1
|
Panagiotis K, Gullo RL, Resch D, Pinker K. [Molecular breast imaging : Positron emission tomography/magnetic resonance imaging and targeted tracers]. RADIOLOGIE (HEIDELBERG, GERMANY) 2025; 65:170-177. [PMID: 39900666 DOI: 10.1007/s00117-024-01403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND Molecular imaging has been introduced into breast imaging in recent years, in order to improve breast cancer (BC) depiction as well as our understanding of cancer-associated processes at a cellular and molecular level. OBJECTIVES This review offers an overview of the various molecular imaging modalities implemented in breast imaging as well as of the most significant novel radiotracers and their potential role for the functional evaluation of BC. MATERIALS AND METHODS The applications and the diagnostic potential of different imaging modalities (scintimammography [SM], breast-specific γ imaging [BSGI], positron emission tomography [PET] mammography [PEM] and PET/MRI) as well as specific tracers (18-fluormisonidazole [18F‑MISO], 18-fluoro-L-thymidine [18FLT], 18-fluoroestradiol [18FES], 89-zirconium-trastuzumab, 18-Fluoroethylcholine [18FEC] and 68-gallium-fibroblast activation protein inhibitor [68Ga-FAPI]) will be discussed. RESULTS BSGI increases the sensitivity of SM for small (< 1 cm) lesions, while PEM is more sensitive than whole-body PET scans. Hybrid PET/MRI is the most promising imaging modality for the assessment of BC. While 18F-FDG illustrates the glucose metabolism of cancer cells, novel tracers have other, tumor-specific targets: 18F‑MISO assesses tumor hypoxia, 18FLT the metabolism of DNA, 18FES and 89Zr-trastuzumab the tumor receptor status, 18FEC the metabolism of choline and 68Ga-FAPI cancer-associated fibroblasts. CONCLUSION It can be expected that molecular imaging will gain importance for breast imaging in the future, enabling an improved diagnosis, staging, and treatment follow-up.
Collapse
Affiliation(s)
- Kapetas Panagiotis
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Österreich
- Breast Imaging Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
- Division of Breast Imaging, Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons, 622 West 168th Street, 10032, New York, NY, USA
| | - Roberto Lo Gullo
- Division of Breast Imaging, Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons, 622 West 168th Street, 10032, New York, NY, USA
| | - Daphne Resch
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Österreich
| | - Katja Pinker
- Division of Breast Imaging, Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons, 622 West 168th Street, 10032, New York, NY, USA.
| |
Collapse
|
2
|
Baniasadi A, Das JP, Prendergast CM, Beizavi Z, Ma HY, Jaber MY, Capaccione KM. Imaging at the nexus: how state of the art imaging techniques can enhance our understanding of cancer and fibrosis. J Transl Med 2024; 22:567. [PMID: 38872212 PMCID: PMC11177383 DOI: 10.1186/s12967-024-05379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Both cancer and fibrosis are diseases involving dysregulation of cell signaling pathways resulting in an altered cellular microenvironment which ultimately leads to progression of the condition. The two disease entities share common molecular pathophysiology and recent research has illuminated the how each promotes the other. Multiple imaging techniques have been developed to aid in the early and accurate diagnosis of each disease, and given the commonalities between the pathophysiology of the conditions, advances in imaging one disease have opened new avenues to study the other. Here, we detail the most up-to-date advances in imaging techniques for each disease and how they have crossed over to improve detection and monitoring of the other. We explore techniques in positron emission tomography (PET), magnetic resonance imaging (MRI), second generation harmonic Imaging (SGHI), ultrasound (US), radiomics, and artificial intelligence (AI). A new diagnostic imaging tool in PET/computed tomography (CT) is the use of radiolabeled fibroblast activation protein inhibitor (FAPI). SGHI uses high-frequency sound waves to penetrate deeper into the tissue, providing a more detailed view of the tumor microenvironment. Artificial intelligence with the aid of advanced deep learning (DL) algorithms has been highly effective in training computer systems to diagnose and classify neoplastic lesions in multiple organs. Ultimately, advancing imaging techniques in cancer and fibrosis can lead to significantly more timely and accurate diagnoses of both diseases resulting in better patient outcomes.
Collapse
Affiliation(s)
- Alireza Baniasadi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA.
| | - Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Conor M Prendergast
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Zahra Beizavi
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | - Hong Y Ma
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| | | | - Kathleen M Capaccione
- Department of Radiology, Columbia University Irving Medical Center, 622 W 168Th Street, New York, NY, 10032, USA
| |
Collapse
|
3
|
Sviyazov SV, Burueva DB, Chukanov NV, Razumov IA, Chekmenev EY, Salnikov OG, Koptyug IV. 15N Hyperpolarization of Metronidazole Antibiotic in Aqueous Media Using Phase-Separated Signal Amplification by Reversible Exchange with Parahydrogen. J Phys Chem Lett 2024; 15:5382-5389. [PMID: 38738984 PMCID: PMC11151165 DOI: 10.1021/acs.jpclett.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Metronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [15N3]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three 15N sites achieved in less than 2 min. The 15N polarization T1 of ∼12 min is reported for the 15NO2 group at the clinically relevant field of 1.4 T in the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The produced aqueous solution of [15N3]metronidazole that contained only ∼100 μM of residual Ir was deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization procedure represents a major advance for the production of a biocompatible HP [15N3]metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.
Collapse
Affiliation(s)
- Sergey V. Sviyazov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Dudari B. Burueva
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Ivan A. Razumov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Ndlovu H, Lawal IO, Mokoala KMG, Sathekge MM. Imaging Molecular Targets and Metabolic Pathways in Breast Cancer for Improved Clinical Management: Current Practice and Future Perspectives. Int J Mol Sci 2024; 25:1575. [PMID: 38338854 PMCID: PMC10855575 DOI: 10.3390/ijms25031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and leading cause of cancer-related deaths worldwide. Timely decision-making that enables implementation of the most appropriate therapy or therapies is essential for achieving the best clinical outcomes in breast cancer. While clinicopathologic characteristics and immunohistochemistry have traditionally been used in decision-making, these clinical and laboratory parameters may be difficult to ascertain or be equivocal due to tumor heterogeneity. Tumor heterogeneity is described as a phenomenon characterized by spatial or temporal phenotypic variations in tumor characteristics. Spatial variations occur within tumor lesions or between lesions at a single time point while temporal variations are seen as tumor lesions evolve with time. Due to limitations associated with immunohistochemistry (which requires invasive biopsies), whole-body molecular imaging tools such as standard-of-care [18F]FDG and [18F]FES PET/CT are indispensable in addressing this conundrum. Despite their proven utility, these standard-of-care imaging methods are often unable to image a myriad of other molecular pathways associated with breast cancer. This has stimulated interest in the development of novel radiopharmaceuticals targeting other molecular pathways and processes. In this review, we discuss validated and potential roles of these standard-of-care and novel molecular approaches. These approaches' relationships with patient clinicopathologic and immunohistochemical characteristics as well as their influence on patient management will be discussed in greater detail. This paper will also introduce and discuss the potential utility of novel PARP inhibitor-based radiopharmaceuticals as non-invasive biomarkers of PARP expression/upregulation.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Kgomotso M. G. Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Mike M. Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| |
Collapse
|
5
|
O'Brien SR, Ward R, Wu GG, Bagheri S, Kiani M, Challa A, Ulaner GA, Pantel AR, McDonald ES. Other Novel PET Radiotracers for Breast Cancer. PET Clin 2023; 18:557-566. [PMID: 37369615 DOI: 10.1016/j.cpet.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Many novel PET radiotracers have demonstrated potential use in breast cancer. Although not currently approved for clinical use in the breast cancer population, these innovative imaging agents may one day play a role in the diagnosis, staging, management, and even treatment of breast cancer.
Collapse
Affiliation(s)
- Sophia R O'Brien
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Rebecca Ward
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Grace G Wu
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Sina Bagheri
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA. https://twitter.com/Sina_Bagherii
| | - Mahsa Kiani
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Ashrit Challa
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Irvine, CA 92618, USA; Radiology and Translational Genomics, University of Southern California, Los Angeles, CA 90033, USA
| | - Austin R Pantel
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Elizabeth S McDonald
- Department of Radiology, Hospital of the University of Pennsylvania, 1 Donner, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Carmona-Bozo JC, Manavaki R, Miller JL, Brodie C, Caracò C, Woitek R, Baxter GC, Graves MJ, Fryer TD, Provenzano E, Gilbert FJ. PET/MRI of hypoxia and vascular function in ER-positive breast cancer: correlations with immunohistochemistry. Eur Radiol 2023; 33:6168-6178. [PMID: 37166494 PMCID: PMC10415421 DOI: 10.1007/s00330-023-09572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVES To explore the relationship between indices of hypoxia and vascular function from 18F-fluoromisonidazole ([18F]-FMISO)-PET/MRI with immunohistochemical markers of hypoxia and vascularity in oestrogen receptor-positive (ER +) breast cancer. METHODS Women aged > 18 years with biopsy-confirmed, treatment-naïve primary ER + breast cancer underwent [18F]-FMISO-PET/MRI prior to surgery. Parameters of vascular function were derived from DCE-MRI using the extended Tofts model, whilst hypoxia was assessed using the [18F]-FMISO influx rate constant, Ki. Histological tumour sections were stained with CD31, hypoxia-inducible factor (HIF)-1α, and carbonic anhydrase IX (CAIX). The number of tumour microvessels, median vessel diameter, and microvessel density (MVD) were obtained from CD31 immunohistochemistry. HIF-1α and CAIX expression were assessed using histoscores obtained by multiplying the percentage of positive cells stained by the staining intensity. Regression analysis was used to study associations between imaging and immunohistochemistry variables. RESULTS Of the lesions examined, 14/22 (64%) were ductal cancers, grade 2 or 3 (19/22; 86%), with 17/22 (77%) HER2-negative. [18F]-FMISO Ki associated negatively with vessel diameter (p = 0.03), MVD (p = 0.02), and CAIX expression (p = 0.002), whilst no significant relationships were found between DCE-MRI pharmacokinetic parameters and immunohistochemical variables. HIF-1α did not significantly associate with any PET/MR imaging indices. CONCLUSION Hypoxia measured by [18F]-FMISO-PET was associated with increased CAIX expression, low MVD, and smaller vessel diameters in ER + breast cancer, further corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. KEY POINTS • Hypoxia, measured by [18F]-FMISO-PET, was associated with low microvessel density and small vessel diameters, corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. • Increased CAIX expression was associated with higher levels of hypoxia measured by [18F]-FMISO-PET. • Morphologic and functional abnormalities of the tumour microvasculature are the major determinants of hypoxia in cancers and support the previously reported perfusion-driven character of hypoxia in breast carcinomas.
Collapse
Affiliation(s)
- Julia C Carmona-Bozo
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jodi L Miller
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Cara Brodie
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Corradina Caracò
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ramona Woitek
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Gabrielle C Baxter
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Martin J Graves
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Box 65 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Elena Provenzano
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Box 97 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Fiona J Gilbert
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
7
|
Perez RC, Kim D, Maxwell AWP, Camacho JC. Functional Imaging of Hypoxia: PET and MRI. Cancers (Basel) 2023; 15:3336. [PMID: 37444446 DOI: 10.3390/cancers15133336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular and functional imaging have critical roles in cancer care. Existing evidence suggests that noninvasive detection of hypoxia within a particular type of cancer can provide new information regarding the relationship between hypoxia, cancer aggressiveness and altered therapeutic responses. Following the identification of hypoxia inducible factor (HIF), significant progress in understanding the regulation of hypoxia-induced genes has been made. These advances have provided the ability to therapeutically target HIF and tumor-associated hypoxia. Therefore, by utilizing the molecular basis of hypoxia, hypoxia-based theranostic strategies are in the process of being developed which will further personalize care for cancer patients. The aim of this review is to provide an overview of the significance of tumor hypoxia and its relevance in cancer management as well as to lay out the role of imaging in detecting hypoxia within the context of cancer.
Collapse
Affiliation(s)
- Ryan C Perez
- Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - DaeHee Kim
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Aaron W P Maxwell
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Juan C Camacho
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
8
|
Bourigault P, Skwarski M, Macpherson RE, Higgins GS, McGowan DR. Timing of hypoxia PET/CT imaging after 18F-fluoromisonidazole injection in non-small cell lung cancer patients. Sci Rep 2022; 12:21746. [PMID: 36526815 PMCID: PMC9758119 DOI: 10.1038/s41598-022-26199-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Positron emission tomography (PET)/computed tomography (CT) using the radiotracer 18F-Fluoromisonidazole (FMISO) has been widely employed to image tumour hypoxia and is of interest to help develop novel hypoxia modifiers and guide radiation treatment planning. Yet, the optimal post-injection (p.i.) timing of hypoxic imaging remains questionable. Therefore, we investigated the correlation between hypoxia-related quantitative values in FMISO-PET acquired at 2 and 4 h p.i. in patients with non-small cell lung cancer (NSCLC). Patients with resectable NSCLC participated in the ATOM clinical trial (NCT02628080) which investigated the hypoxia modifying effects of atovaquone. Two-hour and four-hour FMISO PET/CT images acquired at baseline and pre-surgery visits (n = 58) were compared. Cohort 1 (n = 14) received atovaquone treatment, while cohort 2 (n = 15) did not. Spearman's rank correlation coefficients (ρ) assessed the relationship between hypoxia-related metrics, including standardised uptake value (SUV), tumour-to-blood ratio (TBR), and tumour hypoxic volume (HV) defined by voxels with TBR ≥ 1.4. As the primary imaging-related trial endpoint used to evaluate the action of atovaquone on tumour hypoxia in patients with NSCLC was change in tumour HV from baseline, this was also assessed in patients (n = 20) with sufficient baseline 2- and 4-h scan HV to reliably measure change (predefined as ≥ 1.5 mL). Tumours were divided into four subregions or distance categories: edge, outer, inner, and centre, using MATLAB. In tumours overall, strong correlation (P < 0.001) was observed for SUVmax ρ = 0.87, SUVmean ρ = 0.91, TBRmax ρ = 0.83 and TBRmean ρ = 0.81 between 2- and 4-h scans. Tumour HV was moderately correlated (P < 0.001) with ρ = 0.69 between 2- and 4-h scans. Yet, in tumour subregions, the correlation of HV decreased from the centre ρ = 0.71 to the edge ρ = 0.45 (P < 0.001). SUV, TBR, and HV values were consistently higher on 4-h scans than on 2-h scans, indicating better tracer-to-background contrast. For instance, for TBRmax, the mean, median, and interquartile range were 1.9, 1.7, and 1.6-2.0 2-h p.i., and 2.6, 2.4, and 2.0-3.0 4-h p.i., respectively. Our results support that FMISO-PET scans should be performed at 4 h p.i. to evaluate tumour hypoxia in NSCLC.Trial registration: ClinicalTrials.gov, NCT02628080. Registered 11/12/2015, https://clinicaltrials.gov/ct2/show/NCT02628080 .
Collapse
Affiliation(s)
| | - Michael Skwarski
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ruth E Macpherson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
9
|
Balma M, Liberini V, Racca M, Laudicella R, Bauckneht M, Buschiazzo A, Nicolotti DG, Peano S, Bianchi A, Albano G, Quartuccio N, Abgral R, Morbelli SD, D'Alessandria C, Terreno E, Huellner MW, Papaleo A, Deandreis D. Non-conventional and Investigational PET Radiotracers for Breast Cancer: A Systematic Review. Front Med (Lausanne) 2022; 9:881551. [PMID: 35492341 PMCID: PMC9039137 DOI: 10.3389/fmed.2022.881551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is one of the most common malignancies in women, with high morbidity and mortality rates. In breast cancer, the use of novel radiopharmaceuticals in nuclear medicine can improve the accuracy of diagnosis and staging, refine surveillance strategies and accuracy in choosing personalized treatment approaches, including radioligand therapy. Nuclear medicine thus shows great promise for improving the quality of life of breast cancer patients by allowing non-invasive assessment of the diverse and complex biological processes underlying the development of breast cancer and its evolution under therapy. This review aims to describe molecular probes currently in clinical use as well as those under investigation holding great promise for personalized medicine and precision oncology in breast cancer.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| | - Manuela Racca
- Nuclear Medicine Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | | | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Andrea Bianchi
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Giovanni Albano
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Civico di Cristina and Benfratelli Hospitals, Palermo, Italy
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Silvia Daniela Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular & Preclinical Imaging Centers, University of Turin, Turin, Italy
| | - Martin William Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Désirée Deandreis
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
10
|
Griessinger J, Schwab J, Chen Q, Kühn A, Cotton J, Bowden G, Preibsch H, Reischl G, Quintanilla-Martinez L, Mori H, Dang AN, Kohlhofer U, Aina OH, Borowsky AD, Pichler BJ, Cardiff RD, Schmid AM. Intratumoral in vivo staging of breast cancer by multi-tracer PET and advanced analysis. NPJ Breast Cancer 2022; 8:41. [PMID: 35332139 PMCID: PMC8948294 DOI: 10.1038/s41523-022-00398-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
The staging and local management of breast cancer involves the evaluation of the extent and completeness of excision of both the invasive carcinoma component and also the intraductal component or ductal carcinoma in situ. When both invasive ductal carcinoma and coincident ductal carcinoma in situ are present, assessment of the extent and localization of both components is required for optimal therapeutic planning. We have used a mouse model of breast cancer to evaluate the feasibility of applying molecular imaging to assess the local status of cancers in vivo. Multi-tracer positron emission tomography (PET) and magnetic resonance imaging (MRI) characterize the transition from premalignancy to invasive carcinoma. PET tracers for glucose consumption, membrane synthesis, and neoangiogenesis in combination with a Gaussian mixture model-based analysis reveal image-derived thresholds to separate the different stages within the whole-lesion. Autoradiography, histology, and quantitative image analysis of immunohistochemistry further corroborate our in vivo findings. Finally, clinical data further support our conclusions and demonstrate translational potential. In summary, this preclinical model provides a platform for characterizing multistep tumor progression and provides proof of concept that supports the utilization of advanced protocols for PET/MRI in clinical breast cancer imaging.
Collapse
Affiliation(s)
- Jennifer Griessinger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Julian Schwab
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Qian Chen
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Anna Kühn
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Jonathan Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Gregory Bowden
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Heike Preibsch
- Department of Radiology, University Hospital Tuebingen, Tuebingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT(EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Cluster of Excellence iFIT(EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,Department of Pathology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Hidetoshi Mori
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - An Nguyen Dang
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Ursula Kohlhofer
- Department of Pathology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Olulanu H Aina
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA.,Janssen Pharmaceutical, Spring House, PA, USA
| | - Alexander D Borowsky
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT(EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tuebingen; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert D Cardiff
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Andreas M Schmid
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany. .,Cluster of Excellence iFIT(EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
11
|
PET imaging of hypoxia and apoptosis. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Parihar AS, Bhattacharya A. Role of Nuclear Medicine in Breast Cancer. Breast Cancer 2022. [DOI: 10.1007/978-981-16-4546-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Radionuclide-Based Imaging of Breast Cancer: State of the Art. Cancers (Basel) 2021; 13:cancers13215459. [PMID: 34771622 PMCID: PMC8582396 DOI: 10.3390/cancers13215459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Breast cancer is one of the most commonly diagnosed malignant tumors, possessing high incidence and mortality rates that threaten women’s health. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Radionuclide molecular imaging displays its advantages for detecting breast cancer from a functional perspective. Noninvasive visualization of biological processes with radionuclide-labeled small metabolic compounds helps elucidate the metabolic state of breast cancer, while radionuclide-labeled ligands/antibodies for receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer. This review focuses on the most recent developments of novel radiotracers as promising tools for early breast cancer diagnosis. Abstract Breast cancer is a malignant tumor that can affect women worldwide and endanger their health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect lesions before morphological changes occur. Radionuclide-based molecular imaging based on positron emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small metabolic compounds can be used for imaging biological processes, while radionuclide labeling of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing peptide receptor (GRPR) and so on. This article provides an overview of the development of radionuclide molecular imaging techniques present in preclinical or clinical studies, which are used as tools for early breast cancer diagnosis.
Collapse
|
14
|
Li Y, Kong X, Xuan L, Wang Z, Huang YH. Prolactin and endocrine therapy resistance in breast cancer: The next potential hope for breast cancer treatment. J Cell Mol Med 2021; 25:10327-10348. [PMID: 34651424 PMCID: PMC8581311 DOI: 10.1111/jcmm.16946] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/21/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer, a hormone‐dependent tumour, generally includes four molecular subtypes (luminal A, luminal B, HER2 enriched and triple‐negative) based on oestrogen receptor, progesterone receptor and human epidermal growth factor receptor‐2. Multiple hormones in the body regulate the development of breast cancer. Endocrine therapy is one of the primary treatments for hormone‐receptor‐positive breast cancer, but endocrine resistance is the primary clinical cause of treatment failure. Prolactin (PRL) is a protein hormone secreted by the pituitary gland, mainly promoting mammary gland growth, stimulating and maintaining lactation. Previous studies suggest that high PRL levels can increase the risk of invasive breast cancer in women. The expression levels of PRL and PRLR in breast cancer cells and breast cancer tissues are elevated in most ER+ and ER− tumours. PRL activates downstream signalling pathways and affects endocrine therapy resistance by combining with prolactin receptor (PRLR). In this review, we illustrated and summarized the correlations between endocrine therapy resistance in breast cancer and PRL, as well as the pathophysiological mechanisms and clinical practices. The study on PRL and its receptor would help explore reversing endocrine therapy‐resistance for breast cancer.
Collapse
Affiliation(s)
- Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Huang Y, Fan J, Li Y, Fu S, Chen Y, Wu J. Imaging of Tumor Hypoxia With Radionuclide-Labeled Tracers for PET. Front Oncol 2021; 11:731503. [PMID: 34557414 PMCID: PMC8454408 DOI: 10.3389/fonc.2021.731503] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 01/27/2023] Open
Abstract
The hypoxic state in a solid tumor refers to the internal hypoxic environment that appears as the tumor volume increases (the maximum radius exceeds 180-200 microns). This state can promote angiogenesis, destroy the balance of the cell’s internal environment, and lead to resistance to radiotherapy and chemotherapy, as well as poor prognostic factors such as metastasis and recurrence. Therefore, accurate quantification, mapping, and monitoring of hypoxia, targeted therapy, and improvement of tumor hypoxia are of great significance for tumor treatment and improving patient survival. Despite many years of development, PET-based hypoxia imaging is still the most widely used evaluation method. This article provides a comprehensive overview of tumor hypoxia imaging using radionuclide-labeled PET tracers. We introduced the mechanism of tumor hypoxia and the reasons leading to the poor prognosis, and more comprehensively included the past, recent and ongoing studies of PET radiotracers for tumor hypoxia imaging. At the same time, the advantages and disadvantages of mainstream methods for detecting tumor hypoxia are summarized.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junying Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
16
|
Staszak K, Wieszczycka K, Bajek A, Staszak M, Tylkowski B, Roszkowski K. Achievement in active agent structures as a power tools in tumor angiogenesis imaging. Biochim Biophys Acta Rev Cancer 2021; 1876:188560. [PMID: 33965512 DOI: 10.1016/j.bbcan.2021.188560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
According to World Health Organization (WHO) cancer is the second most important cause of death globally. Because angiogenesis is considered as an essential process of growth, proliferation and tumor progression, within this review we decided to shade light on recent development of chemical compounds which play a significant role in its imaging and monitoring. Indeed, the review gives insight about the current achievements of active agents structures involved in imaging techniques such as: positron emission computed tomography (PET), magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT), as well as combination PET/MRI and PET/CT. The review aims to provide the journal audience with a comprehensive and in-deep understanding of chemistry policy in tumor angiogenesis imaging.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Anna Bajek
- Department of Tissue Engineering, Collegium Medicum Nicolaus Copernicus University, Karlowicza St. 24, 85-092 Bydgoszcz, Poland
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007 Tarragona, Spain
| | - Krzysztof Roszkowski
- Department of Oncology, Collegium Medicum Nicolaus Copernicus University, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland.
| |
Collapse
|
17
|
Abstract
Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.
Collapse
|
18
|
Katzenellenbogen JA. The quest for improving the management of breast cancer by functional imaging: The discovery and development of 16α-[ 18F]fluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl Med Biol 2021; 92:24-37. [PMID: 32229068 PMCID: PMC7442693 DOI: 10.1016/j.nucmedbio.2020.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION 16α-[18F]Fluoroestradiol (FES), a PET radiotracer for the estrogen receptor (ER) in breast cancer, was the first receptor-targeted PET radiotracer for oncology and is continuing to prove its value in clinical research, antiestrogen development, and breast cancer care. The story of its conception, design, evaluation and use in clinical studies parallels the evolution of the whole field of receptor-targeted radiotracers, one greatly influenced by the research and intellectual contributions of William C. Eckelman. METHODS AND RESULTS The development of methods for efficient production of fluorine-18, for conversion of [18F]fluoride ion into chemically reactive form, and for its rapid and efficient incorporation into suitable estrogen precursor molecules at high molar activity, were all methodological underpinnings required for the preparation of FES. FES binds to ER with very high affinity, and its in vivo uptake by ER-dependent target tissues in animal models was efficient and selective, findings that preceded its use for PET imaging in patients with breast cancer. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Comparisons between ER levels measured by FES-PET imaging of breast tumors with tissue-specimen ER quantification by IHC and other methods show that imaging provided improved prediction of benefit from endocrine therapies. Serial imaging of ER by FES-PET, before and after dosing patients with antiestrogens, is used to determine the efficacious dose for established antiestrogens and to facilitate clinical development of new ER antagonists. Beyond FES imaging, PET-based hormone challenge tests, which evaluate the functional status of ER by monitoring rapid changes in tumor metabolic or transcriptional activity after a brief estrogen challenge, provide highly sensitive and selective predictions of whether or not there will be a favorable response to endocrine therapies. There is sufficient interest in the clinical applications of FES that FDA approval is being sought for its wider use in breast cancer. CONCLUSIONS FES was the first PET probe for a receptor in cancer, and its development and clinical applications in breast cancer parallel the conceptual evolution of the whole field of receptor-binding radiotracers.
Collapse
Affiliation(s)
- John A Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
19
|
Carmona-Bozo JC, Manavaki R, Woitek R, Torheim T, Baxter GC, Caracò C, Provenzano E, Graves MJ, Fryer TD, Patterson AJ, Gilbert FJ. Hypoxia and perfusion in breast cancer: simultaneous assessment using PET/MR imaging. Eur Radiol 2021; 31:333-344. [PMID: 32725330 PMCID: PMC7755870 DOI: 10.1007/s00330-020-07067-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Hypoxia is associated with poor prognosis and treatment resistance in breast cancer. However, the temporally variant nature of hypoxia can complicate interpretation of imaging findings. We explored the relationship between hypoxia and vascular function in breast tumours through combined 18F-fluoromisonidazole (18 F-FMISO) PET/MRI, with simultaneous assessment circumventing the effect of temporal variation in hypoxia and perfusion. METHODS Women with histologically confirmed, primary breast cancer underwent a simultaneous 18F-FMISO-PET/MR examination. Tumour hypoxia was assessed using influx rate constant Ki and hypoxic fractions (%HF), while parameters of vascular function (Ktrans, kep, ve, vp) and cellularity (ADC) were derived from dynamic contrast-enhanced (DCE) and diffusion-weighted (DW)-MRI, respectively. Additional correlates included histological subtype, grade and size. Relationships between imaging variables were assessed using Pearson correlation (r). RESULTS Twenty-nine women with 32 lesions were assessed. Hypoxic fractions > 1% were observed in 6/32 (19%) cancers, while 18/32 (56%) tumours showed a %HF of zero. The presence of hypoxia in lesions was independent of histological subtype or grade. Mean tumour Ktrans correlated negatively with Ki (r = - 0.38, p = 0.04) and %HF (r = - 0.33, p = 0.04), though parametric maps exhibited intratumoural heterogeneity with hypoxic regions colocalising with both hypo- and hyperperfused areas. No correlation was observed between ADC and DCE-MRI or PET parameters. %HF correlated positively with lesion size (r = 0.63, p = 0.001). CONCLUSION Hypoxia measured by 18F-FMISO-PET correlated negatively with Ktrans from DCE-MRI, supporting the hypothesis of perfusion-driven hypoxia in breast cancer. Intratumoural hypoxia-perfusion relationships were heterogeneous, suggesting that combined assessment may be needed for disease characterisation, which could be achieved using simultaneous multimodality imaging. KEY POINTS • At the tumour level, hypoxia measured by 18F-FMISO-PET was negatively correlated with perfusion measured by DCE-MRI, which supports the hypothesis of perfusion-driven hypoxia in breast cancer. • No associations were observed between 18F-FMISO-PET parameters and tumour histology or grade, but tumour hypoxic fractions increased with lesion size. • Intratumoural hypoxia-perfusion relationships were heterogeneous, suggesting that the combined hypoxia-perfusion status of tumours may need to be considered for disease characterisation, which can be achieved via simultaneous multimodality imaging as reported here.
Collapse
Affiliation(s)
- Julia C Carmona-Bozo
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ramona Woitek
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Turid Torheim
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Gabrielle C Baxter
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Corradina Caracò
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Elena Provenzano
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Box 97, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Martin J Graves
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- MRIS Unit, Cambridge University Hospitals NHS Foundation Trust, Box 162, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Box 65, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Andrew J Patterson
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- MRIS Unit, Cambridge University Hospitals NHS Foundation Trust, Box 162, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Fiona J Gilbert
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
20
|
Zhang Z, Wang R, Huang X, Zhu W, He Y, Liu W, Liu F, Feng F, Qu W. A Simple Aggregation-Induced Emission Nanoprobe with Deep Tumor Penetration for Hypoxia Detection and Imaging-Guided Surgery in Vivo. Anal Chem 2020; 93:1627-1635. [PMID: 33377760 DOI: 10.1021/acs.analchem.0c04101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pan-cancer detection and precise visualization of tiny tumors in surgery still face great challenges. As tumors grow aggressively, hypoxia is a common feature of solid tumors and has supplied a general way for detecting tumors. Herein, we report a simple aggregation-induced emission nanoprobe-TPE-4NE-O that can specifically switch on their fluorescence in the presence of cytochrome P450 reductase, a reductase which is overexpressed under hypoxia conditions. The probe can selectively light up the hypoxia cells and has shown enhanced deep tumor penetration via charge conversion both in vitro and in vivo. After being modified with FA-DSPE-PEG, higher tumor uptake can be seen and FA-DSPE/TPE-4NE-O showed specific visualization to the hypoxia cancer cells. Excitingly, much brighter fluorescence was accumulated at the tumors in the FA-DSPE/TPE-4NE-O group, even though the tumor was as small as 2.66 mm. The excellent performance of FA-DSPE/TPE-4NE-O in detecting tiny tumors has made it possible for imaging-guided tumor resection. More importantly, the probe exhibited good biocompatibility with negligible organ damage and eliminated a hemolysis risk. The simple but promising probe has supplied a new strategy for pan-cancer detection and tiny tumor visualization, which have shown great potential in clinical translation.
Collapse
Affiliation(s)
- Zhongtao Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ruyi Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wanfang Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China
| | - Yanjun He
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 211198, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Fulei Liu
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian 271000, China.,Pharmaceutical Department, Taian City Central Hospital, Taian 271000, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
21
|
Sorace AG, Elkassem AA, Galgano SJ, Lapi SE, Larimer BM, Partridge SC, Quarles CC, Reeves K, Napier TS, Song PN, Yankeelov TE, Woodard S, Smith AD. Imaging for Response Assessment in Cancer Clinical Trials. Semin Nucl Med 2020; 50:488-504. [PMID: 33059819 PMCID: PMC7573201 DOI: 10.1053/j.semnuclmed.2020.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of biomarkers is integral to the routine management of cancer patients, including diagnosis of disease, clinical staging and response to therapeutic intervention. Advanced imaging metrics with computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) are used to assess response during new drug development and in cancer research for predictive metrics of response. Key components and challenges to identifying an appropriate imaging biomarker are selection of integral vs integrated biomarkers, choosing an appropriate endpoint and modality, and standardization of the imaging biomarkers for cooperative and multicenter trials. Imaging biomarkers lean on the original proposed quantified metrics derived from imaging such as tumor size or longest dimension, with the most commonly implemented metrics in clinical trials coming from the Response Evaluation Criteria in Solid Tumors (RECIST) criteria, and then adapted versions such as immune-RECIST (iRECIST) and Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST) for immunotherapy response and PET imaging, respectively. There have been many widely adopted biomarkers in clinical trials derived from MRI including metrics that describe cellularity and vascularity from diffusion-weighted (DW)-MRI apparent diffusion coefficient (ADC) and Dynamic Susceptibility Contrast (DSC) or dynamic contrast enhanced (DCE)-MRI (Ktrans, relative cerebral blood volume (rCBV)), respectively. Furthermore, Fluorodexoyglucose (FDG), fluorothymidine (FLT), and fluoromisonidazole (FMISO)-PET imaging, which describe molecular markers of glucose metabolism, proliferation and hypoxia have been implemented into various cancer types to assess therapeutic response to a wide variety of targeted- and chemotherapies. Recently, there have been many functional and molecular novel imaging biomarkers that are being developed that are rapidly being integrated into clinical trials (with anticipation of being implemented into clinical workflow in the future), such as artificial intelligence (AI) and machine learning computational strategies, antibody and peptide specific molecular imaging, and advanced diffusion MRI. These include prostate-specific membrane antigen (PSMA) and trastuzumab-PET, vascular tumor burden extracted from contrast-enhanced CT, diffusion kurtosis imaging, and CD8 or Granzyme B PET imaging. Further excitement surrounds theranostic procedures such as the combination of 68Ga/111In- and 177Lu-DOTATATE to use integral biomarkers to direct care and personalize therapy. However, there are many challenges in the implementation of imaging biomarkers that remains, including understand the accuracy, repeatability and reproducibility of both acquisition and analysis of these imaging biomarkers. Despite the challenges associated with the biological and technical validation of novel imaging biomarkers, a distinct roadmap has been created that is being implemented into many clinical trials to advance the development and implementation to create specific and sensitive novel imaging biomarkers of therapeutic response to continue to transform medical oncology.
Collapse
Affiliation(s)
- Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.
| | - Asser A Elkassem
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Samuel J Galgano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL
| | - Benjamin M Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | | | - C Chad Quarles
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ
| | - Kirsten Reeves
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; Cancer Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Tiara S Napier
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; Cancer Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Patrick N Song
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX; Department of Diagnostic Medicine, University of Texas at Austin, Austin, TX; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
| | - Stefanie Woodard
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Andrew D Smith
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
22
|
de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest 2020; 130:5074-5087. [PMID: 32870818 PMCID: PMC7524491 DOI: 10.1172/jci137552] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) and the HIF-dependent cancer hallmarks angiogenesis and metabolic rewiring are well-established drivers of breast cancer aggressiveness, therapy resistance, and poor prognosis. Targeting of HIF and its downstream targets in angiogenesis and metabolism has been unsuccessful so far in the breast cancer clinical setting, with major unresolved challenges residing in target selection, development of robust biomarkers for response prediction, and understanding and harnessing of escape mechanisms. This Review discusses the pathophysiological role of HIFs, angiogenesis, and metabolism in breast cancer and the challenges of targeting these features in patients with breast cancer. Rational therapeutic combinations, especially with immunotherapy and endocrine therapy, seem most promising in the clinical exploitation of the intricate interplay of HIFs, angiogenesis, and metabolism in breast cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ellen C. de Heer
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Mathilde Jalving
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Abstract
The major applications for molecular imaging with PET in clinical practice concern cancer imaging. Undoubtedly, 18F-FDG represents the backbone of nuclear oncology as it remains so far the most widely employed positron emitter compound. The acquired knowledge on cancer features, however, allowed the recognition in the last decades of multiple metabolic or pathogenic pathways within the cancer cells, which stimulated the development of novel radiopharmaceuticals. An endless list of PET tracers, substantially covering all hallmarks of cancer, has entered clinical routine or is being investigated in diagnostic trials. Some of them guard significant clinical applications, whereas others mostly bear a huge potential. This chapter summarizes a selected list of non-FDG PET tracers, described based on their introduction into and impact on clinical practice.
Collapse
|
24
|
PET/MRI in breast cancer patients: Added value, barriers to implementation, and solutions. Clin Imaging 2020; 68:24-28. [PMID: 32562923 DOI: 10.1016/j.clinimag.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 11/21/2022]
|
25
|
Stadlbauer A, Zimmermann M, Bennani-Baiti B, Helbich TH, Baltzer P, Clauser P, Kapetas P, Bago-Horvath Z, Pinker K. Development of a Non-invasive Assessment of Hypoxia and Neovascularization with Magnetic Resonance Imaging in Benign and Malignant Breast Tumors: Initial Results. Mol Imaging Biol 2020; 21:758-770. [PMID: 30478507 DOI: 10.1007/s11307-018-1298-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE To develop a novel magnetic resonance imaging (MRI) approach for the noninvasive assessment of hypoxia and neovascularization in breast tumors. PROCEDURES In this IRB-approved prospective study, 20 patients with suspicious breast lesions (BI-RADS 4/5) underwent multiparametric breast MRI including quantitative BOLD (qBOLD) and vascular architecture mapping (VAM). Custom-made in-house MatLab software was used for qBOLD and VAM data postprocessing and calculation of quantitative MRI biomarker maps of oxygen extraction fraction (OEF), metabolic rate of oxygen (MRO2), and mitochondrial oxygen tension (mitoPO2) to measure tissue hypoxia and neovascularization including vascular architecture including microvessel radius (VSI), density (MVD), and type (MTI). Histopathology was used as standard of reference. Appropriate statistics were performed to assess and compare correlations between MRI biomarkers for hypoxia and neovascularization. RESULTS qBOLD and VAM data with good quality were obtained from all patients with 13 invasive ductal carcinoma (IDC) and 7 benign breast tumors with a lesion diameter of at least 10 mm in all spatial directions. MRI biomarker maps of oxygen metabolism and neovascularization demonstrated intratumoral spatial heterogeneity with a broad range of biomarker values. Bulk tumor neovasculature consisted of draining venous microvasculature with slow flowing blood. High OEF and low mitoPO2 were associated with low MVD and vice versa. The heterogeneous pattern of MRO2 values showed spatial congruence with VSI. IDCs showed significantly higher MRO2 (P = 0.007), lower mitoPO2 (P = 0.021), higher MVD (P = 0.005), and lower (i.e., more pathologic) MTI (P = 0.001) compared with benign breast tumors. These results indicate that IDCs consume more oxygen and are more hypoxic and neovascularized than benign tumors. CONCLUSIONS We developed a novel MRI approach for the noninvasive assessment of hypoxia and neovascularization in benign and malignant breast tumors that can be easily integrated in a diagnostic MRI protocol and provides insight into intratumoral heterogeneity.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- Institute of Medical Radiology, University Clinic of St. Pölten, Propst-Führer-Straße 4, St. Pölten, 3100, Austria.,Department of Neurosurgery, University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, 91054, Germany
| | - Max Zimmermann
- Department of Neurosurgery, University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, 91054, Germany
| | - Barbara Bennani-Baiti
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Pascal Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Paola Clauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Panagiotis Kapetas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsuzsanna Bago-Horvath
- Department of Pathology, Medical University of Vienna, Weahringer Guertel 18-20, Vienna, 1090, Austria
| | - Katja Pinker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA.
| |
Collapse
|
26
|
Yu P, Lei J, Xu B, Wang R, Shen Z, Tian J. Correlation Between 18F-FDG PET/CT Findings and BI-RADS Assessment Using Ultrasound in the Evaluation of Breast Lesions: A Multicenter Study. Acad Radiol 2020; 27:682-688. [PMID: 31311773 DOI: 10.1016/j.acra.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVES To analyze the correlation between ultrasound breast imaging reporting and data system (BI-RADS) category and fluorodeoxyglucose [18F] (18F-FDG) positron emission tomography/computed tomography (PET/CT) findings and their value in breast lesion diagnosis. MATERIALS AND METHODS Cases involving hypermetabolic lesions identified by 18F-FDG PET/CT and ultrasound were retrospectively analyzed. The correlation between the maximum standardized uptake values (SUVmax) of the lesions and the BI-RADS grades was calculated. Histologic diagnosis or evidence at the end of a 2-year follow-up as the standard of truth were analyzed to determine the sensitivity, specificity, positive predictive values (PPV), and negative predictive values (NPV) of the diagnostic methods. Area under the curve (AUC) of BI-RADS, SUVmax, and BI-RADS/SUVmax combined were obtained using receiver-operating characteristic curve (ROC) analysis. RESULTS Of 206 cases, 92 were benign and 114 were malignant. The difference between the SUVmax and the BI-RADS grades was statistically significant (p < 0.001). The critical value of the optimal SUVmax was 2.325, and the accuracy, sensitivity, specificity, PPV, and NPV were 84.5%, 91.2%, 76.1%, 82.5%, and 87.5%, respectively. For diagnosis using BI-RADS, these values were 85.9%, 98.2%, 70.7%, 80.6%, and 97.0%, respectively. ROC analysis of 206 breast lesions for distinguishing benign from malignant lesions yielded AUCs of 0.948, 0.896, and 0.977 for BI-RADS, SUVmax, and BI-RADS/SUVmax combined, respectively. The critical value of the optimal SUVmax in grade 3 and 4 lesions (as determined using BI-RADS) was 2.705, and the accuracy, sensitivity, specificity, PPV, and NPV were 82.6%, 77.8%, 85.7%, 77.8%, and 85.7%, respectively. For diagnosis using BI-RADS in cases with grade 3 and 4 lesions, these values were 68.5%, 94.4%, 51.8%, 55.7%, and 93.5%, respectively. In ROC analysis for distinguishing benign from malignant for BI-RADS grade 3-4 lesions, the AUC of BI-RADS, SUVmax, and BI-RADS/SUVmax combined were 0.731, 0.859, and 0.882, respectively. CONCLUSION Both 18F-FDG PET/CT and ultrasound-dependent BI-RADS grading are effective for diagnosing breast lesions. However, in cases of BI-RADS grades 3 and 4, 18F-FDG PET/CT has better specificity and may be useful for further differential diagnosis.
Collapse
Affiliation(s)
- Peng Yu
- Department of Nuclear Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing 100853, China; Department of Nuclear Medicine, Affiliated Hospital of Logistic University of PAP, Tianjin, China
| | - Jixiao Lei
- Department of Nuclear Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing 100853, China; Department of Nuclear Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing 100853, China
| | - Ruimin Wang
- Department of Nuclear Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing 100853, China
| | - Zhihui Shen
- Department of Nuclear Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing 100853, China
| | - Jiahe Tian
- Department of Nuclear Medicine, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing 100853, China.
| |
Collapse
|
27
|
Jo H, Lee J, Jeon J, Kim SY, Chung JI, Ko HY, Lee M, Yun M. The critical role of glucose deprivation in epithelial-mesenchymal transition in hepatocellular carcinoma under hypoxia. Sci Rep 2020; 10:1538. [PMID: 32001727 PMCID: PMC6992695 DOI: 10.1038/s41598-020-58124-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Imaging with 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is used to determine sites of abnormal glucose metabolism to predict high tumor grade, metastasis, and poor patient survival. However, not all tumors with increased 18F-FDG uptake show aggressive tumor biology, as evident from the moderate correlation between metastasis and high FDG uptake. We hypothesized that metastasis is likely attributable to the complexity and heterogeneity of the cancer microenvironment. To identify the cancer microenvironment that induces the epithelial-mesenchymal transition (EMT) process, tumor areas of patients with HCC were analyzed by immunostaining. Our data demonstrated the induction of EMT process in HCC cells with low proliferation under hypoxic conditions. To validate our finding, among HCC cell lines, HepG2 cells with highly increased expression of HIF1α under hypoxia were employed in vitro and in vivo. Major changes in EMT-associated protein expression, such as the up-regulation of N-cadherin and snail/slug are associated with decreased proliferation-related protein (PCNA) caused by glucose deprivation under hypoxia. Indeed, PCNA knockdown-HepG2 cells under hypoxia showed the induction of more EMT process compare to the control. Thus, HCC cells with low proliferative potential under glucose-deprived and hypoxic conditions show high probability for induced EMT process and promote cell invasion. This study investigates reasons as to why an EMT process cannot fully be predicted. Our observations indicate that rather than analyzing a single factor, an integrated analysis of hypoxia with low glucose metabolism and low cell proliferation might be helpful to predict the potential impact on induction of EMT process and promotion of cell invasion.
Collapse
Affiliation(s)
- Hanhee Jo
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Jongsook Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea
| | - Jeongyong Jeon
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seon Yoo Kim
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jee-In Chung
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hae Yong Ko
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, South Korea.
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
28
|
Zhao S, Yu W, Ukon N, Tan C, Nishijima KI, Shimizu Y, Higashikawa K, Shiga T, Yamashita H, Tamaki N, Kuge Y. Elimination of tumor hypoxia by eribulin demonstrated by 18F-FMISO hypoxia imaging in human tumor xenograft models. EJNMMI Res 2019; 9:51. [PMID: 31161539 PMCID: PMC6546772 DOI: 10.1186/s13550-019-0521-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Eribulin, an inhibitor of microtubule dynamics, shows antitumor potency against a variety of solid cancers through its antivascular activity and remodeling of tumor vasculature. 18F-Fluoromisonidazole (18F-FMISO) is the most widely used PET probe for imaging tumor hypoxia. In this study, we utilized 18F-FMISO to clarify the effects of eribulin on the tumor hypoxic condition in comparison with histological findings. MATERIAL AND METHODS Mice bearing a human cancer cell xenograft were intraperitoneally administered a single dose of eribulin (0.3 or 1.0 mg/kg) or saline. Three days after the treatment, mice were injected with 18F-FMISO and pimonidazole (hypoxia marker for immunohistochemistry), and intertumoral 18F-FMISO accumulation levels and histological characteristics were determined. PET/CT was performed pre- and post-treatment with eribulin (0.3 mg/kg, i.p.). RESULTS The 18F-FMISO accumulation levels and percent pimonidazole-positive hypoxic area were significantly lower, whereas the number of microvessels was higher in the tumors treated with eribulin. The PET/CT confirmed that 18F-FMISO distribution in the tumor was decreased after the eribulin treatment. CONCLUSIONS Using 18F-FMISO, we demonstrated the elimination of the tumor hypoxic condition by eribulin treatment, concomitantly with the increase in microvessel density. These findings indicate that PET imaging using 18F-FMISO may provide the possibility to detect the early treatment response in clinical patients undergoing eribulin treatment.
Collapse
Affiliation(s)
- Songji Zhao
- Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan. .,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan.
| | - Wenwen Yu
- Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan.,Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Chengbo Tan
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Ken-Ichi Nishijima
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoichi Shimizu
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroko Yamashita
- Department of Breast Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Daimiel I. Insights into Hypoxia: Non-invasive Assessment through Imaging Modalities and Its Application in Breast Cancer. J Breast Cancer 2019; 22:155-171. [PMID: 31281720 PMCID: PMC6597408 DOI: 10.4048/jbc.2019.22.e26] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Oxygen is crucial to maintain the homeostasis in aerobic cells. Hypoxia is a condition in which cells are deprived of the oxygen supply necessary for their optimum performance. Whereas oxygen deprivation may occur in normal physiological processes, hypoxia is frequently associated with pathological conditions. It has been identified as a stressor in the tumor microenvironment, acting as a key mediator of cancer development. Numerous pathways are activated in hypoxic cells that affect cell signaling and gene regulation to promote the survival of these cells by stimulating angiogenesis, switching cellular metabolism, slowing their growth rate, and preventing apoptosis. The induction of dysregulated metabolism in cancer cells by hypoxia results in aggressive tumor phenotypes that are characterized by rapid progression, treatment resistance, and poor prognosis. A non-invasive assessment of hypoxia-induced metabolic and architectural changes in tumors is advisable to fully improve breast cancer (BC) patient management, by potentially reducing the need for invasive biopsy procedures and evaluating tumor response to treatment. This review provides a comprehensive overview of the molecular changes in breast tumors secondary to hypoxia and the non-invasive imaging alternatives to evaluate oxygen deprivation, with an emphasis on their application in BC and the advantages and limitations of the currently available techniques.
Collapse
Affiliation(s)
- Isaac Daimiel
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
30
|
To Explore a Representative Hypoxic Parameter to Predict the Treatment Response and Prognosis Obtained by [ 18F]FMISO-PET in Patients with Non-small Cell Lung Cancer. Mol Imaging Biol 2019; 20:1061-1067. [PMID: 29623510 DOI: 10.1007/s11307-018-1190-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To explore a representative hypoxic parameter to predict the treatment response and prognosis for [18F]fluoromisonidazole ([18F]FMISO) positron emission tomography (PET)/X-ray computed tomography (CT) in patients with non-small cell lung cancer (NSCLC). PROCEDURES Twenty-nine patients with NSCLC underwent FMISO-PET scans before chemoradiotherapy (CRT). The maximum standard uptake values (SUVmax) in the tumor, normal lung, aortic arch, and vertical ridge muscle were measured, and the tumor-to-lung (T/L) ratios, tumor-to-blood (T/B) ratios, ands tumor-to-muscle (T/M) ratios were calculated and analyzed. Fractional hypoxic volume (FHV) was expressed as percentage of hypoxic volume. RESULTS SUVmax, T/L ratio, T/B ratio, and FHV were all significantly different between the responders and the non-responders (SUVmax, 2.07 ± 0.53 vs. 2.61 ± 0.69, P = 0.026; T/L ratio, 3.16 ± 0.85 vs. 4.09 ± 1.46, P = 0.047; T/B ratio, 1.27 ± 0.20 vs. 1.48 ± 0.32, P = 0.042; 38.92 ± 18.47 vs. 52.91 ± 11.29 %, P = 0.020). However, the T/M ratio was not significantly different between the two populations (1.46 ± 0.31 vs. 1.67 ± 0.33, P = 0.098). The correlation ratio between hypoxic parameters and treatment responses ranged from high to low as FHV (r = 0.412); SUVmax (r = 0.400); T/L ratio (r = 0.379), P < 0.05; and T/B ratio (r = 0.355), P = 0.059. According to the area under curve (AUC) to predict response, the hypoxic parameters were arranged as FHV (AUC = 0.748), SUVmax (AUC = 0.731), T/L ratio (AUC = 0.719), and T/B ratio (AUC = 0.705). Binary logistic regression analyses showed that FHV was the only independent predictor for treatment response with the P value of 0.038. In the progression-free survival (PFS) prediction, both FHV and SUVmax reached statistical significance by Kaplan-Meier plots (FHV, 46.99 %, P = 0.010; SUVmax, 1.99, P = 0.046) while only FHV was the independent prognostic factor in multivariate analysis by Cox proportional hazard model (P = 0.037). CONCLUSION FHV may be a representative hypoxic parameter to predict the CRT response and PFS in patients with NSCLC.
Collapse
|
31
|
Zhang MY, Zhang RJ, Jiang HJ, Jiang H, Xu HL, Pan WB, Wang YQ, Li X. 18F-fluoromisonidazole positron emission tomography may be applicable in the evaluation of colorectal cancer liver metastasis. Hepatobiliary Pancreat Dis Int 2019; 18:164-172. [PMID: 30850340 DOI: 10.1016/j.hbpd.2019.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/12/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Positron emission tomography (PET) imaging is a non-invasive functional imaging method used to reflect tumor spatial information, and to provide biological characteristics of tumor progression. The aim of this study was to focus on the application of 18F-fluoromisonidazole (FMISO) PET quantitative parameter of maximum standardized uptake value (SUVmax) ratio to detect the liver metastatic potential of human colorectal cancer (CRC) in mice. METHODS Colorectal liver metastases (CRLM) xenograft models were established by injecting tumor cells (LoVo, HT29 and HCT116) into spleen of mice, tumor-bearing xenograft models were established by subcutaneously injecting tumor cells in the right left flank of mice. Wound healing assays were performed to examine the ability of cell migration in vitro. 18F-FMISO uptake in CRC cell lines was measured by cellular uptake assay. 18F-FMISO-based micro-PET imaging of CRLM and tumor-bearing mice was performed and quantified by tumor-to-liver SUVmax ratio. The correlation between the 18F-FMISO SUVmax ratio, liver metastases number, hypoxia-induced factor 1α (HIF-1α) and serum starvation-induced glucose transporter 1 (GLUT-1) was evaluated using Pearson correlation analysis. RESULTS Compared with HT29 and HCT116, LoVo-CRLM mice had significantly higher liver metastases ratio and shorter median survival time. LoVo cells exhibited stronger migration capacity and higher radiotracer uptake compared with HT29 and HCT116 in in vitro. Moreover, 18F-FMISO SUVmax ratio was significantly higher in both LoVo-CRLM model and LoVo-bearing tumor model compared to models established using HT29 and HCT116. In addition, Pearson correlation analysis revealed a significant correlation between 18F-FMISO SUVmax ratio of CRLM mice and number of liver metastases larger than 0.5 cm, as well as between 18F-FMISO SUVmax ratio and HIF-1α or GLUT-1 expression in tumor-bearing tissues. CONCLUSIONS 18F-FMISO parameter of SUVmax ratio may provide useful tumor biological information in mice with CRLM, thus allowing for better prediction of CRLM and yielding useful radioactive markers for predicting liver metastasis potential in CRC.
Collapse
Affiliation(s)
- Ming-Yu Zhang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Rong-Jun Zhang
- Key Laboratory of Nuclear Medicine of the Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hui-Jie Jiang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Hao Jiang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hai-Long Xu
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wen-Bin Pan
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yi-Qiao Wang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xin Li
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
32
|
Zhang L, Yao X, Cao J, Hong H, Zhang A, Zhao R, Zhang Y, Zha Z, Liu Y, Qiao J, Zhu L, Kung HF. In Vivo Ester Hydrolysis as a New Approach in Development of Positron Emission Tomography Tracers for Imaging Hypoxia. Mol Pharm 2019; 16:1156-1166. [PMID: 30676751 DOI: 10.1021/acs.molpharmaceut.8b01131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hypoxia is an important biochemical and physiological condition associated with uncontrolled growth of tumor. Measurement of hypoxia in tumor tissue may be useful in characterization of tumor progression and monitoring drug treatment. [18F]FMISO is the most widely employed radiotracer for imaging of hypoxic tissue with positron emission tomography (PET). However, it showed relatively low uptake in hypoxic tissues, which led to low target-to-background contrast in PET images. To overcome these shortcomings, two novel 2-fluoroproprioic acid esters, nitroimidazole derivatives 2-fluoropropionic acid 2-(2-nitro-imidazol-1-yl)-ethyl ester (FNPFT, [19F]5) and 2-fluoropropionic acid 2-(2-methyl-5-nitro-imidazol-1-yl)-ethyl ester (FMNPFT, [19F]8), were prepared and tested. Radiolabeling of [18F]5 and [18F]8 was accomplished in 45 min (radiochemical purity >95%, the decay-corrected radiochemical yield of [18F]5 was 11 ± 2%, and that of [18F]8 was 13 ± 2%, n = 5). In vitro cell uptake studies using EMT-6 tumor cells showed that both radiotracers [18F]5 and [18F]8 displayed significantly higher uptake in hypoxic cells than those under normoxic condition, while 2-[18F]fluoropropionic acid (2-[18F]FPA) displayed no difference. Biodistribution studies in mice bearing EMT-6 tumor showed that [18F]5, [18F]8, and 2-[18F]FPA displayed similar tumor and major organ uptakes. Tumor uptake values for all three agents were higher than those of [18F]FMISO, respectively ( P < 0.05). This is likely due to a rapid in vivo hydrolysis of [18F]5 and [18F]8 to their metabolite, 2-[18F]FPA. Micro PET imaging studies in the same EMT-6 implanted mice tumor model also demonstrated that both [18F]5 and [18F]8 displayed similar tumor uptake comparable to that of 2-[18F]FPA. In conclusion, two new fluorine-18 labeled nitroimidazole derivatives, [18F]5 and [18F]8, showed good tumor uptakes in mice bearing EMT-6 tumor. However, in vivo biodistribution results suggested that they were more likely reflect the predominance of in vivo produced metabolite, 2-[18F]FPA, which may not be related to tumor hypoxic condition.
Collapse
Affiliation(s)
- Lifang Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Xinyue Yao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Jianhua Cao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Haiyan Hong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Aili Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Ruiyue Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Zhihao Zha
- Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China.,Department of Radiology , University of Pennsylvania , Philadelphia , Pennsylvania 19014 , United States
| | - Yajing Liu
- Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China.,Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China
| | - Hank F Kung
- Beijing Institute for Brain Disorders , Capital Medical University , Beijing 100069 , P. R. China.,Department of Radiology , University of Pennsylvania , Philadelphia , Pennsylvania 19014 , United States
| |
Collapse
|
33
|
Surov A, Meyer HJ, Wienke A. Associations Between PET Parameters and Expression of Ki-67 in Breast Cancer. Transl Oncol 2019; 12:375-380. [PMID: 30522044 PMCID: PMC6279710 DOI: 10.1016/j.tranon.2018.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Numerous studies investigated relationships between positron emission tomography and proliferation index Ki-67 in breast cancer (BC) with inconsistent results. The aim of the present analysis was to provide evident data about associations between standardized uptake value (SUV) and expression of Ki-67 in BC. METHODS MEDLINE library, SCOPUS and EMBASE data bases were screened for relationships between SUV and Ki-67 in BC up to April 2018. Overall, 32 studies with 1802 patients were identified. The following data were extracted from the literature: authors, year of publication, number of patients, and correlation coefficients. Associations between SUV and Ki-67 were analyzed by Spearman's correlation coefficient. RESULTS Associations between SUVmax derived from 18F-FDG PET and Ki-67 were reported in 25 studies (1624 patients). The pooled correlation coefficient was 0.40, (95% CI = [0.34; 0.46]). Furthermore, 7 studies analyzed associations between SUVmax derived from 18F-fluorthymidin (FLT) PET and Ki-67 (178 patients). The pooled correlation coefficient was 0.54, (95% CI = [0.37; 0.70]). CONCLUSION SUVmax correlated moderately with expression of Ki-67 and, therefore, cannot be used as a surrogate marker for tumor proliferation. Further studies are needed to evaluate associations between PET parameters and histopathological findings like hormone receptor status in breast cancer.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany.
| | - Hans Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany.
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Magdeburger Str., 06097 Halle, Germany.
| |
Collapse
|
34
|
Vaidya T, Agrawal A, Mahajan S, Thakur MH, Mahajan A. The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I). Mol Diagn Ther 2019; 23:1-26. [PMID: 30411216 DOI: 10.1007/s40291-018-0366-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present era of precision medicine sees 'cancer' as a consequence of molecular derangements occurring at the commencement of the disease process, with morphologic changes happening much later in the process of tumorigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), play an integral role in the detection of disease at a macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumorigenesis, and thus has the potential to play a key role in heralding the transition from the concept of 'one size fits all' to 'precision medicine'. Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called 'radiogenomics', which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning, and artificial intelligence (AI), the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, a majority of these require validation before clinical translation is possible. In this two-part review, we discuss the systematic collaboration across structural, anatomical, and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.
Collapse
Affiliation(s)
- Tanvi Vaidya
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room no. 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
| | - Shivani Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room no. 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - Meenakshi H Thakur
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room no. 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Tata Memorial Centre, Room no. 125, Dr E Borges Road, Parel, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
35
|
Sequential [ 18F]FDG-[ 18F]FMISO PET and Multiparametric MRI at 3T for Insights into Breast Cancer Heterogeneity and Correlation with Patient Outcomes: First Clinical Experience. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:1307247. [PMID: 30728757 PMCID: PMC6341235 DOI: 10.1155/2019/1307247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to assess whether sequential multiparametric 18[F]fluoro-desoxy-glucose (18[F]FDG)/[18F]fluoromisonidazole ([18F]FMISO) PET-MRI in breast cancer patients is possible, facilitates information on tumor heterogeneity, and correlates with prognostic indicators. In this pilot study, IRB-approved, prospective study, nine patients with ten suspicious breast lesions (BIRADS 5) and subsequent breast cancer diagnosis underwent sequential combined [18F]FDG/[18F]FMISO PET-MRI. [18F]FDG was used to assess increased glycolysis, while [18F]FMISO was used to detect tumor hypoxia. MRI protocol included dynamic breast contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI). Qualitative and quantitative multiparametric imaging findings were compared with pathological features (grading, proliferation, and receptor status) and clinical endpoints (recurrence/metastases and disease-specific death) using multiple correlation analysis. Histopathology was the standard of reference. There were several intermediate to strong correlations identified between quantitative bioimaging markers, histopathologic tumor characteristics, and clinical endpoints. Based on correlation analysis, multiparametric criteria provided independent information. The prognostic indicators proliferation rate, death, and presence/development of recurrence/metastasis correlated positively, whereas the prognostic indicator estrogen receptor status correlated negatively with PET parameters. The strongest correlations were found between disease-specific death and [18F]FDGmean (R=0.83, p < 0.01) and between the presence/development of metastasis and [18F]FDGmax (R=0.79, p < 0.01), respectively. This pilot study indicates that multiparametric [18F]FDG/[18F]FMISO PET-MRI might provide complementary quantitative prognostic information on breast tumors including clinical endpoints and thus might be used to tailor treatment for precision medicine in breast cancer.
Collapse
|
36
|
Luo W, Wang Y. Hypoxia Mediates Tumor Malignancy and Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:1-18. [PMID: 31201713 DOI: 10.1007/978-3-030-12734-3_1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a hallmark of the tumor microenvironment and contributes to tumor malignant phenotypes. Hypoxia-inducible factor (HIF) is a master regulator of intratumoral hypoxia and controls hypoxia-mediated pathological processes in tumors, including angiogenesis, metabolic reprogramming, epigenetic reprogramming, immune evasion, pH homeostasis, cell migration/invasion, stem cell pluripotency, and therapy resistance. In this book chapter, we reviewed the causes and types of intratumoral hypoxia, hypoxia detection methods, and the oncogenic role of HIF in tumorigenesis and chemo- and radio-therapy resistance.
Collapse
Affiliation(s)
- Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
Noninvasive evaluation of 18F-FDG/ 18F-FMISO-based Micro PET in monitoring hepatic metastasis of colorectal cancer. Sci Rep 2018; 8:17832. [PMID: 30546057 PMCID: PMC6292879 DOI: 10.1038/s41598-018-36238-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore the application of two radiotracers (18F-fluorodeoxyglucose (FDG) and 18F-fluoromisonidazole (FMISO)) in monitoring hepatic metastases of human colorectal cancer (CRC). Mouse models of CRC hepatic metastases were established by implantation of the human CRC cell lines LoVo and HT29 by intrasplenic injection. Wound healing and Transwell assays were performed to examine cell migration and invasion abilities. Radiotracer-based cellular uptake in vitro and micro-positron emission tomography imaging of liver metastases in vivo were performed. The incidence of liver metastases in LoVo-xenografted mice was significantly higher than that in HT29-xenografted ones. The SUVmax/mean values of 18F-FMISO, but not 18F-FDG, in LoVo xenografts were significantly greater than in HT29 xenografts. In vitro, LoVo cells exhibited stronger metastatic potential and higher radiotracer uptake than HT29 cells. Mechanistically, the expression of HIF-1α and GLUT-1 in LoVo cells and LoVo tumor tissues was remarkably higher than in HT29 cells and tissues. Linear regression analysis demonstrated correlations between cellular 18F-FDG/18F-FMISO uptake and HIF-1α/GLUT-1 expression in vitro, as well as between 18F-FMISO SUVmax and GLUT-1 expression in vivo. 18F-FMISO uptake may serve as a potential biomarker for the detection of liver metastases in CRC, whereas its clinical use warrants validation.
Collapse
|
38
|
The Effect of Neoadjuvant Androgen Deprivation Therapy on Tumor Hypoxia in High-Grade Prostate Cancer: An 18F-MISO PET-MRI Study. Int J Radiat Oncol Biol Phys 2018; 102:1210-1218. [DOI: 10.1016/j.ijrobp.2018.02.170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/16/2018] [Accepted: 02/28/2018] [Indexed: 12/16/2022]
|
39
|
Pujara AC, Kim E, Axelrod D, Melsaether AN. PET/MRI in Breast Cancer. J Magn Reson Imaging 2018; 49:328-342. [DOI: 10.1002/jmri.26298] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Akshat C. Pujara
- Department of Radiology, Division of Breast Imaging; University of Michigan Health System; Ann Arbor Michigan USA
| | - Eric Kim
- Department of Radiology; NYU School of Medicine; New York New York USA
| | - Deborah Axelrod
- Department of Surgery; Perlmutter Cancer Center, NYU School of Medicine; New York New York USA
| | - Amy N. Melsaether
- Department of Radiology; NYU School of Medicine; New York New York USA
| |
Collapse
|
40
|
Bonnitcha P, Grieve S, Figtree G. Clinical imaging of hypoxia: Current status and future directions. Free Radic Biol Med 2018; 126:296-312. [PMID: 30130569 DOI: 10.1016/j.freeradbiomed.2018.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia is a key feature of many important causes of morbidity and mortality. In pathologies such as stroke, peripheral vascular disease and ischaemic heart disease, hypoxia is largely a consequence of low blood flow induced ischaemia, hence perfusion imaging is often used as a surrogate for hypoxia to guide clinical diagnosis and treatment. Importantly, ischaemia and hypoxia are not synonymous conditions as it is not universally true that well perfused tissues are normoxic or that poorly perfused tissues are hypoxic. In pathologies such as cancer, for instance, perfusion imaging and oxygen concentration are less well correlated, and oxygen concentration is independently correlated to radiotherapy response and overall treatment outcomes. In addition, the progression of many diseases is intricately related to maladaptive responses to the hypoxia itself. Thus there is potentially great clinical and scientific utility in direct measurements of tissue oxygenation. Despite this, imaging assessment of hypoxia in patients is rarely performed in clinical settings. This review summarises some of the current methods used to clinically evaluate hypoxia, the barriers to the routine use of these methods and the newer agents and techniques being explored for the assessment of hypoxia in pathological processes.
Collapse
Affiliation(s)
- Paul Bonnitcha
- Northern and Central Clinical Schools, Faculty of Medicine, Sydney University, Sydney, NSW 2006, Australia; Chemical Pathology Department, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia.
| | - Stuart Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, NSW 2050, Australia
| | - Gemma Figtree
- Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia; Cardiology Department, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
41
|
Tumor-to-background ratios of the maximum standardized uptake value could not indicate the prognosis of advanced high-grade serous ovarian cancer patients. Nucl Med Commun 2018. [PMID: 29533344 DOI: 10.1097/mnm.0000000000000798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Our study aimed to explore the prognostic influence of tumor-to-background ratios (TBRs) of the maximum standardized uptake value (SUVmax) in advanced high-grade serous ovarian cancer (HGSC) patients. PATIENTS AND METHODS We retrospectively investigated 51 advanced HGSC patients who underwent PET/CT before primary surgery at our hospital between January 2010 and June 2015. None of these patients received neoadjuvant chemotherapy. SUVmax of ovarian tumor (SUVmax-P) and background (SUVmax-B) were measured using a PET/CT workstation. TBR was calculated by SUVmax-P/SUVmax-B. Backgrounds included the liver, mediastinum, and muscle, and TBRs were noted as TBR-L, TBR-Me, and TBR-Mu, respectively. The χ-test was used to analyze the relationships between PET/CT parameters and several clinical features. Progression-free survival and overall survival were analyzed using the Kaplan-Meier method and log-rank tests in univariate analyses. RESULTS The median (range) follow-up duration was 27 (8-61) months. The median (range) PET/CT parameter values were as follows: SUVmax, 11.41 (3.24-24.14), TBR-L, 2.84 (2.08-11.93), TBL-Me, 2.09 (1.33-9.07), and TBR-Mu, 1.04 (0.56-14.02). The patients were categorized into low and high groups by the median values of these parameters above separately. A larger proportion of patients in the high TBR-Me group were chemoresistant compared with the low-value group (P=0.039). Neither the residual disease nor the ascites levels correlated with SUVmax or TBR values. There were no differences in progression-free survival and overall survival between the patients in the high and low TBR level groups. CONCLUSION TBRs of SUVmax were not prognostic indicators for advanced HGSC patients.
Collapse
|
42
|
Asano A, Ueda S, Kuji I, Yamane T, Takeuchi H, Hirokawa E, Sugitani I, Shimada H, Hasebe T, Osaki A, Saeki T. Intracellular hypoxia measured by 18F-fluoromisonidazole positron emission tomography has prognostic impact in patients with estrogen receptor-positive breast cancer. Breast Cancer Res 2018; 20:78. [PMID: 30053906 PMCID: PMC6063018 DOI: 10.1186/s13058-018-0970-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/20/2018] [Indexed: 02/08/2023] Open
Abstract
Background Hypoxia is a key driver of cancer progression. We evaluated the prognostic impact of 18F-fluoromisonidazole (FMISO) prior to treatment in patients with breast cancer. Methods Forty-four patients with stage II/III primary breast cancer underwent positron emission tomography/computed with 18F-fluorodeoxyglucose (FDG-PET/CT) and FMISO. After measurement by FDG-PET/CT, the tissue-to-blood ratio (TBR) was obtained using FMISO-PET/CT. FMISO-TBR was compared for correlation with clinicopathological factors, disease-free survival (DFS), and overall survival (OS). Multiplex cytokines were analyzed for the correlation of FMISO-TBR. Results Tumors with higher nuclear grade and negativities of estrogen receptor (ER) and progesterone receptor had significantly higher FMISO-TBR than other tumors. Kaplan-Meier survival curves showed that patients with a higher FMISO-TBR (cutoff, 1.48) had a poorer prognosis of DFS (p = 0.0007) and OS (p = 0.04) than those with a lower FMISO-TBR. Multivariate analysis indicated that higher FMISO-TBR and ER negativity were independent predictors of shorter DFS (p = 0.01 and 0.03). Higher FMISO-TBR was associated with higher plasma levels of angiogenic hypoxic markers such as vascular endothelial growth factor, transforming growth factor-α, and interleukin 8. Conclusions FMISO-PET/CT is useful for assessing the prognosis of patients with breast cancer, but it should be stratified by ER status. Trial registration UMIN Clinical Trials Registry, UMIN000006802. Registered on 1 December 2011. Electronic supplementary material The online version of this article (10.1186/s13058-018-0970-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aya Asano
- Department of Breast Oncology, Saitama Medical University, 38 Morohongo, Moroyama-machi, Irumagun, Saitama, 350-0451, Japan
| | - Shigeto Ueda
- Department of Breast Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Ichiei Kuji
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan.
| | - Tomohiko Yamane
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Hideki Takeuchi
- Department of Breast Oncology, Saitama Medical University, 38 Morohongo, Moroyama-machi, Irumagun, Saitama, 350-0451, Japan
| | - Eiko Hirokawa
- Department of Breast Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Ikuko Sugitani
- Department of Breast Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Hiroko Shimada
- Department of Breast Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Takahiro Hasebe
- Department of Pathology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Akihiko Osaki
- Department of Breast Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| | - Toshiaki Saeki
- Department of Breast Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| |
Collapse
|
43
|
Marcu LG, Moghaddasi L, Bezak E. Imaging of Tumor Characteristics and Molecular Pathways With PET: Developments Over the Last Decade Toward Personalized Cancer Therapy. Int J Radiat Oncol Biol Phys 2018; 102:1165-1182. [PMID: 29907486 DOI: 10.1016/j.ijrobp.2018.04.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Improvements in personalized therapy are made possible by the advances in molecular biology that led to developments in molecular imaging, allowing highly specific in vivo imaging of biological processes. Positron emission tomography (PET) is the most specific and sensitive imaging technique for in vivo molecular targets and pathways, offering quantification and evaluation of functional properties of the targeted anatomy. MATERIALS AND METHODS This work is an integrative research review that summarizes and evaluates the accumulated current status of knowledge of recent advances in PET imaging for cancer diagnosis and treatment, concentrating on novel radiotracers and evaluating their advantages and disadvantages in cancer characterization. Medline search was conducted, limited to English publications from 2007 onward. Identified manuscripts were evaluated for most recent developments in PET imaging of cancer hypoxia, angiogenesis, proliferation, and clonogenic cancer stem cells (CSC). RESULTS There is an expansion observed from purely metabolic-based PET imaging toward antibody-based PET to achieve more information on cancer characteristics to identify hypoxia, proangiogenic factors, CSC, and others. 64Cu-ATSM, for example, can be used both as a hypoxia and a CSC marker. CONCLUSIONS Progress in the field of functional imaging will possibly lead to more specific tumor targeting and personalized treatment, increasing tumor control and improving quality of life.
Collapse
Affiliation(s)
- Loredana Gabriela Marcu
- Faculty of Science, University of Oradea, Oradea, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA, Australia
| | - Leyla Moghaddasi
- GenesisCare, Tennyson Centre, Adelaide SA, Australia; Department of Physics, University of Adelaide, Adelaide SA, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA, Australia; Department of Physics, University of Adelaide, Adelaide SA, Australia.
| |
Collapse
|
44
|
Hamann I, Krys D, Glubrecht D, Bouvet V, Marshall A, Vos L, Mackey JR, Wuest M, Wuest F. Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer—effects of hypoxia. FASEB J 2018; 32:5104-5118. [DOI: 10.1096/fj.201800360r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ingrit Hamann
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Daniel Krys
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Darryl Glubrecht
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Vincent Bouvet
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Alison Marshall
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Larissa Vos
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - John R. Mackey
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Melinda Wuest
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Frank Wuest
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
45
|
Jia X, Cheng J, Shen Z, Shao Z, Liu G. Zoledronic acid sensitizes breast cancer cells to fulvestrant via ERK/HIF-1 pathway inhibition in vivo. Mol Med Rep 2018; 17:5470-5476. [PMID: 29393454 DOI: 10.3892/mmr.2018.8514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/28/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have reported that hypoxia-inducible factor (HIF)-1α confers endocrine resistance and that zoledronic acid (ZOL) decreases HIF‑1α expression in estrogen receptor‑positive breast cancer. The present study investigated the effect of the combination treatment with ZOL and fulvestrant and its possible mechanism for HIF‑1α inhibition in vitro and in vivo. First, cell proliferation, clonogenic ability and HIF‑1α expression by western blotting were determined in MCF‑7 breast cancer cells stably expressing HIF‑1α in vitro. Next, a mouse xenograft model was established with the HIF‑1α‑overexpressing MCF‑7 breast cancer cells, and treated with PBS, fulvestrant, ZOL or fulvestrant plus ZOL. Tumor volumes were compared and animal [18F]‑fluoromisonidazole (FMISO) positron emission tomography‑computer tomography (PET‑CT) was used to detect the hypoxic status of the xenograft tumors. Protein expression levels of HIF‑1α in the xenograft tumors were detected by immunohistochemistry and western blotting. The results demonstrated that the HIF-1α-overexpressing xenograft tumors grew faster and larger compared with control tumors. The animal [18F]‑FMISO PET‑CT also confirmed these results. [18F]‑FMISO uptake was significantly higher in HIF‑1α‑overexpressing xenograft tumors compared with control tumors. In addition, the combination treatment with ZOL and fulvestrant acted synergistically in the mouse xenograft model in vivo to significantly reduce tumor burden. Similarly, combination of ZOL and fulvestrant significantly reduced tumor cell growth in vitro. ZOL alone did not inhibit the tumor growth of MCF‑7 cells stably expressing HIF‑1α. Furthermore, ZOL significantly inhibited extracellular signal‑regulated kinase (ERK) 1/2 phosphorylation, while phosphoinositide 3‑kinase/AKT signaling was not affected. In conclusion, the present study demonstrated that ZOL significantly increased the sensitivity of breast cancer cells to fulvestrant through inhibition of the ERK/HIF-1α pathway.
Collapse
Affiliation(s)
- Xiaoqing Jia
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jingyi Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Zhenzhou Shen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Zhimin Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Guangyu Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
46
|
Xu Z, Li XF, Zou H, Sun X, Shen B. 18F-Fluoromisonidazole in tumor hypoxia imaging. Oncotarget 2017; 8:94969-94979. [PMID: 29212283 PMCID: PMC5706929 DOI: 10.18632/oncotarget.21662] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that is closely associated with radiotherapy and chemotherapy resistance, metastasis and tumors prognosis. Thus, it is important to assess hypoxia in tumors for estimating prognosis and selecting appropriate treatment procedures. 18F-Fluoromisonidazole positron emission tomography (18F-FMISO PET) has been widely used to visualize tumor hypoxia in a comprehensive and noninvasive way, both in the clinical and preclinical settings. Here we review the concept, mechanisms and detection methods of tumor hypoxia. Furthermore, we discuss the correlation between 18F-FMISO PET and other detection methods, current applications of 18F-FMISO PET and the development prospects of this imaging technology.
Collapse
Affiliation(s)
- Zuoyu Xu
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao-Feng Li
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongyan Zou
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Baozhong Shen
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
47
|
Abstract
CLINICAL/METHODICAL ISSUE Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. STANDARD RADIOLOGICAL METHODS Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ((1)H-MRSI) as well as combinations of radiological and MRI techniques (e. g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). METHODICAL INNOVATIONS Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ((23)Na MRI), phosphorus spectroscopy ((31)P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. ACHIEVEMENTS Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer.
Collapse
|
48
|
Sorace AG, Harvey S, Syed A, Yankeelov TE. Imaging Considerations and Interprofessional Opportunities in the Care of Breast Cancer Patients in the Neoadjuvant Setting. Semin Oncol Nurs 2017; 33:425-439. [PMID: 28927763 DOI: 10.1016/j.soncn.2017.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To discuss standard-of-care and emerging imaging techniques employed for screening and detection, diagnosis and staging, monitoring response to therapy, and guiding cancer treatments. DATA SOURCES Published journal articles indexed in the National Library of Medicine database and relevant websites. CONCLUSION Imaging plays a fundamental role in the care of cancer patients and specifically, breast cancer patients in the neoadjuvant setting, providing an excellent opportunity for interprofessional collaboration between oncologists, researchers, radiologists, and oncology nurses. Quantitative imaging strategies to assess cellular, molecular, and vascular characteristics within the tumor is needed to better evaluate initial diagnosis and treatment response. IMPLICATIONS FOR NURSING PRACTICE Nurses caring for patients in all settings must continue to seek education on emerging imaging techniques. Oncology nurses provide education about the test, ensure the patient has appropriate pre-testing instructions, and manage patient expectations about timing of results availability.
Collapse
|
49
|
Challapalli A, Carroll L, Aboagye EO. Molecular mechanisms of hypoxia in cancer. Clin Transl Imaging 2017; 5:225-253. [PMID: 28596947 PMCID: PMC5437135 DOI: 10.1007/s40336-017-0231-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Hypoxia is a condition of insufficient oxygen to support metabolism which occurs when the vascular supply is interrupted, or when a tumour outgrows its vascular supply. It is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. This review provides an overview of hypoxia imaging with Positron emission tomography (PET), with an emphasis on the biological relevance, mechanism of action, highlighting advantages, and limitations of the currently available hypoxia radiotracers. METHODS A comprehensive PubMed literature search was performed, identifying articles relating to biological significance and measurement of hypoxia, MRI methods, and PET imaging of hypoxia in preclinical and clinical settings, up to December 2016. RESULTS A variety of approaches have been explored over the years for detecting and monitoring changes in tumour hypoxia, including regional measurements with oxygen electrodes placed under CT guidance, MRI methods that measure either oxygenation or lactate production consequent to hypoxia, different nuclear medicine approaches that utilise imaging agents the accumulation of which is inversely related to oxygen tension, and optical methods. The advantages and disadvantages of these approaches are reviewed, along with individual strategies for validating different imaging methods. PET is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. CONCLUSION Even though hypoxia could have significant prognostic and predictive value in the clinic, the best method for hypoxia assessment has in our opinion not been realised.
Collapse
Affiliation(s)
- Amarnath Challapalli
- Department of Clinical Oncology, Bristol Cancer Institute, Horfield Road, Bristol, United Kingdom
| | - Laurence Carroll
- Department of Surgery and Cancer, Imperial College, GN1, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W120NN United Kingdom
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Imperial College, GN1, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W120NN United Kingdom
| |
Collapse
|
50
|
Liu JN, Bu W, Shi J. Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chem Rev 2017; 117:6160-6224. [DOI: 10.1021/acs.chemrev.6b00525] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jia-nan Liu
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Wenbo Bu
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Jianlin Shi
- State
Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| |
Collapse
|