1
|
Westlund Gotby LEL, Stella M, Van Speybroeck CDE, Lobeek D, van Velden FHP, Stam MK, Dibbets-Schneider P, de Vries-Huizing DMV, Rijkhorst EJ, de Wit-van de Veen BJ, Wierts R, van Rooij R. Towards harmonized holmium-166 SPECT image quality for dosimetry: a multi-center, multi-vendor study. EJNMMI Phys 2025; 12:24. [PMID: 40102311 PMCID: PMC11920561 DOI: 10.1186/s40658-025-00733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Reliable dosimetry based on SPECT/CT imaging is essential to achieve personalized 166Ho-radioembolization treatment planning and evaluation. This study quantitatively evaluates multiple acquisition and reconstruction protocols for 166Ho-SPECT imaging based on data from five Dutch hospitals. We aim to recommend an imaging protocol which harmonizes 166Ho-SPECT images for reproducible and accurate dosimetry in a multi-scanner and multi-center setting. METHODS Cylindrical and NEMA IEC phantoms, filled with 166Ho-chloride, were imaged using seven SPECT/CT scanners from two vendors (GE HealthCare and Siemens Healthineers). Data were acquired with a photopeak window centered at 81 keV. Two adjacent scatter windows, and one upper scatter window at 118 keV were used for triple-energy window (TEW) and dual-energy window (DEW) scatter correction, respectively. The TEW and DEW reconstructions used vendor-specific software. Additionally, a vendor-neutral software package with Monte Carlo (MC) scatter correction (Hermes Medical Solutions) was used to study the influence of scanner hardware on the image quality. System sensitivity was measured in projection data of the cylindrical phantom. The axial uniformity in the cylindrical phantom was used to characterize the impact of the scatter correction method. The image quality was evaluated by the coefficient of variation (COV; noise), the contrast recovery coefficients (CRCs) and contrast-to-noise ratios (CNRs). RESULTS TEW scatter correction resulted in superior uniformity and higher CRCs compared to the DEW (CRC for the largest sphere over all scanners, mean ± SD (range): TEW 0.54 ± 0.07 (0.36-0.65), DEW 0.44 ± 0.04 (0.34-0.51)). DEW resulted in lower noise levels compared to TEW (16% lower on average). The DEW and TEW images resulted in comparable CNRs. The system sensitivities and the vendor-neutral image reconstructions demonstrated differences in hardware between the two vendors, most likely due to the characteristics of the vendor-specific medium energy collimator. CONCLUSION This study demonstrates that TEW scatter correction increases the accuracy of 166Ho-SPECT images compared to DEW, and we henceforth recommend adopting this method in the clinical 166Ho-dosimetry workflow. Scanner hardware has a substantial impact on the characteristics of the acquired data, and identical reconstruction settings will therefore not automatically lead to harmonized image quality.
Collapse
Affiliation(s)
- Lovisa E L Westlund Gotby
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | - Martina Stella
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Camille D E Van Speybroeck
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Daphne Lobeek
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Floris H P van Velden
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Mette K Stam
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Petra Dibbets-Schneider
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Daphne M V de Vries-Huizing
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Erik-Jan Rijkhorst
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6299 HX, Maastricht, The Netherlands
| | - Rob van Rooij
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| |
Collapse
|
2
|
van Wijk MWM, van Wolfswinkel G, Arntz MJ, Janssen MJR, Roosen J, Nijsen JFW. Development and validation of an innovative administration system to facilitate controlled holmium-166 microsphere administration during TARE. EJNMMI Phys 2024; 11:87. [PMID: 39412619 PMCID: PMC11484995 DOI: 10.1186/s40658-024-00692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND To develop and validate a novel administration device for holmium-166 transarterial radioembolisation (TARE) with the purpose of facilitating controlled fractional microsphere administration for a more flexible and image-guided TARE procedure. METHODS A Controlled Administration Device (CAD) was developed using MR-conditional materials. The CAD contains a rotating syringe to keep the microspheres in suspension during administration. Different rotational speeds were tested ex vivo to optimise the homogeneity of microsphere fractions administered from the device. The technical performance, accuracy, and safety was validated in three patients in a clinical TARE setting by administering a standard clinical dose in 5 fractions (identifier: NCT05183776). MRI-based dosimetry was used to validate the homogeneity of the given fractions in vivo, and serious adverse device event ((S)A(D)E) reporting was performed to assess safety of the CAD. RESULTS A rotational speed of 30 rpm resulted in the most homogeneous microsphere fractions with a relative mean deviation of 1.1% (range: -9.1-8.0%). The first and last fraction showed the largest deviation with a mean of -26% (std. 16%) and 7% (std. 13%). respectively. In the three patient cases the homogeneity of the microsphere fractions was confirmed given that MRI-based dosimetry showed near linear increase of mean absorbed target liver dose over the given fractions with R2 values of 0.98, 0.97 and 0.99. No (S)A(D)E's could be contributed to the use of the CAD. CONCLUSIONS The newly developed CAD facilitates safe and accurate fractional microsphere administration during TARE, and can be used for multiple applications in the current and future workflows of TARE.
Collapse
Affiliation(s)
- Meike W M van Wijk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | | - Mark J Arntz
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel J R Janssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joey Roosen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Frank W Nijsen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Morsink C, Klaassen N, van de Maat G, Boswinkel M, Arranja A, Bruggink R, van Houwelingen I, Schaafsma I, Hesselink JW, Nijsen F, van Nimwegen B. Quantitative CT imaging and radiation-absorbed dose estimations of 166Ho microspheres: paving the way for clinical application. Eur Radiol Exp 2024; 8:116. [PMID: 39400769 PMCID: PMC11473764 DOI: 10.1186/s41747-024-00511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Microbrachytherapy enables high local tumor doses sparing surrounding tissues by intratumoral injection of radioactive holmium-166 microspheres (166Ho-MS). Magnetic resonance imaging (MRI) cannot properly detect high local Ho-MS concentrations and single-photon emission computed tomography has insufficient resolution. Computed tomography (CT) is quicker and cheaper with high resolution and previously enabled Ho quantification. We aimed to optimize Ho quantification on CT and to implement corresponding dosimetry. METHODS Two scanners were calibrated for Ho detection using phantoms and multiple settings. Quantification was evaluated in five phantoms and seven canine patients using subtraction and thresholding including influences of the target tissue, injected amounts, acquisition parameters, and quantification volumes. Radiation-absorbed dose estimation was implemented using a three-dimensional 166Ho specific dose point kernel generated with Monte Carlo simulations. RESULTS CT calibration showed a near-perfect linear relation between radiodensity (HU) and Ho concentrations for all conditions, with differences between scanners. Ho detection during calibration was higher using lower tube voltages, soft-tissue kernels, and without a scanner detection limit. The most accurate Ho recovery in phantoms was 102 ± 11% using a threshold of mean tissue HU + (2 × standard deviation) and in patients 98 ± 31% using a 100 HU threshold. Thresholding allowed better recovery with less variation and dependency on the volume of interest compared to the subtraction of a single HU reference value. Corresponding doses and histograms were successfully generated. CONCLUSION CT quantification and dosimetry of 166Ho should be considered for further clinical application with on-site validation using radioactive measurements and intra-operative Ho-MS and dose visualizations. RELEVANCE STATEMENT Image-guided holmium-166 microbrachytherapy currently lacks reliable quantification and dosimetry on CT to ensure treatment safety and efficacy, while it is the only imaging modality capable of quantifying high in vivo holmium concentrations. KEY POINTS Local injection of 166Ho-MS enables high local tumor doses while sparing surrounding tissue. CT enables imaging-based quantification and radiation-absorbed dose estimation of concentrated Ho in vivo, essential for treatment safety and efficacy. Two different CT scanners and multiple acquisition and reconstruction parameters showed near-perfect linearity between radiodensity and Ho concentration. The most accurate Ho recoveries on CT were 102 ± 11% in five phantoms and 98 ± 31% in seven canine patients using thresholding methods. Dose estimations and volume histograms were successfully implemented for clinical application using a dose point kernel based on Monte Carlo simulations.
Collapse
Affiliation(s)
- Chiron Morsink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| | - Nienke Klaassen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Milou Boswinkel
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Robin Bruggink
- 3D Lab, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Irene Schaafsma
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands
| | - Jan Willem Hesselink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands
| | - Frank Nijsen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Bas van Nimwegen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands
| |
Collapse
|
4
|
Westlund Gotby LEL, Lobeek D, Roosen J, de Bakker M, Konijnenberg MW, Nijsen JFW. Accuracy of holmium-166 SPECT/CT quantification over a large range of activities. EJNMMI Phys 2024; 11:78. [PMID: 39325204 PMCID: PMC11427639 DOI: 10.1186/s40658-024-00683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Quantitative imaging is a crucial step for dosimetry in radionuclide therapies. Traditionally, SPECT/CT imaging is quantified based on scanner-specific conversion factors or self-calibration, but recently absolute quantification methods have been introduced in commercial SPECT reconstruction software (Broad Quantification, Siemens Healthineers). In this phantom study we investigate the accuracy of three quantification methods for holmium-166 SPECT/CT imaging, and provide recommendations for clinical dosimetry. METHODS One cylindrical phantom, filled with a homogeneous holmium-166-chloride activity concentration solution, was imaged at one time point to determine a scanner-specific conversion factor, and to characterize the spatial dependency of the activity concentration recovery. One Jaszczak phantom with six fillable spheres, 10:1 sphere-to-background ratio, was imaged over a large range of holmium-166 activities (61-3130 MBq). The images were reconstructed with either an ordered subset expectation maximization (OSEM, Flash3D-reconstruction; scanner-specific quantification or self-calibration quantification) or an ordered subset conjugate gradient (OSCG, xSPECT-reconstruction; Broad Quantification) algorithm. These three quantification methods were compared for the data of the Jaszczak phantom and evaluated based on whole phantom recovered activity, activity concentration recovery coefficients (ACRC), and recovery curves. RESULTS The activity recovery in the Jaszczak phantom was 28-115% for the scanner-specific, and 57-97% for the Broad Quantification quantification methods, respectively. The self-calibration-based activity recovery is inherently always 100%. The ACRC for the largest sphere (Ø60 mm, ~ 113 mL) ranged over (depending on the activity level) 0.22-0.89, 0.76-0.86, 0.39-0.72 for scanner-specific, self-calibration and Broad Quantification, respectively. CONCLUSION Of the three investigated quantification methods, the self-calibration technique produces quantitative SPECT images with the highest accuracy in the investigated holmium-166 activity range.
Collapse
Affiliation(s)
| | - Daphne Lobeek
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joey Roosen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten de Bakker
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark W Konijnenberg
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J Frank W Nijsen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Keane G, Lam M, Braat A, Bruijnen R, Kaufmann N, de Jong H, Smits M. Transarterial Radioembolization (TARE) Global Practice Patterns: An International Survey by the Cardiovascular and Interventional Radiology Society of Europe (CIRSE). Cardiovasc Intervent Radiol 2024; 47:1224-1236. [PMID: 38914769 PMCID: PMC11379766 DOI: 10.1007/s00270-024-03768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/12/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE An international survey was conducted by the Cardiovascular Interventional Radiological Society of Europe (CIRSE) to evaluate radioembolization practice and capture opinions on real-world clinical and technical aspects of this therapy. MATERIALS AND METHODS A survey with 32 multiple choice questions was sent as an email to CIRSE members between November and December 2022. CIRSE group member and sister societies promoted the survey to their local members. The dataset was cleaned of duplicates and entries with missing data, and the resulting anonymized dataset was analysed. Data were presented using descriptive statistics. RESULTS The survey was completed by 133 sites, from 30 countries, spanning 6 continents. Most responses were from European centres (87/133, 65%), followed by centres from the Americas (22/133, 17%). Responding sites had been performing radioembolization for 10 years on average and had completed a total of 20,140 procedures over the last 5 years. Hepatocellular carcinoma treatments constituted 56% of this total, colorectal liver metastasis 17% and cholangiocarcinoma 14%. New sites had opened every year for the past 20 years, indicating the high demand for this therapy. Results showed a trend towards individualized treatment, with 79% of responders reporting use of personalized dosimetry for treatment planning and 97% reporting routine assessment of microsphere distribution post-treatment. Interventional radiologists played an important role in referrals, being present in the referring multi-disciplinary team in 91% of responding centres. CONCLUSION This survey provides insight into the current state of radioembolization practice globally. The results reveal the increasing significance placed on dosimetry, evolving interventional techniques and increased technology integration.
Collapse
Affiliation(s)
- Grace Keane
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands.
| | - Marnix Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Arthur Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Rutger Bruijnen
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Nathalie Kaufmann
- Next Research, Contract Research Organization, Vienna, Austria
- Clinical Research, Cardiovascular and Interventional Radiological Society of Europe, Vienna, Austria
| | - Hugo de Jong
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Maarten Smits
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
6
|
Kühnel C, Köhler A, Brachwitz T, Seifert P, Gühne F, Aschenbach R, Freudenberg R, Freesmeyer M, Drescher R. Clinical Results of Holmium-166 Radioembolization with Personalized Dosimetry for the Treatment of Hepatocellular Carcinoma. J Pers Med 2024; 14:747. [PMID: 39064001 PMCID: PMC11278198 DOI: 10.3390/jpm14070747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transarterial radioembolization (TARE) with 166Ho-loaded microspheres is an established locoregional treatment for hepatocellular carcinoma (HCC), introduced in 2010. This study evaluates the clinical outcome of patients with HCC who underwent 166Ho-TARE with personalized dosimetry. Twenty-seven patients with 36 TARE procedures were analyzed. Treatment planning, execution, and evaluation was possible without complications in all cases. At the 3-month follow-up, disease control in the treated liver was achieved in 81.8% of patients (complete remission, partial remission, and stable disease in 36.4%, 31.8%, and 13.6%, respectively). The median overall survival (OS) was 17.2 months, and progression-free survival (PFS) in the treated liver was 11 months. Statistically significant positive correlations were observed between the achieved radiation dose for the tumor and both PFS (r = 0.62, p < 0.05) and OS (r = 0.48, p < 0.05), suggesting a direct dose-response relationship. The calculated achieved dose was 8.25 Gy lower than the planned dose, with relevant variance between planned and achieved doses in individual cases. These results confirm the efficacy of the 166Ho-TARE holmium platform and underscore the potential of voxel-based, personalized dosimetry to improve clinical outcomes.
Collapse
Affiliation(s)
- Christian Kühnel
- Clinic of Nuclear Medicine, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (C.K.)
| | - Alexander Köhler
- Clinic of Nuclear Medicine, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (C.K.)
| | - Tim Brachwitz
- Clinic of Nuclear Medicine, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (C.K.)
| | - Philipp Seifert
- Clinic of Nuclear Medicine, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (C.K.)
| | - Falk Gühne
- Clinic of Nuclear Medicine, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (C.K.)
| | - René Aschenbach
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Robert Freudenberg
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Martin Freesmeyer
- Clinic of Nuclear Medicine, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (C.K.)
| | - Robert Drescher
- Clinic of Nuclear Medicine, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (C.K.)
| |
Collapse
|
7
|
Paladini A, Spinetta M, Matheoud R, D’Alessio A, Sassone M, Di Fiore R, Coda C, Carriero S, Biondetti P, Laganà D, Minici R, Semeraro V, Sacchetti GM, Carrafiello G, Guzzardi G. Role of Flex-Dose Delivery Program in Patients Affected by HCC: Advantages in Management of Tare in Our Experience. J Clin Med 2024; 13:2188. [PMID: 38673461 PMCID: PMC11051074 DOI: 10.3390/jcm13082188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Introduced in the latest BCLC 2022, endovascular trans-arterial radioembolization (TARE) has an important role in the treatment of unresectable hepatocellular carcinoma (HCC) as a "bridge" or "downstaging" of disease. The evolution of TARE technology allows a more flexible and personalized target treatment, based on the anatomy and vascular characteristics of each HCC. The flex-dose delivery program is part of this perspective, which allows us to adjust the dose and its radio-embolizing power in relation to the size and type of cancer and to split the therapeutic dose of Y90 in different injections (split-bolus). Methods: From January 2020 to January 2022, we enrolled 19 patients affected by unresectable HCC and candidates for TARE treatment. Thirteen patients completed the treatment following the flex-dose delivery program. Response to treatment was assessed using the mRECIST criteria with CT performed 6 and 9 months after treatment. Two patients did not complete the radiological follow-up and were not included in this retrospective study. The final cohort of this study counts eleven patients. Results: According to mRECIST criteria, six months of follow-up were reported: five cases of complete response (CR, 45.4% of cases), four cases of partial response (PR, 36.4%), and two cases of progression disease (PD, 18.2%). Nine months follow-up reported five cases of complete response (CR, 45.4%), two cases of partial response (PR, 18.2%), and four cases of progression disease (PD, 36.4%). No intra and post-operative complications were described. The average absorbed doses to the hepatic lesion and to the healthy liver tissue were 319 Gy (range 133-447 Gy) and 9.5 Gy (range 2-19 Gy), respectively. Conclusions: The flex-dose delivery program represents a therapeutic protocol capable of "saving" portions of healthy liver parenchyma by designing a "custom-made" treatment for the patient.
Collapse
Affiliation(s)
- Andrea Paladini
- Department of Interventional Radiology, Santissima Annunziata Hospital, 74121 Taranto, Italy
| | - Marco Spinetta
- Radiology Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (M.S.); (M.S.); (R.D.F.); (C.C.)
| | - Roberta Matheoud
- Medical Physics Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (R.M.)
| | - Andrea D’Alessio
- Medical Physics Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (R.M.)
| | - Miriana Sassone
- Radiology Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (M.S.); (M.S.); (R.D.F.); (C.C.)
| | - Riccardo Di Fiore
- Radiology Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (M.S.); (M.S.); (R.D.F.); (C.C.)
| | - Carolina Coda
- Radiology Department, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (M.S.); (M.S.); (R.D.F.); (C.C.)
| | - Serena Carriero
- UOC Radiology, Fondazione IRCCS Cà Granda, Maggiore Hospital, 20122 Milan, Italy; (S.C.)
| | - Pierpaolo Biondetti
- UOC Radiology, Fondazione IRCCS Cà Granda, Maggiore Hospital, 20122 Milan, Italy; (S.C.)
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (D.L.); (R.M.)
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (D.L.); (R.M.)
| | - Vittorio Semeraro
- SSD Interventional Radiology, S.S. Annunziata Hospital, 74121 Taranto, Italy;
| | - Gian Mauro Sacchetti
- Nuclear Medicine Department, University Hospital Maggiore della Carità, 28100 Novara, Italy;
| | - Gianpaolo Carrafiello
- Operative Unit of Radiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Giuseppe Guzzardi
- Unit of Interventional Radiology, Department of Radiology, Ospedale Maggiore della Carità, Corso Giuseppe Mazzini 18, 28100 Novara, Italy;
| |
Collapse
|
8
|
Collette B, Mannie-Corbisier M, Bucalau AM, Pauly N, Verset G, Moreno-Reyes R, Flamen P, Trotta N. Impact of scatter correction on personalized dosimetry in selective internal radiotherapy using 166Ho-PLLA: a single-center study including Monte-Carlo simulation, phantom and patient imaging. EJNMMI Phys 2024; 11:33. [PMID: 38564100 PMCID: PMC10987418 DOI: 10.1186/s40658-024-00639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Developments in transarterial radioembolization led to the conception of new microspheres loaded with holmium-166 (166Ho). However, due to the complexity of the scatter components in 166Ho single photon emission computed tomography (SPECT), questions about image quality and dosimetry are emerging. The aims of this work are to investigate the scatter components and correction methods to propose a suitable solution, and to evaluate the impact on image quality and dosimetry including Monte-Carlo (MC) simulations, phantom, and patient data. METHODS Dual energy window (DEW) and triple energy window (TEW) methods were investigated for scatter correction purposes and compared using Contrast Recovery Coefficients (CRC) and Contrast to Noise Ratios (CNR). First, MC simulations were carried out to assess all the scatter components in the energy windows used, also to confirm the choice of the parameter needed for the DEW method. Then, MC simulations of acquisitions of a Jaszczak phantom were conducted with conditions mimicking an ideal scatter correction. These simulated projections can be reconstructed and compared with real acquisitions corrected by both methods and then reconstructed. Finally, both methods were applied on patient data and their impact on personalized dosimetry was evaluated. RESULTS MC simulations confirmed the use of k = 1 for the DEW method. These simulations also confirmed the complexity of scatter components in the main energy window used with a high energy gamma rays component of about half of the total counts detected, together with a negligible X rays component and a negligible presence of fluorescence. CRC and CNR analyses, realized on simulated scatter-free projections of the phantom and on scatter corrected acquisitions of the same phantom, suggested an increased efficiency of the TEW method, even at the price of higher level of noise. Finally, these methods, applied on patient data, showed significant differences in terms of non-tumoral liver absorbed dose, non-tumoral liver fraction under 50 Gy, tumor absorbed dose, and tumor fraction above 150 Gy. CONCLUSIONS This study demonstrated the impact of scatter correction on personalized dosimetry on patient data. The use of a TEW method is proposed for scatter correction in 166Ho SPECT imaging.
Collapse
Affiliation(s)
- Benoît Collette
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
- Laboratory of Image Synthesis and Analysis, Brussels School of Engineering, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Marie Mannie-Corbisier
- Department of Nuclear Metrology, Brussels School of Engineering, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ana-Maria Bucalau
- Department of Gastroenterolgy, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Pauly
- Department of Nuclear Metrology, Brussels School of Engineering, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gontran Verset
- Department of Gastroenterolgy, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rodrigo Moreno-Reyes
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Patrick Flamen
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Nicola Trotta
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|
9
|
Thoduka SG, Flegar L, Groeben C, Huber J, Eisenmenger N, Paulus T, Vogt K, Luster M, Abolmaali N. Trends in Selective Internal Radiation Therapy (SIRT) for Treating Hepatocellular Carcinoma, Cholangiocarcinoma, and Liver Metastasis: A Total Population Analysis from 2006 to 2021 in Germany. Curr Oncol 2023; 30:10325-10335. [PMID: 38132386 PMCID: PMC10742573 DOI: 10.3390/curroncol30120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The aim of this study was to investigate trends in selective internal radiation therapy (SIRT) for hepatocellular carcinoma (HCC), cholangiocarcinoma (CCC), and liver metastasis in Germany. We analyzed the nationwide German hospital billing database from 2006 to 2019 for the diagnosis of HCC, CCC or liver metastasis in combination with SIRT. For analyses of SIRT on the hospital level, we used the reimbursement.INFO tool based on German hospitals' quality reports from 2008 to 2021. Linear regression analysis was performed to detect changes over time. We included a total of 14,165 SIRT procedures. The annual numbers increased from 99 in 2006 to 1605 in 2015 (p < 0.001; increase by 1521%), decreasing to 1175 cases in 2019 (p < 0.001). In 2008, 6 of 21 hospitals (28.6%) performed more than 20 SIRTs per year, which increased to 19 of 53 (35.8%) in 2021. The share of SIRT for HCC increased from 29.8% in 2006 to 44.7% in 2019 (p < 0.001) and for CCC from 0% in 2006 to 9.5% in 2019 (p < 0.001), while the share of SIRT for liver metastasis decreased from 70.2% in 2006 to 45.7% in 2019 (p < 0.001). In-hospital mortality was 0.2% after the SIRT procedure. Gastritis (2.7%), liver failure (0.4%), and sepsis (0.3%) were the most common in-hospital complications reported. We observed an increase in SIRT procedures in Germany, with the number of hospitals offering the procedure going up from 21 in 2008 to 53 in 2021. While the treatment of liver metastasis remains the most common indication, SIRT for HCC and CCC increased significantly over the last few years. The mortality and complication rates show that SIRT is a relatively safe procedure.
Collapse
Affiliation(s)
- Smita George Thoduka
- Department of Nuclear Medicine, Philipps University of Marburg, 35043 Marburg, Germany;
| | - Luka Flegar
- Department of Urology, Philipps University of Marburg, 35043 Marburg, Germany; (L.F.); (C.G.); (J.H.)
| | - Christer Groeben
- Department of Urology, Philipps University of Marburg, 35043 Marburg, Germany; (L.F.); (C.G.); (J.H.)
| | - Johannes Huber
- Department of Urology, Philipps University of Marburg, 35043 Marburg, Germany; (L.F.); (C.G.); (J.H.)
| | | | - Tobias Paulus
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (T.P.); (N.A.)
| | - Katharina Vogt
- Department of Radiology and Interventional Radiology, University Hospital Freiburg, 79110 Breisgau, Germany;
| | - Markus Luster
- Department of Nuclear Medicine, Philipps University of Marburg, 35043 Marburg, Germany;
| | - Nasreddin Abolmaali
- Department for Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (T.P.); (N.A.)
| |
Collapse
|
10
|
Boshell D, Bester L. Radioembolisation of liver metastases. J Med Imaging Radiat Oncol 2023; 67:842-852. [PMID: 37343147 DOI: 10.1111/1754-9485.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
This review aims to present contemporary data for SIRT in the treatment of secondary hepatic malignancies including colorectal, neuroendocrine, breast and uveal melanoma.
Collapse
Affiliation(s)
- David Boshell
- Department of Radiology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Lourens Bester
- Department of Radiology, University of Notre Dame, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Vermeulen S, De Keukeleire K, Dorny N, Colle I, Van Den Bossche B, Nuttens V, Ooms D, De Bondt P, De Winter O. Holmium-166 Transarterial Radioembolization for the Treatment of Intrahepatic Cholangiocarcinoma: A Case Series. Cancers (Basel) 2023; 15:4791. [PMID: 37835485 PMCID: PMC10571855 DOI: 10.3390/cancers15194791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Transarterial radioembolization (TARE) is used to treat primary and secondary malignancies in the liver that are not amenable to curative resection. Accumulating evidence demonstrates the efficacy and safety of TARE with yttrium-90 (90Y), which is the most widely used radionuclide for TARE, and later with holmium-166 (166Ho) for various indications. However, the safety and efficacy of 166Ho TARE in patients with intrahepatic cholangiocarcinoma (ICC) remains to be studied. METHODS This was a retrospective case series study of seven consecutive patients with ICC who were treated with 166-Ho-TARE in our center. We recorded the clinical parameters and outcomes of the TARE procedures, the tumor response according to mRECIST, subsequent treatments, and adverse events. RESULTS Three out of the seven patients had a partial or complete response. Two patients had stable disease after the first TARE procedure, and two of the patients (one with a complete response, and one with stable disease) were alive at the time of analysis. No serious adverse events related to the procedure were recorded. CONCLUSIONS This is the first case series reporting the safety and tumor response outcomes of 166Ho-TARE for ICC. The treatment demonstrated its versatility, allowing for reaching a high tumor dose, which is important for improving tumor response and treating patients in a palliative setting, where safety and the preservation of quality of life are paramount.
Collapse
Affiliation(s)
- Sim Vermeulen
- Nuclear Medicine Department, A.S.Z. Aalst, 9300 Aalst, Belgium; (N.D.); (V.N.); (D.O.); (P.D.B.); (O.D.W.)
- Nuclear Medicine Department, OLV Aalst, 9300 Aalst, Belgium
| | | | - Nicole Dorny
- Nuclear Medicine Department, A.S.Z. Aalst, 9300 Aalst, Belgium; (N.D.); (V.N.); (D.O.); (P.D.B.); (O.D.W.)
- Nuclear Medicine Department, OLV Aalst, 9300 Aalst, Belgium
| | - Isabelle Colle
- Gastroenterology Department, A.S.Z. Aalst, 9300 Aalst, Belgium;
| | | | - Victor Nuttens
- Nuclear Medicine Department, A.S.Z. Aalst, 9300 Aalst, Belgium; (N.D.); (V.N.); (D.O.); (P.D.B.); (O.D.W.)
- Nuclear Medicine Department, OLV Aalst, 9300 Aalst, Belgium
| | - Dirk Ooms
- Nuclear Medicine Department, A.S.Z. Aalst, 9300 Aalst, Belgium; (N.D.); (V.N.); (D.O.); (P.D.B.); (O.D.W.)
- Nuclear Medicine Department, OLV Aalst, 9300 Aalst, Belgium
| | - Pieter De Bondt
- Nuclear Medicine Department, A.S.Z. Aalst, 9300 Aalst, Belgium; (N.D.); (V.N.); (D.O.); (P.D.B.); (O.D.W.)
- Nuclear Medicine Department, OLV Aalst, 9300 Aalst, Belgium
| | - Olivier De Winter
- Nuclear Medicine Department, A.S.Z. Aalst, 9300 Aalst, Belgium; (N.D.); (V.N.); (D.O.); (P.D.B.); (O.D.W.)
- Nuclear Medicine Department, OLV Aalst, 9300 Aalst, Belgium
| |
Collapse
|
12
|
Graham T, Hamidizadeh R, Wright C, Wong JK, Brown A, Menard A, Mujoomdar A. Looking Into the Future: The Current and Future State of IR in Canada. Can Assoc Radiol J 2023; 74:211-216. [PMID: 36065604 DOI: 10.1177/08465371221118518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This review explores the priorities and future opportunities of interventional radiology in Canada.
Collapse
Affiliation(s)
- Tara Graham
- Medical Imaging, 5543Trillium Health Partners, Mississauga, ON, Canada
| | - Ramin Hamidizadeh
- Diagnostic Imaging, 70401University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Chris Wright
- 26634Foothills Medical Centre, Calgary, AB, Canada
| | - Jason K Wong
- 26634Foothills Medical Centre, Calgary, AB, Canada
| | - Andrew Brown
- 37195St. Michael's Hosptial , Toronto, ON, Canada
| | - Alexandre Menard
- Department of Radiology, 71459Kingston Health Sciences Centre, Kingston, ON, Canada
| | - Amol Mujoomdar
- Medical Imaging, Western University/London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
13
|
Roosen J, van Wijk MWM, Westlund Gotby LEL, Arntz MJ, Janssen MJR, Lobeek D, van de Maat GH, Overduin CG, Nijsen JFW. Improving MRI-based dosimetry for holmium-166 transarterial radioembolization using a nonrigid image registration for voxelwise Δ R 2 ∗ $\Delta R_2^*$ calculation. Med Phys 2023; 50:935-946. [PMID: 36202392 DOI: 10.1002/mp.16014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Transarterial radioembolization (TARE) is a treatment modality for liver tumors during which radioactive microspheres are injected into the hepatic arterial system. These microspheres distribute throughout the liver as a result of the blood flow until they are trapped in the arterioles because of their size. Holmium-166 (166 Ho)-loaded microspheres used for TARE can be visualized and quantified with MRI, as holmium is a paramagnetic metal and locally increases the transverse relaxation rate R 2 ∗ $R_2^*$ . The current 166 Ho quantification method does not take regional differences in baseline R 2 ∗ $R_2^*$ values (such as between tumors and healthy tissue) into account, which intrinsically results in a systematic error in the estimated absorbed dose distribution. As this estimated absorbed dose distribution can be used to predict response to treatment of tumors and potential toxicity in healthy tissue, a high accuracy of absorbed dose estimation is required. PURPOSE To evaluate pre-existing differences in R 2 ∗ $R_2^*$ distributions between tumor tissue and healthy tissue and assess the feasibility and accuracy of voxelwise subtraction-based Δ R 2 ∗ $\Delta R_2^*$ calculation for MRI-based dosimetry of holmium-166 transarterial radioembolization (166 Ho TARE). METHODS MRI data obtained in six patients who underwent 166 Ho TARE of the liver as part of a clinical study was retrospectively evaluated. Pretreatment differences in R 2 ∗ $R_2^*$ distributions between tumor tissue and healthy tissue were characterized. Same-day pre- and post-treatment R 2 ∗ $R_2^*$ maps were aligned using a deformable registration algorithm and subsequently subtracted to generate voxelwise Δ R 2 ∗ $\Delta R_2^*$ maps and resultant absorbed dose maps. Image registration accuracy was quantified using the dice similarity coefficient (DSC), relative overlay (RO), and surface dice (≤4 mm; SDSC). Voxelwise subtraction-based absorbed dose maps were quantitatively (root-mean-square error, RMSE) and visually compared to the current MRI-based mean subtraction method and routinely used SPECT-based dosimetry. RESULTS Pretreatment R 2 ∗ $R_2^*$ values were lower in tumors than in healthy liver tissue (mean 36.8 s-1 vs. 55.7 s-1 , P = 0.004). Image registration improved the mean DSC of 0.83 (range: 0.70-0.88) to 0.95 (range: 0.92-0.97), mean RO of 0.71 (range 0.53-0.78) to 0.90 (range: 0.86-0.94), and mean SDSC ≤4 mm of 0.47 (range: 0.28-0.67) to 0.97 (range: 0.96-0.98). Voxelwise subtraction-based absorbed dose maps yielded a higher tumor-absorbed dose (median increase of 9.0%) and lower healthy liver-absorbed dose (median decrease of 13.8%) compared to the mean subtraction method. Voxelwise subtraction-based absorbed dose maps corresponded better to SPECT-based absorbed dose maps, reflected by a lower RMSE in three of six patients. CONCLUSIONS Voxelwise subtraction presents a robust alternative method for MRI-based dosimetry of 166 Ho microspheres that accounts for pre-existing R 2 ∗ $R_2^*$ differences, and appears to correspond better with SPECT-based dosimetry compared to the currently implemented mean subtraction method.
Collapse
Affiliation(s)
- Joey Roosen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Meike W M van Wijk
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lovisa E L Westlund Gotby
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark J Arntz
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel J R Janssen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daphne Lobeek
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Christiaan G Overduin
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Frank W Nijsen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Osipitan OO, Sun M, Gordish-Dressman H, Wendt R, Wight-Carter M, Balkus KJ, Di Pasqua AJ. Laminated holmium-166-containing electrospun bandages for use against skin cancer. Nucl Med Biol 2022; 114-115:78-85. [PMID: 36270073 DOI: 10.1016/j.nucmedbio.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 12/27/2022]
Abstract
The number of non-melanoma skin cancer (NMSC) cases in the US will increase significantly over the next decade due to a rise in UV exposure. One of the treatment methods used to remove NMSC lesions is radiation therapy. The two types of radiation therapy used in the clinic are external beam therapy and brachytherapy. However, both require specialized on-site instrumentation and for patients to remain immobile. In this work, we studied an alternative radiation therapy - one that does not require expensive on-site equipment and would allow for enhanced patient mobility and, thus, comfort. We prepared sealed source, nylon-laminated holmium-166-containing radiotherapeutic bandages and used them in C3H/HeN mice with murine SCCVII tumor grafts. Overall, tumor sizes were smallest when treated with therapeutically relevant radiation doses via radiotherapeutic bandages (compared to controls), and no histological evidence of toxicity to tissues was observed. Thus, our optimized radiotherapeutic bandage offers a flexible approach to treating NMSC.
Collapse
Affiliation(s)
- Ositomiwa O Osipitan
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, 96 Corliss Ave., Johnson City, NY 13790, United States of America; Department of Biomedical Engineering, The Thomas J. Watson College of Engineering and Applied Science, Binghamton University, 4400 Vestal Pkwy. E., Binghamton, NY 13902, United States of America
| | - Mengwei Sun
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, 96 Corliss Ave., Johnson City, NY 13790, United States of America; Department of Biomedical Engineering, The Thomas J. Watson College of Engineering and Applied Science, Binghamton University, 4400 Vestal Pkwy. E., Binghamton, NY 13902, United States of America
| | - Heather Gordish-Dressman
- Center for Translational Science, Division of Biostatistics and Study Design, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States of America
| | - Richard Wendt
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Unit 1352, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Mary Wight-Carter
- Animal Resource Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Kenneth J Balkus
- Department of Chemistry, University of Texas at Dallas, Richardson, 800 West Campbell Road, Richardson, TX 75080, United States of America.
| | - Anthony J Di Pasqua
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, 96 Corliss Ave., Johnson City, NY 13790, United States of America; Department of Biomedical Engineering, The Thomas J. Watson College of Engineering and Applied Science, Binghamton University, 4400 Vestal Pkwy. E., Binghamton, NY 13902, United States of America.
| |
Collapse
|
15
|
Morsink NC, Nijsen JFW, Grinwis GCM, Hesselink JW, Kirpensteijn J, van Nimwegen SA. Intratumoral injection of holmium-166 microspheres as neoadjuvant therapy of soft tissue sarcomas in dogs. Front Vet Sci 2022; 9:1015248. [PMID: 36387397 PMCID: PMC9664058 DOI: 10.3389/fvets.2022.1015248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Minimally invasive microbrachytherapy is in development to treat solid tumors by intratumoral injection of (radioactive) holmium-166 (166Ho) microspheres (MS). A high local dose can be administered with minimal damage to surrounding tissue because of the short soft tissue penetration depth of 166Ho beta radiation. We aimed to prospectively evaluate the safety and efficacy of 166Ho microbrachytherapy in client-owned canine patients with soft tissue sarcomas (STS). METHODS We included seven dogs with STS not suitable for local excision due to tumor size and/or location. 166HoMS were suspended in a carrier fluid and multiple needle-injections were performed in predetermined tumor segments to maximize tumor coverage. Tumor response was evaluated using 3D caliper and CT measurements. Follow-up further included monitoring for potential side effects and registration of subsequent treatments and survival, until at least two years after treatment. RESULTS Delivered radioactive doses ranged from 70 to 969 Gy resulting in a mean tumor volume reduction of 49.0 ± 21.3% after 33 ± 25 days. Treatment-related side effects consisted of local necrosis (n = 1) and ulceration of the skin covering the tumor (n = 1), which resolved with basic wound care, and surgical excision of residual tumor, respectively. Residual tumor was surgically resected in six patients after 22-93 days. After a mean follow-up of 1,005 days, four patients were alive, two patients were euthanized because of unrelated causes, and one patient was euthanized because of disease progression after the owner(s) declined subsequent surgical treatment. CONCLUSION 166Ho microbrachytherapy was a safe and effective neoadjuvant treatment option for canine patients with STS.
Collapse
Affiliation(s)
- Nino Chiron Morsink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands,*Correspondence: Nino Chiron Morsink
| | - Johannes Frank Wilhelmus Nijsen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jan Willem Hesselink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jolle Kirpensteijn
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
16
|
Jokar N, Moradhaseli F, Ahmadzadehfar H, Jafari E, Nikeghbalian S, Rasekhi AR, Assadi M. Theranostic approach in liver cancer: an emerging paradigm to optimize personalized medicine. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Roosen J, Westlund Gotby LEL, Arntz MJ, Fütterer JJ, Janssen MJR, Konijnenberg MW, van Wijk MWM, Overduin CG, Nijsen JFW. Intraprocedural MRI-based dosimetry during transarterial radioembolization of liver tumours with holmium-166 microspheres (EMERITUS-1): a phase I trial towards adaptive, image-controlled treatment delivery. Eur J Nucl Med Mol Imaging 2022; 49:4705-4715. [PMID: 35829749 DOI: 10.1007/s00259-022-05902-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Transarterial radioembolization (TARE) is a treatment for liver tumours based on injection of radioactive microspheres in the hepatic arterial system. It is crucial to achieve a maximum tumour dose for an optimal treatment response, while minimizing healthy liver dose to prevent toxicity. There is, however, no intraprocedural feedback on the dose distribution, as nuclear imaging can only be performed after treatment. As holmium-166 (166Ho) microspheres can be quantified with MRI, we investigate the feasibility and safety of performing 166Ho TARE within an MRI scanner and explore the potential of intraprocedural MRI-based dosimetry. METHODS Six patients were treated with 166Ho TARE in a hybrid operating room. Per injection position, a microcatheter was placed under angiography guidance, after which patients were transported to an adjacent 3-T MRI system. After MRI confirmation of unchanged catheter location, 166Ho microspheres were injected in four fractions, consisting of 10%, 30%, 30% and 30% of the planned activity, alternated with holmium-sensitive MRI acquisition to assess the microsphere distribution. After the procedures, MRI-based dose maps were calculated from each intraprocedural image series using a dedicated dosimetry software package for 166Ho TARE. RESULTS Administration of 166Ho microspheres within the MRI scanner was feasible in 9/11 (82%) injection positions. Intraprocedural holmium-sensitive MRI allowed for tumour dosimetry in 18/19 (95%) of treated tumours. Two CTCAE grade 3-4 toxicities were observed, and no adverse events were attributed to treatment in the MRI. Towards the last fraction, 4/18 tumours exhibited signs of saturation, while in 14/18 tumours, the microsphere uptake patterns did not deviate from the linear trend. CONCLUSION This study demonstrated feasibility and preliminary safety of a first in-human application of TARE within a clinical MRI system. Intraprocedural MRI-based dosimetry enabled dynamic insight in the microsphere distribution during TARE. This proof of concept yields unique possibilities to better understand microsphere distribution in vivo and to potentially optimize treatment efficacy through treatment personalization. REGISTRATION Clinicaltrials.gov, identifier NCT04269499, registered on February 13, 2020 (retrospectively registered).
Collapse
Affiliation(s)
- Joey Roosen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Lovisa E L Westlund Gotby
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark J Arntz
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel J R Janssen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark W Konijnenberg
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W M van Wijk
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiaan G Overduin
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Frank W Nijsen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Stella M, Braat AJAT, van Rooij R, de Jong HWAM, Lam MGEH. Holmium-166 Radioembolization: Current Status and Future Prospective. Cardiovasc Intervent Radiol 2022; 45:1634-1645. [PMID: 35729423 PMCID: PMC9626412 DOI: 10.1007/s00270-022-03187-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/22/2022] [Indexed: 12/05/2022]
Abstract
Since its first suggestion as possible option for liver radioembolization treatment, the therapeutic isotope holmium-166 (166Ho) caught the experts’ attention due to its imaging possibilities. Being not only a beta, but also a gamma emitter and a lanthanide, 166Ho can be imaged using single-photon emission computed tomography and magnetic resonance imaging, respectively. Another advantage of 166Ho is the possibility to perform the scout and treatment procedure with the same particle. This prospect paves the way to an individualized treatment procedure, gaining more control over dosimetry-based patient selection and treatment planning. In this review, an overview on 166Ho liver radioembolization will be presented. The current clinical workflow, together with the most relevant clinical findings and the future prospective will be provided.
Collapse
Affiliation(s)
- Martina Stella
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.
| | - Arthur J A T Braat
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Rob van Rooij
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Hugo W A M de Jong
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, UMC Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| |
Collapse
|
19
|
Pettinato C, Richetta E, Cremonesi M. Dosimetry with single photon emission tomography (SPECT). Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Wagemans ME, Braat AJ, Smits ML, Bruijnen RC, Lam MG. Nuclear medicine therapy of liver metastasis with radiolabelled spheres. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00178-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
21
|
Keane G, Lam M, de Jong H. Beyond the MAA-Y90 Paradigm: The Evolution of Radioembolization Dosimetry Approaches and Scout Particles. Semin Intervent Radiol 2021; 38:542-553. [PMID: 34853500 DOI: 10.1055/s-0041-1736660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radioembolization is a well-established treatment for primary and metastatic liver cancer. There is increasing interest in personalized treatment planning supported by dosimetry, as it provides an opportunity to optimize dose delivery to tumor and minimize nontarget deposition, which demonstrably increases the efficacy and safety of this therapy. However, the optimal dosimetry procedure in the radioembolization setting is still evolving; existing data are limited as few trials have prospectively tailored dose based on personalized planning and predominantly semi-empirical methods are used for dose calculation. Since the pretreatment or "scout" procedure forms the basis of dosimetry calculations, an accurate and reliable technique is essential. 99m Tc-MAA SPECT constitutes the current accepted standard for pretreatment imaging; however, inconsistent patterns in published data raise the question whether this is the optimal agent. Alternative particles are now being introduced to the market, and early indications suggest use of an identical scout and treatment particle may be superior to the current standard. This review will undertake an evaluation of the increasingly refined dosimetric methods driving radioembolization practices, and a horizon scanning exercise identifying alternative scout particle solutions. Together these constitute a compelling vision for future treatment planning methods that prioritize individualized care.
Collapse
Affiliation(s)
- Grace Keane
- Nuclear Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Marnix Lam
- Nuclear Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Hugo de Jong
- Nuclear Medicine, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Chiesa C, Sjogreen-Gleisner K, Walrand S, Strigari L, Flux G, Gear J, Stokke C, Gabina PM, Bernhardt P, Konijnenberg M. EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Phys 2021; 8:77. [PMID: 34767102 PMCID: PMC8589932 DOI: 10.1186/s40658-021-00394-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in 90Y microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient-relative calibration method for activity quantification.The identity of 99mTc albumin macro-aggregates (MAA) and 90Y microsphere biodistribution is also assumed. The large observed discrepancies in some patients between 99mTc-MAA predictions and actual 90Y microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments.Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected 99mTc-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and 90Y TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected 99mTc-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative 90Y bremsstrahlung SPECT can be used if dedicated correction methods are available.The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine Unit, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Stephan Walrand
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Lidia Strigari
- Medical Physics Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Caroline Stokke
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Pablo Minguez Gabina
- Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University Hospital, Barakaldo, Spain
| | - Peter Bernhardt
- Department of Radiation Physics, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Morsink NC, Klaassen NJM, Meij BP, Kirpensteijn J, Grinwis GCM, Schaafsma IA, Hesselink JW, Nijsen JFW, van Nimwegen SA. Case Report: Radioactive Holmium-166 Microspheres for the Intratumoral Treatment of a Canine Pituitary Tumor. Front Vet Sci 2021; 8:748247. [PMID: 34805338 PMCID: PMC8600255 DOI: 10.3389/fvets.2021.748247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: In this case study, a client-owned dog with a large pituitary tumor was experimentally treated by intratumoral injection of radioactive holmium-166 microspheres (166HoMS), named 166Ho microbrachytherapy. To our knowledge, this is the first intracranial intratumoral treatment through needle injection of radioactive microspheres. Materials and Methods: A 10-year-old Jack Russell Terrier was referred to the Clinic for Companion Animal Health (Faculty of Veterinary Medicine, Utrecht University, The Netherlands) with behavioral changes, restlessness, stiff gait, and compulsive circling. MRI and CT showed a pituitary tumor with basisphenoid bone invasion and marked mass effect. The tumor measured 8.8 cm3 with a pituitary height-to-brain area (P/B) ratio of 1.86 cm-1 [pituitary height (cm) ×10/brain area (cm2)]. To reduce tumor volume and neurological signs, 166HoMS were administered in the tumor center by transsphenoidal CT-guided needle injections. Results: Two manual CT-guided injections were performed containing 0.6 ml of 166HoMS suspension in total. A total of 1097 MBq was delivered, resulting in a calculated average tumor dose of 1866 Gy. At 138 days after treatment, the tumor volume measured 5.3 cm3 with a P/B ratio of 1.41 cm-1, revealing a total tumor volume reduction of 40%. Debulking surgery was performed five months after 166HoMS treatment due to recurrent neurological signs. The patient was euthanized two weeks later at request of the owners. Histopathological analysis indicated a pituitary adenoma at time of treatment, with more malignant characteristics during debulking surgery. Conclusion: The 40% tumor volume reduction without evident severe periprocedural side effects demonstrated the feasibility of intracranial intratumoral 166HoMS treatment in this single dog.
Collapse
Affiliation(s)
- Nino Chiron Morsink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Nienke Johanna Maria Klaassen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Björn Petrus Meij
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jolle Kirpensteijn
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Irene Afra Schaafsma
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jan Willem Hesselink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Johannes Frank Wilhelmus Nijsen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Quirem Medical, Deventer, Netherlands
| | | |
Collapse
|
24
|
Development of an MRI-Guided Approach to Selective Internal Radiation Therapy Using Holmium-166 Microspheres. Cancers (Basel) 2021; 13:cancers13215462. [PMID: 34771626 PMCID: PMC8582586 DOI: 10.3390/cancers13215462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Selective internal radiation therapy (SIRT) is a treatment for patients with liver cancer that involves the injection of radioactive microspheres into the liver artery. For a successful treatment, it is important that tumours are adequately covered with these microspheres; however, there is currently no method to assess this intraoperatively. As holmium microspheres are paramagnetic, MRI can be used to visualize the holmium deposition directly after administration, and possibly to adapt the treatment if necessary. In order to exploit this advantage and provide a personally optimized approach to SIRT, the administration could ideally be performed within a clinical MRI scanner. It is, however, unclear whether all materials (catheters, administration device) used during the procedure are safe for use in the MRI suite. Additionally, we explore the capability of MRI to visualize the microspheres in near real-time during injection, which would be a requirement for successful MRI-guided treatment. We further illustrate our findings with an initial patient case. Abstract Selective internal radiation therapy (SIRT) is a treatment modality for liver tumours during which radioactive microspheres are injected into the hepatic arterial tree. Holmium-166 (166Ho) microspheres used for SIRT can be visualized and quantified with MRI, potentially allowing for MRI guidance during SIRT. The purpose of this study was to investigate the MRI compatibility of two angiography catheters and a microcatheter typically used for SIRT, and to explore the detectability of 166Ho microspheres in a flow phantom using near real-time MRI. MR safety tests were performed at a 3 T MRI system according to American Society for Testing of Materials standard test methods. To assess the near real-time detectability of 166Ho microspheres, a flow phantom was placed in the MRI bore and perfused using a peristaltic pump, simulating the flow in the hepatic artery. Dynamic MR imaging was performed using a 2D FLASH sequence during injection of different concentrations of 166Ho microspheres. In the safety assessment, no significant heating (ΔTmax 0.7 °C) was found in any catheter, and no magnetic interaction was found in two out of three of the used catheters. Near real-time MRI visualization of 166Ho microsphere administration was feasible and depended on holmium concentration and vascular flow speed. Finally, we demonstrate preliminary imaging examples on the in vivo catheter visibility and near real-time imaging during 166Ho microsphere administration in an initial patient case treated with SIRT in a clinical 3 T MRI. These results support additional research to establish the feasibility and safety of this procedure in vivo and enable the further development of a personalized MRI-guided approach to SIRT.
Collapse
|
25
|
166Ho microsphere scout dose for more accurate radioembolization treatment planning. Eur J Nucl Med Mol Imaging 2021; 47:744-747. [PMID: 31875243 DOI: 10.1007/s00259-019-04617-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Roosen J, Klaassen NJM, Westlund Gotby LEL, Overduin CG, Verheij M, Konijnenberg MW, Nijsen JFW. To 1000 Gy and back again: a systematic review on dose-response evaluation in selective internal radiation therapy for primary and secondary liver cancer. Eur J Nucl Med Mol Imaging 2021; 48:3776-3790. [PMID: 33839892 PMCID: PMC8484215 DOI: 10.1007/s00259-021-05340-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Purpose To systematically review all current evidence into the dose-response relation of yttrium-90 and holmium-166 selective internal radiation therapy (SIRT) in primary and secondary liver cancer. Methods A standardized search was performed in PubMed (MEDLINE), Embase, and the Cochrane Library in order to identify all published articles on dose-response evaluation in SIRT. In order to limit the results, all articles that investigated SIRT in combination with other therapy modalities (such as chemotherapy) were excluded. Results A total of 3038 records were identified of which 487 were screened based on the full text. Ultimately, 37 studies were included for narrative analysis. Meta-analysis could not be performed due to the large heterogeneity in study and reporting designs. Out of 37 studies, 30 reported a ‘mean dose threshold’ that needs to be achieved in order to expect a response. This threshold appears to be higher for hepatocellular carcinoma (HCC, 100–250 Gy) than for colorectal cancer metastases (CRC, 40–60 Gy). Reported thresholds tend to be lower for resin microspheres than when glass microspheres are used. Conclusion Although the existing evidence demonstrates a dose-response relationship in SIRT for both primary liver tumours and liver metastases, many pieces of the puzzle are still missing, hampering the definition of standardized dose thresholds. Nonetheless, most current evidence points towards a target mean dose of 100–250 Gy for HCC and 40–60 Gy for CRC. The field would greatly benefit from a reporting standard and prospective studies designed to elucidate the dose-response relation in different tumour types. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05340-0.
Collapse
Affiliation(s)
- Joey Roosen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nienke J M Klaassen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lovisa E L Westlund Gotby
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiaan G Overduin
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark W Konijnenberg
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J Frank W Nijsen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Walrand S, Hesse M, d’Abadie P, Jamar F. Hepatic Arterial Buffer Response in Liver Radioembolization and Potential Use for Improved Cancer Therapy. Cancers (Basel) 2021; 13:cancers13071537. [PMID: 33810511 PMCID: PMC8036746 DOI: 10.3390/cancers13071537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Radioembolization of hepatic tumors is performed by injecting 90Y or 166Ho loaded spheres into the hepatic artery. A twofold tumor to normal liver absorbed dose ratio is commonly obtained. In order to improve tumoral cell killing while preserving lobule function, co-injection of arterial vasoconstrictor has been proposed, but without success: the hepatic arterial buffer response quickly inhibits the arterioles vasoconstriction. The aim of the study is to investigate whether it is possible to take benefit from this buffer response, by co-infusing a mesenteric arterial vasodilator in order to dump the hepatic lobules arterial flow. Animal studies evidencing such mechanism are reviewed. Some potential mesenteric vasodilators are identified and their safety profile discussed. A four to sixfold improvement of the tumoral to normal tissue dose ratio is expected, pushing the therapy towards a real curative intention, especially in hepatocellular carcinoma (HCC), more frequent in obese subjects, and where ultra-selective spheres delivery is often not possible. Abstract Liver radioembolization is a treatment option for unresectable liver cancers, performed by infusion of 90Y or 166Ho loaded spheres in the hepatic artery. As tumoral cells are mainly perfused via the liver artery unlike hepatic lobules, a twofold tumor to normal liver dose ratio is commonly obtained. To improve tumoral cell killing while preserving lobules, co-infusion of arterial vasoconstrictor has been proposed but with limited success: the hepatic arterial buffer response (HABR) and hepatic vascular escape mechanism hamper the arterioles vasoconstriction. The proposed project aims to take benefit from the HABR by co-infusing a mesenteric arterial vasodilator: the portal flow enhancement inducing the vasoconstriction of the intra sinusoids arterioles barely impacts liver tumors that are mainly fed by novel and anarchic external arterioles. Animal studies were reviewed and dopexamine was identified as a promising safe candidate, reducing by four the hepatic lobules arterial flow. A clinical trial design is proposed. A four to sixfold improvement of the tumoral to normal tissue dose ratio is expected, pushing the therapy towards a real curative intention, especially in HCC where ultra-selective spheres delivery is often not possible.
Collapse
|
28
|
Li R, Li D, Jia G, Li X, Sun G, Zuo C. Diagnostic Performance of Theranostic Radionuclides Used in Transarterial Radioembolization for Liver Cancer. Front Oncol 2021; 10:551622. [PMID: 33569342 PMCID: PMC7868560 DOI: 10.3389/fonc.2020.551622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Primary liver tumor with hepatocellular carcinoma accounting for 75-80% of all such tumors, is one of the global leading causes of cancer-related death, especially in cirrhotic patients. Liver tumors are highly hypervascularized via the hepatic artery, while normal liver tissues are mainly supplied by the portal vein; consequently, intra-arterially delivered treatment, which includes transarterial chemoembolization (TACE) and transarterial radioembolization (TARE), is deemed as a palliative treatment. With the development of nuclear technology and radiochemistry, TARE has become an alternative for patients with hepatic cancer, especially for patients who failed other therapies, or for patients who need tumor downstaging treatment. In practice, some radionuclides have suitable physicochemical characteristics to act as radioactive embolism agents. Among them, 90Y emits β rays only and is suitable for bremsstrahlung single photon emission computed tomography (BS SPECT) and positron emission tomography (PET); meanwhile, some others, such as 131I, 153Sm, 166Ho, 177Lu, 186Re, and 188Re, emit both β and γ rays, enabling embolism beads to play a role in both therapy and single photon emission computed tomography (SPECT) imaging. During TARE, concomitant imaging provide additive diagnostic information and help to guide the course of liver cancer treatment. Therefore, we review the theranostic radionuclides that have been used or could potentially be used in TARE for liver cancer and focus on the clinical benefits of diagnostic applications, including real-time monitoring of embolism beads, evaluating irradiation dose, predicting therapy effects, and corresponding adjustments to TARE.
Collapse
Affiliation(s)
- Rou Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Guorong Jia
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Xiao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Gaofeng Sun
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
29
|
van Roekel C, van den Hoven AF, Bastiaannet R, Bruijnen RCG, Braat AJAT, de Keizer B, Lam MGEH, Smits MLJ. Use of an anti-reflux catheter to improve tumor targeting for holmium-166 radioembolization-a prospective, within-patient randomized study. Eur J Nucl Med Mol Imaging 2020; 48:1658-1668. [PMID: 33128132 PMCID: PMC8113291 DOI: 10.1007/s00259-020-05079-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE The objective of this study was to investigate whether the use of an anti-reflux catheter improves tumor targeting for colorectal cancer patients with unresectable, chemorefractory liver metastases (mCRC) treated with holmium-166 (166Ho)-radioembolization. MATERIALS AND METHODS In this perspective, within-patient randomized study, left and right hepatic perfusion territories were randomized between infusion with a Surefire® anti-reflux catheter or a standard microcatheter. The primary outcome was the difference in tumor to non-tumor (T/N) activity distribution. Secondary outcomes included the difference in infusion efficiency, absorbed doses, predictive value of 166Ho-scout, dose-response relation, and survival. RESULTS Twenty-one patients were treated in this study (the intended number of patients was 25). The median T/N activity concentration ratio with the use of the anti-reflux catheter was 3.2 (range 0.9-8.7) versus 3.6 (range 0.8-13.3) with a standard microcatheter. There was no difference in infusion efficiency (0.04% vs. 0.03% residual activity for the standard microcatheter and anti-reflux catheter, respectively) (95%CI - 0.05-0.03). No influence of the anti-reflux catheter on the dose-response rate was found. Median overall survival was 7.8 months (95%CI 6-13). CONCLUSION Using a Surefire® anti-reflux catheter did not result in a higher T/N activity concentration ratio in mCRC patients treated with 166Ho-radioembolization, nor did it result in improved secondary outcomes measures. TRIAL REGISTRATION clinicaltrials.gov identifier: NCT02208804.
Collapse
Affiliation(s)
- Caren van Roekel
- University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Andor F van den Hoven
- University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Remco Bastiaannet
- University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Rutger C G Bruijnen
- University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Arthur J A T Braat
- University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Bart de Keizer
- University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Marnix G E H Lam
- University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Maarten L J Smits
- University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
30
|
Gutjahr R, Bakker RC, Tiessens F, van Nimwegen SA, Schmidt B, Nijsen JFW. Quantitative dual-energy CT material decomposition of holmium microspheres: local concentration determination evaluated in phantoms and a rabbit tumor model. Eur Radiol 2020; 31:139-148. [PMID: 32767101 PMCID: PMC7755872 DOI: 10.1007/s00330-020-07092-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/03/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
Objectives The purpose of this study was to assess the feasibility of dual-energy CT-based material decomposition using dual-X-ray spectra information to determine local concentrations of holmium microspheres in phantoms and in an animal model. Materials and methods A spectral calibration phantom with a solution containing 10 mg/mL holmium and various tube settings was scanned using a third-generation dual-energy CT scanner to depict an energy-dependent and material-dependent enhancement vectors. A serial dilution of holmium (microspheres) was quantified by spectral material decomposition and compared with known holmium concentrations. Subsequently, the feasibility of the spectral material decomposition was demonstrated in situ in three euthanized rabbits with injected (radioactive) holmium microspheres. Results The measured CT values of the holmium solutions scale linearly to all measured concentrations and tube settings (R2 = 1.00). Material decomposition based on CT acquisitions using the tube voltage combinations of 80/150 Sn kV or 100/150 Sn kV allow the most accurate quantifications for concentrations down to 0.125 mg/mL holmium. Conclusion Dual-energy CT facilitates image-based material decomposition to detect and quantify holmium microspheres in phantoms and rabbits. Key Points • Quantification of holmium concentrations based on dual-energy CT is obtained with good accuracy. • The optimal tube-voltage pairs for quantifying holmium were 80/150 Sn kV and 100/150 Sn kV using a third-generation dual-source CT system. • Quantification of accumulated holmium facilitates the assessment of local dosimetry for radiation therapies.
Collapse
Affiliation(s)
- Ralf Gutjahr
- Computed Tomography, Siemens Healthcare GmbH, Forchheim, Germany.,CAMP, Technical University of Munich, Munich, Germany
| | - Robbert C Bakker
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Feiko Tiessens
- R&D Imaging & Software, Quirem Medical BV, Deventer, The Netherlands
| | - Sebastiaan A van Nimwegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernhard Schmidt
- Computed Tomography, Siemens Healthcare GmbH, Forchheim, Germany
| | - Johannes Frank Wilhelmus Nijsen
- R&D Imaging & Software, Quirem Medical BV, Deventer, The Netherlands. .,Department of Medical Imaging, Radboudumc, Geert Grooteplein-Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
31
|
Houthuijs KJ, Martens J, Arranja AG, Berden G, Nijsen JFW, Oomens J. Characterization of holmium(iii)-acetylacetonate complexes derived from therapeutic microspheres by infrared ion spectroscopy. Phys Chem Chem Phys 2020; 22:15716-15722. [PMID: 32618970 DOI: 10.1039/d0cp01890b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microspheres containing radioactive 166holmium-acetylacetonate are employed in emerging radionuclide therapies for the treatment of malignancies. At the molecular level, details on the coordination geometries of the Ho complexes are however elusive. Infrared ion spectroscopy (IRIS) was used to characterize several 165Ho-acetylacetonate complexes derived from non-radioactive microspheres. The coordination geometry of four distinct ionic complexes were fully assigned by comparison of their measured IR spectra with spectra calculated at the density functional theory (DFT) level. The coordination of each acetylacetonate ligand is dependent on the presence of other ligands, revealing an asymmetric chelation motif in some of the complexes. A fifth, previously unknown constituent of the microspheres was identified as a coordination complex containing an acetic acid ligand. These results pave the way for IRIS-based identification of microsphere constituents upon neutron activation of the metal center.
Collapse
Affiliation(s)
- Kas J Houthuijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
C Bakker R, Bastiaannet R, van Nimwegen SA, D Barten-van Rijbroek A, Van Es RJJ, Rosenberg AJWP, de Jong HWAM, Lam MGEH, Nijsen JFW. Feasibility of CT quantification of intratumoural 166Ho-microspheres. Eur Radiol Exp 2020; 4:29. [PMID: 32390070 PMCID: PMC7211782 DOI: 10.1186/s41747-020-00157-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Microspheres loaded with radioactive 166Ho (166Ho-MS) are novel particles for radioembolisation and intratumoural treatment. Because of the limited penetration of β radiation, quantitative imaging of microsphere distribution is crucial for optimal intratumoural treatment. Computed tomography (CT) may provide high-resolution and fast imaging of the distribution of these microspheres, with lower costs and widespread availability in comparison with current standard single-photon emission tomography (SPECT) and magnetic resonance imaging. This phantom study investigated the feasibility of CT quantification of 166Ho-MS. Methods CT quantification was performed on a phantom with various concentrations of HoCl and Ho-MS to investigate the CT sensitivity and calibrate the CT recovery. 166Ho-MS were injected into ex vivo tissues, in VX-2 cancer-bearing rabbits, and in patients with head-neck cancer, to demonstrate sensitivity and clinical visibility. The amount of Ho-MS was determined by CT scanning, using a density-based threshold method and compared with a validated 166Ho SPECT quantification method. Results In the phantom, a near perfect linearity (least squares R2 > 0.99) between HU values and concentration of 166Ho was found. Ex vivo tissue experiments showed an excellent correlation (r = 0.99, p < 0.01) between the dose calibrator, SPECT, and CT imaging. CT recovery was on average 86.4% ex vivo, 76.0% in rabbits, and 99.1% in humans. Conclusion This study showed that CT-based quantification of Ho microspheres is feasible and is a high-resolution alternative to SPECT-based determination of their local distribution.
Collapse
Affiliation(s)
- R C Bakker
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Bastiaannet
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S A van Nimwegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - A D Barten-van Rijbroek
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R J J Van Es
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - A J W P Rosenberg
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H W A M de Jong
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J F W Nijsen
- Department of Radiology, Nuclear Medicine and Anatomy, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Quality of life in patients with liver tumors treated with holmium-166 radioembolization. Clin Exp Metastasis 2020; 37:95-105. [PMID: 31732841 PMCID: PMC7007912 DOI: 10.1007/s10585-019-10006-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/09/2019] [Indexed: 02/05/2023]
Abstract
Holmium-166 radioembolization is a palliative treatment option for patients with unresectable hepatic malignancies. Its influence on quality of life has not been evaluated yet. Since quality of life is very important in the final stages of disease, the aim of this study was to evaluate the effect of holmium-166 radioembolization on quality of life. Patients with hepatic malignancies were treated with holmium-166 radioembolization in the HEPAR I and II studies. The European Organization for Research and Treatment of Cancer QLQ-C30 and LMC21 questionnaires were used to evaluate quality of life at baseline, 1 week, 6 weeks and at 6, 9 and 12 months after treatment. The course of the global health status and symptom and functioning scales were analyzed using a linear mixed model. Quality of life was studied in a total of 53 patients with a compliance of 94%. Role functioning was the most affected functioning scale. Fatigue and pain were the most affected symptom scales. Changes in almost all categories were most notable at 1 week after treatment. A higher WHO performance score at baseline decreased global health status, physical functioning, role functioning and social functioning and it increased symptoms of fatigue, dyspnea and diarrhea. Quality of life in salvage patients with liver metastases treated with holmium-166 radioembolization was not significantly affected over time, although a striking decline was seen during the first week post-treatment. A WHO performance score > 0 at baseline significantly influenced quality of life.
Collapse
|
34
|
Abstract
The current review documents the major hallmarks in the history and development of radioembolization, the origins of which date back to the late 1940s. Radioembolization was initially abandoned because of the increased incidence of adverse effects and lack of commercial interest; however, it regained avid interest in clinical trials and has achieved established clinical utility in the last 15 years. This review focuses on the main stations of the evolution of radioembolization, namely, initial animal and human experimental studies, production of Y-microspheres, development of current therapeutic agents (resin and glass spheres and labeled Lipiodol), prediction and prevention of inadvertent, extrahepatic shunt side effects, initial prospective studies, and large randomized trials till final approval from the relevant official bodies. The historical knowledge of the initial concepts of the method and the limitations encountered may pave the way toward further evolution and possible new applications.
Collapse
|
35
|
Arranja AG, Hennink WE, Chassagne C, Denkova AG, Nijsen JFW. Preparation and characterization of inorganic radioactive holmium-166 microspheres for internal radionuclide therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110244. [PMID: 31753348 DOI: 10.1016/j.msec.2019.110244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022]
Abstract
Microspheres with high specific activities of radionuclides are very interesting for internal radiotherapy treatments. This work focuses on the formulation and characterization of inorganic microspheres with a high content of holmium and therefore a high specific radioactivity of holmium-166. Two novel formulations of inorganic microspheres were obtained by dispersing solid holmium acetylacetonate microspheres (Ho2(AcAc)3-ms) in NaH2PO4 or NaOH solutions followed by 2 h incubation at room temperature. By exchange of acetylacetonate with phosphate or hydroxyl ions, holmium phosphate microspheres (HoPO4-ms) and holmium hydroxide microspheres (Ho(OH)3-ms) were formed respectively. The inorganic microspheres had a significantly smaller diameter (28.5 ± 4.4 μm (HoPO4-ms) and 25.1 ± 3.5 μm (Ho(OH)3-ms)) than those of Ho2(AcAc)3-ms (32.6 ± 5.2 μm). The weight percentage of holmium-165 in the microspheres increased significantly from 47% (Ho2(AcAc)3-ms) to 55% (HoPO4-ms) and 73% (Ho(OH)3-ms). After preparation of both HoPO4-ms and Ho(OH)3-ms, the stable holmium-165 isotope was partly converted by neutron activation into radioactive holmium-166 to yield radioactive microspheres. High specific activities were achieved ranging from 21.7 to 59.9 MBq/mg (166HoPO4-ms) and from 28.8 to 79.9 MBq/mg (166Ho(OH)3-ms) depending on the neutron activation time. The structure of both microspheres was preserved up to neutron activations of 6 h in a thermal neutron flux of 4.72 × 1016 n m-2 s-1. After activation, both microspheres revealed excellent stability in administration fluids (saline and phosphate buffer) having less than 0.05% of holmium released after 72 h incubation. Finally, the hemocompatibility of these inorganic microspheres was evaluated and it was shown that the microspheres did cause neither hemolysis nor depletion or inhibition of the coagulation factors of the intrinsic blood coagulation pathway meaning that the microspheres have a good hemocompatibility. Overall, this work shows that radioactive inorganic microspheres with high specific activities of holmium-166 can be prepared which potentially can be used for internal radionuclide therapy.
Collapse
Affiliation(s)
- A G Arranja
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, 3508 TB, Utrecht, the Netherlands; Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands; Radboudumc, Department of Radiology and Nuclear Medicine, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - W E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - C Chassagne
- Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands
| | - A G Denkova
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands
| | - J F W Nijsen
- Radboudumc, Department of Radiology and Nuclear Medicine, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands; Quirem Medical B.V, Zutphenseweg 55, 7418 AH, Deventer, the Netherlands.
| |
Collapse
|
36
|
Klaassen NJM, Arntz MJ, Gil Arranja A, Roosen J, Nijsen JFW. The various therapeutic applications of the medical isotope holmium-166: a narrative review. EJNMMI Radiopharm Chem 2019; 4:19. [PMID: 31659560 PMCID: PMC6682843 DOI: 10.1186/s41181-019-0066-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Over the years, a broad spectrum of applications of the radionuclide holmium-166 as a medical isotope has been established. The isotope holmium-166 is attractive as it emits high-energy beta radiation which can be used for a therapeutic effect and gamma radiation which can be used for nuclear imaging purposes. Furthermore, holmium-165 can be visualized by MRI because of its paramagnetic properties and by CT because of its high density. Since holmium-165 has a natural abundance of 100%, the only by-product is metastable holmium-166 and no costly chemical purification steps are necessary for production of nuclear reactor derived holmium-166. Several compounds labelled with holmium-166 are now used in patients, such Ho166-labelled microspheres for liver malignancies, Ho166-labelled chitosan for hepatocellular carcinoma (HCC) and [166Ho]Ho DOTMP for bone metastases. The outcomes in patients are very promising, making this isotope more and more interesting for applications in interventional oncology. Both drugs as well as medical devices labelled with radioactive holmium are used for internal radiotherapy. One of the treatment possibilities is direct intratumoural treatment, in which the radioactive compound is injected with a needle directly into the tumour. Numerous other applications have been developed, like patches for treatment of skin cancer and holmium labelled antibodies and peptides. The second major application that is currently clinically applied is selective internal radiation therapy (SIRT, also called radioembolization), a novel treatment option for liver malignancies. This review discusses medical drugs and medical devices based on the therapeutic radionuclide holmium-166.
Collapse
Affiliation(s)
- Nienke J M Klaassen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Mark J Arntz
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Alexandra Gil Arranja
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, 3508, TB, Utrecht, The Netherlands.,Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629, JB, Delft, The Netherlands
| | - Joey Roosen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - J Frank W Nijsen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Abstract
Radiation therapy has made tremendous progress in oncology over the last decades due to advances in engineering and physical sciences in combination with better biochemical, genetic and molecular understanding of this disease. Local delivery of optimal radiation dose to a tumor, while sparing healthy surrounding tissues, remains a great challenge, especially in the proximity of vital organs. Therefore, imaging plays a key role in tumor staging, accurate target volume delineation, assessment of individual radiation resistance and even personalized dose prescription. From this point of view, radiotherapy might be one of the few therapeutic modalities that relies entirely on high-resolution imaging. Magnetic resonance imaging (MRI) with its superior soft-tissue resolution is already used in radiotherapy treatment planning complementing conventional computed tomography (CT). Development of systems integrating MRI and linear accelerators opens possibilities for simultaneous imaging and therapy, which in turn, generates the need for imaging probes with therapeutic components. In this review, we discuss the role of MRI in both external and internal radiotherapy focusing on the most important examples of contrast agents with combined therapeutic potential.
Collapse
|
38
|
Bakker RC, de Roos R, Ververs FFT, Lam MGEH, van der Lee MK, Zonnenberg BA, Krijger GC. Blood and urine analyses after radioembolization of liver malignancies with [ 166Ho]Ho-acetylacetonate-poly(l-lactic acid) microspheres. Nucl Med Biol 2019; 71:11-18. [PMID: 31108463 DOI: 10.1016/j.nucmedbio.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/17/2019] [Accepted: 03/23/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND [166Ho]Ho-acetylacetonate-poly(L-lactic acid) microspheres were used in radioembolization of liver malignancies by intra-arterial administration. The primary aim of this study was to assess the stability and biodistribution of these microspheres. MATERIALS AND METHODS Peripheral blood and urine samples were obtained from two clinical studies. Patient and in vitro experiment samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS), gamma-ray spectroscopy, light microscopy, Coulter particle counting, and high performance liquid chromatography (HPLC). RESULTS The median percentage holmium compared to the total amount injected into the hepatic artery was 0.19% (range 0.08-2.8%) and 0.32% (range 0.03-1.8%) in the 1 h blood plasma and 24 h urine, respectively. Both the blood plasma and urine were correlated with the neutron irradiation exposure required for [166Ho]Ho-AcAc-PLLA microsphere production (ρ = 0.616, p = 0.002). After a temporary interruption of the phase 2 clinical study, the resuspension medium was replaced to precipitate [166Ho]Ho3+ pre-administration using phosphate. The in vitro near-maximum neutron irradiation experiments showed significant [166Ho]Ho-AcAc-PLLA microsphere damage. CONCLUSION The amount of holmium in the peripheral blood and urine samples after [166Ho]Ho-AcAc-PLLA microsphere intrahepatic infusion was low. A further decrease was observed after reformulation of the resuspension solution but minimization of production damage is necessary.
Collapse
Affiliation(s)
- Robbert C Bakker
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, the Netherlands
| | - Remmert de Roos
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, the Netherlands
| | - F F Tessa Ververs
- Department of Pharmacy, University Medical Center Utrecht, the Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, the Netherlands
| | | | - Bernard A Zonnenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, the Netherlands
| | - Gerard C Krijger
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
39
|
Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Reinders MTM, Smits MLJ, van Roekel C, Braat AJAT. Holmium-166 Microsphere Radioembolization of Hepatic Malignancies. Semin Nucl Med 2019; 49:237-243. [PMID: 30954190 DOI: 10.1053/j.semnuclmed.2019.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Holmium microspheres have recently become available in the European market as the third type of microspheres for radioembolization of unresectable liver malignancies. Holmium microspheres come with a dedicated administration system, and since these microspheres contain holmium-166 (166Ho) instead of yttrium-90, unique dosing and imaging possibilities have become available as well. In addition, a scout dose of 166Ho microspheres (Conformité Européenne mark is now granted and not pending anymore) can be used instead of 99mTc-macroaggragated albumin during the preparatory angiography procedure. So far, two prospective phase I and phase II clinical studies have been performed on 166Ho radioembolization in a population of liver metastases from mixed origins. These studies showed that a mean whole-liver dose of 60 Gy is safe and induces tumor response. Ongoing trials investigate the effect of 166Ho radioembolization in patients with neuroendocrine tumor metastases, hepatocellular carcinoma, and colorectal cancer metastases. Data derived from these studies will be used to refine the dosing schedule of 60 Gy to the whole liver and determine the optimal level of activity for each patient. This paper discusses several basics and provides an overview of relevant dosing aspects, technical aspects of performing holmium radioembolization, as well as a summary of completed and ongoing clinical studies and the upcoming developments regarding these microspheres.
Collapse
|
41
|
Radosa CG, Radosa JC, Grosche-Schlee S, Zöphel K, Plodeck V, Kühn JP, Kotzerke J, Hoffmann RT. Holmium-166 Radioembolization in Hepatocellular Carcinoma: Feasibility and Safety of a New Treatment Option in Clinical Practice. Cardiovasc Intervent Radiol 2019; 42:405-412. [PMID: 30603976 DOI: 10.1007/s00270-018-2133-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate clinical feasibility, technical success and toxicity of 166Ho-radioembolization (166Ho-RE) as new approach for treatment of hepatocellular carcinomas (HCC) and to assess postinterventional calculation of exact dosimetry through quantitative analysis of MR images. MATERIALS AND METHODS From March 2017 to April 2018, nine patients suffering from HCC were treated with 166Ho-RE. To calculate mean doses on healthy liver/tumor tissue, MR was performed within the first day after treatment. For evaluation of hepatotoxicity and to rule out radioembolization-induced liver disease (REILD), the Model for End-Stage Liver Disease (MELD) Score, the Common Terminology Criteria for Adverse Events and specific laboratory parameters were used 1-day pre- and posttreatment and after 60 days. After 6 months, MR/CT follow-up was performed. RESULTS In five patients the right liver lobe, in one patient the left liver lobe and in three patients both liver lobes were treated. Median administered activity was 3.7 GBq (range 1.7-5.9 GBq). Median dose on healthy liver tissue was 41 Gy (21-55 Gy) and on tumor tissue 112 Gy (61-172 Gy). Four patients suffered from mild postradioembolization syndrome. No significant differences in median MELD-Score were observed pre-, posttherapeutic and 60 days after 166Ho-RE. No deterioration of liver function and no indicators of REILD were observed. One patient showed a complete response, four a partial response, three a stable disease and one a progressive disease at the 6 months follow-up. CONCLUSION 166Ho-RE seems to be a feasible and safe treatment option with no significant hepatotoxicity for treatment of HCC.
Collapse
Affiliation(s)
- Christoph G Radosa
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Julia C Radosa
- Department of Gynecology and Obstetrics, Saarland University Hospital, Kirrbergerstraße 100, 66421, Homburg, Germany
| | - Sabine Grosche-Schlee
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Verena Plodeck
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jens P Kühn
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Ralf-Thorsten Hoffmann
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
42
|
Bouvry C, Palard X, Edeline J, Ardisson V, Loyer P, Garin E, Lepareur N. Transarterial Radioembolization (TARE) Agents beyond 90Y-Microspheres. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1435302. [PMID: 30687734 PMCID: PMC6330886 DOI: 10.1155/2018/1435302] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Liver malignancies, either primary tumours (mainly hepatocellular carcinoma and cholangiocarcinoma) or secondary hepatic metastases, are a major cause of death, with an increasing incidence. Among them, hepatocellular carcinoma (HCC) presents with a dark prognosis because of underlying liver diseases and an often late diagnosis. A curative surgical treatment can therefore only be proposed in 20 to 30% of the patients. However, new treatment options for intermediate to advanced stages, such as internal radionuclide therapy, seem particularly attractive. Transarterial radioembolization (TARE), which consists in the use of intra-arterial injection of a radiolabelled embolising agent, has led to very promising results. TARE with 90Y-loaded microspheres is now becoming an established procedure to treat liver tumours, with two commercially available products (namely, SIR-Sphere® and TheraSphere®). However, this technology remains expensive and is thus not available everywhere. The aim of this review is to describe TARE alternative technologies currently developed and investigated in clinical trials, with special emphasis on HCC.
Collapse
Affiliation(s)
- C. Bouvry
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - X. Palard
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inserm, LTSI (Laboratoire Traitement du Signal et de l'Image), UMR_S 1099, 35000 Rennes, France
| | - J. Edeline
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - V. Ardisson
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
| | - P. Loyer
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - E. Garin
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - N. Lepareur
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| |
Collapse
|
43
|
Bastiaannet R, Kappadath SC, Kunnen B, Braat AJAT, Lam MGEH, de Jong HWAM. The physics of radioembolization. EJNMMI Phys 2018; 5:22. [PMID: 30386924 PMCID: PMC6212377 DOI: 10.1186/s40658-018-0221-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Radioembolization is an established treatment for chemoresistant and unresectable liver cancers. Currently, treatment planning is often based on semi-empirical methods, which yield acceptable toxicity profiles and have enabled the large-scale application in a palliative setting. However, recently, five large randomized controlled trials using resin microspheres failed to demonstrate a significant improvement in either progression-free survival or overall survival in both hepatocellular carcinoma and metastatic colorectal cancer. One reason for this might be that the activity prescription methods used in these studies are suboptimal for many patients.In this review, the current dosimetric methods and their caveats are evaluated. Furthermore, the current state-of-the-art of image-guided dosimetry and advanced radiobiological modeling is reviewed from a physics' perspective. The current literature is explored for the observation of robust dose-response relationships followed by an overview of recent advancements in quantitative image reconstruction in relation to image-guided dosimetry.This review is concluded with a discussion on areas where further research is necessary in order to arrive at a personalized treatment method that provides optimal tumor control and is clinically feasible.
Collapse
Affiliation(s)
- Remco Bastiaannet
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - S. Cheenu Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1155 Pressler St, Unit 1352, Houston, TX 77030 USA
| | - Britt Kunnen
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Arthur J. A. T. Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Marnix G. E. H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Hugo W. A. M. de Jong
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Room E01.132, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
44
|
Spahr N, Thoduka S, Abolmaali N, Kikinis R, Schenk A. Multimodal image registration for liver radioembolization planning and patient assessment. Int J Comput Assist Radiol Surg 2018; 14:215-225. [PMID: 30349976 PMCID: PMC6373337 DOI: 10.1007/s11548-018-1877-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
Abstract
Purpose Multimodal imaging plays a key role in patient assessment and treatment planning in liver radioembolization. It will reach its full potential for convenient use in combination with deformable image registration methods. A registration framework is proposed for multimodal liver image registration of multi-phase CT, contrast-enhanced late-phase T1, T2, and DWI MRI sequences. Methods A chain of four pair-wise image registrations based on a variational registration framework using normalized gradient fields as distance measure and curvature regularization is introduced. A total of 103 cases of 35 patients was evaluated based on anatomical landmarks and deformation characteristics. Results Good anatomical correspondence and physical plausibility of the deformation fields were attained. The global mean landmark errors vary from 3.20 to 5.36 mm, strongly influenced by low resolved images in z-direction. Moderate volume changes are indicated by mean minimum and maximum Jacobian determinants of 0.44 up to 1.88. No deformation foldings were detected. The mean average divergence of the deformation fields range from 0.08 to 0.16 and the mean harmonic energies vary from 0.08 to 0.58. Conclusion The proposed registration solutions enable the combined use of information from multimodal imaging and provide an excellent basis for patient assessment and primary planning for liver radioembolization.
Collapse
Affiliation(s)
- Nadine Spahr
- Fraunhofer Institute for Medical Image Computing, MEVIS, Lübeck, Germany.
| | - Smita Thoduka
- Department of Radiology, Städtisches Klinikum Dresden, Dresden, Germany
| | | | - Ron Kikinis
- Fraunhofer Institute for Medical Image Computing, MEVIS, Lübeck, Germany.,Medical Image Computing, University of Bremen, Bremen, Germany.,Surgical Planning Laboratory, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Andrea Schenk
- Fraunhofer Institute for Medical Image Computing, MEVIS, Lübeck, Germany
| |
Collapse
|
45
|
Schoenberg SO, Attenberger UI, Solomon SB, Weissleder R. Developing a Roadmap for Interventional Oncology. Oncologist 2018; 23:1162-1170. [PMID: 29959284 PMCID: PMC6263130 DOI: 10.1634/theoncologist.2017-0654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/05/2018] [Indexed: 01/05/2023] Open
Abstract
Interventional oncology uses image-guided procedures to enhance cancer care. Today, this specialty plays an increasingly critical role in cancer diagnosis (e.g., biopsy), cancer therapy (e.g., ablation or embolization), and cancer symptom palliation (e.g., nephrostomies or biliary drainages). Although the number of procedures and technical capabilities has improved over the last few years, challenges remain. In this article we discuss the need to advance existing procedures, develop new ones, and focus on several operational aspects that will dictate future interventional techniques to enhance cancer care, particularly by accelerating drug development and improving patient outcomes. IMPLICATIONS FOR PRACTICE Interventional oncology is vital for cancer diagnosis, therapy, and symptom palliation. This report focuses on current interventional procedures and techniques with a look toward future improvements that will improve cancer care and patient outcomes.
Collapse
Affiliation(s)
- Stefan O Schoenberg
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulrike I Attenberger
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephen B Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Ralph Weissleder
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Braat AJAT, Kwekkeboom DJ, Kam BLR, Teunissen JJM, de Herder WW, Dreijerink KMA, van Rooij R, Krijger GC, de Jong HWAM, van den Bosch MAAJ, Lam MGEH. Additional hepatic 166Ho-radioembolization in patients with neuroendocrine tumours treated with 177Lu-DOTATATE; a single center, interventional, non-randomized, non-comparative, open label, phase II study (HEPAR PLUS trial). BMC Gastroenterol 2018; 18:84. [PMID: 29902988 PMCID: PMC6003090 DOI: 10.1186/s12876-018-0817-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Neuroendocrine tumours (NET) consist of a heterogeneous group of neoplasms with various organs of origin. At diagnosis 21% of the patients with a Grade 1 NET and 30% with a Grade 2 NET have distant metastases. Treatment with peptide receptor radionuclide therapy (PRRT) shows a high objective response rate and long median survival after treatment. However, complete remission is almost never achieved. The liver is the most commonly affected organ in metastatic disease and is the most incriminating factor for patient survival. Additional treatment of liver disease after PRRT may improve outcome in NET patients. Radioembolization is an established therapy for liver metastasis. To investigate this hypothesis, a phase 2 study was initiated to assess effectiveness and toxicity of holmium-166 radioembolization (166Ho-RE) after PRRT with lutetium-177 (177Lu)-DOTATATE. Methods The HEPAR PLUS trial (“HolmiumEmbolizationParticles forArterialRadiotherapyPlus177Lu-DOTATATE inSalvage NET patients”) is a single centre, interventional, non-randomized, non-comparative, open label study. In this phase 2 study 30–48 patients with > 3 measurable liver metastases according to RECIST 1.1 will receive additional 166Ho-RE within 20 weeks after the 4th and last cycle of PRRT with 7.4 GBq 177Lu-DOTATATE. Primary objectives are to assess tumour response, complete and partial response according to RECIST 1.1, and toxicity, based on CTCAE v4.03, 3 months after 166Ho-RE. Secondary endpoints include biochemical response, quality of life, biodistribution and dosimetry. Discussion This is the first prospective study to combine PRRT with 177Lu-DOTATATE and additional 166Ho-RE in metastatic NET. A radiation boost on intrahepatic disease using 166Ho-RE may lead to an improved response rate without significant additional side-effects. Trial registration Clinicaltrials.gov NCT02067988, 13 February 2014. Protocol version: 6, 30 november 2016.
Collapse
Affiliation(s)
- Arthur J A T Braat
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands.
| | - Dik J Kwekkeboom
- Department of Nuclear Medicine, Erasmus Medical Centre, 's-Gravendijkwal 230, 3015, CE, Rotterdam, the Netherlands
| | - Boen L R Kam
- Department of Nuclear Medicine, Erasmus Medical Centre, 's-Gravendijkwal 230, 3015, CE, Rotterdam, the Netherlands
| | - Jaap J M Teunissen
- Department of Nuclear Medicine, Erasmus Medical Centre, 's-Gravendijkwal 230, 3015, CE, Rotterdam, the Netherlands
| | - Wouter W de Herder
- Department of Endocrinology, Erasmus Medical Centre, 's-Gravendijkwal 230, 3015, CE, Rotterdam, the Netherlands
| | - Koen M A Dreijerink
- Department of Endocrinology, VU University Medical Centre Amsterdam, De Boelelaan 117, 1081, HV, Amsterdam, the Netherlands
| | - Rob van Rooij
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Gerard C Krijger
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Hugo W A M de Jong
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Maurice A A J van den Bosch
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| |
Collapse
|
47
|
Radioactive holmium phosphate microspheres for cancer treatment. Int J Pharm 2018; 548:73-81. [PMID: 29913219 DOI: 10.1016/j.ijpharm.2018.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022]
Abstract
The aim of this study was the development of radioactive holmium phosphate microspheres (HoPO4-MS) with a high holmium content and that are stable in human serum for selective internal radiation therapy (SIRT) of liver cancer. To this end, holmium acetylacetonate microspheres (HoAcAc-MS) were prepared (34.2 ± 1.0 µm in diameter, holmium content of 46.2 ± 0.8 and density of 1.7 g/cm3) via an emulsification and solvent evaporation method. The concentration of HoAcAc in the organic solvent, the temperature of emulsification and the stirring speed were varied for the preparation of the HoAcAc-MS to obtain microspheres with different diameters ranging from 11 to 35 µm. Subsequently, the AcAc ligands of the HoAcAc-MS were replaced by phosphate ions by simply incubating neutron irradiated HoAcAc-MS in a phosphate buffer solution (0.116 M, pH 4.2) to yield radioactive HoPO4-MS. The obtained microspheres were analyzed using different techniques such as SEM-EDS, ICP-OES and HPLC. The prepared HoPO4-MS (29.5 ± 1.2 µm in diameter and a density of 3.1 g/cm3) present an even higher holmium content (52 wt%) than the HoAcAc-MS precursor (46 wt%). Finally, the stability of the HoPO4-MS was tested by incubation in human serum at 37 °C which showed no visible changes of the microspheres morphology and only 0.1% of holmium release was observed during the 2 weeks period of incubation. In conclusion, this study shows that stable radioactive HoPO4-MS can be prepared with suitable properties to be used for cancer therapy.
Collapse
|
48
|
Bakker RC, van Es RJ, Rosenberg AJ, van Nimwegen SA, Bastiaannet R, de Jong HW, Nijsen JF, Lam MG. Intratumoral injection of radioactive holmium-166 microspheres in recurrent head and neck squamous cell carcinoma: preliminary results of first use. Nucl Med Commun 2018; 39:213-221. [PMID: 29309367 PMCID: PMC5815636 DOI: 10.1097/mnm.0000000000000792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 01/29/2023]
Abstract
BACKGROUND Limited treatment options exist for patients with locoregional recurrences of head and neck squamous cell carcinoma (HNSCC). In the palliative setting, a single session, minimally invasive, and relatively safe therapy is desirable. This case series illustrates the feasibility of a direct intratumoral injection of radioactive holmium-166 microspheres (HoMS) in patients as a palliative treatment for recurrent HNSCC. PATIENTS AND METHODS In this retrospective analysis, patients with already reirradiated irresectable recurrent HNSCC, for whom palliative chemotherapy was unsuccessful or impossible, were offered microbrachytherapy with HoMS. The intratumoral injection was administered manually under ultrasound guidance. Parameters scored were technical feasibility (i.e. administration, leakage, and distribution), clinical response (response evaluation criteria in solid tumors 1.1), and complications (Common Terminology Criteria for Adverse Events 4.3). RESULTS From 2015 to 2017, three patients were treated. None of the patients experienced adverse events; however, therapeutic effects were minimal. Technical difficulties, including precipitating of microspheres and high intratumoral pressure, resulted in suboptimal distribution of the microspheres. CONCLUSION Intratumoral injections with HoMS are minimally invasive and relatively safe in palliation of HNSCC patients. Careful patient selection and improved administration techniques are required to provide a more effective treatment. Further investigation of this novel treatment modality should be carried out because of the absence of side effects and lack of other treatment options.
Collapse
Affiliation(s)
- Robbert C. Bakker
- Department of Radiology and Nuclear Medicine
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht
| | - Robert J.J. van Es
- Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center
| | | | - Sebastiaan A. van Nimwegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
D'Arienzo M, Pimpinella M, Capogni M, De Coste V, Filippi L, Spezi E, Patterson N, Mariotti F, Ferrari P, Chiaramida P, Tapner M, Fischer A, Paulus T, Pani R, Iaccarino G, D'Andrea M, Strigari L, Bagni O. Phantom validation of quantitative Y-90 PET/CT-based dosimetry in liver radioembolization. EJNMMI Res 2017; 7:94. [PMID: 29185067 PMCID: PMC5705539 DOI: 10.1186/s13550-017-0341-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022] Open
Abstract
Background PET/CT has recently been shown to be a viable alternative to traditional post-infusion imaging methods providing good quality images of 90Y-laden microspheres after selective internal radiation therapy (SIRT). In the present paper, first we assessed the quantitative accuracy of 90Y-PET using an anthropomorphic phantom provided with lungs, liver, spine, and a cylindrical homemade lesion located into the hepatic compartment. Then, we explored the accuracy of different computational approaches on dose calculation, including (I) direct Monte Carlo radiation transport using Raydose, (II) Kernel convolution using Philips Stratos, (III) local deposition algorithm, (IV) Monte Carlo technique (MCNP) considering a uniform activity distribution, and (V) MIRD (Medical Internal Radiation Dose) analytical approach. Finally, calculated absorbed doses were compared with those obtained performing measurements with LiF:Mg,Cu,P TLD chips in a liquid environment. Results Our results indicate that despite 90Y-PET being likely to provide high-resolution images, the 90Y low branch ratio, along with other image-degrading factors, may produce non-uniform activity maps, even in the presence of uniform activity. A systematic underestimation of the recovered activity, both for the tumor insert and for the liver background, was found. This is particularly true if no partial volume correction is applied through recovery coefficients. All dose algorithms performed well, the worst case scenario providing an agreement between absorbed dose evaluations within 20%. Average absorbed doses determined with the local deposition method are in excellent agreement with those obtained using the MIRD and the kernel-convolution dose calculation approach. Finally, absorbed dose assessed with MC codes are in good agreement with those obtained using TLD in liquid solution, thus confirming the soundness of both calculation approaches. This is especially true for Raydose, which provided an absorbed dose value within 3% of the measured dose, well within the stated uncertainties. Conclusions Patient-specific dosimetry is possible even in a scenario with low true coincidences and high random fraction, as in 90Y–PET imaging, granted that accurate absolute PET calibration is performed and acquisition times are sufficiently long. Despite Monte Carlo calculations seeming to outperform all dose estimation algorithms, our data provide a strong argument for encouraging the use of the local deposition algorithm for routine 90Y dosimetry based on PET/CT imaging, due to its simplicity of implementation.
Collapse
Affiliation(s)
- Marco D'Arienzo
- ENEA, Italian National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123, Rome, Italy. .,Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, Rome, Italy.
| | - Maria Pimpinella
- ENEA, Italian National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123, Rome, Italy
| | - Marco Capogni
- ENEA, Italian National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123, Rome, Italy
| | - Vanessa De Coste
- ENEA, Italian National Institute of Ionizing Radiation Metrology, Via Anguillarese 301, 00123, Rome, Italy
| | - Luca Filippi
- Nuclear Medicine Department, Santa Maria Goretti Hospital, Latina, Italy
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom.,Department of Medical Physics, Velindre Cancer Centre, Cardiff, UK
| | - Nick Patterson
- Department of Medical Physics, Velindre Cancer Centre, Cardiff, UK
| | - Francesca Mariotti
- ENEA, Radiation Protection Institute, Bologna Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | - Paolo Ferrari
- ENEA, Radiation Protection Institute, Bologna Via Martiri di Monte Sole 4, 40129, Bologna, Italy
| | | | | | - Alexander Fischer
- Philips Technologie GmbH Innovative Technologies, Research Laboratories Pauwelsstr, 17, 52074, Aachen, Germany
| | - Timo Paulus
- Philips Technologie GmbH Innovative Technologies, Research Laboratories Pauwelsstr, 17, 52074, Aachen, Germany
| | - Roberto Pani
- Depertment of Medico-surgical Sciences and Biotecnologies, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Iaccarino
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marco D'Andrea
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Oreste Bagni
- Nuclear Medicine Department, Santa Maria Goretti Hospital, Latina, Italy
| |
Collapse
|
50
|
Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative Imaging for Targeted Radionuclide Therapy Dosimetry - Technical Review. Theranostics 2017; 7:4551-4565. [PMID: 29158844 PMCID: PMC5695148 DOI: 10.7150/thno.19782] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Targeted radionuclide therapy (TRT) is a promising technique for cancer therapy. However, in order to deliver the required dose to the tumor, minimize potential toxicity in normal organs, as well as monitor therapeutic effects, it is important to assess the individualized internal dosimetry based on patient-specific data. Advanced imaging techniques, especially radionuclide imaging, can be used to determine the spatial distribution of administered tracers for calculating the organ-absorbed dose. While planar scintigraphy is still the mainstream imaging method, SPECT, PET and bremsstrahlung imaging have promising properties to improve accuracy in quantification. This article reviews the basic principles of TRT and discusses the latest development in radionuclide imaging techniques for different theranostic agents, with emphasis on their potential to improve personalized TRT dosimetry.
Collapse
Affiliation(s)
- Tiantian Li
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Edwin C. I. Ao
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Bieke Lambert
- Dept of Radiology and Nuclear medicine, Ghent University, De Pintelaan 185 9000 Gent, Belgium
- AZ Maria Middelares, Buiten-Ring-Sint-Denijs 30, 9000 Gent, Belgium
| | - Boudewijn Brans
- Dept of Nuclear Medicine, UZ Ghent-Ghent University, St-Pietersnieuwstraat 41, 9000 Gent, Belgium
| | - Stefaan Vandenberghe
- MEDISIP-ELIS-IBITECH-IMEC, Ghent University, St-Pietersnieuwstraat 41, 9000 Gent, Belgium
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|