1
|
Gogola A, Lopresti BJ, Minhas DS, Lopez O, Cohen A, Villemagne VL. Tau Imaging: Use and Implementation in New Diagnostic and Therapeutic Paradigms for Alzheimer's Disease. Geriatrics (Basel) 2025; 10:27. [PMID: 39997526 PMCID: PMC11855481 DOI: 10.3390/geriatrics10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) affects an estimated 6.9 million older adults in the United States and is projected to impact as many as 13.8 million people by 2060. As studies continue to search for ways to combat the development and progression of AD, it is imperative to ensure that confident diagnoses can be made before the onset of severe clinical symptoms and new therapies can be evaluated effectively. Tau positron emission tomography (PET) has emerged as one method that may be capable of both, given its ability to recognize the presence of tau, a primary pathologic hallmark of AD; its usefulness in determining the spatial distribution of tau, which is necessary for differentiating AD from other tauopathies; and its association with measures of cognition. This review aims to evaluate the scope of tau PET's utility in clinical trials and practice. Firstly, the potential of using tau PET for differential diagnoses, distinguishing AD from other dementias, is considered. Next, the value of tau PET as a tool for staging disease progression is investigated. Finally, tau PET as a prognostic method for identifying the individuals most at risk of cognitive decline and, therefore, most in need of, and likely to benefit from, intervention, is discussed.
Collapse
Affiliation(s)
- Alexandra Gogola
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.J.L.); (D.S.M.)
| | - Brian J. Lopresti
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.J.L.); (D.S.M.)
| | - Davneet S. Minhas
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (B.J.L.); (D.S.M.)
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Ann Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.C.); (V.L.V.)
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.C.); (V.L.V.)
| |
Collapse
|
2
|
Strobel J, Yousefzadeh-Nowshahr E, Deininger K, Bohn KP, von Arnim CAF, Otto M, Solbach C, Anderl-Straub S, Polivka D, Fissler P, Glatting G, Riepe MW, Higuchi M, Beer AJ, Ludolph A, Winter G. Exploratory Tau PET/CT with [11C]PBB3 in Patients with Suspected Alzheimer's Disease and Frontotemporal Lobar Degeneration: A Pilot Study on Correlation with PET Imaging and Cerebrospinal Fluid Biomarkers. Biomedicines 2024; 12:1460. [PMID: 39062033 PMCID: PMC11274645 DOI: 10.3390/biomedicines12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Accurately diagnosing Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) is challenging due to overlapping symptoms and limitations of current imaging methods. This study investigates the use of [11C]PBB3 PET/CT imaging to visualize tau pathology and improve diagnostic accuracy. Given diagnostic challenges with symptoms and conventional imaging, [11C]PBB3 PET/CT's potential to enhance accuracy was investigated by correlating tau pathology with cerebrospinal fluid (CSF) biomarkers, positron emission tomography (PET), computed tomography (CT), amyloid-beta, and Mini-Mental State Examination (MMSE). We conducted [11C]PBB3 PET/CT imaging on 24 patients with suspected AD or FTLD, alongside [11C]PiB PET/CT (13 patients) and [18F]FDG PET/CT (15 patients). Visual and quantitative assessments of [11C]PBB3 uptake using standardized uptake value ratios (SUV-Rs) and correlation analyses with clinical assessments were performed. The scans revealed distinct tau accumulation patterns; 13 patients had no or faint uptake (PBB3-negative) and 11 had moderate to pronounced uptake (PBB3-positive). Significant inverse correlations were found between [11C]PBB3 SUV-Rs and MMSE scores, but not with CSF-tau or CSF-amyloid-beta levels. Here, we show that [11C]PBB3 PET/CT imaging can reveal distinct tau accumulation patterns and correlate these with cognitive impairment in neurodegenerative diseases. Our study demonstrates the potential of [11C]PBB3-PET imaging for visualizing tau pathology and assessing disease severity, offering a promising tool for enhancing diagnostic accuracy in AD and FTLD. Further research is essential to validate these findings and refine the use of tau-specific PET imaging in clinical practice, ultimately improving patient care and treatment outcomes.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Katharina Deininger
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Karl Peter Bohn
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, Halle University, 06120 Halle, Germany
| | - Christoph Solbach
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Dörte Polivka
- Department of Neurology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Patrick Fissler
- Psychiatric Services Thurgau (Academic Teaching Hospital of the University of Konstanz), 8596 Münsterlingen, Switzerland
| | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Matthias W. Riepe
- Department of Psychiatry and Psychotherapy II, Ulm University, 89075 Ulm, Germany
| | - Makoto Higuchi
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
3
|
Wang M, Lu J, Zhang Y, Zhang Q, Wang L, Wu P, Brendel M, Rominger A, Shi K, Zhao Q, Jiang J, Zuo C. Characterization of tau propagation pattern and cascading hypometabolism from functional connectivity in Alzheimer's disease. Hum Brain Mapp 2024; 45:e26689. [PMID: 38703095 PMCID: PMC11069321 DOI: 10.1002/hbm.26689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Tau pathology and its spatial propagation in Alzheimer's disease (AD) play crucial roles in the neurodegenerative cascade leading to dementia. However, the underlying mechanisms linking tau spreading to glucose metabolism remain elusive. To address this, we aimed to examine the association between pathologic tau aggregation, functional connectivity, and cascading glucose metabolism and further explore the underlying interplay mechanisms. In this prospective cohort study, we enrolled 79 participants with 18F-Florzolotau positron emission tomography (PET), 18F-fluorodeoxyglucose PET, resting-state functional, and anatomical magnetic resonance imaging (MRI) images in the hospital-based Shanghai Memory Study. We employed generalized linear regression and correlation analyses to assess the associations between Florzolotau accumulation, functional connectivity, and glucose metabolism in whole-brain and network-specific manners. Causal mediation analysis was used to evaluate whether functional connectivity mediates the association between pathologic tau and cascading glucose metabolism. We examined 22 normal controls and 57 patients with AD. In the AD group, functional connectivity was associated with Florzolotau covariance (β = .837, r = 0.472, p < .001) and glucose covariance (β = 1.01, r = 0.499, p < .001). Brain regions with higher tau accumulation tend to be connected to other regions with high tau accumulation through functional connectivity or metabolic connectivity. Mediation analyses further suggest that functional connectivity partially modulates the influence of tau accumulation on downstream glucose metabolism (mediation proportion: 49.9%). Pathologic tau may affect functionally connected neurons directly, triggering downstream glucose metabolism changes. This study sheds light on the intricate relationship between tau pathology, functional connectivity, and downstream glucose metabolism, providing critical insights into AD pathophysiology and potential therapeutic targets.
Collapse
Affiliation(s)
- Min Wang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Jiaying Lu
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
| | - Ying Zhang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Qi Zhang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Luyao Wang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Ping Wu
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
| | | | - Axel Rominger
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
- Computer Aided Medical Procedures, School of Computation, Information and TechnologyTechnical University of MunichMunichGermany
| | - Qianhua Zhao
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiehui Jiang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
- Human Phenome InstituteFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Nowell J, Raza S, Livingston NR, Sivanathan S, Gentleman S, Edison P. Do Tau Deposition and Glucose Metabolism Dissociate in Alzheimer's Disease Trajectory? J Alzheimers Dis 2024; 101:987-999. [PMID: 39302365 DOI: 10.3233/jad-240434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Tau aggregation demonstrates close associations with hypometabolism in Alzheimer's disease (AD), although differing pathophysiological processes may underlie their development. Objective To establish whether tau deposition and glucose metabolism have different trajectories in AD progression and evaluate the utility of global measures of these pathological hallmarks in predicting cognitive deficits. Methods 279 participants with amyloid-β (Aβ) status, and T1-weighted MRI scans, were selected from the Alzheimer's Disease Neuroimaging Initiative (http://adni.loni.usc.edu). We created the standard uptake value ratio images using Statistical Parametric Mapping 12 for [18F]AV1451-PET (tau) and [18F]FDG-PET (glucose metabolism) scans. Voxel-wise group and single-subject level SPM analysis evaluated the relationship between global [18F]FDG-PET and [18F]AV1451-PET depending on the Aβ status. Linear models assessed whether tau deposition or glucose metabolism better predicted clinical progression. Results There was a dissociation between global cerebral glucose hypometabolism and global tau load in amyloid-positive AD and amyloid-negative mild cognitive impairment (MCI) (p > 0.05). Global hypometabolism was only associated with global cortical tau in amyloid-positive MCI. Voxel-level single subject tau load better predicted neuropsychological performance, Alzheimer's disease assessment scale-cognitive (ADAS-Cog) 13 score, and one-year change compared with regional and global hypometabolism. Conclusions A dissociation between tau pathology and glucose metabolism at a global level in AD could imply that other pathological processes influence glucose metabolism. Furthermore, as tau is a better predictor of clinical progression, these processes may have independent trajectories and require independent consideration in the context of therapeutic interventions.
Collapse
Affiliation(s)
- Joseph Nowell
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
| | - Sanara Raza
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
| | - Nicholas R Livingston
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
| | - Shayndhan Sivanathan
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
| | - Steve Gentleman
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
5
|
Caminiti SP, De Francesco S, Tondo G, Galli A, Redolfi A, Perani D, the Alzheimer's Disease Neuroimaging Initiative. FDG-PET markers of heterogeneity and different risk of progression in amnestic MCI. Alzheimers Dement 2024; 20:159-172. [PMID: 37505996 PMCID: PMC10962797 DOI: 10.1002/alz.13385] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/19/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Amnestic mild cognitive impairment (aMCI) is emerging as a heterogeneous condition. METHODS We looked at a cohort of N = 207 aMCI subjects, with baseline fluorodeoxyglucose positron emission tomography (FDG-PET), T1 magnetic resonance imaging, cerebrospinal fluid (CSF), apolipoprotein E (APOE), and neuropsychological assessment. An algorithm based on FDG-PET hypometabolism classified each subject into subtypes, then compared biomarker measures and clinical progression. RESULTS Three subtypes emerged: hippocampal sparing-cortical hypometabolism, associated with younger age and the highest level of Alzheimer's disease (AD)-CSF pathology; hippocampal/cortical hypometabolism, associated with a high percentage of APOE ε3/ε4 or ε4/ε4 carriers; medial-temporal hypometabolism, characterized by older age, the lowest AD-CSF pathology, the most severe hippocampal atrophy, and a benign course. Within the whole cohort, the severity of temporo-parietal hypometabolism, correlated with AD-CSF pathology and marked the rate of progression of cognitive decline. DISCUSSION FDG-PET can distinguish clinically comparable aMCI at single-subject level with different risk of progression to AD dementia or stability. The obtained results can be useful for the optimization of pharmacological trials and automated-classification models. HIGHLIGHTS Algorithm based on FDG-PET hypometabolism demonstrates distinct subtypes across aMCI; Three different subtypes show heterogeneous biological profiles and risk of progression; The cortical hypometabolism is associated with AD pathology and cognitive decline; MTL hypometabolism is associated with the lowest conversion rate and CSF-AD pathology.
Collapse
Affiliation(s)
- Silvia Paola Caminiti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Silvia De Francesco
- Laboratory of NeuroinformaticsIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Giacomo Tondo
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Alice Galli
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Alberto Redolfi
- Laboratory of NeuroinformaticsIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Daniela Perani
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | | |
Collapse
|
6
|
Sasikumar S, Strafella AP. Structural and Molecular Imaging for Clinically Uncertain Parkinsonism. Semin Neurol 2023; 43:95-105. [PMID: 36878467 DOI: 10.1055/s-0043-1764228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Neuroimaging is an important adjunct to the clinical assessment of Parkinson disease (PD). Parkinsonism can be challenging to differentiate, especially in early disease stages, when it mimics other movement disorders or when there is a poor response to dopaminergic therapies. There is also a discrepancy between the phenotypic presentation of degenerative parkinsonism and the pathological outcome. The emergence of more sophisticated and accessible neuroimaging can identify molecular mechanisms of PD, the variation between clinical phenotypes, and the compensatory mechanisms that occur with disease progression. Ultra-high-field imaging techniques have improved spatial resolution and contrast that can detect microstructural changes, disruptions in neural pathways, and metabolic and blood flow alterations. We highlight the imaging modalities that can be accessed in clinical practice and recommend an approach to the diagnosis of clinically uncertain parkinsonism.
Collapse
Affiliation(s)
- Sanskriti Sasikumar
- Morton and Gloria Shulman Movement Disorder Unit and Edmond J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, University of Toronto, Toronto Western Hospital, UHN, Ontario, Canada
| | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit and Edmond J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, University of Toronto, Toronto Western Hospital, UHN, Ontario, Canada.,Krembil Brain Institute, University Health Network and Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
The challenging quest of neuroimaging: From clinical to molecular-based subtyping of Parkinson disease and atypical parkinsonisms. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:231-258. [PMID: 36796945 DOI: 10.1016/b978-0-323-85538-9.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The current framework of Parkinson disease (PD) focuses on phenotypic classification despite its considerable heterogeneity. We argue that this method of classification has restricted therapeutic advances and therefore limited our ability to develop disease-modifying interventions in PD. Advances in neuroimaging have identified several molecular mechanisms relevant to PD, variation within and between clinical phenotypes, and potential compensatory mechanisms with disease progression. Magnetic resonance imaging (MRI) techniques can detect microstructural changes, disruptions in neural pathways, and metabolic and blood flow alterations. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging have informed the neurotransmitter, metabolic, and inflammatory dysfunctions that could potentially distinguish disease phenotypes and predict response to therapy and clinical outcomes. However, rapid advancements in imaging techniques make it challenging to assess the significance of newer studies in the context of new theoretical frameworks. As such, there needs to not only be a standardization of practice criteria in molecular imaging but also a rethinking of target approaches. In order to harness precision medicine, a coordinated shift is needed toward divergent rather than convergent diagnostic approaches that account for interindividual differences rather than similarities within an affected population, and focus on predictive patterns rather than already lost neural activity.
Collapse
|
8
|
Janicki Hsieh S, Alexopoulou Z, Mehrotra N, Struyk A, Stoch SA. Neurodegenerative Diseases: The Value of Early Predictive End Points. Clin Pharmacol Ther 2022; 111:835-839. [PMID: 35234294 DOI: 10.1002/cpt.2544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Use of early predictive biomarkers of neurodegenerative disease in phase I clinical trials may improve the translation of novel drug therapies from preclinical development through late-stage studies. This article provides a categorical summary of promising biomarker approaches or clinical end points in molecular, cellular, metabolic, electrophysiological, or clinical function that can be used to predict or quantify the progression of neurodegenerative disorders and guide program support.
Collapse
Affiliation(s)
| | | | - Nitin Mehrotra
- Merck & Co., Inc., Kenilworth, New Jersey, USA.,Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Arie Struyk
- Merck & Co., Inc., Kenilworth, New Jersey, USA
| | | |
Collapse
|
9
|
Peralta C, Strafella AP, van Eimeren T, Ceravolo R, Seppi K, Kaasinen V, Arena JE, Lehericy S. Pragmatic Approach on Neuroimaging Techniques for the Differential Diagnosis of Parkinsonisms. Mov Disord Clin Pract 2022; 9:6-19. [PMID: 35005060 DOI: 10.1002/mdc3.13354] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Background Rapid advances in neuroimaging technologies in the exploration of the living human brain also apply to movement disorders. However, the accurate diagnosis of Parkinson's disease (PD) and atypical parkinsonian disorders (APDs) still remains a challenge in daily practice. Methods We review the literature and our own experience as the Movement Disorder Society-Neuroimaging Study Group in Movement Disorders with the aim of providing a practical approach to the use of imaging technologies in the clinical setting. Results The enormous amount of articles published so far and our increasing recognition of imaging technologies contrast with a lack of imaging protocols and updated algorithms for differential diagnosis. The distinctive pathological involvement in different brain structures and the correlation with imaging findings obtained with magnetic resonance, positron emission tomography, or single-photon emission computed tomography illustrate what qualitative and quantitative measures may be useful in the clinical setting. Conclusion We delineate a pragmatic approach to discuss imaging technologies, updated imaging algorithms, and their implications for differential diagnoses in PD and APDs.
Collapse
Affiliation(s)
- Cecilia Peralta
- Movement Disorders Clinic, Neuroscience Department Hospital Universitario CEMIC, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" Buenos Aires Argentina
| | - Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Division of Neurology/Department of Medicine, Toronto Western Hospital University Health Network Toronto Ontario Canada.,Krembil Brain Institute, University Health Network Toronto Ontario Canada.,Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
| | - Thilo van Eimeren
- Department of Nuclear Medicine University of Cologne Cologne Germany.,Department of Neurology University of Cologne Cologne Germany
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
| | - Klaus Seppi
- Department of Neurology Medical University Innsbruck Innsbruck Austria
| | - Valtteri Kaasinen
- Clinical Neurosciences University of Turku and Turku University Hospital Turku Finland
| | - Julieta E Arena
- Movement Disorders Section, Department of Neurology, Fleni Buenos Aires Argentina
| | - Stephane Lehericy
- Institut du Cerveau-ICM, Team "Movement Investigations and Therapeutics," Centre de NeuroImagerie de Recherche-CENIR, Neuroradiology Department Paris France.,Sorbonne Université, INSERM U, Institut national de la santé et de la recherche médicale 1127, National Centre for Scientific Research, Unité mixte de recherche 7225 Paris France.,Department of Neuroradiology Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris Paris France
| | | |
Collapse
|
10
|
An Update on the State of Tau Radiotracer Development: a Brief Review. Mol Imaging Biol 2021; 23:797-808. [PMID: 33987775 DOI: 10.1007/s11307-021-01612-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Evolving scientific evidence has begun to point towards hyperphosphorylated tau as a major neurotoxic component in the pathophysiological development of many major neurodegenerative conditions. In response to a need for accurate and reliable diagnosis and disease monitoring in clinical and trial settings, there has been great effort put into the development of tau radiotracers. While first-generation and second-generation radiotracers have provided a basis for assessing tau, concerns of inadequate specificity and selectivity have continued to motivate further study of these radiotracers and the development of novel radiopharmaceuticals. Given the prospective scientific and clinical value of a valid tau radiotracer, the molecular neuroimaging community must be aware of the most recent developments in the realm of tau radiotracer development. This brief review article will critically overview the most established tau radiotracers and, most importantly, concentrate on the progress of more recently developed tau radiotracers.
Collapse
|
11
|
Chen L, Wei Z, Chan KWY, Li Y, Suchal K, Bi S, Huang J, Xu X, Wong PC, Lu H, van Zijl PCM, Li T, Xu J. D-Glucose uptake and clearance in the tauopathy Alzheimer's disease mouse brain detected by on-resonance variable delay multiple pulse MRI. J Cereb Blood Flow Metab 2021; 41:1013-1025. [PMID: 32669023 PMCID: PMC8054725 DOI: 10.1177/0271678x20941264] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
In this study, we applied on-resonance variable delay multiple pulse (onVDMP) MRI to study D-glucose uptake in a mouse model of Alzheimer's disease (AD) tauopathy and demonstrated its feasibility in discriminating AD mice from wild-type mice. The D-glucose uptake in the cortex of AD mice (1.70 ± 1.33%) was significantly reduced compared to that of wild-type mice (5.42 ± 0.70%, p = 0.0051). Also, a slower D-glucose uptake rate was found in the cerebrospinal fluid (CSF) of AD mice (0.08 ± 0.01 min-1) compared to their wild-type counterpart (0.56 ± 0.1 min-1, p < 0.001), which suggests the presence of an impaired glucose transporter on both blood-brain and blood-CSF barriers of these AD mice. Clearance of D-glucose was observed in the CSF of wild-type mice but not AD mice, which suggests dysfunction of the glymphatic system in the AD mice. The results in this study indicate that onVDMP MRI could be a cost-effective and widely available method for simultaneously evaluating glucose transporter and glymphatic function of AD. This study also suggests that tau protein affects the D-glucose uptake and glymphatic impairment in AD at a time point preceding neurofibrillary tangle pathology.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie WY Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kapil Suchal
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip C Wong
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter CM van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Altomare D, Caprioglio C, Assal F, Allali G, Mendes A, Ribaldi F, Ceyzeriat K, Martins M, Tomczyk S, Stampacchia S, Dodich A, Boccardi M, Chicherio C, Frisoni GB, Garibotto V. Diagnostic value of amyloid-PET and tau-PET: a head-to-head comparison. Eur J Nucl Med Mol Imaging 2021; 48:2200-2211. [PMID: 33638661 PMCID: PMC8175315 DOI: 10.1007/s00259-021-05246-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Purpose Assess the individual and combined diagnostic value of amyloid-PET and tau-PET in a memory clinic population. Methods Clinical reports of 136 patients were randomly assigned to two diagnostic pathways: AMY-TAU, amyloid-PET is presented before tau-PET; and TAU-AMY, tau-PET is presented before amyloid-PET. Two neurologists independently assessed all reports with a balanced randomized design, and expressed etiological diagnosis and diagnostic confidence (50–100%) three times: (i) at baseline based on the routine diagnostic workup, (ii) after the first exam (amyloid-PET for the AMY-TAU pathway, and tau-PET for the TAU-AMY pathway), and (iii) after the remaining exam. The main outcomes were changes in diagnosis (from AD to non-AD or vice versa) and in diagnostic confidence. Results Amyloid-PET and tau-PET, when presented as the first exam, resulted in a change of etiological diagnosis in 28% (p = 0.006) and 28% (p < 0.001) of cases, and diagnostic confidence increased by 18% (p < 0.001) and 19% (p < 0.001) respectively, with no differences between exams (p > 0.05). We observed a stronger impact of a negative amyloid-PET versus a negative tau-PET (p = 0.014). When added as the second exam, amyloid-PET and tau-PET resulted in a further change in etiological diagnosis in 6% (p = 0.077) and 9% (p = 0.149) of cases, and diagnostic confidence increased by 4% (p < 0.001) and 5% (p < 0.001) respectively, with no differences between exams (p > 0.05). Conclusion Amyloid-PET and tau-PET significantly impacted diagnosis and diagnostic confidence in a similar way, although a negative amyloid-PET has a stronger impact on diagnosis than a negative tau-PET. Adding either of the two as second exam further improved diagnostic confidence. Trial number PB 2016-01346. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05246-x.
Collapse
Affiliation(s)
- Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland. .,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland.
| | - Camilla Caprioglio
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Frédéric Assal
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gilles Allali
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Aline Mendes
- Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kelly Ceyzeriat
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Marta Martins
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Sara Stampacchia
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alessandra Dodich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Marina Boccardi
- Late Translational Dementia Research Group, German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Rostock, Germany
| | | | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
13
|
Hammes J, Bischof GN, Bohn KP, Onur Ö, Schneider A, Fliessbach K, Hönig MC, Jessen F, Neumaier B, Drzezga A, van Eimeren T. One-Stop Shop: 18F-Flortaucipir PET Differentiates Amyloid-Positive and -Negative Forms of Neurodegenerative Diseases. J Nucl Med 2020; 62:240-246. [PMID: 32620704 DOI: 10.2967/jnumed.120.244061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Tau protein aggregations are a hallmark of amyloid-associated Alzheimer disease and some forms of non-amyloid-associated frontotemporal lobar degeneration. In recent years, several tracers for in vivo tau imaging have been under evaluation. This study investigated the ability of 18F-flortaucipir PET not only to assess tau positivity but also to differentiate between amyloid-positive and -negative forms of neurodegeneration on the basis of different 18F-flortaucipir PET signatures. Methods: The 18F-flortaucipir PET data of 35 patients with amyloid-positive neurodegeneration, 19 patients with amyloid-negative neurodegeneration, and 17 healthy controls were included in a data-driven scaled subprofile model (SSM)/principal-component analysis (PCA) identifying spatial covariance patterns. SSM/PCA pattern expression strengths were tested for their ability to predict amyloid status in a receiver-operating-characteristic analysis and validated with a leave-one-out approach. Results: Pattern expression strengths predicted amyloid status with a sensitivity of 0.94 and a specificity of 0.83. A support vector machine classification based on pattern expression strengths in 2 different SSM/PCA components yielded a prediction accuracy of 98%. Anatomically, prediction performance was driven by parietooccipital gray matter in amyloid-positive patients versus predominant white matter binding in amyloid-negative patients. Conclusion: SSM/PCA-derived binding patterns of 18F-flortaucipir differentiate between amyloid-positive and -negative neurodegenerative diseases with high accuracy. 18F-flortaucipir PET alone may convey additional information equivalent to that from amyloid PET. Together with a perfusion-weighted early-phase acquisition (18F-FDG PET-equivalent), a single scan potentially contains comprehensive information on amyloid (A), tau (T), and neurodegeneration (N) status as required by recent biomarker classification algorithms (A/T/N).
Collapse
Affiliation(s)
- Jochen Hammes
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany .,Radiologische Allianz, Hamburg, Germany
| | - Gérard N Bischof
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Karl P Bohn
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Department of Nuclear Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Özgür Onur
- Department of Neurology, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Merle C Hönig
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Department of Psychiatry, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany; and
| | - Bernd Neumaier
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany, and Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany.,Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging, Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,Department of Neurology, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn and Cologne, Germany
| |
Collapse
|
14
|
van Eimeren T, Antonini A, Berg D, Bohnen N, Ceravolo R, Drzezga A, Höglinger GU, Higuchi M, Lehericy S, Lewis S, Monchi O, Nestor P, Ondrus M, Pavese N, Peralta MC, Piccini P, Pineda-Pardo JÁ, Rektorová I, Rodríguez-Oroz M, Rominger A, Seppi K, Stoessl AJ, Tessitore A, Thobois S, Kaasinen V, Wenning G, Siebner HR, Strafella AP, Rowe JB. Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: Proposal for a Neuroimaging Biomarker Utility System. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:301-309. [PMID: 30984816 PMCID: PMC6446052 DOI: 10.1016/j.dadm.2019.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Therapeutic strategies targeting protein aggregations are ready for clinical trials in atypical parkinsonian disorders. Therefore, there is an urgent need for neuroimaging biomarkers to help with the early detection of neurodegenerative processes, the early differentiation of the underlying pathology, and the objective assessment of disease progression. However, there currently is not yet a consensus in the field on how to describe utility of biomarkers for clinical trials in atypical parkinsonian disorders. METHODS To promote standardized use of neuroimaging biomarkers for clinical trials, we aimed to develop a conceptual framework to characterize in more detail the kind of neuroimaging biomarkers needed in atypical parkinsonian disorders, identify the current challenges in ascribing utility of these biomarkers, and propose criteria for a system that may guide future studies. RESULTS As a consensus outcome, we describe the main challenges in ascribing utility of neuroimaging biomarkers in atypical parkinsonian disorders, and we propose a conceptual framework that includes a graded system for the description of utility of a specific neuroimaging measure. We included separate categories for the ability to accurately identify an intention-to-treat patient population early in the disease (Early), to accurately detect a specific underlying pathology (Specific), and the ability to monitor disease progression (Progression). DISCUSSION We suggest that the advancement of standardized neuroimaging in the field of atypical parkinsonian disorders will be furthered by a well-defined reference frame for the utility of biomarkers. The proposed utility system allows a detailed and graded description of the respective strengths of neuroimaging biomarkers in the currently most relevant areas of application in clinical trials.
Collapse
Affiliation(s)
- Thilo van Eimeren
- Multimodal Neuroimaging, Department of Nuclear Medicine, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Daniela Berg
- Department of Neurology, UKSH, Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - Nico Bohnen
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, and VAMC, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- VAMC, Ann Arbor, MI, USA
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alexander Drzezga
- Multimodal Neuroimaging, Department of Nuclear Medicine, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
- Forschungszentrum Jülich, INM-2, Jülich, Germany
| | - Günter U. Höglinger
- German Centre for Neurodegenerative Diseases (DZNE), and Technical University Munich, Department of Neurology, Munich, Germany
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Stephane Lehericy
- Institut du Cerveau et de la Moelle épinière – ICM, Centre de NeuroImagerie de Recherche – CENIR, ICM Team “Movement Investigations and Therapeutics”, Sorbonne Universités, Inserm U1127, CNRS UMR, Paris, France
| | - Simon Lewis
- Brain & Mind Centre, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Oury Monchi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Peter Nestor
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Mater Hospital, South Brisbane, QLD, Australia
| | - Matej Ondrus
- AXON Neuroscience CRM Services SE, Bratislava, Slovak Republic
| | - Nicola Pavese
- Newcastle Magnetic Resonance Centre & Positron Emission Tomography Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - María Cecilia Peralta
- Center for Medical Education and Clinical Research, Section of Neurology, Buenos Aires, Argentina
| | - Paola Piccini
- Department of Medicine, Imperial College London, London, United Kingdom
| | - José Ángel Pineda-Pardo
- hmCINAC, University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | - Irena Rektorová
- First Department of Neurology – Faculty of Medicine and CEITEC MU, Masaryk University, Brno, Czech Republic
| | | | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Universitätsspital Bern, Bern, Switzerland
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Jon Stoessl
- Pacific Parkinson’s Research Centre, University of British Columbia, Vancouver, Canada
| | - Alessandro Tessitore
- Department of Medical, Surgery, Neurological, Metabolic and Aging Sciences, University of Campania, “L. Vanvitelli”, Caserta CE, Italy
| | - Stephane Thobois
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Medecine Lyon Sud Charles Merieux, Lyon, France
- Hospices Civils de Lyon, Hopital Neurologique Pierre Wertheimer, Neurologie C, Lyon, France
- CNRS, Institut des Sciences Cognitives, Bron, France
| | - Valtteri Kaasinen
- Department of Neurology, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Gregor Wenning
- Division of Clinical Neurology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hartwig R. Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Antonio P. Strafella
- E.J. Safra Parkinson Disease Program, Toronto Western Hospital & Krembil Research Institute, UHN, Toronto, Ontario, Canada
- Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
[18F]-THK5351 PET Imaging in Patients With Semantic Variant Primary Progressive Aphasia. Alzheimer Dis Assoc Disord 2019; 32:62-69. [PMID: 29028649 DOI: 10.1097/wad.0000000000000216] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Semantic variant primary progressive aphasia (svPPA) has been associated with a variety of proteinopathies, mainly transactive response DNA-binding protein, but also with tau and β-amyloid. Recently selective tau tracers for positron emission tomography (PET) have been developed to determine the presence of cerebral tau deposits in vivo. Here, we investigated the topographical distribution of THK5351 in svPPA patients. MATERIALS AND METHODS Five svPPA patients, 14 Alzheimer's disease patients, and 15 age-matched normal controls underwent [F]-THK5351 PET scans, magnetic resonance imaging, and detailed neuropsychological tests. [F]-fluorodeoxyglucose PET was obtained in 3 svPPA patients, whereas the remaining 2 underwent amyloid PET using [F]-flutemetamol. Tau distribution among the 3 groups was compared using regions of interest-based and voxel-based statistical analyses. RESULTS In svPPA patients, [F]-THK5351 retention was elevated in the anteroinferior and lateral temporal cortices compared with the normal controls group (left>right), and in the left inferior and temporal polar region compared with Alzheimer's disease patients. [F]-THK5351 retention inversely correlated with glucose metabolism, whereas regional THK retention correlated with clinical severity. [F]-flutemetamol scans were negative for β-amyloid. CONCLUSIONS These findings show that [F]-THK5351 retention may be detected in cortical regions correlating with svPPA pathology.
Collapse
|
16
|
Strafella AP, Bohnen NI, Pavese N, Vaillancourt DE, van Eimeren T, Politis M, Tessitore A, Ghadery C, Lewis S. Imaging Markers of Progression in Parkinson's Disease. Mov Disord Clin Pract 2018; 5:586-596. [PMID: 30637278 DOI: 10.1002/mdc3.12673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson's disease (PD) is the second-most common neurodegenerative disorder after Alzheimer's disease; however, to date, there is no approved treatment that stops or slows down disease progression. Over the past decades, neuroimaging studies, including molecular imaging and MRI are trying to provide insights into the mechanisms underlying PD. Methods This work utilized a literature review. Results It is now becoming clear that these imaging modalities can provide biomarkers that can objectively detect brain changes related to PD and monitor these changes as the disease progresses, and these biomarkers are required to establish a breakthrough in neuroprotective or disease-modifying therapeutics. Conclusions Here, we provide a review of recent observations deriving from PET, single-positron emission tomography, and MRI studies exploring PD and other parkinsonian disorders.
Collapse
Affiliation(s)
- Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN University of Toronto Toronto Ontario Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
| | - Nico I Bohnen
- Department of Radiology & Neurology University of Michigan Ann Arbor Michigan USA.,Veterans Administration Ann Arbor Healthcare System Ann Arbor Michigan USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research University of Michigan Ann Arbor Michigan USA
| | - Nicola Pavese
- Newcastle Magnetic Resonance Centre & Positron Emission Tomography Centre Newcastle University, Campus for Ageing & Vitality Newcastle upon Tyne United Kingdom
| | - David E Vaillancourt
- Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology University of Florida Gainesville Florida USA
| | - Thilo van Eimeren
- Department of Nuclear Medicine and Department of Neurology University of Cologne Cologne Germany.,Institute for Cognitive Neuroscience, Jülich Research Centre Jülich Germany.,German Center for Neurodegenerative Diseases (DZNE) Bonn-Cologne Bonn Germany
| | - Marios Politis
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London London United Kingdom
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences-MRI Research Center SUN-FISM University of Campania "Luigi Vanvitelli" Naples Italy
| | - Christine Ghadery
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN University of Toronto Toronto Ontario Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
| | - Simon Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre University of Sydney Sydney NSW Australia
| | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Differential diagnosis of atypical Parkinson syndromes (APS) is difficult as clinical presentations may vary and as there is a strong overlap between disease entities. Aggregations of misfolded and hyperphosphorylated tau proteins are the common denominator of many of these diseases. RECENT FINDINGS Several tau targeting positron emission tomography (PET) tracers have been evaluated as possible biomarkers in APS in the recent years. For Parkinson's disease, dementia with Lewy bodies, progressive supranuclear palsy, and corticobasal degeneration, promising results have been reported with regard to the ability to detect the presence of disease and to discriminate patients from controls. However, the discussion about the specificity of the first-generation radiotracers and their value in the clinical context is ongoing. A combined interpretation of signal strength and distribution pattern in PET scans with first- and second-generation tracers may be helpful in clinical diagnosis and follow-up of patients with APS.
Collapse
|
18
|
Abstract
BACKGROUND The microtubule-associated tau protein is the defining denominator of a group of neurodegenerative diseases termed tauopathies. OBJECTIVE Provide a timely state of the art review on recent scientific advances in the field of tauopathies. MATERIAL AND METHODS Systematic review of the literature from the past 10 years. RESULTS Tau proteins are increasingly being recognized as a highly variable protein, underlying and defining a spectrum of molecularly defined diseases, with a clinical spectrum ranging from dementia to hypokinetic movement disorders. Genetic variation at the tau locus can trigger disease or modify disease risk. Tau protein alterations can damage nerve cells and propagate pathologies through the brain. Thus, tau proteins may serve both as a serological and imaging biomarker. Tau proteins also provide a broad spectrum of rational therapeutic interventions to prevent disease progression. This knowledge has led to modern clinical trials. CONCLUSION The field of tauopathies is in a state of dynamic and rapid progress, requiring close interdisciplinary collaboration.
Collapse
|
19
|
Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol 2018; 14:225-236. [DOI: 10.1038/nrneurol.2018.9] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Multimodal correlation of dynamic [ 18F]-AV-1451 perfusion PET and neuronal hypometabolism in [ 18F]-FDG PET. Eur J Nucl Med Mol Imaging 2017; 44:2249-2256. [PMID: 29026951 DOI: 10.1007/s00259-017-3840-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023]
Abstract
PURPOSE Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. METHODS Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. RESULTS Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. CONCLUSION Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET.
Collapse
|