1
|
Das N, Nguyen HTM, Lu WJ, Natarajan A, Khan S, Pratx G. Increased [ 18F]FDG uptake of radiation-induced giant cells: a single-cell study in lung cancer models. NPJ IMAGING 2024; 2:14. [PMID: 38912527 PMCID: PMC11186760 DOI: 10.1038/s44303-024-00017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/09/2024] [Indexed: 06/25/2024]
Abstract
Positron emission tomography (PET), a cornerstone in cancer diagnosis and treatment monitoring, relies on the enhanced uptake of fluorodeoxyglucose ([18F]FDG) by cancer cells to highlight tumors and other malignancies. While instrumental in the clinical setting, the accuracy of [18F]FDG-PET is susceptible to metabolic changes introduced by radiation therapy. Specifically, radiation induces the formation of giant cells, whose metabolic characteristics and [18F]FDG uptake patterns are not fully understood. Through a novel single-cell gamma counting methodology, we characterized the [18F]FDG uptake of giant A549 and H1299 lung cancer cells that were induced by radiation, and found it to be considerably higher than that of their non-giant counterparts. This observation was further validated in tumor-bearing mice, which similarly demonstrated increased [18F]FDG uptake in radiation-induced giant cells. These findings underscore the metabolic implications of radiation-induced giant cells, as their enhanced [18F]FDG uptake could potentially obfuscate the interpretation of [18F]FDG-PET scans in patients who have recently undergone radiation therapy.
Collapse
Affiliation(s)
| | - Hieu T. M. Nguyen
- Department of Radiation Oncology, Stanford University, Stanford, CA USA
| | - Wan-Jin Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA USA
| | | | - Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, CA USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA USA
| |
Collapse
|
2
|
Mc Veigh M, Bellan LM. Microfluidic synthesis of radiotracers: recent developments and commercialization prospects. LAB ON A CHIP 2024; 24:1226-1243. [PMID: 38165824 DOI: 10.1039/d3lc00779k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Positron emission tomography (PET) is a powerful diagnostic tool that holds incredible potential for clinicians to track a wide variety of biological processes using specialized radiotracers. Currently, however, a single radiotracer accounts for over 95% of procedures, largely due to the cost of radiotracer synthesis. Microfluidic platforms provide a solution to this problem by enabling a dose-on-demand pipeline in which a single benchtop platform would synthesize a wide array of radiotracers. In this review, we will explore the field of microfluidic production of radiotracers from early research to current development. Furthermore, the benefits and drawbacks of different microfluidic reactor designs will be analyzed. Lastly, we will discuss the various engineering considerations that must be addressed to create a fully developed, commercially effective platform that can usher the field from research and development to commercialization.
Collapse
Affiliation(s)
- Mark Mc Veigh
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
3
|
Babu B, Stoltz SA, Mittal A, Pawar S, Kolanthai E, Coathup M, Seal S. Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2873. [PMID: 37947718 PMCID: PMC10647410 DOI: 10.3390/nano13212873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Samantha Archer Stoltz
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA;
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (B.B.); (S.A.S.); (A.M.); (S.P.); (E.K.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
4
|
Abdollahi H, Saboury B, Soltani M, Shi K, Uribe C, Rahmim A. Radiopharmaceutical therapy on-a-chip: a perspective on microfluidic-driven digital twins towards personalized cancer therapies. Sci Bull (Beijing) 2023; 68:1983-1988. [PMID: 37573246 DOI: 10.1016/j.scib.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Affiliation(s)
- Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver V5Z 1M9, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver V5Z 1L3, Canada
| | - Babak Saboury
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver V5Z 1L3, Canada; Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda 20892, USA
| | - Madjid Soltani
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver V5Z 1L3, Canada; Department of Electrical & Computer Engineering, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Computer Aided Medical Procedures and Augmented Reality, Institute of Informatics, Technical University of Munich, Munich 80333, Germany
| | - Carlos Uribe
- Department of Radiology, University of British Columbia, Vancouver V5Z 1M9, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver V5Z 1L3, Canada; Functional Imaging, BC Cancer, Vancouver V5Z 4E6, Canada
| | - Arman Rahmim
- Department of Radiology, University of British Columbia, Vancouver V5Z 1M9, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver V5Z 1L3, Canada; Department of Physics & Astronomy, University of British Columbia, Vancouver V6T 1Z1, Canada.
| |
Collapse
|
5
|
Klein JS, Kim TJ, Pratx G. Development of a Lensless Radiomicroscope for Cellular-Resolution Radionuclide Imaging. J Nucl Med 2023; 64:479-484. [PMID: 36109183 PMCID: PMC10071797 DOI: 10.2967/jnumed.122.264021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The action of radiopharmaceuticals takes place at the level of cells. However, existing radionuclide assays can only measure uptake in bulk or in small populations of single cells. This potentially hinders the development of effective radiopharmaceuticals for disease detection, staging, and treatment. Methods: We have developed a new imaging modality, the lensless radiomicroscope (LRM), for in vitro, cellular-resolution imaging of β- and α-emitting radionuclides. The palm-sized instrument is constructed from off-the-shelf parts for a total cost of less than $100, about 500 times less than the radioluminescence microscope, its closest equivalent. The instrument images radiopharmaceuticals by direct detection of ionizing charged particles via a consumer-grade complementary metal-oxide semiconductor detector. Results: The LRM can simultaneously image more than 5,000 cells within its 1 cm2 field of view, a 100-times increase over state-of-the-art technology. It has spatial resolution of 5 μm for brightfield imaging and 30 μm for 18F positron imaging. We used the LRM to quantify 18F-FDG uptake in MDA-MB-231 breast cancer cells 72 h after radiation treatment. Cells receiving 3 Gy were 3 times larger (mean = 3,116 μm2) than their untreated counterparts (mean = 940 μm2) but had 2 times less 18F-FDG per area (mean = 217 Bq/mm2), a finding in agreement with the clinical use of this tracer to monitor response. Additionally, the LRM was used to dynamically image the uptake of 18F-FDG by live cancer cells, and thus measure their avidity for glucose. Conclusion: The LRM is a high-resolution, large-field-of-view, and cost-effective approach to image radiotracer uptake with single-cell resolution in vitro.
Collapse
Affiliation(s)
- Justin S Klein
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, California
| |
Collapse
|
6
|
Khan S, Shin JH, Ferri V, Cheng N, Noel JE, Kuo C, Sunwoo JB, Pratx G. High-resolution positron emission microscopy of patient-derived tumor organoids. Nat Commun 2021; 12:5883. [PMID: 34620852 PMCID: PMC8497512 DOI: 10.1038/s41467-021-26081-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023] Open
Abstract
Tumor organoids offer new opportunities for translational cancer research, but unlike animal models, their broader use is hindered by the lack of clinically relevant imaging endpoints. Here, we present a positron-emission microscopy method for imaging clinical radiotracers in patient-derived tumor organoids with spatial resolution 100-fold better than clinical positron emission tomography (PET). Using this method, we quantify 18F-fluorodeoxyglucose influx to show that patient-derived tumor organoids recapitulate the glycolytic activity of the tumor of origin, and thus, could be used to predict therapeutic response in vitro. Similarly, we measure sodium-iodine symporter activity using 99mTc- pertechnetate and find that the iodine uptake pathway is functionally conserved in organoids derived from thyroid carcinomas. In conclusion, organoids can be imaged using clinical radiotracers, which opens new possibilities for identifying promising drug candidates and radiotracers, personalizing treatment regimens, and incorporating clinical imaging biomarkers in organoid-based co-clinical trials.
Collapse
Affiliation(s)
- Syamantak Khan
- Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford, USA
| | - June Ho Shin
- Department of Otolaryngology, Division of Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Valentina Ferri
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University School of Medicine, Stanford, CA, USA
| | - Ning Cheng
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia E Noel
- Department of Otolaryngology, Division of Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin Kuo
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - John B Sunwoo
- Department of Otolaryngology, Division of Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford, USA.
| |
Collapse
|
7
|
Khan S, Kim S, Yang YP, Pratx G. High-resolution radioluminescence microscopy of FDG uptake in an engineered 3D tumor-stoma model. Eur J Nucl Med Mol Imaging 2021; 48:3400-3407. [PMID: 33880604 DOI: 10.1007/s00259-021-05364-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The increased glucose metabolism of cancer cells is the basis for 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). However, due to its coarse image resolution, PET is unable to resolve the metabolic role of cancer-associated stroma, which often influences the metabolic reprogramming of a tumor. This study investigates the use of radioluminescence microscopy for imaging FDG uptake in engineered 3D tumor models with high resolution. METHOD Multicellular tumor spheroids (A549 lung adenocarcinoma) were co-cultured with GFP-expressing human umbilical vein endothelial cells (HUVECs) within an artificial extracellular matrix to mimic a tumor and its surrounding stroma. The tumor model was constructed as a 200-μm-thin 3D layer over a transparent CdWO4 scintillator plate to allow high-resolution imaging of the cultured cells. After incubation with FDG, the radioluminescence signal was collected by a highly sensitive widefield microscope. Fluorescence microscopy was performed using the same instrument to localize endothelial and tumor cells. RESULTS Simultaneous and co-localized brightfield, fluorescence, and radioluminescence imaging provided high-resolution information on the distribution of FDG in the engineered tissue. The microvascular stromal compartment as a whole took up a large fraction of the FDG, comparable to the uptake of the tumor spheroids. In vitro gamma counting confirmed that A549 and HUVEC cells were both highly glycolytic with rapid FDG uptake kinetics. Despite the relative thickness of the tissue constructs, an average spatial resolution of 64 ± 4 μm was achieved for imaging FDG. CONCLUSION Our study demonstrates the feasibility of imaging the distribution of FDG uptake in engineered in vitro tumor models. With its high spatial resolution, the method can separately resolve tumor and stromal components. The approach could be extended to more advanced engineered cancer models but also to surgical tissue slices and tumor biopsies.
Collapse
Affiliation(s)
- Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Sungwoo Kim
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Kim TJ, Ha B, Bick AD, Kim M, Tang SK, Pratx G. Microfluidics-Coupled Radioluminescence Microscopy for In Vitro Radiotracer Kinetic Studies. Anal Chem 2021; 93:4425-4433. [PMID: 33647202 PMCID: PMC8006742 DOI: 10.1021/acs.analchem.0c04321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integrated bioassay systems that combine microfluidics and radiation detectors can deliver medical radiopharmaceuticals to live cells with precise timing, while minimizing radiation dose and sample volume. However, the spatial resolution of many radiation imaging systems is limited to bulk cell populations. Here, we demonstrate microfluidics-coupled radioluminescence microscopy (μF-RLM), a new integrated system that can image radiotracer uptake in live adherent cells growing inside microincubators with spatial resolution better than 30 μm. Our method enables on-chip radionuclide imaging by incorporating an inorganic scintillator plate (CdWO4) into a microfluidic chip. We apply this approach to investigate the factors that influence the dynamic uptake of [18F]fluorodeoxyglucose (FDG) by cancer cells. In the first experiment, we measured the effect of flow on FDG uptake of cells and found that a continuous flow of the radiotracer led to fourfold higher uptake than static incubation, suggesting that convective replenishment enhances molecular radiotracer transport into cells. In the second set of experiments, we applied pharmacokinetic modeling to show that lactic acidosis inhibits FDG uptake by cancer cells in vitro and that this decrease is primarily due to downregulation of FDG transport into the cells. The other two rate constants, which represent FDG export and FDG metabolism, were relatively unaffected by lactic acidosis. Lactic acidosis is common in solid tumors because of the dysregulated metabolism and inefficient vasculature. In conclusion, μF-RLM is a simple and practical approach for integrating high-resolution radionuclide imaging within standard microfluidics devices, thus potentially opening venues for investigating the efficacy of radiopharmaceuticals in in vitro cancer models.
Collapse
Affiliation(s)
- Tae Jin Kim
- Division of Medical Physics, Department of Radiation Oncology, Stanford University, 300 Pasteur Dr., Stanford, CA 94305, USA
| | - Byunghang Ha
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Alison Dana Bick
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Minkyu Kim
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Sindy K.Y. Tang
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA
| | - Guillem Pratx
- Division of Medical Physics, Department of Radiation Oncology, Stanford University, 300 Pasteur Dr., Stanford, CA 94305, USA
| |
Collapse
|
9
|
Morishita Y, Kurosawa S, Yamaji A, Hayashi M, Sasano M, Makita T, Azuma T. Plutonium dioxide particle imaging using a high-resolution alpha imager for radiation protection. Sci Rep 2021; 11:5948. [PMID: 33723277 PMCID: PMC7961019 DOI: 10.1038/s41598-021-84515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
The internal exposure of workers who inhale plutonium dioxide particles in nuclear facilities is a crucial matter for human protection from radiation. To determine the activity median aerodynamic diameter values at the working sites of nuclear facilities in real time, we developed a high-resolution alpha imager using a ZnS(Ag) scintillator sheet, an optical microscope, and an electron-multiplying charge-coupled device camera. Then, we designed and applied a setup to measure a plutonium dioxide particle and identify the locations of the individual alpha particles in real time. Employing a Gaussian fitting, we evaluated the average spatial resolution of the multiple alpha particles was evaluated to be 16.2 ± 2.2 μmFWHM with a zoom range of 5 ×. Also, the spatial resolution for the plutonium dioxide particle was 302.7 ± 4.6 µmFWHM due to the distance between the plutonium dioxide particle and the ZnS(Ag) scintillator. The influence of beta particles was negligible, and alpha particles were discernible in the alpha–beta particle contamination. The equivalent volume diameter of the plutonium dioxide particle was calculated from the measured count rate. These results indicate that the developed alpha imager is effective in the plutonium dioxide particle measurements at the working sites of nuclear facilities for internal exposure dose evaluation.
Collapse
Affiliation(s)
- Yuki Morishita
- Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency, 790-1 Motooka Ohtsuka, Tomioka Town, Futaba-gun, Fukushima, 979-1151, Japan.
| | - Shunsuke Kurosawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 AobaAoba-ku, AramakiSendai, Miyagi, 980-8579, Japan.,Institute for Materials Research (IMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Akihiro Yamaji
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 AobaAoba-ku, AramakiSendai, Miyagi, 980-8579, Japan.,Institute for Materials Research (IMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Masateru Hayashi
- Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1, Tsukaguchi-honmachi, Amagasaki City, Hyogo, 661-8661, Japan
| | - Makoto Sasano
- Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1, Tsukaguchi-honmachi, Amagasaki City, Hyogo, 661-8661, Japan
| | - Taisuke Makita
- Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1, Tsukaguchi-honmachi, Amagasaki City, Hyogo, 661-8661, Japan
| | - Tetsushi Azuma
- Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1, Tsukaguchi-honmachi, Amagasaki City, Hyogo, 661-8661, Japan
| |
Collapse
|
10
|
Pham TN, Marchand P, Finck C, Boisson F, Brasse D, Laquerriere P. 18F autoradiography With the Mimosa-28: Characterization and Application. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2996912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Kim TJ, Wang Q, Shelor M, Pratx G. Single-cell radioluminescence microscopy with two-fold higher sensitivity using dual scintillator configuration. PLoS One 2020; 15:e0221241. [PMID: 32634153 PMCID: PMC7340323 DOI: 10.1371/journal.pone.0221241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/21/2020] [Indexed: 11/25/2022] Open
Abstract
Radioluminescence microscopy (RLM) is an imaging technique that allows quantitative analysis of clinical radiolabeled drugs and probes in single cells. However, the modality suffers from slow data acquisition (15–30 minutes), thus critically affecting experiments with short-lived radioactive drugs. To overcome this issue, we suggest an approach that significantly accelerates data collection. Instead of using a single scintillator to image the decay of radioactive molecules, we sandwiched the radiolabeled cells between two scintillators. As proof of concept, we imaged cells labeled with [18F]FDG, a radioactive glucose popularly used in oncology to image tumors. Results show that the double scintillator configuration increases the microscope sensitivity by two-fold, thus reducing the image acquisition time by half to achieve the same result as the single scintillator approach. The experimental results were also compared with Geant4 Monte Carlo simulation to confirm the two-fold increase in sensitivity with only minor degradation in spatial resolution. Overall, these findings suggest that the double scintillator configuration can be used to perform time-sensitive studies such as cell pharmacokinetics or cell uptake of short-lived radiotracers.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Qian Wang
- Department of Bioengineering, University of California, Davis, California, United States of America
| | - Mark Shelor
- Department of Biomedical Engineering, University of California, Merced, California, United States of America
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, California, United States of America
| |
Collapse
|
12
|
Sung Y, Tetrault MA, Takahashi K, Ouyang J, Pratx G, Fakhri GE, Normandin MD. Dependence of fluorodeoxyglucose (FDG) uptake on cell cycle and dry mass: a single-cell study using a multi-modal radiography platform. Sci Rep 2020; 10:4280. [PMID: 32152343 PMCID: PMC7062696 DOI: 10.1038/s41598-020-59515-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022] Open
Abstract
High glucose uptake by cancer compared to normal tissues has long been utilized in fluorodeoxyglucose-based positron emission tomography (FDG-PET) as a contrast mechanism. The FDG uptake rate has been further related to the proliferative potential of cancer, specifically the proliferation index (PI) - the proportion of cells in S, G2 or M phases. The underlying hypothesis was that the cells preparing for cell division would consume more energy and metabolites as building blocks for biosynthesis. Despite the wide clinical use, mixed reports exist in the literature on the relationship between FDG uptake and PI. This may be due to the large variation in cancer types or methods adopted for the measurements. Of note, the existing methods can only measure the average properties of a tumor mass or cell population with highly-heterogeneous constituents. In this study, we have built a multi-modal live-cell radiography system and measured the [18F]FDG uptake by single HeLa cells together with their dry mass and cell cycle phase. The results show that HeLa cells take up twice more [18F]FDG in S, G2 or M phases than in G1 phase, which confirms the association between FDG uptake and PI at a single-cell level. Importantly, we show that [18F]FDG uptake and cell dry mass have a positive correlation in HeLa cells, which suggests that high [18F]FDG uptake in S, G2 or M phases can be largely attributed to increased dry mass, rather than the activities preparing for cell division. This interpretation is consistent with recent observations that the energy required for the preparation of cell division is much smaller than that for maintaining house-keeping proteins.
Collapse
Affiliation(s)
- Yongjin Sung
- College of Engineering and Applied Science, University of Wisconsin, Milwaukee, WI, 53211, USA
| | - Marc-Andre Tetrault
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kazue Takahashi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Guillem Pratx
- Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA, 94305, USA.
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
13
|
Almasi S, Pratx G. High-Resolution Radioluminescence Microscopy Image Reconstruction via Ionization Track Analysis. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2019.2908219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Liu Z, Lan X. Microfluidic radiobioassays: a radiometric detection tool for understanding cellular physiology and pharmacokinetics. LAB ON A CHIP 2019; 19:2315-2339. [PMID: 31222194 DOI: 10.1039/c9lc00159j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The investigation of molecular uptake and its kinetics in cells is valuable for understanding the cellular physiological status, the observation of drug interventions, and the development of imaging agents and pharmaceuticals. Microfluidic radiobioassays, or microfluidic radiometric bioassays, constitute a radiometric imaging-on-a-chip technology for the assay of biological samples using radiotracers. From 2006 to date, microfluidic radiobioassays have shown advantages in many applications, including radiotracer characterization, enzyme activity radiobioassays, fast drug evaluation, single-cell imaging, facilitation of dynamic positron emission tomography (PET) imaging, and cellular pharmacokinetics (PK)/pharmacodynamics (PD) studies. These advantages lie in the minimized and integrated detection scheme, allowing real-time tracking of dynamic uptake, high sensitivity radiotracer imaging, and quantitative interpretation of imaging results. In this review, the basics of radiotracers, various radiometric detection methods, and applications of microfluidic radiobioassays will be introduced and summarized, and the potential applications and future directions of microfluidic radiobioassays will be forecasted.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Wuhan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China.
| | | |
Collapse
|
15
|
Sengupta D, Mongersun A, Kim TJ, Mongersun K, von Eyben R, Abbyad P, Pratx G. Multiplexed Single-Cell Measurements of FDG Uptake and Lactate Release Using Droplet Microfluidics. Technol Cancer Res Treat 2019; 18:1533033819841066. [PMID: 30929606 PMCID: PMC6444762 DOI: 10.1177/1533033819841066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Glucose utilization and lactate release are 2 important indicators of cancer metabolism. Most tumors consume glucose and release lactate at a higher rate than normal tissues due to enhanced aerobic glycolysis. However, these 2 indicators of metabolism have not previously been studied on a single-cell level, in the same cell. OBJECTIVE To develop and characterize a novel droplet microfluidic device for multiplexed measurements of glucose uptake (via its analog 18F-fluorodeoxyglucose) and lactate release, in single live cells encapsulated in an array of water-in-oil droplets. RESULTS Surprisingly, 18F-fluorodeoxyglucose uptake and lactate release were only marginally correlated at the single-cell level, even when assayed in a standard cell line (MDA-MB-231). While 18F-fluorodeoxyglucose-avid cells released substantial amounts of lactate, the reverse was not true, and many cells released high amounts of lactate without taking up 18F-fluorodeoxyglucose. DISCUSSION These results confirm that cancer cells rely on multiple metabolic pathways in addition to aerobic glycolysis and that the use of these pathways is highly heterogeneous, even under controlled culture conditions. Clinically, the large cell-to-cell variability suggests that positron emission tomography measurements of 18F-fluorodeoxyglucose uptake represent metabolic flux only in an aggregate sense, not for individual cancer cells within the tumor.
Collapse
Affiliation(s)
- Debanti Sengupta
- 1 Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amy Mongersun
- 2 Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA
| | - Tae Jin Kim
- 1 Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Rie von Eyben
- 1 Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul Abbyad
- 4 Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Guillem Pratx
- 1 Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Abstract
The electromagnetic spectrum contains different frequency bands useful for medical imaging and therapy. Short wavelengths (ionizing radiation) are commonly used for radiological and radionuclide imaging and for cancer radiation therapy. Intermediate wavelengths (optical radiation) are useful for more localized imaging and for photodynamic therapy (PDT). Finally, longer wavelengths are the basis for magnetic resonance imaging and for hyperthermia treatments. Recently, there has been a surge of interest for new biomedical methods that synergize optical and ionizing radiation by exploiting the ability of ionizing radiation to stimulate optical emissions. These physical phenomena, together known as radioluminescence, are being used for applications as diverse as radionuclide imaging, radiation therapy monitoring, phototherapy, and nanoparticle-based molecular imaging. This review provides a comprehensive treatment of the physics of radioluminescence and includes simple analytical models to estimate the luminescence yield of scintillators and nanoscintillators, Cherenkov radiation, air fluorescence, and biologically endogenous radioluminescence. Examples of methods that use radioluminescence for diagnostic or therapeutic applications are reviewed and analyzed in light of these quantitative physical models of radioluminescence.
Collapse
Affiliation(s)
- Justin Klein
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| | - Conroy Sun
- College of Pharmacy, Oregon State University, Portland, OR 97201
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| |
Collapse
|
17
|
Kiru L, Kim TJ, Shen B, Chin FT, Pratx G. Single-Cell Imaging Using Radioluminescence Microscopy Reveals Unexpected Binding Target for [18F]HFB. Mol Imaging Biol 2019; 20:378-387. [PMID: 29143174 DOI: 10.1007/s11307-017-1144-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Cell-based therapies are showing great promise for a variety of diseases, but remain hindered by the limited information available regarding the biological fate, migration routes and differentiation patterns of infused cells in trials. Previous studies have demonstrated the feasibility of using positron emission tomography (PET) to track single cells utilising an approach known as positron emission particle tracking (PEPT). The radiolabel hexadecyl-4-[18F]fluorobenzoate ([18F]HFB) was identified as a promising candidate for PEPT, due to its efficient and long-lasting labelling capabilities. The purpose of this work was to characterise the labelling efficiency of [18F]HFB in vitro at the single-cell level prior to in vivo studies. PROCEDURES The binding efficiency of [18F]HFB to MDA-MB-231 and Jurkat cells was verified in vitro using bulk gamma counting. The measurements were subsequently repeated in single cells using a new method known as radioluminescence microscopy (RLM) and binding of the radiolabel to the single cells was correlated with various fluorescent dyes. RESULTS Similar to previous reports, bulk cell labelling was significantly higher with [18F]HFB (18.75 ± 2.47 dpm/cell, n = 6) than 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) (7.59 ± 0.73 dpm/cell, n = 7; p ≤ 0.01). However, single-cell imaging using RLM revealed that [18F]HFB accumulation in live cells (8.35 ± 1.48 cpm/cell, n = 9) was not significantly higher than background levels (4.83 ± 0.52 cpm/cell, n = 12; p > 0.05) and was 1.7-fold lower than [18F]FDG uptake in the same cell line (14.09 ± 1.90 cpm/cell, n = 13; p < 0.01). Instead, [18F]HFB was found to bind significantly to fragmented membranes associated with dead cell nuclei, suggesting an alternative binding target for [18F]HFB. CONCLUSION This study demonstrates that bulk analysis alone does not always accurately portray the labelling efficiency, therefore highlighting the need for more routine screening of radiolabels using RLM to identify heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Louise Kiru
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bin Shen
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Türkcan S, Kiru L, Naczynski DJ, Sasportas LS, Pratx G. Lactic Acid Accumulation in the Tumor Microenvironment Suppresses 18F-FDG Uptake. Cancer Res 2018; 79:410-419. [PMID: 30510121 DOI: 10.1158/0008-5472.can-17-0492] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/13/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
Abstract
The process by which tumor cells take up 2-[18F]fluoro-2-deoxy-D-glucose (FDG) is heterogeneous and influenced by a multitude of factors. In mouse tumor grafts, the core of the tumor often presents lower FDG uptake than the periphery. Whether this pattern is caused by the intrinsic avidity of individual cells for FDG, the density of viable cells in the tumor, or the perfusion of the radiotracer remains unknown. In this study, we used radioluminescence microscopy to measure FDG uptake in single cells isolated from the core and periphery of the tumor and found that differences in FDG uptake persist on the level of single cells. Single cells from the core of 4T1 and MDA-MB-231 tumors grafts took up 26% to 84% less FDG than those from the periphery. These differences were observed in mice with large tumors (>8 mm diameter) but not in those with smaller tumors. To explain the origin of these differences, we examined the influence of three microenvironmental factors on FDG uptake. Hypoxia was ruled out as a possible explanation because its presence in the core would increase and not decrease FDG uptake. Higher cell proliferation in the periphery was consistent with higher FDG uptake, but there was no evidence of a causal relationship. Finally, lactate was higher in the core of the tumor, and it suppressed FDG uptake in a dose-dependent fashion. We therefore conclude that lactic acidosis-the combination of lactate ion buildup and acidic pH-can increase the heterogeneity of FDG uptake in MDA-MB-231 and 4T1 tumor grafts. SIGNIFICANCE: Analysis of single cells from heterogeneous tumors reveals the role played by the tumor microenvironment, lactic acidosis in particular, on the uptake by tumor cells of 18F-FDG, a PET imaging agent.
Collapse
Affiliation(s)
- Silvan Türkcan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Louise Kiru
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Dominik J Naczynski
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Laura S Sasportas
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
19
|
Wang Q, Sengupta D, Kim TJ, Pratx G. In silico optimization of radioluminescence microscopy. JOURNAL OF BIOPHOTONICS 2018; 11:10.1002/jbio.201700138. [PMID: 28945305 PMCID: PMC5839938 DOI: 10.1002/jbio.201700138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Radioluminescence microscopy (RLM) is a high-resolution method for imaging radionuclide uptake in live cells within a fluorescence microscopy environment. Although RLM currently provides sufficient spatial resolution and sensitivity for cell imaging, it has not been systematically optimized. This study seeks to optimize the parameters of the system by computational simulation using a combination of numerical models for the system's various components: Monte-Carlo simulation for radiation transport, 3D optical point-spread function for the microscope, and stochastic photosensor model for the electron multiplying charge coupled device (EMCCD) camera. The relationship between key parameters and performance metrics relevant to image quality is examined. Results show that Lu2 O3 :Eu yields the best performance among 5 different scintillator materials, and a thickness: 8 μm can best balance spatial resolution and sensitivity. For this configuration, a spatial resolution of ~20 μm and sensitivity of 40% can be achieved for all 3 magnifications investigated, provided that the user adjusts pixel binning and electron multiplying (EM) gain accordingly. Hence the primary consideration for selecting the magnification should be the desired field of view and magnification for concurrent optical microscopy studies. In conclusion, this study estimates the optimal imaging performance achievable with RLM and promotes further development for more robust imaging of cellular processes using radiotracers.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiation Oncology, Stanford University, California
94305, United States
| | - Debanti Sengupta
- Department of Radiation Oncology, Stanford University, California
94305, United States
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University, California
94305, United States
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, California
94305, United States
| |
Collapse
|
20
|
Yamamoto S, Kamada K, Yoshikawa A. Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. Sci Rep 2018; 8:3194. [PMID: 29453459 PMCID: PMC5816672 DOI: 10.1038/s41598-018-21500-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 11/09/2022] Open
Abstract
High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO3:Ce (GAP) /α-Al2O3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.
Collapse
Affiliation(s)
- Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kei Kamada
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
| | - Akira Yoshikawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
| |
Collapse
|
21
|
Gallina ME, Kim TJ, Shelor M, Vasquez J, Mongersun A, Kim M, Tang SKY, Abbyad P, Pratx G. Toward a Droplet-Based Single-Cell Radiometric Assay. Anal Chem 2017; 89:6472-6481. [PMID: 28562033 PMCID: PMC5480233 DOI: 10.1021/acs.analchem.7b00414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Radiotracers are
widely used to track molecular processes, both in vitro and in vivo, with high sensitivity
and specificity. However, most radionuclide detection methods have
spatial resolution inadequate for single-cell analysis. A few existing
methods can extract single-cell information from radioactive decays,
but the stochastic nature of the process precludes high-throughput
measurement (and sorting) of single cells. In this work, we introduce
a new concept for translating radioactive decays occurring stochastically
within radiolabeled single-cells into an integrated, long-lasting
fluorescence signal. Single cells are encapsulated in radiofluorogenic
droplets containing molecular probes sensitive to byproducts of ionizing
radiation (primarily reactive oxygen species, or ROS). Different probes
were examined in bulk solutions, and dihydrorhodamine 123 (DHRh 123)
was selected as the lead candidate due to its sensitivity and reproducibility.
Fluorescence intensity of DHRh 123 in bulk increased at a rate of
54% per Gy of X-ray radiation and 15% per MBq/ml of 2-deoxy-2-[18F]-fluoro-d-glucose ([18F]FDG). Fluorescence
imaging of microfluidic droplets showed the same linear response,
but droplets were less sensitive overall than the bulk ROS sensor
(detection limit of 3 Gy per droplet). Finally, droplets encapsulating
radiolabeled cancer cells allowed, for the first time, the detection
of [18F]FDG radiotracer uptake in single cells through
fluorescence activation. With further improvements, we expect this
technology to enable quantitative measurement and selective sorting
of single cells based on the uptake of radiolabeled small molecules.
Collapse
Affiliation(s)
- Maria Elena Gallina
- Division of Medical Physics, Department of Radiation Oncology, Stanford University , 300 Pasteur Drive, Palo Alto, California 94305, United States
| | - Tae Jin Kim
- Division of Medical Physics, Department of Radiation Oncology, Stanford University , 300 Pasteur Drive, Palo Alto, California 94305, United States
| | - Mark Shelor
- University of California-Merced , Department of Bioengineering, 5200 North Lake Road, Merced, California 95343, United States
| | - Jaime Vasquez
- University of California-San Francisco , School of Pharmacy, 600 16th Street, San Francisco, California, 94158, United States
| | - Amy Mongersun
- Department of Chemistry and Biochemistry, Santa Clara University , Daly Science 123500 El Camino Real, Santa Clara, California 95053, United States
| | - Minkyu Kim
- Department of Mechanical Engineering, Stanford University , 418 Panama Mall, Stanford, California 94305, United States
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University , 418 Panama Mall, Stanford, California 94305, United States
| | - Paul Abbyad
- Department of Chemistry and Biochemistry, Santa Clara University , Daly Science 123500 El Camino Real, Santa Clara, California 95053, United States
| | - Guillem Pratx
- Division of Medical Physics, Department of Radiation Oncology, Stanford University , 300 Pasteur Drive, Palo Alto, California 94305, United States
| |
Collapse
|
22
|
Kim TJ, Türkcan S, Pratx G. Modular low-light microscope for imaging cellular bioluminescence and radioluminescence. Nat Protoc 2017; 12:1055-1076. [PMID: 28426025 DOI: 10.1038/nprot.2017.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Low-light microscopy methods are receiving increased attention as new applications have emerged. One such application is to allow longitudinal imaging of light-sensitive cells with no phototoxicity and no photobleaching of fluorescent biomarkers. Another application is for imaging signals that are inherently dim and undetectable using standard microscopy techniques, such as bioluminescence, chemiluminescence or radioluminescence. In this protocol, we provide instructions on how to build a modular low-light microscope (1-4 d) by coupling two microscope objective lenses, back to back from each other, using standard optomechanical components. We also provide directions on how to image dim signals such as those of radioluminescence (1-1.5 h), bioluminescence (∼30 min) and low-excitation fluorescence (∼15 min). In particular, radioluminescence microscopy is explained in detail, as it is a newly developed technique that enables the study of small-molecule transport (e.g., radiolabeled drugs, metabolic precursors and nuclear medicine contrast agents) by single cells without perturbing endogenous biochemical processes. In this imaging technique, a scintillator crystal (e.g., CdWO4) is placed in close proximity to the radiolabeled cells, where it converts the radioactive decays into optical flashes detectable using a sensitive camera. Using the image reconstruction toolkit provided in this protocol, the flashes can be reconstructed to yield high-resolution images of the radiotracer distribution. With appropriate timing, the three aforementioned imaging modalities may be performed together on a population of live cells, allowing the user to perform parallel functional studies of cell heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Silvan Türkcan
- Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
23
|
Wang Q, Sengupta D, Kim TJ, Pratx G. Performance evaluation of 18 F radioluminescence microscopy using computational simulation. Med Phys 2017; 44:1782-1795. [PMID: 28273348 DOI: 10.1002/mp.12198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Radioluminescence microscopy can visualize the distribution of beta-emitting radiotracers in live single cells with high resolution. Here, we perform a computational simulation of 18 F positron imaging using this modality to better understand how radioluminescence signals are formed and to assist in optimizing the experimental setup and image processing. METHODS First, the transport of charged particles through the cell and scintillator and the resulting scintillation is modeled using the GEANT4 Monte-Carlo simulation. Then, the propagation of the scintillation light through the microscope is modeled by a convolution with a depth-dependent point-spread function, which models the microscope response. Finally, the physical measurement of the scintillation light using an electron-multiplying charge-coupled device (EMCCD) camera is modeled using a stochastic numerical photosensor model, which accounts for various sources of noise. The simulated output of the EMCCD camera is further processed using our ORBIT image reconstruction methodology to evaluate the endpoint images. RESULTS The EMCCD camera model was validated against experimentally acquired images and the simulated noise, as measured by the standard deviation of a blank image, was found to be accurate within 2% of the actual detection. Furthermore, point source simulations found that a reconstructed spatial resolution of 18.5 μm can be achieved near the scintillator. As the source is moved away from the scintillator, spatial resolution degrades at a rate of 3.5 μm per μm distance. These results agree well with the experimentally measured spatial resolution of 30-40 μm (live cells). The simulation also shows that the system sensitivity is 26.5%, which is also consistent with our previous experiments. Finally, an image of a simulated sparse set of single cells is visually similar to the measured cell image. CONCLUSIONS Our simulation methodology agrees with experimental measurements taken with radioluminescence microscopy. This in silico approach can be used to guide further instrumentation developments and to provide a framework for improving image reconstruction.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94304, USA
| | - Debanti Sengupta
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94304, USA
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94304, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94304, USA
| |
Collapse
|
24
|
King MT, Jenkins CH, Sun C, Carpenter CM, Ma X, Cheng K, Le QT, Sunwoo JB, Cheng Z, Pratx G, Xing L. Flexible radioluminescence imaging for FDG-guided surgery. Med Phys 2017; 43:5298. [PMID: 27782732 DOI: 10.1118/1.4961745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Flexible radioluminescence imaging (Flex-RLI) is an optical method for imaging 18F-fluorodeoxyglucose (FDG)-avid tumors. The authors hypothesize that a gadolinium oxysulfide: terbium (GOS:Tb) flexible scintillator, which loosely conforms to the body contour, can enhance tumor signal-to-background ratio (SBR) compared with RLI, which utilizes a flat scintillator. The purpose of this paper is to characterize flex-RLI with respect to alternative modalities including RLI, beta-RLI (RLI with gamma rejection), and Cerenkov luminescence imaging (CLI). METHODS The photon sensitivity, spatial resolution, and signal linearity of flex-RLI were characterized with in vitro phantoms. In vivo experiments utilizing 13 nude mice inoculated with the head and neck (UMSCC1-Luc) cell line were then conducted in accordance with the institutional Administrative Panel on Laboratory Animal Care. After intravenous injection of 18F-FDG, the tumor SBR values for flex-RLI were compared to those for RLI, beta-RLI, and CLI using the Wilcoxon signed rank test. RESULTS With respect to photon sensitivity, RLI, beta-RLI, and flex-RLI produced 1216.2, 407.0, and 98.6 times more radiance per second than CLI. Respective full-width half maximum values across a 0.5 mm capillary tube were 6.9, 6.4, 2.2, and 1.5 mm, respectively. Flex-RLI demonstrated a near perfect correlation with 18F activity (r = 0.99). Signal uniformity for flex-RLI improved after more aggressive homogenization of the GOS powder with the silicone elastomer during formulation. In vivo, the SBR value for flex-RLI (median 1.29; interquartile range 1.18-1.36) was statistically greater than that for RLI (1.08; 1.02-1.14; p < 0.01) by 26%. However, there was no statistically significant difference in SBR values between flex-RLI and beta-RLI (p = 0.92). Furthermore, there was no statistically significant difference in SBR values between flex-RLI and CLI (p = 0.11) in a more limited dataset. CONCLUSIONS Flex-RLI provides high quality images with SBRs comparable to those from CLI and beta-RLI in a single 10 s acquisition.
Collapse
Affiliation(s)
- Martin T King
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Cesare H Jenkins
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Conroy Sun
- College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | | | - Xiaowei Ma
- Department of Radiology, Stanford University, Stanford, California 94305 and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai Cheng
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - John B Sunwoo
- Department of Otolaryngology, Stanford University, Stanford, California 94305
| | - Zhen Cheng
- Department of Radiology, Stanford University, Stanford, California 94305
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| |
Collapse
|
25
|
Shaffer TM, Drain CM, Grimm J. Optical Imaging of Ionizing Radiation from Clinical Sources. J Nucl Med 2016; 57:1661-1666. [PMID: 27688469 DOI: 10.2967/jnumed.116.178624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022] Open
Abstract
Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed.
Collapse
Affiliation(s)
- Travis M Shaffer
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Chemistry, Hunter College of City University of New York, New York, New York.,Department of Chemistry, Graduate Center of City University of New York, New York, New York
| | - Charles Michael Drain
- Department of Chemistry, Hunter College of City University of New York, New York, New York.,Department of Chemistry, Graduate Center of City University of New York, New York, New York
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill Cornell Medical College, New York, New York; and.,Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
26
|
Endoscopic detection of cancer with lensless radioluminescence imaging and machine vision. Sci Rep 2016; 6:30737. [PMID: 27477912 PMCID: PMC4967900 DOI: 10.1038/srep30737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
Complete removal of residual tumor tissue during surgical resection improves patient outcomes. However, it is often difficult for surgeons to delineate the tumor beyond its visible boundary. This has led to the development of intraoperative detectors that can image radiotracers accumulated within tumors, thus facilitating the removal of residual tumor tissue during surgical procedures. We introduce a beta imaging system that converts the beta radiation from the radiotracer into photons close to the decay origin through a CdWO4 scintillator and does not use any optical elements. The signal is relayed onto an EMCCD chip through a wound imaging fiber. The sensitivity of the device allows imaging of activity down to 100 nCi and the system has a resolution of at least 500 μm with a field of view of 4.80 × 6.51 mm. Advances in handheld beta cameras have focused on hardware improvements, but we apply machine vision to the recorded images to extract more information. We automatically classify sample regions in human renal cancer tissue ex-vivo into tumor or benign tissue based on image features. Machine vision boosts the ability of our system to distinguish tumor from healthy tissue by a factor of 9 ± 3 and can be applied to other beta imaging probes.
Collapse
|
27
|
Liu Z, Jian Z, Wang Q, Cheng T, Feuerecker B, Schwaiger M, Huang SC, Ziegler SI, Shi K. A Continuously Infused Microfluidic Radioassay System for the Characterization of Cellular Pharmacokinetics. J Nucl Med 2016; 57:1548-1555. [PMID: 27363838 DOI: 10.2967/jnumed.115.169151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Measurement of cellular tracer uptake is widely applied to learn the physiologic status of cells and their interactions with imaging agents and pharmaceuticals. In-culture measurements have the advantage of less stress to cells. However, the tracer solution still needs to be loaded, unloaded, and purged from the cell culture during the measurements. Here, we propose a continuously infused microfluidic radioassay (CIMR) system for continuous in-culture measurement of cellular uptake. The system was tested to investigate the influence of the glucose concentration in cell culture media on 18F-FDG uptake kinetics. METHODS The CIMR system consists of a microfluidic chip integrated with a flow-control unit and a positron camera. Medium diluted with radioactive tracer flows through a cell chamber continuously at low speed. Positrons emitted from the cells and from tracer in the medium are measured with the positron camera. The human cell lines SkBr3 and Capan-1 were incubated with media of 3 different glucose concentrations and then measured with 18F-FDG on the CIMR system. In addition, a conventional uptake experiment was performed. The relative uptake ratios between different medium conditions were compared. A cellular 2-compartment model was applied to estimate the cellular pharmacokinetics on CIMR data. The estimated pharmacokinetic parameters were compared with expressions of glucose transporter-1 (GLUT1) and hexokinase-2 measured by quantitative real-time polymerase chain reaction. RESULTS The relative uptake ratios obtained from CIMR measurements correlated significantly with those from the conventional uptake experiments. The relative SDs of the relative uptake ratios obtained from the CIMR uptake experiments were significantly lower than those from the conventional uptake experiments. The fit of the cellular 2-compartment model to the 18F-FDG CIMR measurements was of high quality. For SkBr3, the estimated pharmacokinetic parameters k1 and k3 were consistent with the messenger RNA expression of GLUT1 and hexokinase-2: culturing with low glucose concentrations led to higher GLUT1 and hexokinase-2 expression as well as higher estimated k1 and k3 For Capan-1, the estimated k1 and k3 increased as the glucose concentration in the culture medium decreased, and this finding did not match the corresponding messenger RNA expression. CONCLUSION The CIMR system captures dynamic uptake within the cell culture and enables estimation of the cellular pharmacokinetics.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Ziying Jian
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Qian Wang
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Tao Cheng
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Benedikt Feuerecker
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Markus Schwaiger
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Sung-Cheng Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| | - Kuangyu Shi
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany; and
| |
Collapse
|
28
|
Sengupta D, Pratx G. Single-Cell Characterization of 18F-FLT Uptake with Radioluminescence Microscopy. J Nucl Med 2016; 57:1136-40. [PMID: 27081170 DOI: 10.2967/jnumed.115.167734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/11/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The radiotracer 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is commonly used to measure cell proliferation in vivo. As a marker of cell proliferation, (18)F-FLT is expected to be differentially taken up by arrested and actively dividing cells, but PET measures only aggregate uptake by tumor cells and therefore the single-cell distribution of (18)F-FLT is unknown. We used a novel in vitro radioluminescence microscopy technique to measure the differential distribution of (18)F-FLT radiotracer with single-cell precision. METHODS Using radioluminescence microscopy, we imaged the absolute uptake of (18)F-FLT in live MDA-MB-231 cells grown under different serum conditions. We then compared (18)F-FLT uptake with a standard measure of cell proliferation, using fluorescence microscopy of 5-ethynyl-2'-deoxyuridine incorporation in fixed cells. RESULTS According to 5-ethynyl-2'-deoxyuridine staining, few cells (1%) actively cycled under serum deprivation whereas most of them (71%) did under 20% serum. The distribution of (18)F-FLT reflected this dynamic. At 0% serum, uptake of (18)F-FLT was heterogeneous but relatively low. At 20% serum, a subpopulation of (18)F-FLT-avid cells, representing 61% of the total population, emerged. Uptake of (18)F-FLT in this population was 5-fold higher than in the remainder of the cells. Such a dichotomous distribution is not typically observed with other radiotracers, such as (18)F-FDG. CONCLUSION These results suggest that increased (18)F-FLT uptake by proliferating cells is due to a greater fraction of (18)F-FLT-avid cells rather than a change in (18)F-FLT uptake by individual cells. This finding is consistent with the fact that (18)F-FLT uptake is mediated by thymidine kinase 1 expression, which is higher in actively dividing cells. Overall, these findings suggest that, within the same patient, changes in (18)F-FLT uptake reflect changes in the number of actively dividing cells, provided other parameters remain the same.
Collapse
Affiliation(s)
- Debanti Sengupta
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
29
|
Sengupta D, Pratx G. Imaging metabolic heterogeneity in cancer. Mol Cancer 2016; 15:4. [PMID: 26739333 PMCID: PMC4704434 DOI: 10.1186/s12943-015-0481-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023] Open
Abstract
As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.
Collapse
Affiliation(s)
- Debanti Sengupta
- Stanford University School of Medicine, A226 Building A, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Guillem Pratx
- Stanford University School of Medicine, A226 Building A, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
30
|
Abstract
![]()
The
resistance of a tumor to a drug is the result of bulk properties
of the tumor tissue as well as phenotypic variations displayed by
single cells. Here, we show that radioisotopic detection methods,
commonly used for tracking the tissue distribution of drug compounds,
can be extended to the single-cell level to image the same molecule
over a range of physical scales. The anticancer drug rituximab was
labeled with short-lived radionuclides (89Zr/64Cu) and its accumulation at the organ level was imaged using PET
in a humanized transgenic mouse model of non-Hodgkin’s lymphoma.
To capture the distribution of the drug at a finer scale, tissue sections
and single living cells were imaged using radioluminescence microscopy
(RLM), a novel method that can detect radionuclides with single-cell
resolution. In vivo PET images (24 h postinjection) showed that [89Zr]rituximab targeted the intended site of human CD20 expression,
the spleen. Within this organ, RLM was used to resolve radiotracer
accumulation in the splenic red pulp. In a separate study, RLM highlighted
marked differences between single cells, with binding of the radiolabeled
antibody ranging from background levels to 1200 radionuclides per
cell. Overall, RLM images demonstrated significantly higher spatial
resolution and sensitivity than conventional storage-phosphor autoradiography.
In conclusion, this combination of PET and RLM provides a unique opportunity
for exploring the molecular mechanism of drugs by tracking the same
molecule over multiple physical scales, ranging from single living
cells to organs substructures and entire living subjects.
Collapse
Affiliation(s)
- Arutselvan Natarajan
- Department of Radiology, Stanford University School of Medicine , 318 Campus Drive, Stanford, California 94305-5427, United States
| | - Silvan Türkcan
- Department of Radiation Oncology, Stanford University School of Medicine 1050 Arastradero Rd, Palo Alto, California 94304-5591, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine , 318 Campus Drive, Stanford, California 94305-5427, United States
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University School of Medicine 1050 Arastradero Rd, Palo Alto, California 94304-5591, United States
| |
Collapse
|
31
|
Kim TJ, Tuerkcan S, Ceballos A, Pratx G. Modular platform for low-light microscopy. BIOMEDICAL OPTICS EXPRESS 2015; 6:4585-4598. [PMID: 26601020 PMCID: PMC4646564 DOI: 10.1364/boe.6.004585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/11/2015] [Accepted: 10/19/2015] [Indexed: 06/01/2023]
Abstract
Cell imaging using low-light techniques such as bioluminescence, radioluminescence, and low-excitation fluorescence has received increased attention, particularly due to broad commercialization of highly sensitive detectors. However, the dim signals are still regarded as difficult to image using conventional microscopes, where the only low-light microscope in the market is primarily optimized for bioluminescence imaging. Here, we developed a novel modular microscope that is cost-effective and suitable for imaging different low-light luminescence modes. Results show that this microscope system features excellent aberration correction capabilities and enhanced image resolution, where bioluminescence, radioluminescence and epifluorescence images were captured and compared with the commercial bioluminescence microscope.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Radiation Oncology (Medical Physics), Stanford University, 1050 Arastradero Rd., Palo Alto, CA, 94304, USA
| | - Silvan Tuerkcan
- Department of Radiation Oncology (Medical Physics), Stanford University, 1050 Arastradero Rd., Palo Alto, CA, 94304, USA
| | - Andrew Ceballos
- Department of Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA, 94305, USA
| | - Guillem Pratx
- Department of Radiation Oncology (Medical Physics), Stanford University, 1050 Arastradero Rd., Palo Alto, CA, 94304, USA
| |
Collapse
|
32
|
Sengupta D, Miller S, Marton Z, Chin F, Nagarkar V, Pratx G. Bright Lu 2 O 3 :Eu Thin-Film Scintillators for High-Resolution Radioluminescence Microscopy. Adv Healthc Mater 2015; 4:2064-2070. [PMID: 26183115 DOI: 10.1002/adhm.201500372] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/19/2015] [Indexed: 11/10/2022]
Abstract
The performance of a new thin-film Lu2 O3 :Eu scintillator for single-cell radionuclide imaging is investigated. Imaging the metabolic properties of heterogeneous cell populations in real time is an important challenge with clinical implications. An innovative technique called radioluminescence microscopy has been developed to quantitatively and sensitively measure radionuclide uptake in single cells. The most important component of this technique is the scintillator, which converts the energy released during radioactive decay into luminescent signals. The sensitivity and spatial resolution of the imaging system depend critically on the characteristics of the scintillator, that is, the material used and its geometrical configuration. Scintillators fabricated using conventional methods are relatively thick and therefore do not provide optimal spatial resolution. A thin-film Lu2 O3 :Eu scintillator is compared to a conventional 500 μm thick CdWO4 scintillator for radioluminescence imaging. Despite its thinness, the unique scintillation properties of the Lu2 O3 :Eu scintillator allow us to capture single-positron decays with fourfold higher sensitivity, which is a significant achievement. The thin-film Lu2 O3 :Eu scintillators also yield radioluminescence images where individual cells appear smaller and better resolved on average than with the CdWO4 scintillators. Coupled with the thin-film scintillator technology, radioluminescence microscopy can yield valuable and clinically relevant data on the metabolism of single cells.
Collapse
Affiliation(s)
- Debanti Sengupta
- Stanford University School of Medicine; Building A, 1050 Arastradero Road Palo Alto CA 94304 USA
| | | | - Zsolt Marton
- RMD, Inc.; 44 Hunt Street Watertown MA 02472 USA
| | - Frederick Chin
- Department of Radiology; Stanford University Medical Center; Stanford CA 94305 USA
| | | | - Guillem Pratx
- Stanford University School of Medicine; Building A, 1050 Arastradero Road Palo Alto CA 94304 USA
| |
Collapse
|
33
|
Goda K, Hatta‐Ohashi Y, Akiyoshi R, Sugiyama T, Sakai I, Takahashi T, Suzuki H. Combining fluorescence and bioluminescence microscopy. Microsc Res Tech 2015; 78:715-22. [PMID: 26096873 PMCID: PMC4745033 DOI: 10.1002/jemt.22529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/09/2015] [Indexed: 11/08/2022]
Abstract
Bioluminescence microscopy has revealed that gene expression in individual cells can respond differently to the same stimulus. To understand this phenomenon, it is important to sequentially observe the series of events from cellular signal transduction to gene expression regulated by specific transcription factors derived from signaling cascades in individual cells. However, these processes have been separately analyzed with fluorescence and bioluminescence microscopy. Furthermore, in culture medium, the background fluorescence of luciferin-a substrate of luciferase in promoter assays of gene expression in cultured cells-confounds the simultaneous observation of fluorescence and bioluminescence. Therefore, we optimized conditions for optical filter sets based on spectral properties and the luciferin concentration based on cell permeability for fluorescence observation combined with bioluminescence microscopy. An excitation and emission filter set (492-506 nm and 524-578 nm) was suitable for green fluorescent protein and yellow fluorescent protein imaging of cells, and >100 μM luciferin was acceptable in culture medium based on kinetic constants and the estimated intracellular concentration. Using these parameters, we present an example of sequential fluorescence and bioluminescence microscopic observation of signal transduction (translocation of protein kinase C alpha from the cytoplasm to the plasma membrane) coupled with activation of gene expression by nuclear factor of kappa light polypeptide B in individual cells and show that the gene expression response is not completely concordant with upstream signaling following stimulation with phorbol-12-myristate-13-acetate. Our technique is a powerful imaging tool for analysis of heterogeneous gene expression together with upstream signaling in live single cells.
Collapse
Affiliation(s)
- Kazuhito Goda
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Yoko Hatta‐Ohashi
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Ryutaro Akiyoshi
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Takashi Sugiyama
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Ikuko Sakai
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Takeo Takahashi
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| | - Hirobumi Suzuki
- Corporate Research and Development Center, Olympus CorporationHachiojiTokyo192‐8512Japan
| |
Collapse
|
34
|
Wang Q, Liu Z, Ziegler SI, Shi K. Enhancing spatial resolution of18F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine. Phys Med Biol 2015; 60:5261-78. [DOI: 10.1088/0031-9155/60/13/5261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Türkcan S, Nguyen J, Vilalta M, Shen B, Chin FT, Pratx G, Abbyad P. Single-Cell Analysis of [18F]Fluorodeoxyglucose Uptake by Droplet Radiofluidics. Anal Chem 2015; 87:6667-73. [PMID: 26035453 DOI: 10.1021/acs.analchem.5b00792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiolabels can be used to detect small biomolecules with high sensitivity and specificity without interfering with the biochemical activity of the labeled molecule. For instance, the radiolabeled glucose analogue, [18F]fluorodeoxyglucose (FDG), is routinely used in positron emission tomography (PET) scans for cancer diagnosis, staging, and monitoring. However, despite their widespread usage, conventional radionuclide techniques are unable to measure the variability and modulation of FDG uptake in single cells. We present here a novel microfluidic technique, dubbed droplet radiofluidics, that can measure radiotracer uptake for single cells encapsulated into an array of microdroplets. The advantages of this approach are multiple. First, droplets can be quickly and easily positioned in a predetermined pattern for optimal imaging throughput. Second, droplet encapsulation reduces cell efflux as a confounding factor, because any effluxed radionuclide is trapped in the droplet. Last, multiplexed measurements can be performed using fluorescent labels. In this new approach, intracellular radiotracers are imaged on a conventional fluorescence microscope by capturing individual flashes of visible light that are produced as individual positrons, emitted during radioactive decay, traverse a scintillator plate placed below the cells. This method is used to measure the cell-to-cell heterogeneity in the uptake of tracers such as FDG in cell lines and cultured primary cells. The capacity of the platform to perform multiplexed measurements was demonstrated by measuring differential FDG uptake in single cells subjected to different incubation conditions and expressing different types of glucose transporters. This method opens many new avenues of research in basic cell biology and human disease by capturing the full range of stochastic variations in highly heterogeneous cell populations in a repeatable and high-throughput manner.
Collapse
Affiliation(s)
- Silvan Türkcan
- †Division of Medical Physics, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Julia Nguyen
- ‡Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Marta Vilalta
- §Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Bin Shen
- ∥Department of Radiology, Stanford University Medical Center, Stanford, California 94305, United States
| | - Frederick T Chin
- ∥Department of Radiology, Stanford University Medical Center, Stanford, California 94305, United States
| | - Guillem Pratx
- †Division of Medical Physics, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Paul Abbyad
- ‡Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| |
Collapse
|
36
|
Lee KS, Kim TJ, Pratx G. Single-cell tracking with PET using a novel trajectory reconstruction algorithm. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:994-1003. [PMID: 25423651 PMCID: PMC4392854 DOI: 10.1109/tmi.2014.2373351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Virtually all biomedical applications of positron emission tomography (PET) use images to represent the distribution of a radiotracer. However, PET is increasingly used in cell tracking applications, for which the "imaging" paradigm may not be optimal. Here, we investigate an alternative approach, which consists in reconstructing the time-varying position of individual radiolabeled cells directly from PET measurements. As a proof of concept, we formulate a new algorithm for reconstructing the trajectory of one single moving cell directly from list-mode PET data. We model the trajectory as a 3-D B-spline function of the temporal variable and use nonlinear optimization to minimize the mean-square distance between the trajectory and the recorded list-mode coincidence events. Using Monte Carlo simulations (GATE), we show that this new algorithm can track a single source moving within a small-animal PET system with 3 mm accuracy provided that the activity of the cell [Bq] is greater than four times its velocity [mm/s]. The algorithm outperforms conventional ML-EM as well as the "minimum distance" method used for positron emission particle tracking (PEPT). The new method was also successfully validated using experimentally acquired PET data. In conclusion, we demonstrated the feasibility of a new method for tracking a single moving cell directly from PET list-mode data, at the whole-body level, for physiologically relevant activities and velocities.
Collapse
Affiliation(s)
- Keum Sil Lee
- Department of Radiology, Stanford University, CA 94305 USA
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University, CA 94305 USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, CA 94305 USA
| |
Collapse
|
37
|
Komarov S, Zhou D, Liu Y, Tai YC. Cherenkov luminescence imaging in transparent media and the imaging of thin or shallow sources. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:036011. [PMID: 25789422 PMCID: PMC4365802 DOI: 10.1117/1.jbo.20.3.036011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
In this work, we demonstrated the possibility of high spatial resolution Cherenkov luminescence imaging (CLI) for objects in transparent media. We also demonstrated the possibility of the CLI of thin opaque objects using optical transducers. Results demonstrate that submillimeter resolution CLI is achievable for beta-emitting radionuclides, including ⁷⁶Br that emits positrons of very high energy. The imaging of beta-emitters through scintillation detectors exhibits lower resolution when compared to CLI of the same sources. The application of optical transducers for the CLI was demonstrated using plants labeled with ¹¹CO₂ and phantoms containing beta-emitters.
Collapse
Affiliation(s)
- Sergey Komarov
- Washington University in St. Louis, Department of Radiology, 510 S. Kingshighway Boulevard, Campus Box 8225, St. Louis, Missouri 63110, United States
| | - Dong Zhou
- Washington University in St. Louis, Department of Radiology, 510 S. Kingshighway Boulevard, Campus Box 8225, St. Louis, Missouri 63110, United States
| | - Yongjian Liu
- Washington University in St. Louis, Department of Radiology, 510 S. Kingshighway Boulevard, Campus Box 8225, St. Louis, Missouri 63110, United States
| | - Yuan-Chuan Tai
- Washington University in St. Louis, Department of Radiology, 510 S. Kingshighway Boulevard, Campus Box 8225, St. Louis, Missouri 63110, United States
| |
Collapse
|