1
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Deshetty UM, Tamatam A, Bhattacharjee M, Perumal E, Natarajan G, Khanum F. Ameliorative Effect of Hesperidin Against Motion Sickness by Modulating Histamine and Histamine H1 Receptor Expression. Neurochem Res 2019; 45:371-384. [PMID: 31782104 DOI: 10.1007/s11064-019-02923-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/01/2023]
Abstract
Motion sickness (MS) is the visceral discomfort caused due to contradicting visual and vestibular inputs to the brain leading to nausea and vomiting. Sensory conflict theory which proves histamine elevations as the primary reason for MS provides a path for an effective pharmaco-therapy. We aimed to evaluate the anti-MS effect of hesperidin (HSP) by modulating histamine and histamine receptor H1 (HRH1) expression. The inhibitory effect of HSP on histamine release was studied in KU812 cells treated with 10 µM calcium ionophore. The in vivo anti-MS effect of HSP was evaluated in Balb/c mice. Thirty six mice were divided into six groups namely, normal control (NC, no rotation), hesperidin at 80 mg/kg body weight control (HSP80, no rotation), motion sickness (MS, rotation induced), dimenhydrinate (Standard drug) at 20 mg/kg body weight + rotation (STD + MS), hesperidin at 40 mg/kg body weight + rotation (HSP40 + MS) and hesperidin at 80 mg/kg body weight + rotation (HSP80 + MS). Hypothalamus and brainstem samples were analysed for histamine levels and HRH1 expression by RT-PCR, Western blot and immunohistochemistry analysis. Calcium ionophore treated KU812 cells significantly increased histamine release when compared to control cells. Pre-treatment with HSP inhibited histamine, HRH1 mRNA and protein expression. Histamine, HRH1 mRNA and protein expression in hypothalamus and brainstem samples of MS group increased significantly when compared to the NC group. Pre-treatment with HSP significantly reduced histamine, HRH1 mRNA and protein expression. Thus, indicating that HSP has a potent anti- MS effect by decreasing the elevated levels of histamine, HRH1 mRNA and protein expression in hypothalamus and brainstem regions.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Nutrition, Biochemistry & Toxicology Division Defence Food Research Laboratory, DRDO-SRF, Siddarthanagar, Mysore, 570011, India
| | - Anand Tamatam
- Nutrition, Biochemistry & Toxicology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, India.
| | - Monojit Bhattacharjee
- DRDO- Bharathiar University Centre for Life Sciences Bharathiar University Campus, 641046, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Gopalan Natarajan
- Food Biotechnology Division Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, India
| | - Farhath Khanum
- Nutrition, Biochemistry & Toxicology Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, 570011, India
| |
Collapse
|
3
|
Chen MM, Xu LH, Chang L, Yin P, Jiang ZL. Reduction of Motion Sickness Through Targeting Histamine N-Methyltransferase in the Dorsal Vagal Complex of the Brain. J Pharmacol Exp Ther 2018; 364:367-376. [PMID: 29298819 DOI: 10.1124/jpet.117.244475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/20/2017] [Indexed: 11/22/2022] Open
Abstract
To investigate the role of histamine N-methyltransferase (HNMT) activity in the development of motion sickness (MS) in the dorsal vagal complex (DVC) to inform the development of new drugs for MS, Beagle dogs and Sprague-Dawley rats were rotated to simulate MS. HNMT expression in the brain stem and DVC was measured. The effects of systemic application of tacrine, an HNMT inhibitor, on the development of MS were observed. Moreover, we microinjected a histamine receptor H1 inhibitor, promethazine, into the DVC to verify the involvement of histaminergic neurotransmission in MS. Finally, lentiviral vectors were microinjected into the DVC to determine the effects of altered HNMT expression on MS. We found the following: 1) HNMT expression in the medulla oblongata of dogs and rats insusceptible to MS was higher than in susceptible animals; 2) tacrine dose-dependently promoted MS in both animals and raised histamine level in rat medulla oblongata; 3) blocking histaminergic neurotransmission in the DVC with promethazine inhibited MS; 4) rotatory stimulus induced an elevation in HNMT expression, and vestibular training elevated the basal level of HNMT in the DVC during habituation to MS; 5) in vivo transfection of a lentiviral vector packaged with the HNMT gene increased HNMT expression in the DVC and reduced MS; and 6) microinjection of a lentiviral vector driving the interference of HNMT gene expression in vivo significantly inhibited HNMT expression in the DVC and exacerbated MS. In conclusion, HNMT expression in the brain stem is inversely correlated with MS development. Increasing HNMT expression or stimulating its activity in the DVC could inhibit MS.
Collapse
Affiliation(s)
- Miao-Miao Chen
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Chongchuan District, Nantong, Jiangsu, People's Republic of China
| | - Li-Hua Xu
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Chongchuan District, Nantong, Jiangsu, People's Republic of China
| | - Li Chang
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Chongchuan District, Nantong, Jiangsu, People's Republic of China
| | - Peng Yin
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Chongchuan District, Nantong, Jiangsu, People's Republic of China
| | - Zheng-Lin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Chongchuan District, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Li B, Zhang XY, Yang AH, Peng XC, Chen ZP, Zhou JY, Chan YS, Wang JJ, Zhu JN. Histamine Increases Neuronal Excitability and Sensitivity of the Lateral Vestibular Nucleus and Promotes Motor Behaviors via HCN Channel Coupled to H2 Receptor. Front Cell Neurosci 2017; 10:300. [PMID: 28119568 PMCID: PMC5222857 DOI: 10.3389/fncel.2016.00300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Histamine and histamine receptors in the central nervous system actively participate in the modulation of motor control. In clinic, histamine-related agents have traditionally been used to treat vestibular disorders. Immunohistochemical studies have revealed a distribution of histaminergic afferents in the brainstem vestibular nuclei, including the lateral vestibular nucleus (LVN), which is critical for adjustment of muscle tone and vestibular reflexes. However, the mechanisms underlying the effect of histamine on LVN neurons and the role of histamine and histaminergic afferents in the LVN in motor control are still largely unknown. Here, we show that histamine, in cellular and molecular levels, elicits the LVN neurons of rats an excitatory response, which is co-mediated by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and K+ channels linked to H2 receptors. Blockage of HCN channels coupled to H2 receptors decreases LVN neuronal sensitivity and changes their dynamic properties. Furthermore, in behavioral level, microinjection of histamine into bilateral LVNs significantly promotes motor performances of rats on both accelerating rota-rod and balance beam. This promotion is mimicked by selective H2 receptor agonist dimaprit, and blocked by selective H2 receptor antagonist ranitidine. More importantly, blockage of HCN channels to suppress endogenous histaminergic inputs in the LVN considerably attenuates motor balance and coordination, indicating a promotion role of hypothalamo-vestibular histaminergic circuit in motor control. All these results demonstrate that histamine H2 receptors and their coupled HCN channels mediate the histamine-induced increase in excitability and sensitivity of LVN neurons and contribute to the histaminergic improvement of the LVN-related motor behaviors. The findings suggest that histamine and the histaminergic afferents may directly modulate LVN neurons and play a critical role in the central vestibular-mediated motor reflexes and behaviors.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Ai-Hong Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing UniversityNanjing, China; Department of Medicine, Huaibei Vocational and Technical CollegeHuaibei, China
| | - Xiao-Chun Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Jia-Yuan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Ying-Shing Chan
- Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong Hong Kong, Hong Kong
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| |
Collapse
|
5
|
Peng SY, Zhuang QX, Zhang YX, Zhang XY, Wang JJ, Zhu JN. Excitatory effect of norepinephrine on neurons in the inferior vestibular nucleus and the underlying receptor mechanism. J Neurosci Res 2016; 94:736-48. [PMID: 27121461 DOI: 10.1002/jnr.23745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
The central noradrenergic system, originating mainly from the locus coeruleus in the brainstem, plays an important role in many physiological functions, including arousal and attention, learning and memory, anxiety, and nociception. However, little is known about the roles of norepinephrine (NE) in somatic motor control. Therefore, using extracellular recordings on rat brainstem slices and quantitative real-time RT-PCR, we investigate the effect and mechanisms of NE on neuronal activity in the inferior vestibular nucleus (IVN), the largest nucleus in the vestibular nuclear complex, which holds an important position in integration of information signals controlling body posture. Here, we report that NE elicits an excitatory response on IVN neurons in a concentration-dependent manner. Activation of α1 - and β2 -adrenergic receptors (ARs) induces an increase in firing rate of IVN neurons, whereas activation of α2 -ARs evokes a decrease in firing rate of IVN neurons. Therefore, the excitation induced by NE on IVN neurons is a summation of the excitatory components mediated by coactivation of α1 - and β2 -ARs and the inhibitory component induced by α2 -ARs. Accordingly, α1 -, α2 -, and β2 -AR mRNAs are expressed in the IVN. Although β1 -AR mRNAs are also detected, they are not involved in the direct electrophysiological effect of NE on IVN neurons. All these results demonstrate that NE directly regulates the activity of IVN neurons via α1 -, α2 -, and β2 -ARs and suggest that the central noradrenergic system may actively participate in IVN-mediated vestibular reflexes and postural control. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shi-Yu Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yong-Xiao Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
He C, Luo F, Chen X, Chen F, Li C, Ren S, Qiao Q, Zhang J, de Lecea L, Gao D, Hu Z. Superficial Layer-Specific Histaminergic Modulation of Medial Entorhinal Cortex Required for Spatial Learning. Cereb Cortex 2015; 26:1590-1608. [PMID: 25595181 DOI: 10.1093/cercor/bhu322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The medial entorhinal cortex (MEC) plays a crucial role in spatial learning and memory. Whereas the MEC receives a dense histaminergic innervation from the tuberomamillary nucleus of the hypothalamus, the functions of histamine in this brain region remain unclear. Here, we show that histamine acts via H1Rs to directly depolarize the principal neurons in the superficial, but not deep, layers of the MEC when recording at somata. Moreover, histamine decreases the spontaneous GABA, but not glutamate, release onto principal neurons in the superficial layers by acting at presynaptic H3Rs without effect on synaptic release in the deep layers. Histamine-induced depolarization is mediated via inhibition of Kir channels and requires the activation of protein kinase C, whereas the inhibition of spontaneous GABA release by histamine depends on voltage-gated Ca(2+) channels and extracellular Ca(2+). Furthermore, microinjection of the H1R or H3R, but not H2R, antagonist respectively into the superficial, but not deep, layers of MEC impairs rat spatial learning as assessed by water maze tasks but does not affect the motor function and exploratory activity in an open field. Together, our study indicates that histamine plays an essential role in spatial learning by selectively regulating neuronal excitability and synaptic transmission in the superficial layers of the MEC.
Collapse
Affiliation(s)
- Chao He
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Fenlan Luo
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Xingshu Chen
- Department of Histology and Embryology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Fang Chen
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Chao Li
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Shuancheng Ren
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Qicheng Qiao
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Jun Zhang
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Gao
- Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Zhian Hu
- Department of Physiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| |
Collapse
|
7
|
Li B, Zhu JN, Wang JJ. Histaminergic afferent system in the cerebellum: structure and function. CEREBELLUM & ATAXIAS 2014; 1:5. [PMID: 26331029 PMCID: PMC4549136 DOI: 10.1186/2053-8871-1-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/14/2014] [Indexed: 12/16/2022]
Abstract
Histaminergic afferent system of the cerebellum, having been considered as an essential component of the direct hypothalamocerebellar circuits, originates from the tuberomammillary nucleus in the hypothalamus. Unlike the mossy fibers and climbing fibers, the histaminergic afferent fibers, a third type of cerebellar afferents, extend fine varicose fibers throughout the cerebellar cortex and nuclei. Histamine receptors, belonging to the family of G protein-coupled receptors, are widely present in the cerebellum. Through these histamine receptors, histamine directly excites Purkinje cells and granule cells in the cerebellar cortex, as well as the cerebellar nuclear neurons. Therefore, the histaminergic afferents parallelly modulate these dominant components in the cerebellar circuitry and consequently influence the final output of the cerebellum. In this way, the histaminergic afferent system actively participates in the cerebellum-mediated motor balance and coordination and nonsomatic functions. Accordingly, histaminergic reagents may become potential drugs for clinical treatment of cerebellar ataxia and other cerebellar disease. On the other hand, considering the hypothalamus is a high regulatory center for autonomic and visceral activities, the hypothalamocerebellar histaminergic fibers/projections, bridging the nonsomatic center to somatic structure, may play a critical role in the somatic-nonsomatic integration.
Collapse
Affiliation(s)
- Bin Li
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093 China
| | - Jing-Ning Zhu
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093 China
| | - Jian-Jun Wang
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093 China
| |
Collapse
|
8
|
Tighilet B, Mourre C, Lacour M. Plasticity of the histamine H3 receptors after acute vestibular lesion in the adult cat. Front Integr Neurosci 2014; 7:87. [PMID: 24427120 PMCID: PMC3879797 DOI: 10.3389/fnint.2013.00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/16/2013] [Indexed: 11/13/2022] Open
Abstract
After unilateral vestibular neurectomy (UVN) many molecular and neurochemical mechanisms underlie the neurophysiological reorganizations occurring in the vestibular nuclei (VN) complex, as well as the behavioral recovery process. As a key regulator, the histaminergic system appears to be a likely candidate because drugs interfering with histamine (HA) neurotransmission facilitate behavioral recovery after vestibular lesion. This study aimed at analyzing the post-lesion changes of the histaminergic system by quantifying binding to histamine H3 receptors (H3R; mediating namely histamine autoinhibition) using a histamine H3 receptor agonist ([3H]N-α-methylhistamine). Experiments were done in brain sections of control cats (N = 6) and cats submitted to UVN and killed 1 (N = 6) or 3 (N = 6) weeks after the lesion. UVN induced a bilateral decrease in binding density of the agonist [3H]N-α-methylhistamine to H3R in the tuberomammillary nuclei (TMN) at 1 week post-lesion, with a predominant down-regulation in the ipsilateral TMN. The bilateral decrease remained at the 3 weeks survival time and became symmetric. Concerning brainstem structures, binding density in the VN, the prepositus hypoglossi, the subdivisions of the inferior olive decreased unilaterally on the ipsilateral side at 1 week and bilaterally 3 weeks after UVN. Similar changes were observed in the subdivisions of the solitary nucleus only 1 week after the lesion. These findings indicate vestibular lesion induces plasticity of the histamine H3R, which could contribute to vestibular function recovery.
Collapse
Affiliation(s)
- Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260, FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Centre Saint-Charles, Case B, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Christiane Mourre
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre Saint-Charles, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Michel Lacour
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260, FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Centre Saint-Charles, Case B, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|
9
|
Croizier S, Amiot C, Chen X, Presse F, Nahon JL, Wu JY, Fellmann D, Risold PY. Development of posterior hypothalamic neurons enlightens a switch in the prosencephalic basic plan. PLoS One 2011; 6:e28574. [PMID: 22194855 PMCID: PMC3241628 DOI: 10.1371/journal.pone.0028574] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/10/2011] [Indexed: 12/24/2022] Open
Abstract
In rats and mice, ascending and descending axons from neurons producing melanin-concentrating hormone (MCH) reach the cerebral cortex and spinal cord. However, these ascending and descending projections originate from distinct sub-populations expressing or not “Cocaine-and-Amphetamine-Regulated-Transcript” (CART) peptide. Using a BrdU approach, MCH cell bodies are among the very first generated in the hypothalamus, within a longitudinal cell cord made of earliest delaminating neuroblasts in the diencephalon and extending from the chiasmatic region to the ventral midbrain. This region also specifically expresses the regulatory genes Sonic hedgehog (Shh) and Nkx2.2. First MCH axons run through the tractus postopticus (tpoc) which gathers pioneer axons from the cell cord and courses parallel to the Shh/Nkx2.2 expression domain. Subsequently generated MCH neurons and ascending MCH axons differentiate while neurogenesis and mantle layer differentiation are generalized in the prosencephalon, including telencephalon. Ascending MCH axons follow dopaminergic axons of the mesotelencephalic tract, both being an initial component of the medial forebrain bundle (mfb). Netrin1 and Slit2 proteins that are involved in the establishment of the tpoc and mfb, respectively attract or repulse MCH axons. We conclude that first generated MCH neurons develop in a diencephalic segment of a longitudinal Shh/Nkx2.2 domain. This region can be seen as a prosencephalic segment of a medial neurogenic column extending from the chiasmatic region through the ventral neural tube. However, as the telencephalon expends, it exerts a trophic action and the mfb expands, inducing a switch in the longitudinal axial organization of the prosencephalon.
Collapse
Affiliation(s)
- Sophie Croizier
- EA3922, Faculté de Médecine et de Pharmacie, Université de Franche-Comté, Besançon, France
- IFR133, Université de Franche-Comté, Besançon, France
| | - Clotilde Amiot
- EA3922, Faculté de Médecine et de Pharmacie, Université de Franche-Comté, Besançon, France
- IFR133, Université de Franche-Comté, Besançon, France
| | - Xiaoping Chen
- Department of Neurology, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Françoise Presse
- UMR 6097 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Nice-Sophia Antipolis, Valbonne, France
| | - Jean-Louis Nahon
- UMR 6097 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Nice-Sophia Antipolis, Valbonne, France
| | - Jane Y. Wu
- Department of Neurology, School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Dominique Fellmann
- EA3922, Faculté de Médecine et de Pharmacie, Université de Franche-Comté, Besançon, France
- IFR133, Université de Franche-Comté, Besançon, France
| | - Pierre-Yves Risold
- EA3922, Faculté de Médecine et de Pharmacie, Université de Franche-Comté, Besançon, France
- IFR133, Université de Franche-Comté, Besançon, France
- * E-mail:
| |
Collapse
|
10
|
The mechanosensory role of primary cilia in vascular hypertension. Int J Vasc Med 2011; 2011:376281. [PMID: 21748021 PMCID: PMC3124932 DOI: 10.1155/2011/376281] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/22/2011] [Accepted: 04/09/2011] [Indexed: 12/20/2022] Open
Abstract
Local regulation of vascular tone plays an important role in cardiovascular control of blood pressure. Aside from chemical or hormonal regulations, this local homeostasis is highly regulated by fluid-shear stress. It was previously unclear how vascular endothelial cells were able to sense fluid-shear stress. The cellular functions of mechanosensory cilia within vascular system have emerged recently. In particular, hypertension is insidious and remains a continuous problem that evolves during the course of polycystic kidney disease (PKD). The basic and clinical perspectives on primary cilia are discussed with regard to the pathogenesis of hypertension in PKD.
Collapse
|
11
|
Histamine excites rat lateral vestibular nuclear neurons through activation of post-synaptic H2 receptors. Neurosci Lett 2008; 448:15-9. [PMID: 18938221 DOI: 10.1016/j.neulet.2008.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/28/2008] [Accepted: 10/07/2008] [Indexed: 11/21/2022]
Abstract
Through whole-cell patch recordings in brainstem slices, the effects of histamine on neuronal activity of the lateral vestibular nucleus (LVN) were investigated. Bath application of histamine elicited a concentration-dependent excitation of both spontaneous firing (n=19) and silent (n=7) LVN neurons. Moreover, histamine induced a stable inward current in the LVN neurons (n=5) and the histamine-induced depolarization of membrane potential persisted in the presence of tetrodotoxin (n=4), indicating a direct post-synaptic effect of the histamine on the LVN neurons. Selective histamine H2 receptor antagonist ranitidine effectively blocked the histamine-evoked excitatory responses on the LVN neurons (n=4), but selective histamine H1 receptor antagonist triprolidine did not (n=4). In addition, selective histamine H2 receptor agonist dimaprit (n=3) rather than 2-pyridylethylamine (n=4), a selective histamine H1 receptor agonist, mimicked the excitatory action of histamine on LVN neurons. The results demonstrate that histamine excites the LVN neurons via post-synaptic histamine H2 receptors and suggest that the central histaminergic projection arising from the hypothalamus may modulate LVN neurons activity and actively influence the vestibular reflexes and functions.
Collapse
|
12
|
Bergquist F, Ruthven A, Ludwig M, Dutia MB. Histaminergic and glycinergic modulation of GABA release in the vestibular nuclei of normal and labyrinthectomised rats. J Physiol 2006; 577:857-68. [PMID: 17038426 PMCID: PMC1890394 DOI: 10.1113/jphysiol.2006.120493] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vestibular compensation (the behavioural recovery that follows unilateral vestibular de-afferentation), is facilitated by histamine, and is associated with increased central histamine release and alterations in histamine H(3) receptor expression in the vestibular nuclei. However, little is known of the effects of histamine on neurotransmission in the vestibular nuclei, and the mechanisms by which histamine may influence compensation are unclear. Here we examined the modulatory effects of histaminergic agents on the release of amino acid neurotransmitters in slices of the medial vestibular nucleus (MVN) prepared from normal and labyrinthectomised rats. The release of GABA, but not glutamate, glycine or aspartate, was robustly and reproducibly evoked by a high-K(+) stimulus applied to normal MVN slices. Histamine inhibited the evoked release of GABA, both through a direct action on presynaptic H(3) receptors (presumably located on GABAergic terminals), and through a novel, indirect pathway that involved the increased release of glycine by activation of postsynaptic H(1)/H(2) receptors (presumably on glycinergic neurons). After unilateral labyrinthectomy (UL), the direct H(3) receptor-mediated inhibition of GABA release was profoundly downregulated in both ipsi-lesional and contra-lesional MVNs. This effect appeared within 25 h post-UL and persisted for at least 3 weeks post-UL. In addition, at 25 h post-UL the indirect glycinergic pathway caused a marked suppression of GABA release in the contra-lesional but not ipsi-lesional MVN, which was overcome by strychnine. Stimulation of histamine H(3) receptors at 25 h post-UL restored contra-lesional GABA release to normal, suggesting that acutely after UL H(3) receptors may strongly modulate glycinergic and GABAergic neurotransmission in the MVN. These findings are the first to demonstrate the modulatory actions of the histaminergic system on neurotransmission in the vestibular nuclei, and the changes that occur during vestibular system plasticity. During vestibular compensation, histaminergic modulation of glycine and GABA release may contribute to the rebalancing of neural activity in the vestibular nuclei of the lesioned and intact sides.
Collapse
Affiliation(s)
- Filip Bergquist
- Centre for Integrative Physiology, School of Biomedical Laboratory Sciences, Edinburgh University Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
13
|
Halberstadt AL, Balaban CD. Anterograde tracing of projections from the dorsal raphe nucleus to the vestibular nuclei. Neuroscience 2006; 143:641-54. [PMID: 16989955 DOI: 10.1016/j.neuroscience.2006.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 11/20/2022]
Abstract
This study used the anterograde transport of biotinylated dextran amine (BDA) to identify the course and terminal distribution of projections from the dorsal raphe nucleus (DRN) to the vestibular nuclei in rats. After iontophoretic injection of BDA into the medial and lateral regions of DRN, anterogradely labeled fibers descend within the medial longitudinal fasciculus and the ventricular fiber plexus to terminate within two discrete regions of the vestibular nuclear complex. One terminal field was located primarily ipsilateral to the injection site and involved rostrodorsal aspects of the vestibular nuclei, including superior vestibular nucleus and rostral portions of the medial vestibular nucleus (MVN) and lateral vestibular nucleus (LVN). The other terminal field involved caudoventral aspects of both ipsilateral and contralateral MVN and LVN and was less heavily innervated. These findings confirm that the vestibular nuclei are targeted by a regionally-selective projection from the DRN. The segregation of DRN terminals into anatomically distinct fields indicates that the DRN-vestibular nucleus projections are organized to selectively modulate processing within specific functional domains of the vestibular nuclear complex. In particular, these terminal fields may be organized to modulate vestibular regions involved in eye movement-related velocity storage, coordination of vestibular and affective responses, and the bilateral coordination of horizontal eye movement reflexes.
Collapse
Affiliation(s)
- A L Halberstadt
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
14
|
Halberstadt AL, Balaban CD. Serotonergic and nonserotonergic neurons in the dorsal raphe nucleus send collateralized projections to both the vestibular nuclei and the central amygdaloid nucleus. Neuroscience 2006; 140:1067-77. [PMID: 16600519 DOI: 10.1016/j.neuroscience.2006.02.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 02/17/2006] [Accepted: 02/23/2006] [Indexed: 11/16/2022]
Abstract
Using a combination of double retrograde tracing and serotonin immunofluorescence staining, we examined whether individual serotonergic and nonserotonergic neurons in the dorsal raphe nucleus are sources of collateralized axonal projections to vestibular nuclei and the central amygdaloid nucleus in the rat. Following unilateral injections of Diamidino Yellow into the vestibular nuclei and Fast Blue into the central amygdaloid nucleus, it was observed that approximately one-fourth of the dorsal raphe nucleus neurons projecting to the vestibular nuclei send axon collaterals to the central amygdaloid nucleus. Immunofluorescence staining for serotonin revealed that more than half of the dorsal raphe nucleus neurons from which these collateralized projections arise contain serotonin-like immunoreactivity. These findings indicate that a subpopulation of serotonergic and nonserotonergic dorsal raphe nucleus cells may act to co-modulate processing in the vestibular nuclei and the central amygdaloid nucleus, regions implicated in the generation of emotional and affective responses to real and perceived motion.
Collapse
Affiliation(s)
- A L Halberstadt
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
15
|
Abstract
The vestibular portion of the eighth cranial nerve informs the brain about the linear and angular movements of the head in space and the position of the head with respect to gravity. The termination sites of these eighth nerve afferents define the territory of the vestibular nuclei in the brainstem. (There is also a subset of afferents that project directly to the cerebellum.) This chapter reviews the anatomical organization of the vestibular nuclei, and the anatomy of the pathways from the nuclei to various target areas in the brain. The cytoarchitectonics of the vestibular brainstem are discussed, since these features have been used to distinguish the individual nuclei. The neurochemical phenotype of vestibular neurons and pathways are also summarized because the chemical anatomy of the system contributes to its signal-processing capabilities. Similarly, the morphologic features of short-axon local circuit neurons and long-axon cells with extrinsic projections are described in detail, since these structural attributes of the neurons are critical to their functional potential. Finally, the composition and hodology of the afferent and efferent pathways of the vestibular nuclei are discussed. In sum, this chapter reviews the morphology, chemoanatomy, connectivity, and synaptology of the vestibular nuclei.
Collapse
Affiliation(s)
- Stephen M Highstein
- Washington University School of Medicine, Box 8115, 4566 Scott Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
16
|
Lozada AF, Aarnisalo AA, Karlstedt K, Stark H, Panula P. Plasticity of histamine H3 receptor expression and binding in the vestibular nuclei after labyrinthectomy in rat. BMC Neurosci 2004; 5:32. [PMID: 15361262 PMCID: PMC517932 DOI: 10.1186/1471-2202-5-32] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 09/10/2004] [Indexed: 11/10/2022] Open
Abstract
Background In rat, deafferentation of one labyrinth (unilateral labyrinthectomy) results in a characteristic syndrome of ocular and motor postural disorders (e.g., barrel rotation, circling behavior, and spontaneous nystagmus). Behavioral recovery (e.g., diminished symptoms), encompassing 1 week after unilateral labyrinthectomy, has been termed vestibular compensation. Evidence suggesting that the histamine H3 receptor plays a key role in vestibular compensation comes from studies indicating that betahistine, a histamine-like drug that acts as both a partial histamine H1 receptor agonist and an H3 receptor antagonist, can accelerate the process of vestibular compensation. Results Expression levels for histamine H3 receptor (total) as well as three isoforms which display variable lengths of the third intracellular loop of the receptor were analyzed using in situ hybridization on brain sections containing the rat medial vestibular nucleus after unilateral labyrinthectomy. We compared these expression levels to H3 receptor binding densities. Total H3 receptor mRNA levels (detected by oligo probe H3X) as well as mRNA levels of the three receptor isoforms studied (detected by oligo probes H3A, H3B, and H3C) showed a pattern of increase, which was bilaterally significant at 24 h post-lesion for both H3X and H3C, followed by significant bilateral decreases in medial vestibular nuclei occurring 48 h (H3X and H3B) and 1 week post-lesion (H3A, H3B, and H3C). Expression levels of H3B was an exception to the forementioned pattern with significant decreases already detected at 24 h post-lesion. Coinciding with the decreasing trends in H3 receptor mRNA levels was an observed increase in H3 receptor binding densities occurring in the ipsilateral medial vestibular nuclei 48 h post-lesion. Conclusion Progressive recovery of the resting discharge of the deafferentated medial vestibular nuclei neurons results in functional restoration of the static postural and occulomotor deficits, usually occurring within a time frame of 48 hours in rats. Our data suggests that the H3 receptor may be an essential part of pre-synaptic mechanisms required for reestablishing resting activities 48 h after unilateral labyrinthectomy.
Collapse
Affiliation(s)
- Adrian F Lozada
- Department of Biology, Åbo Akademi University, Biocity, Artillerigatan 6A, FIN-20520 Turku, Finland
| | - Antti A Aarnisalo
- Department of ORL, HUCH, Helsinki, Finland
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Pharmazeutische Chemie, Biozentrum, 60439 Frankfurt am Main, Germany
| | - Kaj Karlstedt
- Department of Biology, Åbo Akademi University, Biocity, Artillerigatan 6A, FIN-20520 Turku, Finland
| | - Holger Stark
- Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Pharmazeutische Chemie, Biozentrum, 60439 Frankfurt am Main, Germany
| | - Pertti Panula
- Department of Biology, Åbo Akademi University, Biocity, Artillerigatan 6A, FIN-20520 Turku, Finland
- Institute of Biomedicine/Anatomy, POB 63, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
17
|
Theunissen EL, Vermeeren A, van Oers ACM, van Maris I, Ramaekers JG. A dose-ranging study of the effects of mequitazine on actual driving, memory and psychomotor performance as compared to dexchlorpheniramine, cetirizine and placebo. Clin Exp Allergy 2004; 34:250-8. [PMID: 14987305 DOI: 10.1111/j.1365-2222.2004.01874.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mequitazine is a so-called 'non-sedative' second-generation antihistamine even though it has never been firmly established that this drug's sedative potential actually differs from that of the 'sedative' first-generation antihistamines. OBJECTIVE The present study compares the sedative effects of three doses of mequitazine on actual driving, psychomotor performance and memory with those of a first- and a second-generation antihistamine. METHODS Eighteen healthy volunteers received on separate days a single dose of 5, 10 and 15 mg mequitazine, 10 mg cetirizine, 6 mg dexchlorpheniramine and placebo. Drug effects were assessed using two actual driving tests (highway-driving test and car-following test), cognitive and psychometric tests (tracking, divided attention, memory, reasoning and critical flicker fusion), pupil size and questionnaires. RESULTS Highway-driving data revealed an overall effect of Treatment on the standard deviation of lateral position (SDLP). Dexchlorpheniramine impaired driving performance as indicated by a significant rise in SDLP. Mequitazine significantly increased SDLP in a dose-related manner, but the separate dose effects failed to reach statistical significance. Divided attention performance was also affected by Treatment. Reaction time (RT) during mequitazine treatments increased in a dose-related manner and significantly differed from placebo at the highest dose. Subjects reported to be less alert after treatment with dexchlorpheniramine. Cetirizine did not affect performance in any of the tasks. CONCLUSION It was concluded that mequitazine is mildly sedating. The effects of mequitazine are comparable to those of other second-generation antihistamines, in that it causes mild driving impairment, particularly at higher doses.
Collapse
Affiliation(s)
- E L Theunissen
- Experimental Psychopharmacology Unit, Brain and Behaviour Institute, Faculty of Psychology, Maastricht University, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Halberstadt AL, Balaban CD. Organization of projections from the raphe nuclei to the vestibular nuclei in rats. Neuroscience 2003; 120:573-94. [PMID: 12890525 DOI: 10.1016/s0306-4522(02)00952-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that raphe-vestibular connections are organized to selectively modulate processing in regions of the vestibular nuclear complex that receive input from specific cerebellar zones. This represents a potential mechanism whereby motor activity and behavioral arousal could influence the activity of cerebellovestibular circuits.
Collapse
Affiliation(s)
- A L Halberstadt
- Department of Neurobiology, Biological Sciences Tower, 203 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
19
|
Pillot C, Heron A, Cochois V, Tardivel-Lacombe J, Ligneau X, Schwartz JC, Arrang JM. A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience 2002; 114:173-93. [PMID: 12207964 DOI: 10.1016/s0306-4522(02)00135-5] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The detailed distribution of histamine H(3) receptor mRNAs in rat brain was analyzed by in situ hybridization using a 33P-labelled riboprobe and was combined for the first time with the detailed autoradiographic distribution of the receptor determined in the same animals with [(125)I]iodoproxyfan, a selective radioligand. The signals generated on adjacent brain sections by each probe were quantified and/or rated and were compared in order to identify neuronal populations expressing the receptor. In addition, the cellular localization of the transcripts within various brain structures was analyzed in sections dipped in a photographic emulsion. In the cerebral cortex, the strong mRNA expression in intermediate and deep layers indicates the presence of H(3) receptors on several types of neurons. The binding is dense except in layer V, suggesting that H(3) receptors are located on granule cells and apical dendrites of pyramidal cells. In addition to their localization on monoaminergic afferents, the dense binding in layer IV and strong mRNA expression in thalamic nuclei suggest the presence of heteroreceptors on thalamocortical projections. In the hippocampus, the strong mRNA expression but low binding in pyramidal layers of the CA1 and ventral CA3 fields suggest that H(3) receptors are abundant on efferent projections of pyramidal cells. In the dentate gyrus, some binding sites in the molecular layer may correspond to H(3) receptors synthesized in granule cells and coexpressed with H(1) and H(2) receptors in their dendrites. In the basal ganglia, H(3) receptors are highly expressed in the striatal complex and olfactory tubercles but not in islands of Calleja. Some of the striatal binding sites may correspond to presynaptic receptors present on afferents. The mRNAs in cortical layer V may encode for heteroreceptors on corticostriatal neurons. The presence of mRNAs in the substantia nigra pars compacta suggests that H(3) receptors are located upon nigrostriatal afferents. However, the absence of any signal in the ventral tegmental area indicates that some but not all dopaminergic neurons express H(3) receptors. In addition, the homogeneous mRNA expression within the caudate putamen and nucleus accumbens suggests that many striatal H(3) receptors are present on medium-sized, spiny projection neurons of both the direct and indirect movement pathways. In agreement, a dense binding, but low mRNA expression, is observed in external and internal pallidum and in substantia nigra pars reticulata. In the amygdala, the dense binding and mRNA expression indicate the presence of receptors on both afferents and projections. In the thalamus, the binding in some association nuclei may correspond to receptors present on neurons emanating from the deep cortical layers that strongly express the mRNAs, as well as receptors on the visual systems. However, the low binding and high mRNA expression in most nuclei indicate that many receptors are present upon thalamic projections. In the hypothalamus, the mRNA expression parallels the density of binding sites and is the highest in the tuberomammillary nucleus. Further investigation is needed to know if the dense binding and mRNA expression observed in other nuclei such as the paraventricular, ventromedial and medial tuberal nuclei correspond to pre- and/or postsynaptic receptors. mRNAs are also observed in several areas projecting to the tuberomammillary nucleus, such as the ventrolateral preoptic nucleus. In the lower brainstem, the high mRNA expression and very low binding in the locus coeruleus and raphe nuclei indicate that presynaptic rather than somatodendritic receptors regulate noradrenaline and serotonin release, respectively. A similar pattern in vestibular nuclei suggests that receptors located on projections account for the anti-vertigo properties of H(3) receptor antagonists. In the cerebellum, binding is hardly detectable but a strong mRNA expression is found in most, if not all, Purkinje cells as well as in several central cerebellar nuclei, suggesting the presence of H(3) receptors on efferent projections. The present study reports the first detailed quantification and/or rating of H(3) receptor mRNAs in the brain. The comparison, performed in the same animals, with the distribution of the H(3) receptor protein provides evidence for the presence of H(3) receptors on many neuronal perikarya, dendrites and projections. Although some localizations, mainly as auto- or heteroreceptors, are consistent with previous functional studies, the physiological role, if any, of most of these presynaptic or postsynaptic receptors remains to be established.
Collapse
Affiliation(s)
- C Pillot
- Laboratoire de Physiologie, Faculté des Sciences Pharmaceutiques et Biologiques, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This review paper examines neurologic bases of links between balance control and anxiety based upon neural circuits that are shared by pathways that mediate autonomic control, vestibulo-autonomic interactions, and anxiety. The core of this circuitry is a parabrachial nucleus network, consisting of the parabrachial nucleus and its reciprocal relationships with the extended central amygdaloid nucleus, infralimbic cortex, and hypothalamus. Specifically, the parabrachial nucleus is a site of convergence of vestibular information processing and somatic and visceral sensory information processing in pathways that appear to be involved in avoidance conditioning, anxiety, and conditioned fear. Monoaminergic influences on these pathways are potential modulators of both effects of vigilance and anxiety on balance control and the development of anxiety and panic. This neurologic schema provides a unifying framework for investigating the neurologic bases for comorbidity of balance disorders and anxiety.
Collapse
Affiliation(s)
- C D Balaban
- Department of Otolaryngology, University of Pittsburgh School of Medicine, PA, USA
| | | |
Collapse
|
21
|
Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D. Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 1999; 840:138-47. [PMID: 10517961 DOI: 10.1016/s0006-8993(99)01648-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sleep-waking discharge patterns of neurons in the posterior lateral hypothalamus (PLH) were investigated in the rat. Previous studies in the cat demonstrated that this region contained neurons that fired tonically at low rates (2-4 Hz) during waking, decreased firing in non-rapid eye-movement (NREM) sleep and nearly ceased firing during rapid eye-movement (REM) sleep. These "REM-off" neurons were proposed to be histaminergic neurons of the tuberomammillary nucleus (TM). Since many anatomical and physiological studies are performed in the rat, we sought to examine the sleep-waking discharge of these neurons in this animal. We found three main types of discharge patterns among PLH neurons. Waking-related neurons decreased their discharge in NREM sleep, and remained at low rates during REM sleep. A subpopulation of these neurons discharged very little during REM sleep (<0.2 Hz) (REM-off neurons). Waking/REM-related neurons decreased their discharge in NREM sleep and returned to waking rates in REM sleep. REM-related neurons decreased their discharge in NREM sleep and increased their discharge during REM sleep higher than waking rates. No NREM-related discharge patterns were recorded. Waking-related and waking/REM-related neurons were similar in location within the PLH and action potential duration. Some REM-off and other waking-related neurons were recorded within the boundaries of the histaminergic TM, however, not all waking-related and REM-off neurons were found within this region. Furthermore, neurons with waking/REM-related and state-indifferent discharge patterns were localized within the TM. These results suggest that waking-related and/or REM-off neurons may not be exclusively histaminergic in rats.
Collapse
Affiliation(s)
- T L Steininger
- Veterans Administration Medical Center, North Hills, CA 91343, USA.
| | | | | | | | | |
Collapse
|
22
|
Hoffman BJ, Hansson SR, Mezey E, Palkovits M. Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol 1998; 19:187-231. [PMID: 9665836 DOI: 10.1006/frne.1998.0168] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The monoamines, serotonin, dopamine, norepinephrine, epinephrine and histamine, play a critical role in the function of the hypothalamic-pituitary-adrenal axis and in the integration of information in sensory, limbic, and motor systems. The primary mechanism for termination of monoaminergic neurotransmission is through reuptake of released neurotransmitter by Na+, CI-dependent plasma membrane transporters. A second family of transporters packages monoamines into synaptic and secretory vesicles by exchange of protons. Identification of those cells which express these two families of neurotransmitter transporters is an initial step in understanding what adaptive strategies cells expressing monoamine transporters use to establish the appropriate level of transport activity and thus attain the appropriate efficiency of monoamine storage and clearance. The most recent advances in this field have yielded several surprises about their function, cellular and subcellular localization, and regulation, suggesting that these molecules are not static and most likely are the most important determinants of extracellular levels of monoamines. Here, information on the localization of mRNAs for these transporters in rodent and human brain is summarized along with immunohistochemical information at the light and electron microscopic levels. Regulation of transporters at the mRNA level by manipulation in rodents and differences in transporter site densities by tomographic techniques as an index of regulation in human disease and addictive states are also reviewed. These studies have highlighted the presence of monoamine neurotransmitter transporters in neurons but not in glia in situ. The norepinephrine transporter is present in all cells which are both tyrosine hydroxylase (TH)- and dopamine beta-hydroxylase-positive but not in those cells which are TH- and phenyl-N-methyltransferase-positive, suggesting that epinephrine cells may have their own, unique transporter. In most dopaminergic cells, dopamine transporter mRNA completely overlaps with TH mRNA-positive neurons. However, there are areas in which there is a lack of one to one correspondence. The serotonin transporter (5-HTT) mRNA is found in all raphe nuclei and in the hypothalamic dorsomedial nucleus where the 5-HTT mRNA is dramatically reduced following immobilization stress. The vesicular monoamine transporter 2 (VMAT2) is present in all monoaminergic neurons including epinephrine- and histamine-synthesizing cells. Immunohistochemistry demonstrates that the plasma membrane transporters are present along axons, soma, and dendrites. Subcellular localization of DAT by electron microscopy suggests that these transporters are not at the synaptic density but are confined to perisynaptic areas, implying that dopamine diffuses away from the synapse and that contribution of diffusion to dopamine signalling may vary between brain regions. Interestingly, the presence of VMAT2 in vesicles underlying dendrites, axons, and soma suggests that monoamines may be released at these cellular domains. An understanding of the regulation of transporter function may have important therapeutic consequences for neuroendocrine function in stress and psychiatric disorders.
Collapse
Affiliation(s)
- B J Hoffman
- Unit on Molecular Pharmacology, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
23
|
Cransac H, Cottet-Emard JM, Pequignot JM, Peyrin L. Monoamines (norepinephrine, dopamine, serotonin) in the rat medial vestibular nucleus: endogenous levels and turnover. J Neural Transm (Vienna) 1998; 103:391-401. [PMID: 9617784 DOI: 10.1007/bf01276416] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoamine (norepinephrine, dopamine, serotonin) and metabolite endogenous levels were determined in the rat medial vestibular nucleus (MVN) using HPLC with electrochemical detection. As a comparison, the locus coeruleus (LC) and dorsal raphe nucleus (RD) which contain the cell bodies of MVN noradrenergic and serotoninergic neurons respectively were also analyzed. Norepinephrine (NE) and serotonin (5-HT) basal levels of MVN were high (33.8 and 39.2pmol/mg protein respectively) but lesser than in LC or RD. Great amounts of MHPG and 5-HIAA were also present in the MVN. The turnover of NE assessed both from the ratio MHPG/NE and by the decrease in the NE content after treatment with alpha-methylparatyrosine was faster in the MVN (half-life: 1.5h) than in LC (half-life: 3.6h). On the other hand, the ratio 5-HIAA/5-HT was lower in the MVN (0.58) than in the RD (0.85) indicating a smaller 5-HT turnover in the MVN. In addition, like LC and RD, the MVN contained meaningful amounts of dopamine (DA) and DOPAC. The high ratio DA/NE (0.27) suggests the presence of non precursor specific dopaminergic pools. However, individualized dopaminergic neurons have not yet been demonstrated. The data are discussed in line with the possible neurotransmitter function of monoamines in the MVN.
Collapse
Affiliation(s)
- H Cransac
- Laboratoire de Physiologie, Faculté de Médecine Grange-Blanche, Lyon, France
| | | | | | | |
Collapse
|
24
|
Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH. Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 1998; 82:443-68. [PMID: 9466453 DOI: 10.1016/s0306-4522(97)00268-6] [Citation(s) in RCA: 376] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dorsal raphe nucleus through its extensive efferents has been implicated in a great variety of physiological and behavioural functions. However, little is know about its afferents. Therefore, to identify the systems likely to influence the activity of serotonergic neurons of the dorsal raphe nucleus, we re-examined the forebrain afferents to the dorsal raphe nucleus using cholera toxin b subunit and Phaseolus vulgaris-leucoagglutinin as retrograde or anterograde tracers. With small cholera toxin b subunit injection sites, we further determined the specific afferents to the ventral and dorsal parts of the central dorsal raphe nucleus, the rostral dorsal raphe nucleus and the lateral wings. In agreement with previous studies, we observed a large number of retrogradely-labelled cells in the lateral habenula following injections in all subdivisions of the dorsal raphe nucleus. In addition, depending on the subdivision of the dorsal raphe nucleus injected, we observed a small to large number of retrogradely-labelled cells in the orbital, cingulate, infralimbic, dorsal peduncular, and insular cortice, a moderate or substantial number in the ventral pallidum and a small to substantial number in the claustrum. In addition, we observed a substantial to large number of cells in the medial and lateral preoptic areas and the medial preoptic nucleus after cholera toxin b subunit injections in the dorsal raphe nucleus excepting for those located in the ventral part of the central dorsal raphe nucleus, after which we found a moderate number of retrogradely-labelled cells. Following cholera toxin b subunit injections in the dorsal part of the central dorsal raphe nucleus, a large number of retrogradely-labelled cells was seen in the lateral, ventral and medial parts of the bed nucleus of the stria terminalis whereas only a small to moderate number was visualized after injections in the other dorsal raphe nucleus subdivisions. In addition, respectively, a substantial and a moderate number of retrogradely-labelled cells was distributed in the zona incerta and the subincertal nucleus following all tracer injections in the dorsal raphe nucleus. A large number of retrogradely-labelled cells was also visualized in the lateral, dorsal and posterior hypothalamic areas and the perifornical nucleus after cholera toxin b subunit injections in the dorsal part of the central raphe nucleus and to a lesser extent following injections in the other subdivisions. We further observed a substantial to large number of retrogradely-labelled cells in the tuber cinereum and the medial tuberal nucleus following cholera toxin b subunit injections in the dorsal part of the central dorsal raphe nucleus or the lateral wings and a small to moderate number after injections in the two other dorsal raphe nucleus subdivisions. A moderate or substantial number of labelled cells was also seen in the ventromedial hypothalamic area and the arcuate nucleus following cholera toxin injections in the dorsal part of the central dorsal raphe nucleus and the lateral wings and an occasional or small number with injection sites located in the other subdivisions. Finally, we observed, respectively, a moderate and a substantial number of retrogradely-labelled cells in the central nucleus of the amygdala following tracer injections in the ventral or dorsal parts of the central dorsal raphe nucleus and a small number after injections in the other subnuclei. In agreement with these retrograde data, we visualized anterogradely-labelled fibres heterogeneously distributed in the dorsal raphe nucleus following Phaseolus vulgaris-leucoagglutinin injections in the lateral orbital or infralimbic cortice, the lateral preoptic area, the perifornical nucleus, the lateral or posterior hypothalamic areas, the zona incerta, the subincertal nucleus or the medial tuberal nucleus. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- C Peyron
- INSERM U52, CNRS ERS 5645, Université Claude Bernard, Lyon, France
| | | | | | | | | |
Collapse
|
25
|
Cransac H, Peyrin L, Farhat F, Cottet-Emard JM, Pequignot JM, Reber A. Brain monoamines and optokinetic performances in pigmented and albino rats. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 116:341-9. [PMID: 9125685 DOI: 10.1016/s0300-9629(96)00231-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this study was two-fold: 1) To provide in DA-HAN rats the basic brain monoamine data useful for later investigations of the neurochemical effects of sensory alterations and 2) to assess whether there is a relationship between the monoaminergic pattern in medial vestibular nuclei and optokinetic performances. We comparatively studied the regional brain monoamine distribution and the optokinetic performances in pigmented DA-HAN and albino Sprague-Dawley rats. As expected, the optokinetic responses and vestibulo-ocular reflex gain were by far more efficient in DA-HAN rats. Norepinephrine (NE), dopamine (DA), serotonin (5-HT) and their metabolites were determined in retina, brainstem nuclei and dopaminergic areas. DA-HAN rats exhibited an increased noradrenergic activity in the medial vestibular nuclei, locus coeruleus and anteroventral cochlear nucleus, an extended decrease of serotonergic activity in brainstem nuclei and increased DA stores with a reduced dopaminergic activity in most dopaminergic areas. These data confirm and extend the general findings that biochemical data obtained in one strain cannot be extrapolated to another strain. The possible role of the morphological neuronal abnormalities and functional impairment induced by albinism has been discussed especially in medial vestibular nucleus, cochlear nuclei and retina. Alternatively, behavioral factors may also explain some of the observed neurochemical differences.
Collapse
Affiliation(s)
- H Cransac
- URA CNRS 1447, Faculté de Médecine, Lyon, France
| | | | | | | | | | | |
Collapse
|
26
|
Vibert N, De Waele C, Serafin M, Babalian A, Mühlethaler M, Vidal PP. The vestibular system as a model of sensorimotor transformations. A combined in vivo and in vitro approach to study the cellular mechanisms of gaze and posture stabilization in mammals. Prog Neurobiol 1997; 51:243-86. [PMID: 9089790 DOI: 10.1016/s0301-0082(96)00057-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To understand the cellular mechanisms underlying behaviours in mammals, the respective contributions of the individual properties characterizing each neuron, as opposed to the properties emerging from the organization of these neurons in functional networks, have to be evaluated. This requires the use, in the same species, of various in vivo and in vitro experimental preparations. The present review is meant to illustrate how such a combined in vivo in vitro approach can be used to investigate the vestibular-related neuronal networks involved in gaze and posture stabilization, together with their plasticity, in the adult guinea-pig. Following first a general introduction on the vestibular system, the second section describes various in vivo experiments aimed at characterizing gaze and posture stabilization in that species. The third and fourth parts of the review deal with the combined in vivo-in vitro investigations undertaken to unravel the physiological and pharmacological properties of vestibulo-ocular and vestibulo-spinal networks, together with their functional implications. In particular, we have tried to use the central vestibular neurons as examples to illustrate how the preparation of isolated whole brain can be used to bridge the gap between the results obtained through in vitro, intracellular recordings on slices and those collected in vivo, in the behaving animal.
Collapse
Affiliation(s)
- N Vibert
- Laboratoire de Physiologie de la Perception et de l' Action, CNRS-College de France, UMR C-9950, Paris, France
| | | | | | | | | | | |
Collapse
|
27
|
Van Cauwenberge PB, De Moor SE. Physiopathology of H3-receptors and pharmacology of betahistine. ACTA OTO-LARYNGOLOGICA. SUPPLEMENTUM 1997; 526:43-6. [PMID: 9107355 DOI: 10.3109/00016489709124020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This article reviews published research on the physiology of histamine H3-receptors. The function of this inhibitory autoreceptor, its localisation and influence on histaminergic neurones as well as histamine-controlled processes are presented together with the role of H3-receptors in the vestibular system. In addition to a summary of the properties of the main H3-agonists and -antagonists, the pharmacology of betahistine and its place in the treatment of vertigo are discussed.
Collapse
|
28
|
Tillet Y, Batailler M, Fellmann D. Distribution of melanin-concentrating hormone (MCH)-like immunoreactivity in neurons of the diencephalon of sheep. J Chem Neuroanat 1996; 12:135-45. [PMID: 9115668 DOI: 10.1016/s0891-0618(96)00195-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An immunohistochemical study with an antiserum raised against salmon melanin concentrating-hormone has demonstrated the presence of numerous melanin concentrating-hormone-immunoreactive neurons in the lateral hypothalamic areas of the sheep. The pattern of distribution of these perikarya is similar to that of rodents and primates. In sheep, however, melanin concentrating-hormone-immunoreactive neurons appeared to form two gatherings: the first is situated ventromedially to the internal capsule and the second in the dorsolateral hypothalamus. In these areas, numerous immunostained perikarya are observed. Compared to the rats, labelled neurons extended more caudally in the ventral tegmental area and more rostrally above the optic chiasma. Compared to primates, these neurons are less numerous in the periventricular area. In our study, dense networks of melanin concentrating-hormone-immunoreactive varicose fibers were observed in the supramamillary nucleus, the lateral hypothalamus, the nucleus medialis thalami and nucleus reuniens and in the bed nucleus of the stria terminalis.
Collapse
Affiliation(s)
- Y Tillet
- Unité de Neuroendocrinologie Sexuelle, INRA Station de Physiologie de la Reproduction des Mammifères Domestiques, Nouzilly, France
| | | | | |
Collapse
|
29
|
Cransac H, Peyrin L, Cottet-Emard JM, Farhat F, Pequignot JM, Reber A. Aging effects on monoamines in rat medial vestibular and cochlear nuclei. Hear Res 1996; 100:150-6. [PMID: 8922989 DOI: 10.1016/0378-5955(96)00116-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Noradrenaline (NA), dopamine (DA); serotonin (5-HT) and their metabolites-3-methoxy, 4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA)-were determined using HPLC in medial vestibular nucleus (MVN), anteroventral cochlear nucleus (AVCN), dorsal+posteroventral cochlear nucleus (DCN+PVCN), locus coeruleus (LC) and raphe dorsalis of Dark Agouti-Hanovre (DA-HAN) rats aged 4, 21 and 24 months. In older rats, the main noradrenergic changes were a decrease of NA content with an increase of the MHPG/NA ratio in MVN and a selective NA increase in AVCN. 5-HT and 5-HIAA levels were increased in all the brainstem nuclei except raphe dorsalis. DA and DOPAC remained unchanged. These data show that noradrenergic neurons in sensory nuclei are differently affected by aging whereas serotonergic activation occurs in most of them possibly as a compensatory response to dysfunction of sensory input and processing. The increase of NA stores in the AVCN of aged rats is in line with the elevated auditory brainstem threshold reported in old rats and could improve the signal-to-noise ratio. Noradrenergic neurons in the MVN seem to be more sensitive to age effect than cochlear nuclei; however, even if neuronal loss occurs, NA synthesis and/or metabolism increase to ensure normal or increased noradrenergic activity.
Collapse
Affiliation(s)
- H Cransac
- URA CNRS 1447, Faculté de Médecine Grange-Blanche, Lyon, France
| | | | | | | | | | | |
Collapse
|
30
|
Malzac P, Mattei MG, Thibault J, Bruneau G. Chromosomal localization of the human and mouse histidine decarboxylase genes by in situ hybridization. Exclusion of the HDC gene from the Prader-Willi syndrome region. Hum Genet 1996; 97:359-61. [PMID: 8786082 DOI: 10.1007/bf02185772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using a rat histidine decarboxylase (HDC) cDNA probe, we have mapped the HDC gene by in situ hybridization to the q15-q21 region of human chromosome 15 and to the E5-G region of murine chromosome 2. These localizations strengthen a syntenic group conserved between human chromosome 15 and mouse chromosome 2. The localization of the HDC gene on the human chromosome 15 map shows that it is not included within the Prader-Willi Syndrome region (PWCR).
Collapse
Affiliation(s)
- P Malzac
- Hopital d'Enfants de la Timone, Marseille, France
| | | | | | | |
Collapse
|
31
|
Erickson JD, Eiden LE, Schafer MK, Weihe E. Reserpine- and tetrabenazine-sensitive transport of (3)H-histamine by the neuronal isoform of the vesicular monoamine transporter. J Mol Neurosci 1995; 6:277-87. [PMID: 8860238 DOI: 10.1007/bf02736786] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transport of (3)H-histamine by the endocrine-specific (VMAT1) and neuronal (VMAT2) isoforms of the vesicular monoamine transporter has been evaluated in digitonin-permeabilized fibroblasts transfected with either VMAT1 or VMAT2. Transport of (3)H-histamine by both VMAT1 and VMAT2 was reserpine-sensitive but only transport by VMAT2 was inhibited by tetrabenazine. Maximal equilibrated levels of (3)H-histamine accumulation by VMAT2 (K(m) 300 mu M) were approximately three times greater than that mediated by VMAT1 when using a subsaturating concentration of exogenous (3)H-histamine (50 mu M). The expression of VMAT2 in histaminergic neurons in the rat brain was examined with polyclonal antipeptide antibodies specific for VMAT1 or VMAT2. VMAT2-positive and tyrosine hydroxylase-negative immunoreactive cell bodies were localized to the ventral part of the posterior hypothalamus in the region of the mamillary nuclei. The transport properties of VMAT2 and the distribution of VMAT2 in cell bodies in the tuberomammillary nucleus of the posterior hypothalamus reported here and the apparent absence of VMAT1 and VMAT2 in tissue mast cells support previous findings of reserpine-sensitive and reserpine-resistant pools of histamine in brain and peripheral tissues.
Collapse
Affiliation(s)
- J D Erickson
- Section on Molecular Neuroscience, Laboratory of Cell Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
32
|
Wang JJ, Dutia MB. Effects of histamine and betahistine on rat medial vestibular nucleus neurones: possible mechanism of action of anti-histaminergic drugs in vertigo and motion sickness. Exp Brain Res 1995; 105:18-24. [PMID: 7589314 DOI: 10.1007/bf00242178] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The tonic discharge of 71 medial vestibular nucleus (MVN) neurones was recorded in slices of the dorsal brainstem of young adult rats. Bath application of histamine caused a dose-related excitation in 59 of the 71 cells (83%), the remaining 12 (17%) being unresponsive. Dimaprit, a selective H2 agonist, also caused excitation in all 20 cells tested. The histamine-induced excitation and the response to dimaprit were antagonised by the selective H2 antagonist ranitidine, confirming that the H2 subtype of histamine receptor is involved in mediating the effects of histamine on these cells. Triprolidine, a selective H1 antagonist, also antagonised the excitation caused by histamine, at a concentration (0.3 microM) which left the H2 receptor-mediated response to dimaprit unchanged. Thus the excitatory effects of histamine on MVN cells in the rat involve two components mediated through H1 and H2 receptor-linked mechanisms, respectively. Betahistine, a weak H1 agonist and H3 antagonist, had little excitatory action when applied on its own, but significantly reduced the excitation caused by histamine when the two drugs were applied together. The effects of betahistine were consistent with a partial-agonist action at H1 receptors on MVN cells, reducing the excitatory responses to histamine presumably by occupying these receptor sites in competition with the exogenously applied neurotransmitter. This partial-agonist action of betahistine may be an important part of its mechanism of action in the symptomatic treatment of vertigo and motion sickness, since it is likely to occur not only in the MVN but also in many brain regions, including the thalamus and cortex, which express H1 receptors and which are innervated by the hypothalamic histaminergic system. Thus the effectiveness of betahistine and other anti-H1 drugs against motion sickness may be explained by their action in reducing the effects of the excess histamine release induced in such conditions in various brain areas, including the MVN.
Collapse
Affiliation(s)
- J J Wang
- Department of Physiology, Medical School, Edinburgh, UK
| | | |
Collapse
|
33
|
Tillet Y, Batailler M, Thibault J. Neuronal projections to the medial preoptic area of the sheep, with special reference to monoaminergic afferents: immunohistochemical and retrograde tract tracing studies. J Comp Neurol 1993; 330:195-220. [PMID: 8491868 DOI: 10.1002/cne.903300205] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The preoptic area contains most of the luteinizing hormone releasing hormone immunoreactive neurons and numerous monoaminergic afferents whose cell origins are unknown in sheep. Using tract tracing methods with a specific retrograde fluorescent tracer, fluorogold, we examined the cells of origin of afferents to the medial preoptic area in sheep. Among the retrogradely labeled neurons, immunohistochemistry for tyrosine hydroxylase, dopamine-beta-hydroxylase, phenylethanolamine N-methyltransferase, and serotonin was used to characterize catecholamine and serotonin fluorogold labeled neurons. Most of the afferents came from the ipsilateral side to the injection site. It was observed that the medial preoptic area received major inputs from the diagonal band of Broca, the lateral septum, the thalamic paraventricular nucleus, the lateral hypothalamus, the area dorsolateral to the third ventricle, the perimamillary area, the amygdala, and the ventral part of the hippocampus. Other numerous, scattered, retrogradely labeled neurons were observed in the ventral part of the preoptic area, the vascular organ of the lamina terminalis, the ventromedial part of the hypothalamus, the periventricular area, the area lateral to the interpeduncular nucleus, and the dorsal vagal complex. Noradrenergic afferents came from the complex of the locus coeruleus (A6/A7 groups) and from the ventro-lateral medulla (group A1). However, dopaminergic and adrenergic neuronal groups retrogradely labeled with fluorogold were not observed. Serotoninergic fluorogold labeled neurons belonged to the medial raphe nucleus (B8, B5) and to the serotoninergic group situated lateral to the interpeduncular nucleus (S4). In the light of these anatomical data we hypothesize that these afferents have a role in the regulation of several functions of the preoptic area, particularly those related to reproduction. Accordingly these afferents could be involved in the control of luteinizing hormone releasing hormone (LHRH) pulsatility or of preovulatory LHRH surge.
Collapse
Affiliation(s)
- Y Tillet
- Unité de Neuroendocrinologie Sexuelle, INRA Station de Physiologie de la Reproduction, Nouzilly, France
| | | | | |
Collapse
|
34
|
Serafin M, Khateb A, Vibert N, Vidal PP, Mühlethaler M. Medial vestibular nucleus in the guinea-pig: histaminergic receptors. I. An in vitro study. Exp Brain Res 1993; 93:242-8. [PMID: 8387929 DOI: 10.1007/bf00228391] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Antihistaminergic drugs are currently used for the symptomatic treatment of vestibular-related syndromes such as vertigo and motion sickness. We therefore investigated whether histamine could modulate the firing of medial vestibular nuclei neurons (MVNn). Recently, we have demonstrated that different cell types are present among MVNn in guinea-pig brainstem slices. Bath-application of histamine at 10(-4) or 10(-5) M induced a small membrane depolarization accompanied by a slight decrease in membrane resistance and a reversible increase in spontaneous firing in all MVN cell types. These effects were presumably postsynaptic as they persisted in a low-calcium/high-magnesium solution. Using a variety of agonists and antagonists of histamine receptors (H1, H2 and H3), we conclude that these effects are mediated by H2 receptors. The companion paper is concerned with an in vivo study of the histaminergic modulation of the vestibular function (Yabe et al., in press).
Collapse
Affiliation(s)
- M Serafin
- Département de Physiologie, CMU, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Johnston AR, Murnion B, McQueen DS, Dutia MB. Excitation and inhibition of rat medial vestibular nucleus neurones by 5-hydroxytryptamine. Exp Brain Res 1993; 93:293-8. [PMID: 8491267 DOI: 10.1007/bf00228397] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of 5-hydroxytryptamine (5-HT) and related compounds on the discharge rate of tonically active medial vestibular nucleus (MVN) neurones were studied in an in vitro slice preparation of the dorsal brainstem of the rat. The majority (87 of 107, 82%) of MVN neurones were excited by 5-HT. Nine cells (8%) showed a biphasic response to 5-HT, which consisted of a brief inhibition followed by excitation. Eleven cells (10%) were inhibited by 5-HT. The excitatory effects of 5-HT were mimicked by alpha-methyl-5-HT and antagonised by ketanserin and ritanserin, indicating the involvement of the 5-HT2 subtype of 5-HT receptor. In biphasic cells, blockade of 5-HT2 receptors by ketanserin reduced the excitatory component of the response and revealed an enhanced initial inhibition. The inhibitory effects in biphasic cells, and in cells that showed a pure inhibition in response to 5-HT, were blocked by pindobind-5-HT and mimicked by 8-hydroxy-2-(di-n-propylamino)-tetralin indicating the involvement of 5-HT1A receptors. The significance of these findings in relation to the effects of 5-HT on vestibular reflex function is discussed.
Collapse
Affiliation(s)
- A R Johnston
- Department of Physiology, Medical School, Edinburgh, UK
| | | | | | | |
Collapse
|
36
|
Yabe T, de Waele C, Serafin M, Vibert N, Arrang JM, Mühlethaler M, Vidal PP. Medial vestibular nucleus in the guinea-pig: histaminergic receptors. II. An in vivo study. Exp Brain Res 1993; 93:249-58. [PMID: 8491265 DOI: 10.1007/bf00228392] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In a companion paper (Serafin et al. 1992) we have demonstrated in vitro that histamine depolarizes three previously described medial vestibular nucleus neuron (MVNn) types (Serafin et al. 1991a, b). It has also been shown that this effect was exclusively mediated through postsynaptic H2 receptors. All the same, the eventual contribution of presynaptic H3 receptors to the physiological response of the MVNn to histamine remained an open question since, during the slicing procedure, any histaminergic axons projecting to the vestibular nuclei would have been interrupted. This rendered our study of H3-mediated effects of histamine difficult. Hence, in the present in vivo study our aim was three-fold: (1) to investigate the presence of H3 receptors at the vestibular nuclei level; (2) to evaluate the functional importance of MVNn H2 receptors; and (3) to explore whether H3 ligands, when injected intraperitoneally (i.p.), could modulate dynamic vestibular functions. In order to address the first two questions, we investigated postural changes induced by perfusion of the guinea-pig's vestibular nuclear complex with specific ligands of the H2 and H3 receptors. Our data extend the conclusions of our in vitro study and suggest that lateral vestibular nuclei neurons and the MVNn are endowed with both H2 and H3 receptors. Our results indicate furthermore that histamine can modulate, quite effectively, static vestibular reflexes. Finally, the present study demonstrates that i.p. injection of thioperamide, an H3 antagonist, induces a significant decrease in the horizontal vestibular-ocular reflex gain and, by contrast to most of the clinically used antihistaminics, has no detrimental effect on the alertness level. Our results may thus lead to clinical testing and use of H3 antagonists as antivertigo or anti motion-sickness drugs.
Collapse
Affiliation(s)
- T Yabe
- Laboratoire de Physiologie Neurosensorielle, CNRS, Paris, France
| | | | | | | | | | | | | |
Collapse
|
37
|
de Waele C, Serafin M, Khateb A, Vibert N, Yabe T, Arrang JM, Mulhethaler M, Vidal PP. An in vivo and in vitro study of the vestibular nuclei histaminergic receptors in the guinea pig. Ann N Y Acad Sci 1992; 656:550-65. [PMID: 1534649 DOI: 10.1111/j.1749-6632.1992.tb25235.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C de Waele
- Laboratory of Neurosensory Physiology, CNRS, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hertz L, Peng L. Effects of monoamine transmitters on neurons and astrocytes: correlation between energy metabolism and intracellular messengers. PROGRESS IN BRAIN RESEARCH 1992; 94:283-301. [PMID: 1283791 DOI: 10.1016/s0079-6123(08)61758-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- L Hertz
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|