1
|
Peng Y, Liu H, Miao M, Cheng X, Chen S, Yan K, Mu J, Cheng H, Liu G. Micro-Nano Convergence-Driven Radiotheranostic Revolution in Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29047-29081. [PMID: 40347149 DOI: 10.1021/acsami.5c05525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Radiotherapy, as an important means of treating hepatocellular carcinoma (HCC), has shown unique therapeutic advantages, especially in patients who are unable to undergo surgery or transplantation. It mainly includes external radiotherapy, transarterial radioembolization and intratumoral radioactive particle implantation. However, under the influence of factors such as the hypoxic characteristics of the liver tumor microenvironment and the radioresistance of tumor cells, the effect of radiotherapy may be unstable and may cause side effects, affecting the quality of life of patients. In recent years, with the development of nanotechnology, drug delivery systems based on micro-nanomaterials have provided new solutions for improving the effect of radiotherapy for HCC. Despite this, the application of micro-nano drug delivery systems in the treatment of HCC still faces some challenges, mainly including the in vivo safety and in vivo metabolism of micro-nano materials. This article reviews the latest progress of micro-nano materials in the treatment of HCC, especially their application in radiosensitization and their clinical translation potential. This article systematically analyzes the role of micro-nanomaterials in external or internal radiotherapy sensitization and radioimmunotherapy and explores the advantages of micro-nanomaterials in improving the treatment effect of HCC.
Collapse
Affiliation(s)
- Yisheng Peng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hui Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Mengmeng Miao
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xu Cheng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shangqing Chen
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kaifei Yan
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau SAR 999078, China
| | - Gang Liu
- State Key Laboratory of Vaccine for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
2
|
Yu G, Ye Z, Yuan Y, Wang X, Li T, Wang Y, Wang Y, Yan J. Recent Advancements in Biomaterials for Chimeric Antigen Receptor T Cell Immunotherapy. Biomater Res 2024; 28:0045. [PMID: 39011521 PMCID: PMC11246982 DOI: 10.34133/bmr.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cellular immunotherapy is an innovative cancer treatment method that utilizes the patient's own immune system to combat tumor cells effectively. Currently, the mainstream therapeutic approaches include chimeric antigen receptor T cell (CAR-T) therapy, T cell receptor gene-modified T cell therapy and chimeric antigen receptor natural killer-cell therapy with CAR-T therapy mostly advanced. Nonetheless, the conventional manufacturing process of this therapy has shortcomings in each step that call for improvement. Marked efforts have been invested for its enhancement while notable progresses achieved in the realm of biomaterials application. With CAR-T therapy as a prime example, the aim of this review is to comprehensively discuss the various biomaterials used in cell immunotherapy, their roles in regulating immune cells, and their potential for breakthroughs in cancer treatment from gene transduction to efficacy enhancement. This article additionally addressed widely adopted animal models for efficacy evaluating.
Collapse
Affiliation(s)
- Gaoyu Yu
- School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital,
Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Yi Wang
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
3
|
Kiaheyrati N, Babaei A, Ranji R, Bahadoran E, Taheri S, Farokhpour Z. Cancer therapy with the viral and bacterial pathogens: The past enemies can be considered the present allies. Life Sci 2024; 349:122734. [PMID: 38788973 DOI: 10.1016/j.lfs.2024.122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Cancer continues to be one of the leading causes of mortality worldwide despite significant advancements in cancer treatment. Many difficulties have arisen as a result of the detrimental consequences of chemotherapy and radiotherapy as a common cancer therapy, such as drug inability to penetrate deep tumor tissue, and also the drug resistance in tumor cells continues to be a major concern. These obstacles have increased the need for the development of new techniques that are more selective and effective against cancer cells. Bacterial-based therapies and the use of oncolytic viruses can suppress cancer in comparison to other cancer medications. The tumor microenvironment is susceptible to bacterial accumulation and proliferation, which can trigger immune responses against the tumor. Oncolytic viruses (OVs) have also gained considerable attention in recent years because of their potential capability to selectively target and induce apoptosis in cancer cells. This review aims to provide a comprehensive summary of the latest literature on the role of bacteria and viruses in cancer treatment, discusses the limitations and challenges, outlines various strategies, summarizes recent preclinical and clinical trials, and emphasizes the importance of optimizing current strategies for better clinical outcomes.
Collapse
Affiliation(s)
- Niloofar Kiaheyrati
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
| | - Reza Ranji
- Department of Genetics, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Farokhpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
4
|
Hirulkar R, Chaurawal N, Alhodieb FS, Barkat H, Preet S, Raza K. Nanotheranostics: Clinical Status, Toxicity, Regulatory Consideration, and Future Prospects. NANOTHERANOSTICS FOR DIAGNOSIS AND THERAPY 2024:249-285. [DOI: 10.1007/978-981-97-3115-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Ottolino-Perry K, Mealiea D, Sellers C, Acuna SA, Angarita FA, Okamoto L, Scollard D, Ginj M, Reilly R, McCart JA. Vaccinia virus and peptide-receptor radiotherapy synergize to improve treatment of peritoneal carcinomatosis. Mol Ther Oncolytics 2023; 29:44-58. [PMID: 37180034 PMCID: PMC10173076 DOI: 10.1016/j.omto.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Tumor-specific overexpression of receptors enables a variety of targeted cancer therapies, exemplified by peptide-receptor radiotherapy (PRRT) for somatostatin receptor (SSTR)-positive neuroendocrine tumors. While effective, PRRT is restricted to tumors with SSTR overexpression. To overcome this limitation, we propose using oncolytic vaccinia virus (vvDD)-mediated receptor gene transfer to permit molecular imaging and PRRT in tumors without endogenous SSTR overexpression, a strategy termed radiovirotherapy. We hypothesized that vvDD-SSTR combined with a radiolabeled somatostatin analog could be deployed as radiovirotherapy in a colorectal cancer peritoneal carcinomatosis model, producing tumor-specific radiopeptide accumulation. Following vvDD-SSTR and 177Lu-DOTATOC treatment, viral replication and cytotoxicity, as well as biodistribution, tumor uptake, and survival, were evaluated. Radiovirotherapy did not alter virus replication or biodistribution, but synergistically improved vvDD-SSTR-induced cell killing in a receptor-dependent manner and significantly increased the tumor-specific accumulation and tumor-to-blood ratio of 177Lu-DOTATOC, making tumors imageable by microSPECT/CT and causing no significant toxicity. 177Lu-DOTATOC significantly improved survival over virus alone when combined with vvDD-SSTR but not control virus. We have therefore demonstrated that vvDD-SSTR can convert receptor-negative tumors into receptor-positive tumors and facilitate molecular imaging and PRRT using radiolabeled somatostatin analogs. Radiovirotherapy represents a promising treatment strategy with potential applications in a wide range of cancers.
Collapse
Affiliation(s)
- Kathryn Ottolino-Perry
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - David Mealiea
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Clara Sellers
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
| | - Sergio A. Acuna
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
| | - Fernando A. Angarita
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Lili Okamoto
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Deborah Scollard
- STTARR, Radiation Medicine Program, Princess Margaret Hospital, UHN, 610 University Avenue, M5G 2C1 Toronto, ON, Canada
| | - Mihaela Ginj
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
| | - Raymond Reilly
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, M5S 3M2 Toronto, ON, Canada
| | - J. Andrea McCart
- Toronto General Research Institute, University Health Network, 200 Elizabeth Street, M5G 2C4 Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, M5S 1A8 Toronto, ON, Canada
- Department of Surgery, Mount Sinai Hospital and University of Toronto, 600 University Avenue, M5G 1X5 Toronto, ON, Canada
- Corresponding author: Dave Mealiea, Room 1225, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
6
|
Li X, Sun X, Wang B, Li Y, Tong J. Oncolytic virus-based hepatocellular carcinoma treatment: Current status, intravenous delivery strategies, and emerging combination therapeutic solutions. Asian J Pharm Sci 2023; 18:100771. [PMID: 36896445 PMCID: PMC9989663 DOI: 10.1016/j.ajps.2022.100771] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022] Open
Abstract
Current treatments for advanced hepatocellular carcinoma (HCC) have limited success in improving patients' quality of life and prolonging life expectancy. The clinical need for more efficient and safe therapies has contributed to the exploration of emerging strategies. Recently, there has been increased interest in oncolytic viruses (OVs) as a therapeutic modality for HCC. OVs undergo selective replication in cancerous tissues and kill tumor cells. Strikingly, pexastimogene devacirepvec (Pexa-Vec) was granted an orphan drug status in HCC by the U.S. Food and Drug Administration (FDA) in 2013. Meanwhile, dozens of OVs are being tested in HCC-directed clinical and preclinical trials. In this review, the pathogenesis and current therapies of HCC are outlined. Next, we summarize multiple OVs as single therapeutic agents for the treatment of HCC, which have demonstrated certain efficacy and low toxicity. Emerging carrier cell-, bioengineered cell mimetic- or nonbiological vehicle-mediated OV intravenous delivery systems in HCC therapy are described. In addition, we highlight the combination treatments between oncolytic virotherapy and other modalities. Finally, the clinical challenges and prospects of OV-based biotherapy are discussed, with the aim of continuing to develop a fascinating approach in HCC patients.
Collapse
Affiliation(s)
- Xinguo Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Sun
- The 4th People's Hospital of Shenyang, Shenyang 110031, China
| | - Bingyuan Wang
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiling Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Jing Tong
- The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
7
|
Le TMD, Yoon AR, Thambi T, Yun CO. Polymeric Systems for Cancer Immunotherapy: A Review. Front Immunol 2022; 13:826876. [PMID: 35273607 PMCID: PMC8902250 DOI: 10.3389/fimmu.2022.826876] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy holds enormous promise to create a new outlook of cancer therapy by eliminating tumors via activation of the immune system. In immunotherapy, polymeric systems play a significant role in improving antitumor efficacy and safety profile. Polymeric systems possess many favorable properties, including magnificent biocompatibility and biodegradability, structural and component diversity, easy and controllable fabrication, and high loading capacity for immune-related substances. These properties allow polymeric systems to perform multiple functions in immunotherapy, such as immune stimulants, modifying and activating T cells, delivery system for immune cargos, or as an artificial antigen-presenting cell. Among diverse immunotherapies, immune checkpoint inhibitors, chimeric antigen receptor (CAR) T cell, and oncolytic virus recently have been dramatically investigated for their remarkable success in clinical trials. In this report, we review the monotherapy status of immune checkpoint inhibitors, CAR-T cell, and oncolytic virus, and their current combination strategies with diverse polymeric systems.
Collapse
Affiliation(s)
- Thai Minh Duy Le
- Department of Bioengineering, College of Engineering, Hanayang University, Seoul, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanayang University, Seoul, South Korea.,Institute of Nano Science and Technology (INST), Hanayang University, Seoul, South Korea.,Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| | - Thavasyappan Thambi
- Department of Bioengineering, College of Engineering, Hanayang University, Seoul, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanayang University, Seoul, South Korea.,Institute of Nano Science and Technology (INST), Hanayang University, Seoul, South Korea.,Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea.,GeneMedicine CO., Ltd., Seoul, South Korea
| |
Collapse
|
8
|
Liu X, Ge W. The Emerging Role of Ultrasonic Nanotechnology for Diagnosing and Treatment of Diseases. Front Med (Lausanne) 2022; 9:814986. [PMID: 35273976 PMCID: PMC8901503 DOI: 10.3389/fmed.2022.814986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology has been commonly used in a variety of applications in recent years. Nanomedicine has also gotten a lot of attention in the medical and treatment fields. Ultrasonic technology is already being used in research as a powerful tool for manufacturing nonmaterial and in the decoration of catalyst supports for energy applications and material processing. For the development of nanoparticles and the decoration of catalytic assisted powders with nanoparticles, low or high-frequency Ultrasonic are used. The Ultrasonic is frequently used in joint venture with the nanotechnology from the past few years and bring tremendous success in various diseases diagnosing and treatment. Numerous kinds of nanoparticles are fabricated with desired capabilities and targeted toward different targets. This review first highlights the Ultrasonic Treatment and processing of Nanoparticles for Pharmaceuticals. Next, we explain various nanoparticles with ultrasonic technology for different diagnosing and treatment of various diseases. Finally, we explain the challenges face by current approaches for their translation in clinics.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Medical College, Hangzhou, China
| | - Weidong Ge
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Medical College, Hangzhou, China
| |
Collapse
|
9
|
Kasala D, Hong J, Yun CO. Overcoming the barriers to optimization of adenovirus delivery using biomaterials: Current status and future perspective. J Control Release 2021; 332:285-300. [PMID: 33626335 DOI: 10.1016/j.jconrel.2021.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/31/2022]
Abstract
Adenovirus (Ad) is emerging as a promising modality for cancer gene therapy due to its ability to induce high level of therapeutic transgene expression with no risk of insertional mutagenesis, ability to be facilely produced at a high titer, and capacity to induce robust antitumor immune response. Despite these excellent attributes of human serotype 5 Ad, poor systemic administration capability, coxsackie and adenovirus receptor (CAR)-dependent endocytic mechanism limiting potentially targetable cell types, nonspecific shedding to normal organs, and poor viral persistence in tumor tissues are major hindrances toward maximizing the therapeutic benefit of Ad in clinical setting. To address the abovementioned shortcomings, various non-immunogenic nanomaterials have been explored to modify Ad surface via physical or chemical interactions. In this review, we summarize the recent developments of different types of nanomaterials that had been utilized for modification of Ad and how tumor-targeted local and system delivery can be achieved with these nanocomplexes. Finally, we conclude by highlighting the key features of various nanomaterials-coated Ads and their prospects to optimize the delivery of virus.
Collapse
Affiliation(s)
- Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd, Seoul 04763, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea; GeneMedicine Co., Ltd, Seoul 04763, Republic of Korea.
| |
Collapse
|
10
|
Moorthy H, Govindaraju T. Dendrimer Architectonics to Treat Cancer and Neurodegenerative Diseases with Implications in Theranostics and Personalized Medicine. ACS APPLIED BIO MATERIALS 2021; 4:1115-1139. [PMID: 35014470 DOI: 10.1021/acsabm.0c01319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Integration of diagnostic and therapeutic functions in a single platform namely theranostics has become a cornerstone for personalized medicine. Theranostics platform facilitates noninvasive detection and treatment while allowing the monitoring of disease progression and therapeutic efficacy in case of chronic conditions of cancer and Alzheimer's disease (AD). Theranostic tools function by themselves or with the aid of carrier, viz. liposomes, micelles, polymers, or dendrimers. The dendrimer architectures (DA) are well-characterized molecular nanoobjects with a large number of terminal functional groups to enhance solubility and offer multivalency and multifunctional properties. Various noninvasive diagnostic tools like magnetic resonance imaging (MRI), computed tomography (CT), gamma scintigraphy, and optical techniques have been accomplished utilizing DAs for simultaneous imaging and drug delivery. Obstacles in the formulation design, drug loading, payload delivery, biocompatibility, overcoming cellular membrane and blood-brain barrier (BBB), and systemic circulation remain a bottleneck in translational efforts. This review focuses on the diagnostic, therapeutic and theranostic potential of DA-based nanocarriers in treating cancer and neurodegenerative disorders like AD and Parkinson's disease (PD), among others. In view of the inverse relationship between cancer and AD, designing suitable DA-based theranostic nanodrug with high selectivity has tremendous implications in personalized medicine to treat cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
11
|
Oncolytic virotherapy: Challenges and solutions. Curr Probl Cancer 2021; 45:100639. [DOI: 10.1016/j.currproblcancer.2020.100639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
|
12
|
Howard F, Muthana M. Designer nanocarriers for navigating the systemic delivery of oncolytic viruses. Nanomedicine (Lond) 2020; 15:93-110. [PMID: 31868115 DOI: 10.2217/nnm-2019-0323] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nanotechnology is paving the way for new carrier systems designed to overcome the greatest challenges of oncolytic virotherapy; systemic administration and subsequent implications of immune responses and specific cell binding and entry. Systemic administration of oncolytic agents is vital for disseminated neoplasms, however transition of nanoparticles (NP) to virotherapy has yielded modest results. Their success relies on how they navigate the merry-go-round of often-contradictory phases of NP delivery: circulatory longevity, tissue permeation and cellular interaction, with many studies postulating design features optimal for each phase. This review discusses the optimal design of NPs for the transport of oncolytic viruses within these phases, to determine whether improved virotherapeutic efficacy lies in the pharmacokinetic/pharmacodynamics characteristics of the NP-oncolytic viruses complexes rather than manipulation of the virus and targeting ligands.
Collapse
|
13
|
Tutter M, Schug C, Schmohl KA, Urnauer S, Schwenk N, Petrini M, Lokerse WJM, Zach C, Ziegler S, Bartenstein P, Weber WA, Wagner E, Lindner LH, Nelson PJ, Spitzweg C. Effective control of tumor growth through spatial and temporal control of theranostic sodium iodide symporter ( NIS) gene expression using a heat-inducible gene promoter in engineered mesenchymal stem cells. Am J Cancer Res 2020; 10:4490-4506. [PMID: 32292510 PMCID: PMC7150485 DOI: 10.7150/thno.41489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: The tumor homing characteristics of mesenchymal stem cells (MSCs) make them attractive vehicles for the tumor-specific delivery of therapeutic agents, such as the sodium iodide symporter (NIS). NIS is a theranostic protein that allows non-invasive monitoring of the in vivo biodistribution of functional NIS expression by radioiodine imaging as well as the therapeutic application of 131I. To gain local and temporal control of transgene expression, and thereby improve tumor selectivity, we engineered MSCs to express the NIS gene under control of a heat-inducible HSP70B promoter (HSP70B-NIS-MSCs). Experimental Design: NIS induction in heat-treated HSP70B-NIS-MSCs was verified by 125I uptake assay, RT-PCR, Western blot and immunofluorescence staining. HSP70B-NIS-MSCs were then injected i.v. into mice carrying subcutaneous hepatocellular carcinoma HuH7 xenografts, and hyperthermia (1 h at 41°C) was locally applied to the tumor. 0 - 72 h later radioiodine uptake was assessed by 123I-scintigraphy. The most effective uptake regime was then selected for 131I therapy. Results: The HSP70B promoter showed low basal activity in vitro and was significantly induced in response to heat. In vivo, the highest tumoral iodine accumulation was seen 12 h after application of hyperthermia. HSP70B-NIS-MSC-mediated 131I therapy combined with hyperthermia resulted in a significantly reduced tumor growth with prolonged survival as compared to control groups. Conclusions: The heat-inducible HSP70B promoter allows hyperthermia-induced spatial and temporal control of MSC-mediated theranostic NIS gene radiotherapy with efficient tumor-selective and temperature-dependent accumulation of radioiodine in heat-treated tumors.
Collapse
|
14
|
Sun Y, Lv X, Ding P, Wang L, Sun Y, Li S, Zhang H, Gao Z. Exploring the functions of polymers in adenovirus-mediated gene delivery: Evading immune response and redirecting tropism. Acta Biomater 2019; 97:93-104. [PMID: 31386928 DOI: 10.1016/j.actbio.2019.06.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
Adenovirus (Ad) is a promising viral carrier in gene therapy because of its unique attribution. However, clinical applications of Ad vectors are currently restricted by their immunogenicity and broad native tropism. To address these obstacles, a variety of nonimmunogenic polymers are utilized to modify Ad vectors chemically or physically. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. With polyethylene glycol (PEG) first in order, a variety of polymers have been developed to shield the surface of Ad vectors and well accomplished to evade the host immune response, block CAR-dependant cellular uptake, and reduce accumulation in the liver. In addition, shielding Ad vectors with targeted polymers (including targeting ligand-conjugated polymers and bio-responsive polymers) can also efficiently retarget Ad vectors to tumor tissues and reduce their distribution in nontargeted tissues. With its potential to evade the immune response and retarget Ad vectors, modification with polymers has been generally regarded as a promising strategy to facilitate the clinical applications of Ad vectors for virotherapy. STATEMENT OF SIGNIFICANCE: There is no doubt that Adenovirus (Ads) are attractive vectors for gene therapy, with high sophistication and effectiveness in overcoming both extra- and intracellular barriers, which cannot be exceeded by any other nonviral gene vectors. Unfortunately, their clinical applications are still restricted by some critical hurdles, including immunogenicity and native broad tropism. Therefore, a variety of elegant strategies have been developed from various angles to address these hurdles. Among these various strategies, coating Ads with nonimmunogenic polymers has attracted much attention. In this review, we systemically discuss the functions of polymers in Ad-mediated gene delivery from two aspects: evading the host immune responses to Ads and redirecting Ad tropism. In addition, the key factors in Ad modification with polymers have been highlighted and summarized to provide guiding theory for the design of more effective and safer polymer-Ad hybrid gene vectors.
Collapse
Affiliation(s)
- Yanping Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaoqian Lv
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Long Wang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Department of Family and Consumer Sciences, California State University, Long Beach, CA 90840, USA
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shuo Li
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Huimin Zhang
- State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang 050018, China; State Key Laboratory Breeding Base - Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
15
|
Schug C, Kitzberger C, Sievert W, Spellerberg R, Tutter M, Schmohl KA, Eberlein B, Biedermann T, Steiger K, Zach C, Schwaiger M, Multhoff G, Wagner E, Nelson PJ, Spitzweg C. Radiation-Induced Amplification of TGFB1-Induced Mesenchymal Stem Cell-Mediated Sodium Iodide Symporter ( NIS) Gene 131I Therapy. Clin Cancer Res 2019; 25:5997-6008. [PMID: 31196853 DOI: 10.1158/1078-0432.ccr-18-4092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/10/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The innate tumor homing potential of mesenchymal stem cells (MSCs) has been used for a targeted delivery of the theranostic sodium iodide symporter (NIS) transgene into solid tumors. We have previously shown that external beam radiotherapy (EBRT) results in the enhanced recruitment of NIS-expressing MSCs into human hepatocellular carcinoma (HuH7). In parallel, the tumor-associated cytokine TGFB1 becomes strongly upregulated in HuH7 tumors in response to EBRT. EXPERIMENTAL DESIGN We therefore evaluated the effects of combining focused EBRT (5 Gy) with MSC-mediated systemic delivery of the theranostic NIS transgene under control of a synthetic TGFB1-inducible SMAD-responsive promoter (SMAD-NIS-MSCs) using 123I-scintigraphy followed by 131I therapy in CD1 nu/nu mice harboring subcutaneous human hepatocellular carcinoma (HuH7). RESULTS Following tumor irradiation and SMAD-NIS-MSC application, tumoral iodide uptake monitored in vivo by 123I-scintigraphy was enhanced as compared with nonirradiated tumors. Combination of EBRT and SMAD-NIS-MSC-mediated 131I therapy resulted in a significantly improved delay in tumor growth and prolonged survival in therapy mice as compared with the combined therapy using CMV-NIS-MSCs or to control groups receiving EBRT or saline only, or EBRT together with SMAD-NIS-MSCs and saline applications. CONCLUSIONS MSC-based NIS-mediated 131I therapy after EBRT treatment dramatically enhanced therapeutic efficacy when a TGFB1-inducible SMAD-responsive promoter was used to drive NIS expression in adoptively applied MSCs. The remarkable therapeutic effect seen is thought to be linked in large part to the enhanced TGFB1 produced in this context, which leads to a highly selective and focused amplification of MSC-based NIS expression within the tumor milieu.
Collapse
Affiliation(s)
- Christina Schug
- Medizinische Klinik und Poliklinik IV-Campus Grosshadern, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Carolin Kitzberger
- Medizinische Klinik und Poliklinik IV-Campus Grosshadern, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolfgang Sievert
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, Radiation Immuno-Oncology group, Munich, Germany
| | - Rebekka Spellerberg
- Medizinische Klinik und Poliklinik IV-Campus Grosshadern, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mariella Tutter
- Medizinische Klinik und Poliklinik IV-Campus Grosshadern, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kathrin A Schmohl
- Medizinische Klinik und Poliklinik IV-Campus Grosshadern, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Katja Steiger
- Department of Pathology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Schwaiger
- Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Gabriele Multhoff
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, Radiation Immuno-Oncology group, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter J Nelson
- Medizinische Klinik und Poliklinik IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christine Spitzweg
- Medizinische Klinik und Poliklinik IV-Campus Grosshadern, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
16
|
Urnauer S, Schmohl KA, Tutter M, Schug C, Schwenk N, Morys S, Ziegler S, Bartenstein P, Clevert DA, Wagner E, Spitzweg C. Dual-targeted NIS polyplexes-a theranostic strategy toward tumors with heterogeneous receptor expression. Gene Ther 2019; 26:93-108. [PMID: 30683895 DOI: 10.1038/s41434-019-0059-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity, within and between tumors, may have severe implications for tumor therapy, especially for targeted gene therapy, where single-targeted approaches often result in limited efficacy and therapy resistance. Polymer-formulated nonviral vectors provide a potent delivery platform for cancer therapy. To improve applicability for future clinical use in a broad range of patients and cancer types, a dual-targeting approach was performed. Synthetic LPEI-PEG2kDa-based polymer backbones were coupled to two tumor-specific peptide ligands GE11 (EGFR-targeting) and cMBP (cMET-targeting). The dual-targeting approach was used to deliver the theranostic sodium iodide symporter (NIS) gene to hepatocellular cancer. NIS as auspicious theranostic gene allows noninvasive imaging of functional NIS gene expression and effective anticancer radioiodide therapy. Enhanced tumor-specific transduction efficiency of dual-targeted polyplexes compared to single-targeted polyplexes was demonstrated in vitro using tumor cell lines with different EGFR and cMET expression and in vivo by 124I-PET-imaging. Therapeutic efficacy of the bispecific concept was mirrored by significantly reduced tumor growth and perfusion, which was associated with prolonged animal survival. In conclusion, the dual-targeting approach highlights the benefits of a bifunctional strategy for a future clinical translation of the bioimaging-based NIS-mediated radiotherapy allowing efficient targeting of heterogeneic tumors with variable receptor expression levels.
Collapse
Affiliation(s)
- Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Mariella Tutter
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Christina Schug
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Stephan Morys
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Germany
| | - Dirk-André Clevert
- Department of Clinical Radiology, University Hospital of Munich, LMU Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany.
| |
Collapse
|
17
|
Schug C, Urnauer S, Jaeckel C, Schmohl KA, Tutter M, Steiger K, Schwenk N, Schwaiger M, Wagner E, Nelson PJ, Spitzweg C. TGFB1-driven mesenchymal stem cell-mediated NIS gene transfer. Endocr Relat Cancer 2019; 26:89-101. [PMID: 30121623 DOI: 10.1530/erc-18-0173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023]
Abstract
Based on their excellent tumor-homing capacity, genetically engineered mesenchymal stem cells (MSCs) are under investigation as tumor-selective gene delivery vehicles. Transgenic expression of the sodium iodide symporter (NIS) in genetically engineered MSCs allows noninvasive tracking of MSC homing by imaging of functional NIS expression as well as therapeutic application of 131I. The use of tumor stroma-activated promoters can improve tumor-specific MSC-mediated transgene delivery. The essential role of transforming growth factor B1 (TGFB1) and the SMAD downstream target in the signaling between tumor and the surrounding stroma makes the biology of this pathway a potential option to better control NIS expression within the tumor milieu. Bone marrow-derived MSCs were stably transfected with a NIS-expressing plasmid driven by a synthetic SMAD-responsive promoter (SMAD-NIS-MSCs). Radioiodide uptake assays revealed a 4.9-fold increase in NIS-mediated perchlorate-sensitive iodide uptake in SMAD-NIS-MSCs after TGFB1 stimulation compared to unstimulated cells demonstrating the successful establishment of MSCs, which induce NIS expression in response to activation of TGFB1 signaling using a SMAD-responsive promoter. 123I-scintigraphy revealed significant tumor-specific radioiodide accumulation and thus NIS expression after systemic application of SMAD-NIS-MSCs into mice harboring subcutaneous tumors derived from the human hepatocellular carcinoma (HCC) cell line HuH7, which express TGFB1. 131I therapy in SMAD-NIS-MSCs-treated mice demonstrated a significant delay in tumor growth and prolonged survival. Making use of the tumoral TGFB1 signaling network in the context of MSC-mediated NIS gene delivery is a promising approach to foster tumor stroma-selectivity of NIS transgene expression and tailor NIS-based gene therapy to TGFB1-rich tumor environments.
Collapse
Affiliation(s)
- Christina Schug
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Carsten Jaeckel
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mariella Tutter
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Klinikum Rechts der Isar der Technischen Universitaet Muenchen, Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum Rechts der Isar der Technischen Universitaet Muenchen, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
18
|
Mignani S, Rodrigues J, Tomas H, Caminade AM, Laurent R, Shi X, Majoral JP. Recent therapeutic applications of the theranostic principle with dendrimers in oncology. SCIENCE CHINA MATERIALS 2018; 61:1367-1386. [DOI: 10.1007/s40843-018-9244-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 02/08/2023]
|
19
|
Schug C, Gupta A, Urnauer S, Steiger K, Cheung PFY, Neander C, Savvatakis K, Schmohl KA, Trajkovic-Arsic M, Schwenk N, Schwaiger M, Nelson PJ, Siveke JT, Spitzweg C. A Novel Approach for Image-Guided 131I Therapy of Pancreatic Ductal Adenocarcinoma Using Mesenchymal Stem Cell-Mediated NIS Gene Delivery. Mol Cancer Res 2018; 17:310-320. [PMID: 30224540 DOI: 10.1158/1541-7786.mcr-18-0185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/28/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022]
Abstract
The sodium iodide symporter (SLC5A5/NIS) as theranostic gene would allow for non-invasive imaging of functional NIS expression and therapeutic radioiodine application. Genetically engineered mesenchymal stem cells (MSC), based on their tumor-homing abilities, show great promise as tumor-selective NIS gene delivery vehicles for non-thyroidal tumors. As a next step towards clinical application, tumor specificity and efficacy of MSCs were investigated in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC). Syngeneic murine MSCs were stably transfected with a NIS-expressing plasmid driven by the CMV-promoter (NIS-MSC). In vivo 123I-scintigraphy and 124I-PET revealed significant perchlorate-sensitive NIS-mediated radioiodide accumulation in PDAC after systemic injection of NIS-MSCs. Active MSC recruitment into the tumor stroma was confirmed using NIS immunohistochemistry (IHC). A therapeutic strategy, consisting of three cycles of systemic MSC-mediated NIS delivery, followed by 131I application, resulted in a significant delay and reduction in tumor growth as compared to controls. Furthermore, IHC analysis of α-SMA and Ki67 revealed differences in the amount and behavior of activated fibroblasts in tumors of mice injected with NIS-MSCs as compared with saline-treated mice. Taken together, MSCs as NIS gene delivery vehicles in this advanced endogenous PDAC mouse model demonstrated high stromal targeting of NIS by selective recruitment of NIS-MSCs after systemic application resulting in an impressive 131I therapeutic effect. IMPLICATIONS: These data expand the prospect of MSC-mediated radioiodine imaging-guided therapy of pancreatic cancer using the sodium iodide symporter as a theranostic gene in a clinical setting.
Collapse
Affiliation(s)
- Christina Schug
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Aayush Gupta
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Phyllis Fung-Yi Cheung
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Neander
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantinos Savvatakis
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens T Siveke
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.,Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
20
|
Schug C, Sievert W, Urnauer S, Müller AM, Schmohl KA, Wechselberger A, Schwenk N, Lauber K, Schwaiger M, Multhoff G, Wagner E, Nelson PJ, Spitzweg C. External Beam Radiation Therapy Enhances Mesenchymal Stem Cell-Mediated Sodium-Iodide Symporter Gene Delivery. Hum Gene Ther 2018; 29:1287-1300. [PMID: 29724129 DOI: 10.1089/hum.2018.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor-homing properties of mesenchymal stem cells (MSC) have led to their development as delivery vehicles for the targeted delivery of therapeutic genes such as the sodium-iodide symporter (NIS) to solid tumors. External beam radiation therapy may represent an ideal setting for the application of engineered MSC-based gene therapy, as tumor irradiation may enhance MSC recruitment into irradiated tumors through the increased production of select factors linked to MSC migration. In the present study, the irradiation of human liver cancer cells (HuH7; 1-10 Gy) showed a strong dose-dependent increase in steady-state mRNA levels of CXCL8, CXCL12, FGF2, PDGFB, TGFB1, THBS1, and VEGF (0-48 h), which was verified for most factors at the protein level (after 48 h). Radiation effects on directed MSC migration were tested in vitro using a live cell tracking migration assay and supernatants from control and irradiated HuH7 cells. A robust increase in mean forward migration index, mean center of mass, and mean directionality of MSCs toward supernatants was seen from irradiated as compared to non-irradiated tumor cells. Transferability of this effect to other tumor sources was demonstrated using the human breast adenocarcinoma cell line (MDA-MB-231), which showed a similar behavior to radiation as seen with HuH7 cells in quantitative polymerase chain reaction and migration assay. To evaluate this in a more physiologic in vivo setting, subcutaneously growing HuH7 xenograft tumors were irradiated with 0, 2, or 5 Gy followed by CMV-NIS-MSC application 24 h later. Tumoral iodide uptake was monitored using 123I-scintigraphy. The results showed increased tumor-specific dose-dependent accumulation of radioiodide in irradiated tumors. The results demonstrate that external beam radiation therapy enhances the migratory capacity of MSCs and may thus increase the therapeutic efficacy of MSC-mediated NIS radionuclide therapy.
Collapse
Affiliation(s)
- Christina Schug
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Wolfgang Sievert
- 2 Department of Radiation Oncology, Technische Universitaet Muenchen , Munich, Germany
| | - Sarah Urnauer
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Andrea M Müller
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Kathrin A Schmohl
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Alexandra Wechselberger
- 3 Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Nathalie Schwenk
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Kirsten Lauber
- 4 Department of Radiation Oncology, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Markus Schwaiger
- 5 Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen , Munich, Germany
| | - Gabriele Multhoff
- 2 Department of Radiation Oncology, Technische Universitaet Muenchen , Munich, Germany
| | - Ernst Wagner
- 6 Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Peter J Nelson
- 3 Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Christine Spitzweg
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| |
Collapse
|
21
|
Urnauer S, Klutz K, Grünwald GK, Morys S, Schwenk N, Zach C, Gildehaus FJ, Rödl W, Ogris M, Wagner E, Spitzweg C. Systemic tumor-targeted sodium iodide symporter (NIS) gene therapy of hepatocellular carcinoma mediated by B6 peptide polyplexes. J Gene Med 2018; 19. [PMID: 28423213 DOI: 10.1002/jgm.2957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/03/2017] [Accepted: 04/16/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Nonviral polymer-based gene transfer represents an adaptable system for tumor-targeted gene therapy because various design strategies of shuttle systems, together with the mechanistic concept of active tumor targeting, lead to improved gene delivery vectors resulting in higher tumor specificity, efficacy and safety. METHODS Using the sodium iodide symporter (NIS) as a theranostic gene, nonviral gene delivery vehicles based on linear polyethylenimine (LPEI), polyethylene glycol (PEG) and coupled to the synthetic peptide B6 (LPEI-PEG-B6), which specifically binds to tumor cells, were investigated in a hepatocellular carcinoma xenograft model for tumor selectivity and transduction efficiency. RESULTS In vitro incubation of three different tumor cell lines with LPEI-PEG-B6/NIS resulted in significant increase in iodide uptake activity compared to untargeted and empty vectors. After establishment of subcutaneous HuH7 tumors, NIS-conjugated nanoparticles were injected intravenously followed by analysis of radioiodide biodistribution using 123 I-scintigraphy showing significant perchlorate-sensitive iodide accumulation in tumors of LPEI-PEG-B6/NIS-treated mice (8.0 ± 1.5% ID/g 123 I; biological half-life of 4 h). After four cycles of repetitive polyplex/131 I applications, a significant delay of tumor growth was observed, which was associated with markedly improved survival in the therapy group. CONCLUSIONS These results clearly demonstrate that systemic in vivo NIS gene transfer using nanoparticle vectors coupled to B6 tumor targeting ligand is capable of inducing tumor-specific radioiodide uptake. This promising gene therapy approach opens the exciting prospect of NIS-mediated radionuclide therapy in metastatic cancer, together with the possibility of combining several targeting ligands to enhance selective therapeutic efficacy in a broad field of cancer types with various receptor expression profiles.
Collapse
Affiliation(s)
- Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Kathrin Klutz
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Geoffrey K Grünwald
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Stephan Morys
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology and Center for Nanoscience (CeNS), LMU Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Germany
| | | | - Wolfgang Rödl
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology and Center for Nanoscience (CeNS), LMU Munich, Germany
| | - Manfred Ogris
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology and Center for Nanoscience (CeNS), LMU Munich, Germany.,Division of Clinical Pharmacy and Diagnostics, University of Vienna, Austria
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology and Center for Nanoscience (CeNS), LMU Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Germany
| |
Collapse
|
22
|
Wu ZJ, Tang FR, Ma ZW, Peng XC, Xiang Y, Zhang Y, Kang J, Ji J, Liu XQ, Wang XW, Xin HW, Ren BX. Oncolytic Viruses for Tumor Precision Imaging and Radiotherapy. Hum Gene Ther 2018; 29:204-222. [PMID: 29179583 DOI: 10.1089/hum.2017.189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In 2003 in China, Peng et al. invented the recombinant adenovirus expressing p53 (Gendicine) for clinical tumor virotherapy. This was the first clinically approved gene therapy and tumor virotherapy drug in the world. An oncolytic herpes simplex virus expressing granulocyte-macrophage colony-stimulating factor (Talimogene laherparepvec) was approved for melanoma treatment in the United States in 2015. Since then, oncolytic viruses have been attracting more and more attention in the field of oncology, and may become novel significant modalities of tumor precision imaging and radiotherapy after further improvement. Oncolytic viruses carrying reporter genes can replicate and express genes of interest selectively in tumor cells, thus improving in vivo noninvasive precision molecular imaging and radiotherapy. Here, the latest developments and molecular mechanisms of tumor imaging and radiotherapy using oncolytic viruses are reviewed, and perspectives are given for further research. Various types of tumors are discussed, and special attention is paid to gastrointestinal tumors.
Collapse
Affiliation(s)
- Zi J Wu
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
- 2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China
- 3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| | - Feng R Tang
- 4 Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore , Create Tower, Singapore
| | - Zhao-Wu Ma
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Xiao-Chun Peng
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Ying Xiang
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Yanling Zhang
- 5 Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou, China
- 6 School of Biotechnology, Southern Medical University , Guangzhou, China
| | - Jingbo Kang
- 7 The Navy General Hospital Tumor Diagnosis and Treatment Center , Beijing, China
| | - Jiafu Ji
- 8 Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute , Beijing, China
| | - Xiao Q Liu
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
- 2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China
- 3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| | - Xian-Wang Wang
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Hong-Wu Xin
- 1 Laboratory of Oncology, Center for Molecular Medicine, Yangtze University , Jingzhou, China
| | - Bo X Ren
- 2 Department of Medical Imaging, School of Medicine, Yangtze University , Jingzhou, China
- 3 The Second School of Clinical Medicine, Yangtze University , Jingzhou, China
| |
Collapse
|
23
|
Müller AM, Schmohl KA, Knoop K, Schug C, Urnauer S, Hagenhoff A, Clevert DA, Ingrisch M, Niess H, Carlsen J, Zach C, Wagner E, Bartenstein P, Nelson PJ, Spitzweg C. Hypoxia-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated sodium iodide symporter gene delivery. Oncotarget 2018; 7:54795-54810. [PMID: 27458162 PMCID: PMC5342382 DOI: 10.18632/oncotarget.10758] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/10/2016] [Indexed: 12/18/2022] Open
Abstract
Adoptively transferred mesenchymal stem cells (MSCs) home to solid tumors. Biologic features within the tumor environment can be used to selectively activate transgenes in engineered MSCs after tumor invasion. One of the characteristic features of solid tumors is hypoxia. We evaluated a hypoxia-based imaging and therapy strategy to target expression of the sodium iodide symporter (NIS) gene to experimental hepatocellular carcinoma (HCC) delivered by MSCs. MSCs engineered to express transgenes driven by a hypoxia-responsive promoter showed robust transgene induction under hypoxia as demonstrated by mCherry expression in tumor cell spheroid models, or radioiodide uptake using NIS. Subcutaneous and orthotopic HCC xenograft mouse models revealed significant levels of perchlorate-sensitive NIS-mediated tumoral radioiodide accumulation by tumor-recruited MSCs using 123I-scintigraphy or 124I-positron emission tomography. Functional NIS expression was further confirmed by ex vivo123I-biodistribution analysis. Administration of a therapeutic dose of 131I in mice treated with NIS-transfected MSCs resulted in delayed tumor growth and reduced tumor perfusion, as shown by contrast-enhanced sonography, and significantly prolonged survival of mice bearing orthotopic HCC tumors. Interestingly, radioiodide uptake into subcutaneous tumors was not sufficient to induce therapeutic effects. Our results demonstrate the potential of using tumor hypoxia-based approaches to drive radioiodide therapy in non-thyroidal tumors.
Collapse
Affiliation(s)
- Andrea M Müller
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kerstin Knoop
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christina Schug
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Hagenhoff
- Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dirk-André Clevert
- Department of Clinical Radiology, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael Ingrisch
- Department of Clinical Radiology, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hanno Niess
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Janette Carlsen
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
24
|
Schmohl KA, Dolp P, Schug C, Knoop K, Klutz K, Schwenk N, Bartenstein P, Nelson PJ, Ogris M, Wagner E, Spitzweg C. Reintroducing the Sodium-Iodide Symporter to Anaplastic Thyroid Carcinoma. Thyroid 2017; 27:1534-1543. [PMID: 29032724 DOI: 10.1089/thy.2017.0290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC), the most aggressive form of thyroid cancer, is unresponsive to radioiodine therapy. The current study aimed to extend the diagnostic and therapeutic application of radioiodine beyond the treatment of differentiated thyroid cancer by targeting the functional sodium-iodide symporter (NIS) to ATC. METHODS The study employed nanoparticle vectors (polyplexes) based on linear polyethylenimine (LPEI), shielded by polyethylene glycol (PEG) and coupled to the synthetic peptide GE11 as an epidermal growth factor receptor (EGFR)-specific ligand in order to target a NIS-expressing plasmid (LPEI-PEG-GE11/NIS) to EGFR overexpressing human thyroid carcinoma cell lines. Using ATC xenograft mouse models, transfection efficiency by 123I scintigraphy and potential for systemic radioiodine therapy after systemic polyplex application were evaluated. RESULTS In vitro iodide uptake studies in SW1736 and Hth74 ATC cells, and, for comparison, in more differentiated follicular (FTC-133) and papillary (BCPAP) thyroid carcinoma cells demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS that correlated well with EGFR expression levels. After systemic polyplex injection, in vivo 123I gamma camera imaging revealed significant tumor-specific accumulation of radioiodine in an SW1736 and an Hth74 xenograft mouse model. Radioiodine accumulation was found to be higher in SW1736 tumors, reflecting in vitro results, EGFR expression levels, and results from ex vivo analysis of NIS staining. Administration of 131I in LPEI-PEG-GE11/NIS-treated SW1736 xenograft mice resulted in significantly reduced tumor growth associated with prolonged survival compared to control animals. CONCLUSIONS The data open the exciting prospect of NIS-mediated radionuclide imaging and therapy of ATC after non-viral reintroduction of the NIS gene. The high tumor specificity after systemic application makes the strategy an attractive alternative for the treatment of highly metastatic ATC.
Collapse
Affiliation(s)
- Kathrin A Schmohl
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Patrick Dolp
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Christina Schug
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Kerstin Knoop
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Kathrin Klutz
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Nathalie Schwenk
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Peter Bartenstein
- 2 Department of Nuclear Medicine, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Peter J Nelson
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Manfred Ogris
- 3 Department of Pharmaceutical Chemistry, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna , Vienna, Austria
| | - Ernst Wagner
- 4 Department of Pharmaceutical Biotechnology, Department of Pharmacy, Center for System-Based Drug Research and Center for Nanoscience , LMU Munich, Munich, Germany
| | - Christine Spitzweg
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| |
Collapse
|
25
|
Urnauer S, Müller AM, Schug C, Schmohl KA, Tutter M, Schwenk N, Rödl W, Morys S, Ingrisch M, Bertram J, Bartenstein P, Clevert DA, Wagner E, Spitzweg C. EGFR-targeted nonviral NIS gene transfer for bioimaging and therapy of disseminated colon cancer metastases. Oncotarget 2017; 8:92195-92208. [PMID: 29190908 PMCID: PMC5696174 DOI: 10.18632/oncotarget.21028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023] Open
Abstract
Liver metastases present a serious problem in the therapy of advanced colorectal cancer (CRC), as more than 20% of patients have distant metastases at the time of diagnosis with less than 5% being cured. Consequently, new therapeutic approaches are of major need together with high-resolution imaging methods that allow highly specific detection of small metastases. The unique combination of reporter and therapy gene function of the sodium iodide symporter (NIS) may represent a promising theranostic strategy for CRC liver metastases allowing non-invasive imaging of functional NIS expression and therapeutic application of 131I. For targeted NIS gene transfer polymers containing linear polyethylenimine (LPEI), polyethylene glycol (PEG) and the epidermal growth factor receptor (EGFR)-specific ligand GE11 were complexed with human NIS DNA (LPEI-PEG-GE11/NIS). Tumor specificity and transduction efficiency were examined in high EGFR-expressing LS174T metastases by non-invasive imaging using 18F-tetrafluoroborate (18F-TFB) as novel NIS PET tracer. Mice that were injected with LPEI-PEG-GE11/NIS 48 h before 18F-TFB application showed high tumoral levels (4.8±0.6% of injected dose) of NIS-mediated radionuclide uptake in comparison to low levels detected in mice that received untargeted control polyplexes. Three cycles of intravenous injection of EGFR-targeted NIS polyplexes followed by therapeutic application of 55.5 MBq 131I resulted in marked delay in metastases spread, which was associated with improved animal survival. In conclusion, these preclinical data confirm the enormous potential of EGFR-targeted synthetic polymers for systemic NIS gene delivery in an advanced multifocal CRC liver metastases model and open the exciting prospect of NIS-mediated radionuclide therapy in metastatic disease.
Collapse
Affiliation(s)
- Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Andrea M Müller
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christina Schug
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mariella Tutter
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Wolfgang Rödl
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Stephan Morys
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Michael Ingrisch
- Department of Clinical Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jens Bertram
- Department of Nuclear Medicine, Radiopharmacy, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Dirk-André Clevert
- Department of Clinical Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
26
|
Morys S, Urnauer S, Spitzweg C, Wagner E. EGFR Targeting and Shielding of pDNA Lipopolyplexes via Bivalent Attachment of a Sequence-Defined PEG Agent. Macromol Biosci 2017; 18. [PMID: 28877405 DOI: 10.1002/mabi.201700203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/18/2017] [Indexed: 12/20/2022]
Abstract
For successful nonviral gene delivery, cationic polymers are promising DNA carrier, which need to comprise several functionalities. The current work focuses on the postincorporation of epidermal growth factor receptor (EGFR) targeted PEGylation agents onto lipopolyplexes for pDNA delivery. T-shaped lipo-oligomers are previously found to be effective sequence-defined carriers for pDNA and siRNA. Here, the bis-oleoyl-oligoaminoethanamide 454 containing tyrosine trimer-cysteine ends is applied for complex formation with pDNA coding for luciferase or sodium iodide symporter (NIS). In a second step, the lipopolyplexes are modified via disulfide formation with sequence-defined monovalent or bivalent PEGylation agents containing one or two 3-nitro-2-pyridinesulfenyl (NPys)-activated cysteines, respectively. For targeting, the polyethylene glycol (PEG) agents comprise the EGFR targeting peptide GE11. In comparison of all transfection complexes, 454 lipopolyplexes modified with the bidentate PEG-GE11 agent show the best, EGFR-dependent uptake as well as luciferase and NIS gene expression into receptor-positive tumor cells.
Collapse
Affiliation(s)
- Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for Nanoscience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for Nanoscience (CeNS), LMU Munich, 81377, Munich, Germany
| |
Collapse
|
27
|
Schmohl KA, Gupta A, Grünwald GK, Trajkovic-Arsic M, Klutz K, Braren R, Schwaiger M, Nelson PJ, Ogris M, Wagner E, Siveke JT, Spitzweg C. Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene. Oncotarget 2017; 8:33393-33404. [PMID: 28380420 PMCID: PMC5464876 DOI: 10.18632/oncotarget.16499] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 12/18/2022] Open
Abstract
The theranostic sodium iodide symporter (NIS) gene allows detailed molecular imaging of transgene expression and application of therapeutic radionuclides. As a crucial step towards clinical application, we investigated tumor specificity and transfection efficiency of epidermal growth factor receptor (EGFR)-targeted polyplexes as systemic NIS gene delivery vehicles in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) that closely reflects human disease. PDAC was induced in mice by pancreas-specific activation of constitutively active KrasG12D and deletion of Trp53. We used tumor-targeted polyplexes (LPEI-PEG-GE11/NIS) based on linear polyethylenimine, shielded by polyethylene glycol and coupled with the EGFR-specific peptide ligand GE11, to target a NIS-expressing plasmid to high EGFR-expressing PDAC. In vitro iodide uptake studies in cell explants from murine EGFR-positive and EGFR-ablated PDAC lesions demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo 123I gamma camera imaging and three-dimensional high-resolution 124I PET showed significant tumor-specific accumulation of radioiodide after systemic LPEI-PEG-GE11/NIS injection. Administration of 131I in LPEI-PEG-GE11/NIS-treated mice resulted in significantly reduced tumor growth compared to controls as determined by magnetic resonance imaging, though survival was not significantly prolonged. This study opens the exciting prospect of NIS-mediated radionuclide imaging and therapy of PDAC after systemic non-viral NIS gene delivery.
Collapse
Affiliation(s)
- Kathrin A. Schmohl
- Department of Internal Medicine II and IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Aayush Gupta
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Geoffrey K. Grünwald
- Department of Internal Medicine II and IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Klutz
- Department of Internal Medicine II and IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Rickmer Braren
- Department of Radiology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Peter J. Nelson
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Manfred Ogris
- Department of Pharmaceutical Chemistry, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, Vienna, Austria
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for System-Based Drug Research and Center for Nanoscience, LMU Munich, Munich, Germany
| | - Jens T. Siveke
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Spitzweg
- Department of Internal Medicine II and IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
28
|
Abstract
The RASopathy neurofibromatosis 1 is an autosomal dominant hereditary cancer syndrome that represents a major risk for the development of malignancies, particularly malignant peripheral nerve sheath tumors (MPNSTs). MPNSTs are unique sarcomas that originate from the peripheral nerve and represent the only primary cancer of the peripheral nervous system. To date, surgery is the only treatment modality proven to have survival benefit for MPNSTs and even when maximal surgery is feasible, these tumors are rarely curable, despite the use of chemotherapy and radiation. In this review, we discuss the current state-of-the-art treatments for MPNSTs, latest therapeutic developments, and critical aspects of the underlying molecular and pathophysiology that appear promising for therapeutic developments in the future. In particular, we discuss the specific elements of cancer in the peripheral nerve and how that may impel development of unique therapies for this form of sarcoma.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ren-Yuan Bai
- Department of Neurosurgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jaishri O'Neill Blakeley
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- Department of Neurosurgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
29
|
Pant K, Sedláček O, Nadar RA, Hrubý M, Stephan H. Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis? Adv Healthc Mater 2017; 6. [PMID: 28218487 DOI: 10.1002/adhm.201601115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Indexed: 12/15/2022]
Abstract
Owing to their tunable blood circulation time and suitable plasma stability, polymer-based nanomaterials hold a great potential for designing and utilising multifunctional nanocarriers for efficient imaging and effective treatment of cancer. When tagged with appropriate radionuclides, they may allow for specific detection (diagnosis) as well as the destruction of tumours (therapy) or even customization of materials, aiming to both diagnosis and therapy (theranostic approach). This review provides an overview of recent developments of radiolabelled polymeric nanomaterials (natural and synthetic polymers) for molecular imaging of cancer, specifically, applying nuclear techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Different approaches to radiolabel polymers are evaluated from the methodical radiochemical point of view. This includes new bifunctional chelating agents (BFCAs) for radiometals as well as novel labelling methods. Special emphasis is given to eligible strategies employed to evade the mononuclear phagocytic system (MPS) in view of efficient targeting. The discussion encompasses promising strategies currently employed as well as emerging possibilities in radionuclide-based cancer therapy. Key issues involved in the clinical translation of radiolabelled polymers and future scopes of this intriguing research field are also discussed.
Collapse
Affiliation(s)
- Kritee Pant
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Ondřej Sedláček
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Robin A. Nadar
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Martin Hrubý
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| |
Collapse
|
30
|
Liko F, Hindré F, Fernandez-Megia E. Dendrimers as Innovative Radiopharmaceuticals in Cancer Radionanotherapy. Biomacromolecules 2016; 17:3103-3114. [PMID: 27608327 DOI: 10.1021/acs.biomac.6b00929] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy is one of the most commonly used cancer treatments, with an estimate of 40% success that could be improved further if more efficient targeting and retention of radiation at the tumor site were achieved. This review focuses on the use of dendrimers in radionanotherapy, an emerging technology aimed to improve the efficiency of radiotherapy by implementing nanovectorization, an already established praxis in drug delivery and diagnosis. The labeling of dendrimers with radionuclides also aims to reduce the dose of radiolabeled materials and, hence, their toxicity and tumor resistance. Examples of radiolabeled dendrimers with alpha, beta, and Auger electron emitters are commented, along with the use of dendrimers in boron neutron capture therapy (BNCT). The conjugation of radiolabeled dendrimers to monoclonal antibodies for a more efficient targeting and the application of dendrimers in gene delivery radiotherapy are also covered.
Collapse
Affiliation(s)
- Flonja Liko
- INSERM U 1066, 'Micro et Nanomédecines biomimétiques - MINT', and Plateforme de Radiobiologie et d'IMagerie EXpérimentale, PRIMEX, SFR ICAT 4208, Université Angers, UMR-S1066, 49933 Angers, Cedex 9, France.,Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela , Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - François Hindré
- INSERM U 1066, 'Micro et Nanomédecines biomimétiques - MINT', and Plateforme de Radiobiologie et d'IMagerie EXpérimentale, PRIMEX, SFR ICAT 4208, Université Angers, UMR-S1066, 49933 Angers, Cedex 9, France
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela , Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
31
|
Hagenhoff A, Bruns CJ, Zhao Y, von Lüttichau I, Niess H, Spitzweg C, Nelson PJ. Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opin Biol Ther 2016; 16:1079-92. [PMID: 27270211 DOI: 10.1080/14712598.2016.1196179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) are non-hematopoietic progenitor cells that have been exploited as vehicles for cell-based cancer therapy. The general approach is based on the innate potential of adoptively applied MSC to undergo facilitated recruitment to malignant tissue. MSC from different tissue sources have been engineered using a variety of therapy genes that have shown efficacy in solid tumor models. AREAS COVERED In this review we will focus on the current developments of MSC-based gene therapy, in particular the diverse approaches that have been used for MSCs-targeted tumor therapy. We also discuss some outstanding issues and general prospects for their clinical application. EXPERT OPINION The use of modified mesenchymal stem cells as therapy vehicles for the treatment of solid tumors has progressed to the first generation of clinical trials, but the general field is still in its infancy. There are many questions that need to be addressed if this very complex therapy approach is widely applied in clinical settings. More must be understood about the mechanisms underlying tumor tropism and we need to identify the optimal source of the cells used. Outstanding issues also include the therapy transgenes used, and which tumor types represent viable targets for this therapy.
Collapse
Affiliation(s)
- Anna Hagenhoff
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Christiane J Bruns
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Yue Zhao
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Irene von Lüttichau
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Hanno Niess
- c Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , University of Munich , Munich , Germany
| | - Christine Spitzweg
- d Department of Internal Medicine II , University of Munich , Munich , Germany
| | - Peter J Nelson
- e Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV , University of Munich , Munich , Germany
| |
Collapse
|
32
|
Urnauer S, Morys S, Krhac Levacic A, Müller AM, Schug C, Schmohl KA, Schwenk N, Zach C, Carlsen J, Bartenstein P, Wagner E, Spitzweg C. Sequence-defined cMET/HGFR-targeted Polymers as Gene Delivery Vehicles for the Theranostic Sodium Iodide Symporter (NIS) Gene. Mol Ther 2016; 24:1395-404. [PMID: 27157666 DOI: 10.1038/mt.2016.95] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022] Open
Abstract
The sodium iodide symporter (NIS) as well-characterized theranostic gene represents an outstanding tool to target different cancer types allowing noninvasive imaging of functional NIS expression and therapeutic radioiodide application. Based on its overexpression on the surface of most cancer types, the cMET/hepatocyte growth factor receptor serves as ideal target for tumor-selective gene delivery. Sequence-defined polymers as nonviral gene delivery vehicles comprising polyethylene glycol (PEG) and cationic (oligoethanoamino) amide cores coupled with a cMET-binding peptide (cMBP2) were complexed with NIS-DNA and tested for receptor-specificity, transduction efficiency, and therapeutic efficacy in hepatocellular cancer cells HuH7. In vitro iodide uptake studies demonstrated high transduction efficiency and cMET-specificity of NIS-encoding polyplexes (cMBP2-PEG-Stp/NIS) compared to polyplexes without targeting ligand (Ala-PEG-Stp/NIS) and without coding DNA (cMBP2-PEG-Stp/Antisense-NIS). Tumor recruitment and vector biodistribution were investigated in vivo in a subcutaneous xenograft mouse model showing high tumor-selective iodide accumulation in cMBP2-PEG-Stp/NIS-treated mice (6.6 ± 1.6% ID/g (123)I, biological half-life 3 hours) by (123)I-scintigraphy. Therapy studies with three cycles of polyplexes and (131)I application resulted in significant delay in tumor growth and prolonged survival. These data demonstrate the enormous potential of cMET-targeted sequence-defined polymers combined with the unique theranostic function of NIS allowing for optimized transfection efficiency while eliminating toxicity.
Collapse
Affiliation(s)
- Sarah Urnauer
- Department of Internal Medicine II, LMU Munich, Munich, Germany
| | - Stephan Morys
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Ana Krhac Levacic
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Andrea M Müller
- Department of Internal Medicine II, LMU Munich, Munich, Germany
| | - Christina Schug
- Department of Internal Medicine II, LMU Munich, Munich, Germany
| | | | | | - Christian Zach
- Department of Nuclear Medicine, LMU Munich, Munich, Germany
| | | | | | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | | |
Collapse
|
33
|
Ma Y, Mou Q, Wang D, Zhu X, Yan D. Dendritic Polymers for Theranostics. Theranostics 2016; 6:930-47. [PMID: 27217829 PMCID: PMC4876620 DOI: 10.7150/thno.14855] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022] Open
Abstract
Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications.
Collapse
Affiliation(s)
- Yuan Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Quanbing Mou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
34
|
Yoon AR, Hong J, Kim SW, Yun CO. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy. Expert Opin Drug Deliv 2016; 13:843-58. [PMID: 26967319 DOI: 10.1517/17425247.2016.1158707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. AREA COVERED Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. EXPERT OPINION Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
Collapse
Affiliation(s)
- A-Rum Yoon
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Jinwoo Hong
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Sung Wan Kim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea.,b Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Chae-Ok Yun
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| |
Collapse
|
35
|
Yoon AR, Kasala D, Li Y, Hong J, Lee W, Jung SJ, Yun CO. Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J Control Release 2016; 231:2-16. [PMID: 26951927 DOI: 10.1016/j.jconrel.2016.02.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 01/24/2023]
Abstract
Adenovirus (Ad)-mediated cancer gene therapy has been proposed as a promising alternative to conventional therapy for cancer. However, success of systemically administered naked Ad has been limited due to the immunogenicity of Ad and the induction of hepatotoxicity caused by Ad's native tropism. In this study, we synthesized an epidermal growth factor receptor (EGFR)-specific therapeutic antibody (ErbB)-conjugated and PEGylated poly(amidoamine) (PAMAM) dendrimer (PPE) for complexation with Ad. Transduction of Ad was inhibited by complexation with PEGylated PAMAM (PP) dendrimer due to steric hindrance. However, PPE-complexed Ad selectively internalized into EGFR-positive cells with greater efficacy than either naked Ad or Ad complexed with PP. Systemically administered PPE-complexed oncolytic Ad elicited significantly reduced immunogenicity, nonspecific liver sequestration, and hepatotoxicity than naked Ad. Furthermore, PPE-complexed oncolytic Ad demonstrated prolonged blood retention time, enhanced intratumoral accumulation of Ad, and potent therapeutic efficacy in EGFR-positive orthotopic lung tumors in comparison with naked Ad. We conclude that ErbB-conjugated and PEGylated PAMAM dendrimer can efficiently mask Ad's capsid and retarget oncolytic Ad to be efficiently internalized into EGFR-positive tumor while attenuating toxicity induced by systemic administration of naked oncolytic Ad.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Yan Li
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Jinwoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Wonsig Lee
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Soo-Jung Jung
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea.
| |
Collapse
|
36
|
Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22:326-337. [PMID: 26755879 PMCID: PMC4698495 DOI: 10.3748/wjg.v22.i1.326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) heavily endangers human heath worldwide. HCC is one of most frequent cancers in China because patients with liver disease, such as chronic hepatitis, have the highest cancer susceptibility. Traditional therapeutic approaches have limited efficacy in advanced liver cancer, and novel strategies are urgently needed to improve the limited treatment options for HCC. This review summarizes the basic knowledge, current advances, and future challenges and prospects of adeno-associated virus (AAV) and adenoviruses as vectors for gene therapy of HCC. This paper also reviews the clinical trials of gene therapy using adenovirus vectors, immunotherapy, toxicity and immunological barriers for AAV and adenoviruses, and proposes several alternative strategies to overcome the therapeutic barriers to using AAV and adenoviruses as vectors.
Collapse
|
37
|
Polymeric oncolytic adenovirus for cancer gene therapy. J Control Release 2015; 219:181-191. [PMID: 26453806 DOI: 10.1016/j.jconrel.2015.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023]
Abstract
Oncolytic adenovirus (Ad) vectors present a promising modality to treat cancer. Many clinical trials have been done with either naked oncolytic Ad or combination with chemotherapies. However, the systemic injection of oncolytic Ad in clinical applications is restricted due to significant liver toxicity and immunogenicity. To overcome these issues, Ad has been engineered physically or chemically with numerous polymers for shielding the Ad surface, accomplishing extended blood circulation time and reduced immunogenicity as well as hepatotoxicity. In this review, we describe and classify the characteristics of polymer modified oncolytic Ad following each strategy for cancer treatment. Furthermore, this review concludes with the highlights of various polymer-coated Ads and their prospects, and directions for future research.
Collapse
|
38
|
Schmohl KA, Müller AM, Schwenk N, Knoop K, Rijntjes E, Köhrle J, Heuer H, Bartenstein P, Göke B, Nelson PJ, Spitzweg C. Establishment of an Effective Radioiodide Thyroid Ablation Protocol in Mice. Eur Thyroid J 2015; 4:74-80. [PMID: 26601076 PMCID: PMC4640294 DOI: 10.1159/000381019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/16/2015] [Indexed: 12/12/2022] Open
Abstract
Due to the high variance in available protocols on iodide-131 ((131)I) ablation in rodents, we set out to establish an effective method to generate a thyroid-ablated mouse model that allows the application of the sodium iodide symporter (NIS) as a reporter gene without interference with thyroidal NIS. We tested a range of (131)I doses with and without prestimulation of thyroidal radioiodide uptake by a low-iodine diet and thyroid-stimulating hormone (TSH) application. Efficacy of induction of hypothyroidism was tested by measurement of serum T4 concentrations, pituitary TSHβ and liver deiodinase type 1 (DIO1) mRNA expression, body weight analysis, and (99m)Tc-pertechnetate scintigraphy. While 200 µCi (7.4 MBq) (131)I alone was not sufficient to abolish thyroidal T4 production, 500 µCi (18.5 MBq) (131)I combined with 1 week of a low-iodine diet decreased serum concentrations below the detection limit. However, the high (131)I dose resulted in severe side effects. A combination of 1 week of a low-iodine diet followed by injection of bovine TSH before the application of 150 µCi (5.5 MBq) (131)I decreased serum T4 concentrations below the detection limit and significantly increased pituitary TSHβ concentrations. The systemic effects of induced hypothyroidism were shown by growth arrest and a decrease in liver DIO1 expression below the detection limit. (99m)Tc-pertechnetate scintigraphy revealed absence of thyroidal (99m)Tc-pertechnetate uptake in ablated mice. In summary, we report a revised protocol for radioiodide ablation of the thyroid gland in the mouse to generate an in vivo model that allows the study of thyroid hormone action using NIS as a reporter gene.
Collapse
Affiliation(s)
| | | | | | | | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Heuer
- Leibniz Institute for Environmental Medicine, Düsseldorf, Germany
| | | | | | - Peter J. Nelson
- Medical Policlinic IV, University Hospital of Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine II, Munich, Germany
- *Christine Spitzweg, MD, Department of Internal Medicine II, University Hospital of Munich, Marchioninistrasse 15, DE-81377 Munich (Germany), E-Mail
| |
Collapse
|
39
|
Sk UH, Kojima C. Dendrimers for theranostic applications. Biomol Concepts 2015; 6:205-217. [PMID: 26136305 DOI: 10.1515/bmc-2015-0012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2025] Open
Abstract
Recently, there have been tremendous advances in the development of various nanotechnology-based platforms for diagnosis and therapy. These nanoplatforms, which include liposomes, micelles, polymers, and dendrimers, comprise highly integrated nanoparticles that provide multiple functions, such as targeting, imaging, and therapy. This review focuses on dendrimer-based nanocarriers that have recently been developed for 'theranostics (or theragnosis)', a combination of therapy and diagnostics. We discuss the in vitro and in vivo applications of these nanocarriers in strategies against diseases including cancer. We also explore the use of dendrimers as imaging agents for fluorescence imaging, magnetic resonance imaging, X-ray computed tomography, and nuclear medical imaging.
Collapse
|
40
|
Knoop K, Schwenk N, Schmohl K, Müller A, Zach C, Cyran C, Carlsen J, Böning G, Bartenstein P, Göke B, Wagner E, Nelson PJ, Spitzweg C. Mesenchymal stem cell-mediated, tumor stroma-targeted radioiodine therapy of metastatic colon cancer using the sodium iodide symporter as theranostic gene. J Nucl Med 2015; 56:600-6. [PMID: 25745085 DOI: 10.2967/jnumed.114.146662] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The tumor-homing property of mesenchymal stem cells (MSCs) allows targeted delivery of therapeutic genes into the tumor microenvironment. The application of sodium iodide symporter (NIS) as a theranostic gene allows noninvasive imaging of MSC biodistribution and transgene expression before therapeutic radioiodine application. We have previously shown that linking therapeutic transgene expression to induction of the chemokine CCL5/RANTES allows a more focused expression within primary tumors, as the adoptively transferred MSC develop carcinoma-associated fibroblast-like characteristics. Although RANTES/CCL5-NIS targeting has shown efficacy in the treatment of primary tumors, it was not clear if it would also be effective in controlling the growth of metastatic disease. METHODS To expand the potential range of tumor targets, we investigated the biodistribution and tumor recruitment of MSCs transfected with NIS under control of the RANTES/CCL5 promoter (RANTES-NIS-MSC) in a colon cancer liver metastasis mouse model established by intrasplenic injection of the human colon cancer cell line LS174t. RANTES-NIS-MSCs were injected intravenously, followed by (123)I scintigraphy, (124)I PET imaging, and (131)I therapy. RESULTS Results show robust MSC recruitment with RANTES/CCL5-promoter activation within the stroma of liver metastases as evidenced by tumor-selective iodide accumulation, immunohistochemistry, and real-time polymerase chain reaction. Therapeutic application of (131)I in RANTES-NIS-MSC-treated mice resulted in a significant delay in tumor growth and improved overall survival. CONCLUSION This novel gene therapy approach opens the prospect of NIS-mediated radionuclide therapy of metastatic cancer after MSC-mediated gene delivery.
Collapse
Affiliation(s)
- Kerstin Knoop
- Department of Internal Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | - Kathrin Schmohl
- Department of Internal Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | - Andrea Müller
- Department of Internal Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Clemens Cyran
- Department of Clinical Radiology, Laboratory for Experimental Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Janette Carlsen
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Burkhard Göke
- Department of Internal Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, Munich, Germany; and
| | - Peter J Nelson
- Clinical Biochemistry Group, Department of Internal Medicine and Policlinic IV, Ludwig-Maximilians-University, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine II, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
41
|
PET imaging of oncolytic VSV expressing the mutant HSV-1 thymidine kinase transgene in a preclinical HCC rat model. Mol Ther 2015; 23:728-36. [PMID: 25609160 DOI: 10.1038/mt.2015.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/12/2015] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most predominant form of liver cancer and the third leading cause of cancer-related death worldwide. Due to the relative ineffectiveness of conventional HCC therapies, oncolytic viruses have emerged as novel alternative treatment agents. Our previous studies have demonstrated significant prolongation of survival in advanced HCC in rats after oncolytic vesicular stomatitis virus (VSV) treatment. In this study, we aimed to establish a reporter system to reliably and sensitively image VSV in a clinically relevant model of HCC for clinical translation. To this end, an orthotopic, unifocal HCC model in immune-competent Buffalo rats was employed to test a recombinant VSV vector encoding for an enhanced version of the herpes simplex virus 1 (HSV-1) thymidine kinase (sr39tk) reporter, which would allow the indirect detection of VSV via positron emission tomography (PET). The resulting data revealed specific tracer uptake in VSV-HSV1-sr39tk-treated tumors. Further characterization of the VSV-HSV1-sr39tk vector demonstrated its optimal detection time-point after application and its detection limit via PET. In conclusion, oncolytic VSV expressing the HSV1-sr39tk reporter gene allows for highly sensitive in vivo imaging via PET. Therefore, this imaging system may be directly translatable and beneficial in further clinical applications.
Collapse
|
42
|
Guenther CM, Kuypers BE, Lam MT, Robinson TM, Zhao J, Suh J. Synthetic virology: engineering viruses for gene delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:548-58. [PMID: 25195922 PMCID: PMC4227300 DOI: 10.1002/wnan.1287] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 12/13/2022]
Abstract
The success of gene therapy relies heavily on the performance of vectors that can effectively deliver transgenes to desired cell populations. As viruses have evolved to deliver genetic material into cells, a prolific area of research has emerged over the last several decades to leverage the innate properties of viruses as well as to engineer new features into them. Specifically, the field of synthetic virology aims to capitalize on knowledge accrued from fundamental virology research in order to design functionally enhanced gene delivery vectors. The enhanced viral vectors, or 'bionic' viruses, feature engineered components, or 'parts', that are natural (intrinsic to viruses or from other organisms) and synthetic (such as man-made polymers or inorganic nanoparticles). Various design strategies--rational, combinatorial, and pseudo-rational--have been pursued to create the hybrid viruses. The gene delivery vectors of the future will likely criss-cross the boundaries between natural and synthetic domains to harness the unique strengths afforded by the various functional parts that can be grafted onto virus capsids. Such research endeavors will further expand and enable enhanced control over the functional capacity of these nanoscale devices for biomedicine.
Collapse
Affiliation(s)
| | - Brianna E. Kuypers
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, 77005
| | - Michael T. Lam
- Department of Bioengineering, Rice University, Houston, TX, 77005
| | | | - Julia Zhao
- Department of Chemistry, Rice University, Houston, TX, 77005
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, 77005
| |
Collapse
|
43
|
SHI SHUO, ZHANG MIN, GUO RUI, MIAO YING, ZHANG MIAO, HU JIAJIA, XI YUN, LI BIAO. Feasibility of lentiviral-mediated sodium iodide symporter gene delivery for the efficient monitoring of bone marrow-derived mesenchymal stem cell transplantation and survival. Int J Mol Med 2014; 34:1547-54. [DOI: 10.3892/ijmm.2014.1970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/16/2014] [Indexed: 11/06/2022] Open
|
44
|
Guo R, Zhang M, Xi Y, Ma Y, Liang S, Shi S, Miao Y, Li B. Theranostic studies of human sodium iodide symporter imaging and therapy using 188Re: a human glioma study in mice. PLoS One 2014; 9:e102011. [PMID: 25000403 PMCID: PMC4084984 DOI: 10.1371/journal.pone.0102011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the role of 188Re in human sodium iodide symporter (hNIS) theranostic gene-mediated human glioma imaging and therapy in model mice. Methods The human glioma cell line U87 was transfected with recombinant lentivirus encoding the hNIS gene under the control of cytomegalovirus promoter (U87-hNIS). The uptake and efflux of 188Re were determined after incubating the cells with 188Re. 188Re uptake experiments in the presence of various concentrations of sodium perchlorate were carried out. In vitro cell killing tests with 188Re were performed. U87-hNIS mediated 188Re distribution, imaging and therapy in nude mice were also tested. Results U87-hNIS cell line was successfully established. The uptake of 188Re in U87-hNIS cells increased up to 26-fold compared to control cells, but was released rapidly with a half-life of approximately 4 minutes. Sodium perchlorate reduced hNIS-mediated 188Re uptake to levels of control cell lines. U87-hNIS cells were selectively killed following exposure to 188Re, with a survival of 21.4%, while control cells had a survival of 92.1%. Unlike in vitro studies, U87-hNIS tumor showed a markedly increased 188Re retention even 48 hours after 188Re injection. In the therapy study, there was a significant difference in tumor size between U87-hNIS mice (317±67 mm3) and control mice (861±153 mm3) treated with 188Re for 4 weeks (P<0.01). Conclusion The results indicate that inserting the hNIS gene into U87 cells is sufficient to induce specific 188Re uptake, which has a cell killing effect both in vitro and in vivo. Moreover, our study, based on the function of hNIS as a theranostic gene allowing noninvasive imaging of hNIS expression by 188Re scintigraphy, provides detailed characterization of in vivo vector biodistribution and level, localization, essential prerequisites for precise planning and monitoring of clinical gene therapy that aims to individualize gene therapy concept.
Collapse
Affiliation(s)
- Rui Guo
- Department of Nuclear Medicine, Rui Jin Hospital, School of medicine, Shanghai JiaoTong University, Shanghai, China
| | - M. Zhang
- Department of Nuclear Medicine, Rui Jin Hospital, School of medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yun Xi
- Department of Nuclear Medicine, Rui Jin Hospital, School of medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yufei Ma
- Department of Nuclear Medicine, Xin Hua Hospital, School of medicine, Shanghai JiaoTong University, Shanghai, China
| | - Sheng Liang
- Department of Nuclear Medicine, Xin Hua Hospital, School of medicine, Shanghai JiaoTong University, Shanghai, China
| | - Shuo Shi
- Department of Nuclear Medicine, Rui Jin Hospital, School of medicine, Shanghai JiaoTong University, Shanghai, China
| | - Ying Miao
- Department of Nuclear Medicine, Rui Jin Hospital, School of medicine, Shanghai JiaoTong University, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, School of medicine, Shanghai JiaoTong University, Shanghai, China
- * E-mail:
| |
Collapse
|
45
|
Micali S, Bulotta S, Puppin C, Territo A, Navarra M, Bianchi G, Damante G, Filetti S, Russo D. Sodium iodide symporter (NIS) in extrathyroidal malignancies: focus on breast and urological cancer. BMC Cancer 2014; 14:303. [PMID: 24884806 PMCID: PMC4019362 DOI: 10.1186/1471-2407-14-303] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/17/2014] [Indexed: 12/15/2022] Open
Abstract
Background Expression and function of sodium iodide symporter (NIS) is requisite for efficient iodide transport in thyrocytes, and its presence in cancer cells allows the use of radioiodine as a diagnostic and therapeutic tool in thyroid neoplasia. Discovery of NIS expression in extrathyroidal tissues, including transformed cells, has opened a novel field of research regarding NIS-expressing extrathyroidal neoplasia. Indeed, expression of NIS may be used as a biomarker for diagnostic, prognostic, and therapeutic purposes. Moreover, stimulation of endogenous NIS expression may permit the radioiodine treatment of extrathyroidal lesions by concentrating this radioisotope. Results This review describes recent findings in NIS research in extrathyroidal malignancies, focusing on breast and urological cancer, emphasizing the most relevant developments that may have clinical impact. Conclusions Given the recent progress in the study of NIS regulation as molecular basis for new therapeutic approaches in extrathyroidal cancers, particular attention is given to studies regarding the relationship between NIS and clinical-pathological aspects of the tumors and the regulation of NIS expression in the experimental models.
Collapse
Affiliation(s)
| | | | | | - Angelo Territo
- Department of Urology, University of Modena and Reggio Emilia, Via Largo del Pozzo, 71, Modena 41100, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Am J Cancer Res 2014; 4:660-77. [PMID: 24723986 PMCID: PMC3982135 DOI: 10.7150/thno.8698] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/11/2014] [Indexed: 12/16/2022] Open
Abstract
Nanotheranostics is to apply and further develop nanomedicine strategies for advanced theranostics. This review summarizes the various nanocarriers developed so far in the literature for nanotheranostics, which include polymer conjugations, dendrimers, micelles, liposomes, metal and inorganic nanoparticles, carbon nanotubes, and nanoparticles of biodegradable polymers for sustained, controlled and targeted co-delivery of diagnostic and therapeutic agents for better theranostic effects with fewer side effects. The theranostic nanomedicine can achieve systemic circulation, evade host defenses and deliver the drug and diagnostic agents at the targeted site to diagnose and treat the disease at cellular and molecular level. The therapeutic and diagnostic agents are formulated in nanomedicine as a single theranostic platform, which can then be further conjugated to biological ligand for targeting. Nanotheranostics can also promote stimuli-responsive release, synergetic and combinatory therapy, siRNA co-delivery, multimodality therapies, oral delivery, delivery across the blood-brain barrier as well as escape from intracellular autophagy. The fruition of nanotheranostics will be able to provide personalized therapy with bright prognosis, which makes even the fatal diseases curable or at least treatable at the earliest stage.
Collapse
|
47
|
The evolution of adenoviral vectors through genetic and chemical surface modifications. Viruses 2014; 6:832-55. [PMID: 24549268 PMCID: PMC3939484 DOI: 10.3390/v6020832] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/31/2022] Open
Abstract
A long time has passed since the first clinical trial with adenoviral (Ad) vectors. Despite being very promising, Ad vectors soon revealed their limitations in human clinical trials. The pre-existing immunity, the marked liver tropism and the high toxicity of first generation Ad (FG-Ad) vectors have been the main challenges for the development of new approaches. Significant effort toward the development of genetically and chemically modified adenoviral vectors has enabled researchers to create more sophisticated vectors for gene therapy, with an improved safety profile and a higher transduction ability of different tissues. In this review, we will describe the latest findings in the high-speed, evolving field of genetic and chemical modifications of adenoviral vectors, a field in which different disciplines, such as biomaterial research, virology and immunology, co-operate synergistically to create better gene therapy tools for modern challenges.
Collapse
|
48
|
Dmitriev IP, Kashentseva EA, Kim KH, Matthews QL, Krieger SS, Parry JJ, Nguyen KN, Akers WJ, Achilefu S, Rogers BE, Alvarez RD, Curiel DT. Monitoring of biodistribution and persistence of conditionally replicative adenovirus in a murine model of ovarian cancer using capsid-incorporated mCherry and expression of human somatostatin receptor subtype 2 gene. Mol Imaging 2014; 13:7290.2014.00024. [PMID: 25249483 DOI: 10.2310/7290.2014.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
A significant limiting factor to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy is the inability to noninvasively monitor these agents and their potential persistence. To address this issue, we proposed a novel imaging approach that combines transient expression of the human somatostatin receptor (SSTR) subtype 2 reporter gene with genetic labeling of the viral capsid with mCherry fluorescent protein. To test this dual modality system, we constructed the Ad5/3Δ24pIXcherry/SSTR CRAd and validated its capacity to generate fluorescent and nuclear signals in vitro and following intratumoral injection. Analysis of 64Cu-CB-TE2A-Y3-TATE biodistribution in mice revealed reduced uptake in tumors injected with the imaging CRAd relative to the replication-incompetent, Ad-expressing SSTR2 but significantly greater uptake compared to the negative CRAd control. Optical imaging demonstrated relative correlation of fluorescent signal with virus replication as determined by viral genome quantification in tumors. Positron emission tomography/computed tomography studies demonstrated that we can visualize radioactive uptake in tumors injected with imaging CRAd and the trend for greater uptake by standardized uptake value analysis compared to control CRAd. In the aggregate, the plasticity of our dual imaging approach should provide the technical basis for monitoring CRAd biodistribution and persistence in preclinical studies while offering potential utility for a range of clinical applications.
Collapse
|
49
|
Capasso C, Hirvinen M, Cerullo V. Beyond Gene Delivery: Strategies to Engineer the Surfaces of Viral Vectors. Biomedicines 2013; 1:3-16. [PMID: 28548054 PMCID: PMC5423465 DOI: 10.3390/biomedicines1010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/28/2022] Open
Abstract
Viral vectors have been extensively studied due to their great transduction efficiency compared to non-viral vectors. These vectors have been used extensively in gene therapy, enabling the comprehension of, not only the advantages of these vectors, but also the limitations, such as the activation of the immune system after vector administration. Moreover, the need to control the target of the vector has led to the development of chemical and non-chemical modifications of the vector surface, allowing researchers to modify the tropism and biodistribution profile of the vector, leading to the production of viral vectors able to target different tissues and organs. This review describes recent non-genetic modifications of the surfaces of viral vectors to decrease immune system activation and to control tissue targeting. The developments described herein provide opportunities for applications of gene therapy to treat acquired disorders and genetic diseases and to become useful tools in regenerative medicine.
Collapse
Affiliation(s)
- Cristian Capasso
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki 00760, Finland.
| | - Mari Hirvinen
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki 00760, Finland.
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki 00760, Finland.
| |
Collapse
|
50
|
EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e131. [PMID: 24193032 PMCID: PMC3889187 DOI: 10.1038/mtna.2013.58] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/10/2013] [Indexed: 12/19/2022]
Abstract
We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of
combined radiovirotherapy after systemic delivery of the theranostic sodium iodide
symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and
targeting we physically coated replication-selective adenoviruses carrying the
hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM)
dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand
GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent
but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus
in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver
due to hepatic sequestration, which were significantly reduced after coating as
demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling
resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral
xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly
lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody
cetuximab. A significantly enhanced oncolytic effect was observed following systemic
application of dendrimer-coated adenovirus that was further increased by additional
treatment with a therapeutic dose of 131I. These results demonstrate restricted
virus tropism and tumor-selective retargeting after systemic application of coated,
EGFR-targeted adenoviruses therefore representing a promising strategy for improved
systemic adenoviral NIS gene therapy.
Collapse
|