science, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chen Shih
- School of Nutrition and Health Science, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Peng-Ru Chen
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan
| | - Shu-Fang Lo
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Sing-Chung Li
- School of Nutrition and Health Science, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Fan L, Peng Y, Wu D, Hu J, Shi X, Yang G, Li X. Dietary supplementation of Morus nigra L. leaves decrease fat mass partially through elevating leptin-stimulated lipolysis in pig model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112416. [PMID: 31756448 DOI: 10.1016/j.jep.2019.112416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/01/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry leaves are the dry leaves of Morus nigra L. trees, which are widely cultivated in central and southern China. Mulberry has a long history of medicinal use, such as anti-stress, lowering blood glucose and anti-obesity. AIM OF THE STUDY Explore the effects of mulberry leaves on fat deposition as well as the underlying mechanisms. MATERIALS AND METHODS Total of 48 fattening pigs weighing about 70 kg were randomly allotted to normal diet or die supplemented with 5% (w/w) mulberry leave powder. Changes of fat mass, indicated by backfat thickness was measured with Piggyback tester, blood triglyceride and cholesterol were tested using commercial biochemical kits, serum hormones were estimated by ELISA, and leptin-related signaling activity were assessed using western-blot. RESULTS Supplementation with Mulberry leaf feed (MF) significantly reduced serum triglyceride and free cholesterol concentrations and increased the ratio of high-density lipoprotein cholesterol (HDL-c) to low-density lipoprotein cholesterol (LDL-c), while serum glucose and free fatty acids remained unchanged. Dietary MF resulted in a significant reduction in the size of adipocytes and backfat thickness (P < 0.05). Accordingly, hormone-sensitive lipase (HSL) in backfat was significantly up-regulated and fatty acid synthase (FAS) was down-regulated by MF supplementation (both P < 0.05). Furthermore, MF supplementation significantly elevated circulating leptin and adiponectin without influencing serum insulin and glucocorticoid. Moreover, significantly higher leptin receptor (Leptin-R) and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) were detected in MF-supplemented pigs, suggesting an enhanced leptin signaling induced by MF in the subcutaneous fat. CONCLUSIONS Mulberry leaves have obvious anti-obesity effects, providing a theoretical basis for the development of mulberry leaves as a drug against obesity.
Collapse
Affiliation(s)
- Lujie Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Sciences and Technologies, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
17
|
Furman BL, Candasamy M, Bhattamisra SK, Veettil SK. Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112264. [PMID: 31600561 DOI: 10.1016/j.jep.2019.112264] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/03/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The global problem of diabetes, together with the limited access of large numbers of patients to conventional antidiabetic medicines, continues to drive the search for new agents. Ancient Asian systems such as traditional Chinese medicine, Japanese Kampo medicine, and Indian Ayurvedic medicine, as well as African traditional medicine and many others have identified numerous plants reported anecdotally to treat diabetes; there are probably more than 800 such plants for which there is scientific evidence for their activity, mostly from studies using various models of diabetes in experimental animals. AIM OF THE REVIEW Rather than a comprehensive coverage of the literature, this article aims to identify discrepancies between findings in animal and human studies, and to highlight some of the problems in developing plant extract-based medicines that lower blood glucose in patients with diabetes, as well as to suggest potential ways forward. METHODS In addition to searching the 2018 PubMed literature using the terms 'extract AND blood glucose, a search of the whole literature was conducted using the terms 'plant extracts' AND 'blood glucose' AND 'diabetes' AND 'double blind' with 'clinical trials' as a filter. A third search using PubMed and Medline was undertaken for systematic reviews and meta-analyses investigating the effects of plant extracts on blood glucose/glycosylated haemoglobin in patients with relevant metabolic pathologies. FINDINGS Despite numerous animal studies demonstrating the effects of plant extracts on blood glucose, few randomised, double-blind, placebo-controlled trials have been conducted to confirm efficacy in treating humans with diabetes; there have been only a small number of systematic reviews with meta-analyses of clinical studies. Qualitative and quantitative discrepancies between animal and human clinical studies in some cases were marked; the factors contributing to this included variations in the products among different studies, the doses used, differences between animal models and the human disease, and the impact of concomitant therapy in patients, as well as differences in the duration of treatment, and the fact that treatment in animals may begin before or very soon after the induction of diabetes. CONCLUSION The potential afforded by natural products has not yet been realised in the context of treating diabetes mellitus. A systematic, coordinated, international effort is required to achieve the goal of providing anti-diabetic treatments derived from medicinal plants.
Collapse
Affiliation(s)
- Brian L Furman
- Strathclyde Institute of Pharmacy & Biomedical Sciences, 161, Cathedral Street Glasgow, G4 ORE, Scotland, UK.
| | - Mayuren Candasamy
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Subrat Kumar Bhattamisra
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Sajesh K Veettil
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Zhou Y. The Protective Effects of Cryptochlorogenic Acid on β-Cells Function in Diabetes in vivo and vitro via Inhibition of Ferroptosis. Diabetes Metab Syndr Obes 2020; 13:1921-1931. [PMID: 32606852 PMCID: PMC7294720 DOI: 10.2147/dmso.s249382] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Mulberry leaf extract has exerted better antidiabetic activities, while the effects of major active components in mulberry leaf extract are still unclear. Cryptochlorogenic acid (CCA) as the major active component in mulberry leaf extracts was investigated herein. MATERIALS AND METHODS Rats were treated with 50mg/kg streptozotocin for the establishment of diabetic model in vivo, and cells were treated with 33.3 mM glucose for the establishment of cell model in vitro. HE staining assay was performed for observation of pancreatic pathology and aldehyde fuchsin staining assay for examining islet cell numbers. The iron content was detected via Perls staining assay with iron assay kit (ab83366). The malondialdehyde (MDA), glutathione (GSH) and oxidized glutathione (GSSG) were detected by corresponding kits. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed for assessment of gene level and Western blot for measurement of protein expression level. The cell survival was detected via CCK-8 assay. RESULTS The blood glucose level, iron content, accumulation of lipid peroxides and islet injury in diabetic model were all improved by CCA via a concentration-dependent manner. CCA functions via inhibition of ferroptosis by activation of cystine/glutamate transporter system (XC-)/glutathione peroxidase 4(GPX4)/Nrf2 and inhibition of nuclear receptor coactivator 4 (NCOA4) in diabetes. CONCLUSION CCA exerted excellent antidiabetic effects via inhibition of ferroptosis, so it may be a promising agent for diabetes therapy, providing a new avenue for diabetes treatment.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Endocrinology, Xiamen Hospital, Beijing University of Traditional Chinese Medicine (Xiamen Hospital of Traditional Chinese Medicine), Xiamen, Fujian361008, People’s Republic of China
- Correspondence: Yi Zhou Department of Endocrinology, Xiamen Hospital, Beijing University of Traditional Chinese Medicine (Xiamen Hospital of Traditional Chinese Medicine), 1739, Xianyue Road, Huli District, Xiamen City, Fujian Province, People’s Republic of China Email
| |
Collapse
|
19
|
Jung SH, Han JH, Park HS, Lee DH, Kim SJ, Cho HS, Kang JS, Myung CS. Effects of unaltered and bioconverted mulberry leaf extracts on cellular glucose uptake and antidiabetic action in animals. Altern Ther Health Med 2019; 19:55. [PMID: 30841887 PMCID: PMC6404318 DOI: 10.1186/s12906-019-2460-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/15/2019] [Indexed: 12/29/2022]
Abstract
Background Mulberry is a Korean medicinal herb that shows effective prevention and treatment of obesity and diabetes. Bioconversion is the process of producing active ingredients from natural products using microorganisms or enzymes. Methods In this study, we prepared bioconverted mulberry leaf extract (BMLE) with Viscozyme L, which we tested in insulin-sensitive cells (i.e., skeletal muscle cells and adipocytes) and insulin-secreting pancreatic β-cells, as well as obese diabetic mice induced by co-administration of streptozotocin (100 mg/kg, IP) and nicotinamide (240 mg/kg, IP) and feeding high-fat diet, as compared to unaltered mulberry leaf extract (MLE). Results BMLE increased the glucose uptake in C2C12 myotubes and 3 T3-L1 adipocytes and increased glucose-stimulated insulin secretion in HIT-T15 pancreatic β-cells. The fasting blood glucose levels in diabetic mice treated with BMLE or MLE (300 and 600 mg/kg, PO, 7 weeks) were significantly lower than those of the vehicle-treated group. At the same concentration, BMLE-treated mice showed better glucose tolerance than MLE-treated mice. Moreover, the blood concentration of glycated hemoglobin (HbA1C) in mice treated with BMLE was lower than that in the MLE group at the same concentration. Plasma insulin levels in mice treated with BMLE or MLE tended to increase compared to the vehicle-treated group. Treatment with BMLE yielded significant improvements in insulin resistance and insulin sensitivity. Conclusion These results indicate that in the management of diabetic condition, BMLE is superior to unaltered MLE due to at least, in part, high concentrations of maker compounds (trans-caffeic acid and syringaldehyde) in BMLE. Electronic supplementary material The online version of this article (10.1186/s12906-019-2460-5) contains supplementary material, which is available to authorized users.
Collapse
|