1
|
Hansen AH, Lorentzen LG, Leeming DJ, Sand JMB, Hägglund P, Davies MJ. Peptidomic and proteomic analysis of precision-cut lung slice supernatants. Anal Biochem 2025; 702:115837. [PMID: 40058539 DOI: 10.1016/j.ab.2025.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
The precision-cut lung slice (PCLS) model is an ex vivo tissue system that has been used to model disease and examine the effects of exogenous compounds. Few studies have been carried out on the complement of proteins (proteome) and peptides (peptidome) secreted by PCLS and other tissue sections, during tissue culture, although such data are likely to provide critical information on the biology of tissue slices and the changes these undergo. In this study, a workflow was developed to examine the peptidome and proteome of PCLS supernatants using a modified single-pot, solid-phase-enhanced sample preparation (SP3) workflow. The performance of the SP3 workflow was evaluated in a head-to-head comparison against ultrafiltration by quantifying the recovery of synthetic peptide constructs. The SP3 workflow outperformed ultrafiltration in terms of recovery of small synthetic peptides regardless of the organic solvent used in SP3 (acetone or acetonitrile) and ultrafiltration molecular mass cut-off (2 or 10 kDa). The developed SP3 workflow provided robust data when analyzing PCLS supernatants across different conditions. The method allows, within a single workflow from individual samples, the identification of both large numbers of different native peptides (489) and also proteins (370) released from the tissue to the supernatants. This approach therefore has the capacity to provide both broad and in-depth peptidome and proteome data, with potential wide applicability to analyze the secretome of cultured tissue samples.
Collapse
Affiliation(s)
- Annika H Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark.
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Diana J Leeming
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Jannie M B Sand
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Behrsing HP, Amin K, Allen D, Hughes J, Obermok M, Patel V. The Development of an Animal Product-free, Precision-cut Lung Slice Cryopreservation and Post-thaw Culture Method. Altern Lab Anim 2025; 53:138-153. [PMID: 40289305 DOI: 10.1177/02611929251336446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
As new approach methodologies (NAMs) are increasingly explored to identify dependable and accurate non-animal alternatives to predict human toxicities, several 3-D test systems have emerged as excellent models of the human respiratory tract. Among these, human precision-cut lung slices (hPCLS) are considered highly relevant, as they contain many cell types (including key immune cells), feature small airway structures and boast native respiratory parenchymal architecture. However, a lack of long-term preservation methods has hampered the use of the hPCLS model for repeat and mainstream testing. In the current study, a range of potential methods were progressively evaluated for the optimum recovery of hPCLS after thawing and multi-week culturing. These methods featured: five different cryopreservation buffer (CB) recipes; freezing either before or after culture initiation; two culture media (based on E-199 and DMEM/F12); and two culture maintenance methods (submerged and air-liquid interface (ALI)). Endpoints used for the assessment of hPCLS culture health included the WST-8 viability assay, protein content and H&E histology of slice sections. Two of the CBs and immediate cryopreservation after slicing produced hPCLS with higher post-thaw viability. While both media recipes and culture methods maintained high slice viability for approximately 2 weeks, the use of DMEM-F12-based medium in ALI culture was superior for the 3-week cultures. Applying due diligence to hPCLS cryopreservation and post-thaw method development provides researchers with an underutilised human respiratory model. Studies making use of cryopreserved banks of normal or diseased tissues (from a diverse demographic pool of donors) can now be initiated as desired, repeated, or expanded upon to interrogate numerous aspects of physiology, toxicology and drug efficacy. These can be applied as routine screening applications or complex evaluations, including those benefitting a regulatory setting.
Collapse
Affiliation(s)
- Holger P Behrsing
- Respiratory Toxicology Program, Institute for In Vitro Sciences, Gaithersburg, MD, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - David Allen
- Inotiv (currently affiliated with International Collaboration on Cosmetics Safety), Morrisville, NC, USA
| | - Joseph Hughes
- Respiratory Toxicology Program, Institute for In Vitro Sciences, Gaithersburg, MD, USA
| | - McKenzie Obermok
- Respiratory Toxicology Program, Institute for In Vitro Sciences, Gaithersburg, MD, USA
| | - Vivek Patel
- Respiratory Toxicology Program, Institute for In Vitro Sciences, Gaithersburg, MD, USA
| |
Collapse
|
3
|
Schönke M, Rensen PC. Mouse Models for the Study of Liver Fibrosis Regression In Vivo and Ex Vivo. J Clin Transl Hepatol 2024; 12:930-938. [PMID: 39544245 PMCID: PMC11557367 DOI: 10.14218/jcth.2024.00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Accepted: 09/29/2024] [Indexed: 11/17/2024] Open
Abstract
This review discussed experimental mouse models used in the pre-clinical study of liver fibrosis regression, a pivotal process in preventing the progression of metabolic dysfunction-associated steatohepatitis to irreversible liver cirrhosis. These models provide a valuable resource for understanding the cellular and molecular processes underlying fibrosis regression in different contexts. The primary focus of this review is on the most commonly used models with diet- or hepatotoxin-induced fibrosis, but it also touches upon genetic models and mouse models with biliary atresia or parasite-induced fibrosis. In addition to emphasizing in vivo models, we briefly summarized current in vitro approaches designed for studying fibrosis regression and provided an outlook on evolving methodologies that aim to refine and reduce the number of experimental animals needed for these studies. Together, these models contribute significantly to unraveling the underlying mechanisms of liver fibrosis regression and offer insights into potential therapeutic interventions. By presenting a comprehensive overview of these models and highlighting their respective advantages and limitations, this review serves as a roadmap for future research.
Collapse
Affiliation(s)
- Milena Schönke
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C.N. Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Rastovic U, Bozzano SF, Riva A, Simoni-Nieves A, Harris N, Miquel R, Lackner C, Zen Y, Zamalloa A, Menon K, Heaton N, Chokshi S, Palma E. Human Precision-Cut Liver Slices: A Potential Platform to Study Alcohol-Related Liver Disease. Int J Mol Sci 2023; 25:150. [PMID: 38203321 PMCID: PMC10778645 DOI: 10.3390/ijms25010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Alcohol-related liver disease (ALD) encompasses a range of pathological conditions that are complex to study at the clinical and preclinical levels. Despite the global burden of ALD, there is a lack of effective treatments, and mortality is high. One of the reasons for the unsuccessful development of novel therapies is that experimental studies are hindered by the challenge of recapitulating this multifactorial disorder in vitro, including the contributions of hepatotoxicity, impaired lipid metabolism, fibrosis and inflammatory cytokine storm, which are critical drivers in the pathogenesis of ALD in patients and primary targets for drug development. Here, we present the unique characteristics of the culture of human precision-cut liver slices (PCLS) to replicate key disease processes in ALD. PCLS were prepared from human liver specimens and treated with ethanol alone or in combination with fatty acids and lipopolysaccharide (FA + LPS) for up to 5 days to induce hepatotoxic, inflammatory and fibrotic events associated with ALD. Alcohol insult induced hepatocyte death which was more pronounced with the addition of FA + LPS. This mixture showed a significant increase in the cytokines conventionally associated with the prototypical inflammatory response observed in severe ALD, and interestingly, alcohol alone exhibited a different effect. Profibrogenic activation was also observed in the slices and investigated in the context of slice preparation. These results support the versatility of this organotypic model to study different pathways involved in alcohol-induced liver damage and ALD progression and highlight the applicability of the PCLS for drug discovery, confirming their relevance as a bridge between preclinical and clinical studies.
Collapse
Affiliation(s)
- Una Rastovic
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Sergio Francesco Bozzano
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Arturo Simoni-Nieves
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Nicola Harris
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Rosa Miquel
- Institute of Liver Studies, King’s College London, London WC2R 2LS, UK
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Yoh Zen
- Institute of Liver Studies, King’s College London, London WC2R 2LS, UK
| | - Ane Zamalloa
- Institute of Liver Studies, King’s College London, London WC2R 2LS, UK
| | - Krishna Menon
- Institute of Liver Studies, King’s College London, London WC2R 2LS, UK
| | - Nigel Heaton
- Institute of Liver Studies, King’s College London, London WC2R 2LS, UK
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| | - Elena Palma
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
5
|
Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev 2023; 32:32/167/220206. [PMID: 36813290 PMCID: PMC9949383 DOI: 10.1183/16000617.0206-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 02/24/2023] Open
Abstract
Patients with interstitial lung disease can develop a progressive fibrosing phenotype characterised by an irreversible, progressive decline in lung function despite treatment. Current therapies slow, but do not reverse or stop, disease progression and are associated with side-effects that can cause treatment delay or discontinuation. Most crucially, mortality remains high. There is an unmet need for more efficacious and better-tolerated and -targeted treatments for pulmonary fibrosis. Pan-phosphodiesterase 4 (PDE4) inhibitors have been investigated in respiratory conditions. However, the use of oral inhibitors can be complicated due to class-related systemic adverse events, including diarrhoea and headaches. The PDE4B subtype, which has an important role in inflammation and fibrosis, has been identified in the lungs. Preferentially targeting PDE4B has the potential to drive anti-inflammatory and antifibrotic effects via a subsequent increase in cAMP, but with improved tolerability. Phase I and II trials of a novel PDE4B inhibitor in patients with idiopathic pulmonary fibrosis have shown promising results, stabilising pulmonary function measured by change in forced vital capacity from baseline, while maintaining an acceptable safety profile. Further research into the efficacy and safety of PDE4B inhibitors in larger patient populations and for a longer treatment period is needed.
Collapse
Affiliation(s)
- Martin Kolb
- Department of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France,INSERM, Unité 1152, Université Paris Cité, Paris, France
| | - Toby M. Maher
- Keck Medicine of USC, Los Angeles, CA, USA,National Heart and Lung Institute, Imperial College London, London, UK,Corresponding author: Toby M. Maher ()
| |
Collapse
|
6
|
Patel VS, Amin K, Wahab A, Marimoutou M, Ukishima L, Alvarez J, Battle K, Stucki AO, Clippinger AJ, Behrsing HP. Cryopreserved human precision-cut lung slices provide an immune competent pulmonary test system for "on-demand" use and long-term cultures. Toxicol Sci 2023; 191:253-265. [PMID: 36617185 PMCID: PMC9936202 DOI: 10.1093/toxsci/kfac136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human precision-cut lung slices (hPCLS), considered a highly relevant ex vivo model of the lung, offer native architecture and cells of the lung tissue including respiratory parenchyma, small airways, and immune competent cells. However, the irregular availability of donor lungs has limited the accessibility of this system. As described here, thousands of hPCLS can be created from 1 lung, cryopreserved, and used "on demand" by applying slicing and cryopreservation methodology improvements. Fresh and cryopreserved (∼7 and ∼34 weeks; F&C) hPCLS from 1 donor lung were cultured for up to 29 days and evaluated for biomass, viability, tissue integrity, and inflammatory markers in response to lipopolysaccharide (LPS; 5 µg/ml) and Triton X-100 (TX100; 0.1%) challenge (24 h) at days 1, 8, 15, 22, and 29 following culture initiation. The F&C hPCLS retained biomass, viability, and tissue integrity throughout the 29 days and demonstrated immune responsiveness with up to ∼30-fold LPS-induced cytokine increases. Histologically, more than 70% of normal cytomorphological features were preserved in all groups through day 29. Similar retention of tissue viability and immune responsiveness post cryopreservation (4-6 weeks) and culture (up to 14 days) was observed in hPCLS from additional 3 donor lungs. Banking cryopreserved hPCLS from various donors (and disease states) provides a critical element in researching human-derived pulmonary tissue. The retention of viability and functional responsiveness (≥4 weeks) allows evaluation of long-term, complex endpoints reflecting key events in Adverse Outcome Pathways and positions hPCLS as a valuable human-relevant model for use in regulatory applications.
Collapse
Affiliation(s)
- Vivek S Patel
- To whom correspondence should be addressed at Institute for In Vitro Sciences, Inc., 30 West Watkins Mill Road, Suite 100, Gaithersburg, MD 20878. E-mail:
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Adam Wahab
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| | - Méry Marimoutou
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| | - Lindsey Ukishima
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| | - Jose Alvarez
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| | - Kelley Battle
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| | - Andreas O Stucki
- PETA Science Consortium International e.V., Stuttgart 70499, Germany
| | - Amy J Clippinger
- PETA Science Consortium International e.V., Stuttgart 70499, Germany
| | - Holger P Behrsing
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| |
Collapse
|
7
|
Hesse C, Beneke V, Konzok S, Diefenbach C, Bülow Sand JM, Rønnow SR, Karsdal MA, Jonigk D, Sewald K, Braun A, Leeming DJ, Wollin L. Nintedanib modulates type III collagen turnover in viable precision-cut lung slices from bleomycin-treated rats and patients with pulmonary fibrosis. Respir Res 2022; 23:201. [PMID: 35927669 PMCID: PMC9351157 DOI: 10.1186/s12931-022-02116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant extracellular matrix (ECM) deposition and remodelling is important in the disease pathogenesis of pulmonary fibrosis (PF). We characterised neoepitope biomarkers released by ECM turnover in lung tissue from bleomycin-treated rats and patients with PF and analysed the effects of two antifibrotic drugs: nintedanib and pirfenidone. METHODS Precision-cut lung slices (PCLS) were prepared from bleomycin-treated rats or patients with PF. PCLS were incubated with nintedanib or pirfenidone for 48 h, and levels of neoepitope biomarkers of type I, III and VI collagen formation or degradation (PRO-C1, PRO-C3, PRO-C6 and C3M) as well as fibronectin (FBN-C) were assessed in the culture supernatants. RESULTS In rat PCLS, incubation with nintedanib led to a reduction in C3M, reflecting type III collagen degradation. In patient PCLS, incubation with nintedanib reduced the levels of PRO-C3 and C3M, thus showing effects on both formation and degradation of type III collagen. Incubation with pirfenidone had a marginal effect on PRO-C3. There were no other notable effects of either nintedanib or pirfenidone on the other neoepitope biomarkers studied. CONCLUSIONS This study demonstrated that nintedanib modulates neoepitope biomarkers of type III collagen turnover and indicated that C3M is a promising translational neoepitope biomarker of PF in terms of therapy assessment.
Collapse
Affiliation(s)
- Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of German Center for Lung Research (DZL), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Valerie Beneke
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of German Center for Lung Research (DZL), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Sebastian Konzok
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of German Center for Lung Research (DZL), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Claudia Diefenbach
- Translational Medicine + Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | | | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of German Center for Lung Research (DZL), Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of German Center for Lung Research (DZL), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of German Center for Lung Research (DZL), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
| | | | - Lutz Wollin
- Translational Medicine + Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
| |
Collapse
|
8
|
Patel V, Amin K, Allen D, Ukishima L, Wahab A, Grodi C, Behrsing H. Comparison of Long-term Human Precision-cut Lung Slice Culture Methodology and Response to Challenge: An Argument for Standardisation. Altern Lab Anim 2021; 49:209-222. [PMID: 34836458 DOI: 10.1177/02611929211061884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As non-animal alternatives gain acceptance, a need for harmonised testing strategies has emerged. Arguably the most physiologically-relevant model for assessing potential respiratory toxicants, that based on human precision-cut lung slices (hPCLS) has been utilised in many laboratories, but a variety of culture methodologies are employed. In this pilot study, combinations of three different hPCLS culture methods (dynamic organ roller culture (DOC), air-liquid interface (ALI) and submersion) and various media (based on E-199, DMEM/F12 and RPMI-1640) were compared. The hPCLS were assessed in terms of their viability and responsiveness to challenge. The endpoints selected to compare the medium-method (M-M) combinations, which included histological features and viability, were evaluated at day 14 (D14) and day 28 (D28); protein and adenylate kinase (AK) content, and cytokine response to immunostimulants (lipopolysaccharide (LPS) at 5 μg/ml; polyinosinic:polycytidylic acid (Poly I:C) at 15 μg/ml) were evaluated at D28 only. Based on the set of endpoints assessed at D28, it was clear that certain culture conditions significantly affected the hPCLS, with the tissue retaining more of its native features and functionality (in terms of cytokine response) in some of the M-M combinations tested more than others. This pilot study indicates that the use of appropriate M-M combinations can help maintain the health and functional responses of hPCLS, and highlights the need for the standardisation of culture conditions in order to facilitate effective inter-laboratory comparisons and encourage greater acceptance by the regulatory community.
Collapse
Affiliation(s)
- Vivek Patel
- Respiratory Toxicology, 329003Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - David Allen
- Integrated Laboratory Systems, Inc., Morrisville, NC, USA
| | - Lindsey Ukishima
- Respiratory Toxicology, 329003Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Adam Wahab
- Respiratory Toxicology, 329003Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Chad Grodi
- Respiratory Toxicology, 329003Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Holger Behrsing
- Respiratory Toxicology, 329003Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| |
Collapse
|
9
|
Decaris ML, Schaub JR, Chen C, Cha J, Lee GG, Rexhepaj M, Ho SS, Rao V, Marlow MM, Kotak P, Budi EH, Hooi L, Wu J, Fridlib M, Martin SP, Huang S, Chen M, Muñoz M, Hom TF, Wolters PJ, Desai TJ, Rock F, Leftheris K, Morgans DJ, Lepist EI, Andre P, Lefebvre EA, Turner SM. Dual inhibition of α vβ 6 and α vβ 1 reduces fibrogenesis in lung tissue explants from patients with IPF. Respir Res 2021; 22:265. [PMID: 34666752 PMCID: PMC8524858 DOI: 10.1186/s12931-021-01863-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022] Open
Abstract
RATIONALE αv integrins, key regulators of transforming growth factor-β activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvβ6) and fibroblasts (αvβ1) in fibrotic lungs. OBJECTIVES We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS Selective αvβ6 and αvβ1, dual αvβ6/αvβ1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-β cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-β signaling. Bleomycin-challenged mice treated with dual αvβ6/αvβ1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS Inhibition of integrins αvβ6 and αvβ1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvβ6/αvβ1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS In the fibrotic lung, dual inhibition of integrins αvβ6 and αvβ1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-β.
Collapse
Affiliation(s)
| | | | - Chun Chen
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Jacob Cha
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Gail G Lee
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Steve S Ho
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Vikram Rao
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Prerna Kotak
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Erine H Budi
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Lisa Hooi
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Jianfeng Wu
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | | | - Shaoyi Huang
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Ming Chen
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Manuel Muñoz
- Pliant Therapeutics, South San Francisco, CA, USA
| | | | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Tushar J Desai
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - David J Morgans
- Pliant Therapeutics, South San Francisco, CA, USA
- Maze Therapeutics, South San Francisco, CA, USA
| | | | - Patrick Andre
- Pliant Therapeutics, South San Francisco, CA, USA
- Acceleron Pharma, Cambridge, MA, USA
| | | | | |
Collapse
|
10
|
Nanoparticle-induced inflammation and fibrosis in ex vivo murine precision-cut liver slices and effects of nanoparticle exposure conditions. Arch Toxicol 2021; 95:1267-1285. [PMID: 33555372 PMCID: PMC8032640 DOI: 10.1007/s00204-021-02992-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Chronic exposure and accumulation of persistent nanomaterials by cells have led to safety concerns on potential long-term effects induced by nanoparticles, including chronic inflammation and fibrosis. With this in mind, we used murine precision-cut liver tissue slices to test potential induction of inflammation and onset of fibrosis upon 72 h exposure to different nanomaterials (0–200 µg/ml). Tissue slices were chosen as an advanced ex vivo 3D model to better resemble the complexity of the in vivo tissue environment, with a focus on the liver where most nanomaterials accumulate. Effects on the onset of fibrosis and inflammation were investigated, with particular care in optimizing nanoparticle exposure conditions to tissue. Thus, we compared the effects induced on slices exposed to nanoparticles in the presence of excess free proteins (in situ), or after corona isolation. Slices exposed to daily-refreshed nanoparticle dispersions were used to test additional effects due to ageing of the dispersions. Exposure to amino-modified polystyrene nanoparticles in serum-free conditions led to strong inflammation, with stronger effects with daily-refreshed dispersions. Instead, no inflammation was observed when slices were exposed to the same nanoparticles in medium supplemented with serum to allow corona formation. Similarly, no clear signs of inflammation nor of onset of fibrosis were detected after exposure to silica, titania or carboxylated polystyrene in all conditions tested. Overall, these results show that liver slices can be used to test nanoparticle-induced inflammation in real tissue, and that the exposure conditions and ageing of the dispersions can strongly affect tissue responses to nanoparticles.
Collapse
|
11
|
Herbert J, Laskin DL, Gow AJ, Laskin JD. Chemical warfare agent research in precision-cut tissue slices-a useful alternative approach. Ann N Y Acad Sci 2020; 1480:44-53. [PMID: 32808309 DOI: 10.1111/nyas.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023]
Abstract
The use of chemical warfare agents (CWAs) in military conflicts and against civilians is a recurrent problem. Despite ongoing CWA research using in vitro or in vivo models, progress to elucidate mechanisms of toxicity and to develop effective therapies, decontamination procedures, and general countermeasures is still limited. Novel scientific approaches to address these questions are needed to expand perspectives on existing knowledge and gain new insights. To achieve this, the use of ex vivo techniques like precision-cut tissue slices (PCTSs) can be a valuable approach. Existing studies employing this economical and relatively easy to implement method show model suitability and comparability with the use of in vitro and in vivo models. In this article, we review research on CWAs in PCTSs to illustrate the advantages of the approach and to promote future applications.
Collapse
Affiliation(s)
- Julia Herbert
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
12
|
Alsafadi HN, Uhl FE, Pineda RH, Bailey KE, Rojas M, Wagner DE, Königshoff M. Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery. Am J Respir Cell Mol Biol 2020; 62:681-691. [PMID: 31991090 PMCID: PMC7401444 DOI: 10.1165/rcmb.2019-0276tr] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lung diseases (CLDs), such as chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer, are among the leading causes of morbidity globally and impose major health and financial burdens on patients and society. Effective treatments are scarce, and relevant human model systems to effectively study CLD pathomechanisms and thus discover and validate potential new targets and therapies are needed. Precision-cut lung slices (PCLS) from healthy and diseased human tissue represent one promising tool that can closely recapitulate the complexity of the lung's native environment, and recently, improved methodologies and accessibility to human tissue have led to an increased use of PCLS in CLD research. Here, we discuss approaches that use human PCLS to advance our understanding of CLD development, as well as drug discovery and validation for CLDs. PCLS enable investigators to study complex interactions among different cell types and the extracellular matrix in the native three-dimensional architecture of the lung. PCLS further allow for high-resolution (live) imaging of cellular functions in several dimensions. Importantly, PCLS can be derived from diseased lung tissue upon lung surgery or transplantation, thus allowing the study of CLDs in living human tissue. Moreover, CLDs can be modeled in PCLS derived from normal lung tissue to mimic the onset and progression of CLDs, complementing studies in end-stage diseased tissue. Altogether, PCLS are emerging as a remarkable tool to further bridge the gap between target identification and translation into clinical studies, and thus open novel avenues for future precision medicine approaches.
Collapse
Affiliation(s)
- Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Franziska E. Uhl
- Wallenberg Center for Molecular Medicine
- Vascular Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ricardo H. Pineda
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Kolene E. Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Mauricio Rojas
- Division of Respiratory, Allergy and Critical Care Medicine, The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Darcy E. Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Melanie Königshoff
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
13
|
Iswandana R, Pham BT, Suriguga S, Luangmonkong T, van Wijk LA, Jansen YJM, Oosterhuis D, Mutsaers HAM, Olinga P. Murine Precision-cut Intestinal Slices as a Potential Screening Tool for Antifibrotic Drugs. Inflamm Bowel Dis 2020; 26:678-686. [PMID: 31943022 PMCID: PMC7150673 DOI: 10.1093/ibd/izz329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Intestinal fibrosis is a hallmark of Crohn's disease. Here, we investigated the impact of several putative antifibrotic compounds on the expression of fibrosis markers using murine precision-cut intestinal slices. METHODS Murine precision-cut intestinal slices were cultured for 48 hours in the presence of profibrotic and/or antifibrotic compounds. The fibrotic process was studied on gene and protein level using procollagen 1a1 (Col1α1), heat shock protein 47 (Hsp47), fibronectin (Fn2), and plasminogen activator inhibitor-1 (Pai-1). The effects of potential antifibrotic drugs mainly inhibiting the transforming growth factor β (TGF-β) pathway (eg, valproic acid, tetrandrine, pirfenidone, SB203580, and LY2109761) and compounds mainly acting on the platelet-derived growth factor (PDGF) pathway (eg, imatinib, sorafenib, and sunitinib) were assessed in the model at nontoxic concentrations. RESULTS Murine precision-cut intestinal slices remained viable for 48 hours, and an increased expression of fibrosis markers was observed during culture, including Hsp47, Fn2, and Pai-1. Furthermore, TGF-β1 stimulated fibrogenesis, whereas PDGF did not have an effect. Regarding the tested antifibrotics, pirfenidone, LY2109761, and sunitinib had the most pronounced impact on the expression of fibrosis markers, both in the absence and presence of profibrotic factors, as illustrated by reduced levels of Col1α1, Hsp47, Fn2, and Pai-1 after treatment. Moreover, sunitinib significantly reduced Hsp47 and Fn2 protein expression and the excretion of procollagen 1. CONCLUSIONS Precision-cut intestinal slices can successfully be used as a potential preclinical screening tool for antifibrotic drugs. We demonstrated that sunitinib reduced the expression of several fibrosis markers, warranting further evaluation of this compound for the treatment of intestinal fibrosis.
Collapse
Affiliation(s)
- Raditya Iswandana
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands,Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Bao Tung Pham
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands,Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Su Suriguga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Theerut Luangmonkong
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Louise A van Wijk
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Yvette J M Jansen
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Dorenda Oosterhuis
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Henricus Antonius Maria Mutsaers
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, the Netherlands,Address correspondence to: Professor Peter Olinga, Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands. E-mail:
| |
Collapse
|
14
|
Gore E, Bigaeva E, Oldenburger A, Jansen YJM, Schuppan D, Boersema M, Rippmann JF, Broermann A, Olinga P. Investigating fibrosis and inflammation in an ex vivo NASH murine model. Am J Physiol Gastrointest Liver Physiol 2020; 318:G336-G351. [PMID: 31905025 DOI: 10.1152/ajpgi.00209.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease, characterized by excess fat accumulation (steatosis). Nonalcoholic steatohepatitis (NASH) develops in 15-20% of NAFLD patients and frequently progresses to liver fibrosis and cirrhosis. We aimed to develop an ex vivo model of inflammation and fibrosis in steatotic murine precision-cut liver slices (PCLS). NASH was induced in C57Bl/6 mice on an amylin and choline-deficient l-amino acid-defined (CDAA) diet. PCLS were prepared from steatohepatitic (sPCLS) and control (cPCLS) livers and cultured for 48 h with LPS, TGFβ1, or elafibranor. Additionally, C57Bl/6 mice were placed on CDAA diet for 12 wk to receive elafibranor or vehicle from weeks 7 to 12. Effects were assessed by transcriptome analysis and procollagen Iα1 protein production. The diets induced features of human NASH. Upon culture, all PCLS showed an increased gene expression of fibrosis- and inflammation-related markers but decreased lipid metabolism markers. LPS and TGFβ1 affected sPCLS more pronouncedly than cPCLS. TGFβ1 increased procollagen Iα1 solely in cPCLS. Elafibranor ameliorated fibrosis and inflammation in vivo but not ex vivo, where it only increased the expression of genes modulated by PPARα. sPCLS culture induced inflammation-, fibrosis-, and lipid metabolism-related transcripts, explained by spontaneous activation. sPCLS remained responsive to proinflammatory and profibrotic stimuli on gene expression. We consider that PCLS represent a useful tool to reproducibly study NASH progression. sPCLS can be used to evaluate potential treatments for NASH, as demonstrated in our elafibranor study, and serves as a model to bridge results from rodent studies to the human system.NEW & NOTEWORTHY This study showed that nonalcoholic steatohepatitis can be studied ex vivo in precision-cut liver slices obtained from murine diet-induced fatty livers. Liver slices develop a spontaneous inflammatory and fibrogenic response during culture that can be augmented with specific modulators. Additionally, the model can be used to test the efficacy of pharmaceutical compounds (as shown in this investigation with elafibranor) and could be a tool for preclinical assessment of potential therapies.
Collapse
Affiliation(s)
- Emilia Gore
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Emilia Bigaeva
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Anouk Oldenburger
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Yvette J M Jansen
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Miriam Boersema
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Jörg F Rippmann
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Andre Broermann
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Peter Olinga
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Bigaeva E, Gore E, Simon E, Zwick M, Oldenburger A, de Jong KP, Hofker HS, Schlepütz M, Nicklin P, Boersema M, Rippmann JF, Olinga P. Transcriptomic characterization of culture-associated changes in murine and human precision-cut tissue slices. Arch Toxicol 2019; 93:3549-3583. [PMID: 31754732 DOI: 10.1007/s00204-019-02611-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Our knowledge of complex pathological mechanisms underlying organ fibrosis is predominantly derived from animal studies. However, relevance of animal models for human disease is limited; therefore, an ex vivo model of human precision-cut tissue slices (PCTS) might become an indispensable tool in fibrosis research and drug development by bridging the animal-human translational gap. This study, presented as two parts, provides comprehensive characterization of the dynamic transcriptional changes in PCTS during culture by RNA sequencing. Part I investigates the differences in culture-induced responses in murine and human PCTS derived from healthy liver, kidney and gut. Part II delineates the molecular processes in cultured human PCTS generated from diseased liver, kidney and ileum. We demonstrated that culture was associated with extensive transcriptional changes and impacted PCTS in a universal way across the organs and two species by triggering an inflammatory response and fibrosis-related extracellular matrix (ECM) remodelling. All PCTS shared mRNA upregulation of IL-11 and ECM-degrading enzymes MMP3 and MMP10. Slice preparation and culturing activated numerous pathways across all PCTS, especially those involved in inflammation (IL-6, IL-8 and HMGB1 signalling) and tissue remodelling (osteoarthritis pathway and integrin signalling). Despite the converging effects of culture, PCTS display species-, organ- and pathology-specific differences in the regulation of genes and canonical pathways. The underlying pathology in human diseased PCTS endures and influences biological processes like cytokine release. Our study reinforces the use of PCTS as an ex vivo fibrosis model and supports future studies towards its validation as a preclinical tool for drug development.
Collapse
Affiliation(s)
- Emilia Bigaeva
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Emilia Gore
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Eric Simon
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Matthias Zwick
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Anouk Oldenburger
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hendrik S Hofker
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marco Schlepütz
- Respiratory Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Paul Nicklin
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Jörg F Rippmann
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riss, Germany
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands.
| |
Collapse
|
16
|
Gore E, Bigaeva E, Oldenburger A, Kim YO, Rippmann JF, Schuppan D, Boersema M, Olinga P. PI3K inhibition reduces murine and human liver fibrogenesis in precision-cut liver slices. Biochem Pharmacol 2019; 169:113633. [PMID: 31494146 DOI: 10.1016/j.bcp.2019.113633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Liver fibrosis results from continuous inflammation and injury. Despite its high prevalence worldwide, no approved antifibrotic therapies exist. Omipalisib is a selective inhibitor of the PI3K/mTOR pathway that controls nutrient metabolism, growth and proliferation. It has shown antifibrotic properties in vitro. While clinical trials for idiopathic pulmonary fibrosis have been initiated, an in-depth preclinical evaluation is lacking. We evaluated omipalisib's effects on fibrogenesis using the ex vivo model of murine and human precision-cut tissue slices (PCTS). METHODS Murine and human liver and jejunum PCTS were incubated with omipalisib up to 10 μM for 48 h. PI3K pathway activation was assessed through protein kinase B (Akt) phosphorylation and antifibrotic efficacy was determined via a spectrum of fibrosis markers at the transcriptional and translational level. RESULTS During incubation of PCTS the PI3K pathway was activated and incubation with omipalisib prevented Akt phosphorylation (IC50 = 20 and 1.5 nM for mouse and human, respectively). Viability of mouse and human liver PCTS was compromised only at the high concentration of 10 and 1-5 μM, respectively. However, viability of jejunum PCTS decreased with 0.1 (mouse) and 0.01 μM (human). Spontaneously increased fibrosis related genes and proteins were significantly and similarly suppressed in mouse and in human liver PCTS. CONCLUSIONS Omipalisib has antifibrotic properties in ex vivo mouse and human liver PCTS, but higher concentrations showed toxicity in jejunum PCTS. While the PI3K/mTOR pathway appears to be a promising target for the treatment of liver fibrosis, PCTS revealed likely side effects in the intestine at higher doses.
Collapse
Affiliation(s)
- Emilia Gore
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Emilia Bigaeva
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Anouk Oldenburger
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach an der Riss 88397, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Obere Zahlbacherstraße 63, Mainz 55131, Germany
| | - Jörg F Rippmann
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, Biberach an der Riss 88397, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Obere Zahlbacherstraße 63, Mainz 55131, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 330 Brookline Avenue, MA 02215, USA
| | - Miriam Boersema
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Peter Olinga
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands.
| |
Collapse
|
17
|
Paish HL, Reed LH, Brown H, Bryan MC, Govaere O, Leslie J, Barksby BS, Garcia Macia M, Watson A, Xu X, Zaki MY, Greaves L, Whitehall J, French J, White SA, Manas DM, Robinson SM, Spoletini G, Griffiths C, Mann DA, Borthwick LA, Drinnan MJ, Mann J, Oakley F. A Bioreactor Technology for Modeling Fibrosis in Human and Rodent Precision-Cut Liver Slices. Hepatology 2019; 70:1377-1391. [PMID: 30963615 PMCID: PMC6852483 DOI: 10.1002/hep.30651] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
Precision cut liver slices (PCLSs) retain the structure and cellular composition of the native liver and represent an improved system to study liver fibrosis compared to two-dimensional mono- or co-cultures. The aim of this study was to develop a bioreactor system to increase the healthy life span of PCLSs and model fibrogenesis. PCLSs were generated from normal rat or human liver, or fibrotic rat liver, and cultured in our bioreactor. PCLS function was quantified by albumin enzyme-linked immunosorbent assay (ELISA). Fibrosis was induced in PCLSs by transforming growth factor beta 1 (TGFβ1) and platelet-derived growth factor (PDGFββ) stimulation ± therapy. Fibrosis was assessed by gene expression, picrosirius red, and α-smooth muscle actin staining, hydroxyproline assay, and soluble ELISAs. Bioreactor-cultured PCLSs are viable, maintaining tissue structure, metabolic activity, and stable albumin secretion for up to 6 days under normoxic culture conditions. Conversely, standard static transwell-cultured PCLSs rapidly deteriorate, and albumin secretion is significantly impaired by 48 hours. TGFβ1/PDGFββ stimulation of rat or human PCLSs induced fibrogenic gene expression, release of extracellular matrix proteins, activation of hepatic myofibroblasts, and histological fibrosis. Fibrogenesis slowly progresses over 6 days in cultured fibrotic rat PCLSs without exogenous challenge. Activin receptor-like kinase 5 (Alk5) inhibitor (Alk5i), nintedanib, and obeticholic acid therapy limited fibrogenesis in TGFβ1/PDGFββ-stimulated PCLSs, and Alk5i blunted progression of fibrosis in fibrotic PCLS. Conclusion: We describe a bioreactor technology that maintains functional PCLS cultures for 6 days. Bioreactor-cultured PCLSs can be successfully used to model fibrogenesis and demonstrate efficacy of antifibrotic therapies.
Collapse
Affiliation(s)
- Hannah L. Paish
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Lee H. Reed
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Helen Brown
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Mark C. Bryan
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Olivier Govaere
- Liver Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Ben S. Barksby
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Marina Garcia Macia
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Abigail Watson
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Xin Xu
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Marco Y.W. Zaki
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Laura Greaves
- Newcastle University LLHW Centre for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Julia Whitehall
- Newcastle University LLHW Centre for Ageing and VitalityNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Jeremy French
- Department of Hepatobiliary SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Steven A. White
- Department of Hepatobiliary SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Derek M. Manas
- Department of Hepatobiliary SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Stuart M. Robinson
- Department of Hepatobiliary SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Gabriele Spoletini
- Department of Hepatobiliary SurgeryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Clive Griffiths
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Derek A. Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Lee A. Borthwick
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Michael J. Drinnan
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
18
|
Bigaeva E, Bomers JJM, Biel C, Mutsaers HAM, de Graaf IAM, Boersema M, Olinga P. Growth factors of stem cell niche extend the life-span of precision-cut intestinal slices in culture: A proof-of-concept study. Toxicol In Vitro 2019; 59:312-321. [PMID: 31158490 DOI: 10.1016/j.tiv.2019.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022]
Abstract
Precision-cut intestinal slices (PCIS) is an ex vivo culture technique that found its applications in toxicology, drug transport and drug metabolism testing, as well as in fibrosis research. The main limiting factor of PCIS as experimental model is the relatively short viability of tissue slices. Here, we describe a strategy for extending the life-span of PCIS during culture using medium that is routinely used for growing intestinal organoids. Mouse and rat PCIS cultured in standard medium progressively showed low ATP/protein content and severe tissue degradation, indicating loss of tissue viability. In turn, organoid medium, containing epithelial growth factor (EGF), Noggin and R-spondin, maintained significantly higher ATP/protein levels and better preserved intestinal architecture of mouse PCIS at 96 h. In contrast, organoid medium that additionally contained Wnt, had a clear positive effect on the ATP content of rat PCIS during 24 h of culture, but not on slice histomorphology. Our proof-of-concept study provides early evidence that employing organoid medium for PCIS culture improved tissue viability during extended incubation. Enabling lasting PCIS cultures will greatly widen their range of applications in predicting long-term intestinal toxicity of xenobiotics and elucidating their mechanism of action, among others.
Collapse
Affiliation(s)
- Emilia Bigaeva
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| | - Jordy J M Bomers
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands; PROdermpath, Labor für Dermatohistopathology, Vreden, Germany
| | - Carin Biel
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| | - Henricus A M Mutsaers
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands; Department of Clinical Medicine, Aarhus University, Denmark
| | - Inge A M de Graaf
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, The Netherlands
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
19
|
Elufioye TO, Habtemariam S. Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action. Biomed Pharmacother 2019; 112:108600. [PMID: 30780110 DOI: 10.1016/j.biopha.2019.108600] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases such as hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma are one of the major health challenges in the world and many conditions such as inadequate nutrition, viral infection, ethanol and drug abuse, xenobiotic exposure, and metabolic diseases have been implicated in the development and progression of liver diseases. Several factors including lipid peroxidation, production of reactive oxygen species (ROS), peroxynitrite formation, complement factors and proinflammatory mediators, such as cytokines and chemokines, are involved in hepatic diseases. Rosmarinic acid (RA) is a natural phenolic compound found mainly in the family Lamiaceae consisting of several medicinal plants, herbs and spices. Several biological activities have been reported for RA and these include antioxidant properties as a ROS scavenger and lipid peroxidation inhibitor, anti-inflammatory, neuroprotective and antiangiogenic among others. This review is aimed at discussing the effects of RA on the liver, highlighting its hepatoprotective potential and the underlying mechanisms.
Collapse
Affiliation(s)
- Taiwo O Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Nigeria.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Chatham, Maritime Kent, ME4 4TB, UK
| |
Collapse
|
20
|
Cedilak M, Banjanac M, Belamarić D, Paravić Radičević A, Faraho I, Ilić K, Čužić S, Glojnarić I, Eraković Haber V, Bosnar M. Precision-cut lung slices from bleomycin treated animals as a model for testing potential therapies for idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 2019; 55:75-83. [PMID: 30776489 DOI: 10.1016/j.pupt.2019.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 12/28/2018] [Accepted: 02/11/2019] [Indexed: 11/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex lung disease with incompletely understood pathophysiology. Effectiveness of available medicines is limited and the need for new and improved therapies remains. Due to complexity of the disease, it is difficult to develop predictable in vitro models. In this study we have described precision-cut lung slices (PCLS) prepared from bleomycin treated mice as an in vitro model for testing of novel compounds with antifibrotic activity. We have shown that PCLS during in vitro incubation retain characteristics of bleomycin model with increased expression of fibrosis related genes ACTA2 (α-smooth muscle actin), COL1A1 (collagen 1), FN1 (fibronectin 1), MMP12 (matrix metalloproteinase 12) and TIMP1 (tissue inhibitor of metalloproteinases). To further evaluate PCLS as an in vitro model, we have tested ALK5 inhibitor SB525334 which was previously shown to attenuate fibrosis in in vivo bleomycin model and nintedanib which is the FDA approved treatment for IPF. SB525334 and nintedanib inhibited expression of fibrosis related genes in PCLS from bleomycin treated mice. In addition, comparable activity profile of SB525334 was achieved in PCLS and in vivo model. Altogether these results suggest that PCLS may be a suitable in vitro model for compound testing during drug development process.
Collapse
Affiliation(s)
- Matea Cedilak
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia.
| | - Mihailo Banjanac
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | | | | | - Ivan Faraho
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Krunoslav Ilić
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Snježana Čužić
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Ines Glojnarić
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | | | - Martina Bosnar
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| |
Collapse
|
21
|
Palma E, Doornebal EJ, Chokshi S. Precision-cut liver slices: a versatile tool to advance liver research. Hepatol Int 2018; 13:51-57. [PMID: 30515676 PMCID: PMC6513823 DOI: 10.1007/s12072-018-9913-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Human precision-cut liver slices represent a robust and versatile ex vivo model which retains the complex and multi-cellular histoarchitecture of the hepatic environment. As such, they represent an ideal model to investigate the mechanisms of liver injury and for the identification of novel therapeutic targets. Schematic overview to highlight the utility of precision-cut liver slices as a relevant and versatile ex-vivo model of liver disease. Top panel; Precision cut liver slices (PCLS) exposed to ethanol develop mega-mitochondria, a classical hallmark of Alcoholic Liver Disease (ALD). Right panel; PCLS from liver tumours can be used as a model for liver cancer and can be used to investigate cancer-immune cell interactions by co-culturing with matched immune cells. Bottom panel; Exposure to a mixture of oleic and linoleic acids can simulate Non-Alcoholic Fatty Liver Disease (NAFLD). Left panel; PCLS can be infected with Hepatitis B and C virus and used as a model to study viral infection and replication.
Collapse
Affiliation(s)
- Elena Palma
- Institute of Hepatology London, Foundation for Liver Research, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ewald Jan Doornebal
- Institute of Hepatology London, Foundation for Liver Research, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shilpa Chokshi
- Institute of Hepatology London, Foundation for Liver Research, London, UK. .,Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
22
|
Clippinger AJ, Allen D, Behrsing H, BéruBé KA, Bolger MB, Casey W, DeLorme M, Gaça M, Gehen SC, Glover K, Hayden P, Hinderliter P, Hotchkiss JA, Iskandar A, Keyser B, Luettich K, Ma-Hock L, Maione AG, Makena P, Melbourne J, Milchak L, Ng SP, Paini A, Page K, Patlewicz G, Prieto P, Raabe H, Reinke EN, Roper C, Rose J, Sharma M, Spoo W, Thorne PS, Wilson DM, Jarabek AM. Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicol In Vitro 2018; 52:131-145. [PMID: 29908304 PMCID: PMC6760245 DOI: 10.1016/j.tiv.2018.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/14/2023]
Abstract
New approaches are needed to assess the effects of inhaled substances on human health. These approaches will be based on mechanisms of toxicity, an understanding of dosimetry, and the use of in silico modeling and in vitro test methods. In order to accelerate wider implementation of such approaches, development of adverse outcome pathways (AOPs) can help identify and address gaps in our understanding of relevant parameters for model input and mechanisms, and optimize non-animal approaches that can be used to investigate key events of toxicity. This paper describes the AOPs and the toolbox of in vitro and in silico models that can be used to assess the key events leading to toxicity following inhalation exposure. Because the optimal testing strategy will vary depending on the substance of interest, here we present a decision tree approach to identify an appropriate non-animal integrated testing strategy that incorporates consideration of a substance's physicochemical properties, relevant mechanisms of toxicity, and available in silico models and in vitro test methods. This decision tree can facilitate standardization of the testing approaches. Case study examples are presented to provide a basis for proof-of-concept testing to illustrate the utility of non-animal approaches to inform hazard identification and risk assessment of humans exposed to inhaled substances.
Collapse
Affiliation(s)
- Amy J Clippinger
- PETA International Science Consortium Ltd., Society Building, 8 All Saints Street, London N1 9RL, United Kingdom.
| | - David Allen
- Integrated Laboratory Systems, Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, United States
| | - Holger Behrsing
- Institute for In Vitro Sciences, 30 West Watkins Mill Road, Suite 100, Gaithersburg, MD 20878, United States
| | - Kelly A BéruBé
- Cardiff School of Biosciences, Museum Avenue, CF10 3AX, Wales, United Kingdom
| | - Michael B Bolger
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, United States
| | - Warren Casey
- NIH/NIEHS/DNTP/NICEATM, Research Triangle Park, North Carolina 27709, United States
| | | | - Marianna Gaça
- British American Tobacco plc, Globe House, 4 Temple Place, London WC2R 2PG, United Kingdom
| | - Sean C Gehen
- Dow AgroSciences, Indianapolis, IN, United States
| | - Kyle Glover
- Defense Threat Reduction Agency, Aberdeen Proving Ground, MD 21010, United States
| | - Patrick Hayden
- MatTek Corporation, 200 Homer Ave, Ashland, MA 01721, United States
| | | | | | - Anita Iskandar
- Philip Morris Products SA, Philip Morris International R&D, Neuchâtel, Switzerland
| | - Brian Keyser
- RAI Services Company, 401 North Main Street, Winston-Salem, NC 27101, United States
| | - Karsta Luettich
- Philip Morris Products SA, Philip Morris International R&D, Neuchâtel, Switzerland
| | - Lan Ma-Hock
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Anna G Maione
- MatTek Corporation, 200 Homer Ave, Ashland, MA 01721, United States
| | - Patrudu Makena
- RAI Services Company, 401 North Main Street, Winston-Salem, NC 27101, United States
| | - Jodie Melbourne
- PETA International Science Consortium Ltd., Society Building, 8 All Saints Street, London N1 9RL, United Kingdom
| | | | - Sheung P Ng
- E.I. du Pont de Nemours and Company, DuPont Haskell Global Center for Health Sciences, P. O. Box 30, Newark, DE 19714, United States
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Kathryn Page
- The Clorox Company, 4900 Johnson Dr, Pleasanton, CA 94588, United States
| | - Grace Patlewicz
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, NC, United States
| | - Pilar Prieto
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Hans Raabe
- Institute for In Vitro Sciences, 30 West Watkins Mill Road, Suite 100, Gaithersburg, MD 20878, United States
| | - Emily N Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd. Bldg. E-5158, ATTN: MCHB-PH-HEF Gunpowder, MD 21010-5403, United States
| | - Clive Roper
- Charles River Edinburgh Ltd., Edinburgh EH33 2NE, United Kingdom
| | - Jane Rose
- Procter & Gamble Co, 11530 Reed Hartman Highway, Cincinnati, OH 45241, United States
| | - Monita Sharma
- PETA International Science Consortium Ltd., Society Building, 8 All Saints Street, London N1 9RL, United Kingdom
| | - Wayne Spoo
- RAI Services Company, 401 North Main Street, Winston-Salem, NC 27101, United States
| | - Peter S Thorne
- University of Iowa College of Public Health, Iowa City, IA, United States
| | | | - Annie M Jarabek
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Research Triangle Park, NC, United States
| |
Collapse
|
23
|
Stribos EGD, Seelen MA, van Goor H, Olinga P, Mutsaers HAM. Murine Precision-Cut Kidney Slices as an ex vivo Model to Evaluate the Role of Transforming Growth Factor-β1 Signaling in the Onset of Renal Fibrosis. Front Physiol 2017; 8:1026. [PMID: 29311960 PMCID: PMC5732966 DOI: 10.3389/fphys.2017.01026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
Renal fibrosis is characterized by progressive accumulation of extracellular matrix (ECM) proteins, resulting in loss of organ function and eventually requiring renal replacement therapy. Unfortunately, no efficacious treatment options are available to halt renal fibrosis and translational models to test pharmacological agents are not always representative. Here, we evaluated murine precision-cut kidney slices (mPCKS) as a promising ex vivo model of renal fibrosis in which pathophysiology as well as therapeutics can be studied. Unique to this model is the use of rodent as well as human renal tissue, further closing the gap between animal models and clinical trials. Kidneys from C57BL/6 mice were used to prepare mPCKS and slices were incubated up to 96h. Viability, morphology, gene expression of fibrosis markers (Col1a1, Acta2, Serpinh1, Fn1, and Pai-1), inflammatory markers (Il1b, Il6, Cxcl1), and protein expression (collagen type 1, α-smooth muscle actin, HSP47) were determined. Furthermore, to understand the role of the transforming-growth factor β (TGF-β) pathway in mPCKS, slices were incubated with a TGF-β receptor inhibitor (LY2109761) for 48 h. Firstly, viability and morphology revealed an optimal incubation period of 48 h. Secondly, we demonstrated an early inflammatory response in mPCKS, which was accompanied by subsequent spontaneous fibrogenesis. Finally, LY2109761 showed great antifibrotic capacity in mPCKS by decreasing fibrosis markers on mRNA level as well as by reducing HSP47 protein expression. To conclude, we here present an ex vivo model of renal fibrosis, which can be used to further unravel the mechanisms of renal fibrogenesis and to screen antifibrotic therapy efficacy.
Collapse
Affiliation(s)
- Elisabeth G D Stribos
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.,Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marc A Seelen
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Harry van Goor
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Henricus A M Mutsaers
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Ruigrok MJR, Maggan N, Willaert D, Frijlink HW, Melgert BN, Olinga P, Hinrichs WLJ. siRNA-Mediated RNA Interference in Precision-Cut Tissue Slices Prepared from Mouse Lung and Kidney. AAPS JOURNAL 2017; 19:1855-1863. [PMID: 28895093 DOI: 10.1208/s12248-017-0136-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Small interfering RNA (siRNA)-mediated RNAi interference (RNAi) is a powerful post-transcriptional gene silencing mechanism which can be used to study the function of genes in vitro (cell cultures) and in vivo (animal models). However, there is a translational gap between these models. Hence, there is a need for novel experimental models that combine the advantages of in vitro and in vivo models (e.g., simplicity, flexibility, throughput, and representability) to study the effects of siRNA. This need may be addressed by precision-cut tissue slices (PCTS), which represent an ex vivo model that mimics the structural and functional characteristics of a whole organ. The goal of this study was to investigate whether self-deliverable siRNA (Accell siRNA) can be used in precision-cut lung slices (PCLuS) and precision-cut kidney slices (PCKS) to achieve RNAi ex vivo. PCLuS and PCKS were prepared from mouse tissue, and they were subsequently incubated up to 48 h with no siRNA (untransfected), non-targeting Accell siRNA, or Gapdh-targeting Accell siRNA. Significant Gapdh mRNA silencing was achieved (PCLuS ~ 55%; PCKS ~ 40%) without compromising the viability and morphology of slices. Fluorescence microscopy confirmed that Accell siRNA diffused into PCLuS and PCKS. Spontaneous inflammation upon incubation was observed in PCLuS and PCKS as shown by a higher mRNA expression of pro-inflammatory cytokines Il1b, Il6, and Tnfa, although Accell siRNA appeared to diminish this response in PCLuS after 24 h. In conclusion, this ex vivo transfection model can be used to evaluate the effects of siRNA in relevant biological environments.
Collapse
Affiliation(s)
- Mitchel J R Ruigrok
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Nalinie Maggan
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Delphine Willaert
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henderik W Frijlink
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Barbro N Melgert
- Groningen Research Institute of Pharmacy, Department of Pharmacokinetics, Toxicology, and Targeting, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Peter Olinga
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Wouter L J Hinrichs
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
25
|
Human precision-cut liver slices as a model to test antifibrotic drugs in the early onset of liver fibrosis. Toxicol In Vitro 2016; 35:77-85. [DOI: 10.1016/j.tiv.2016.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 01/11/2023]
|
26
|
Hansen NUB, Karsdal MA, Brockbank S, Cruwys S, Rønnow S, Leeming DJ. Tissue turnover of collagen type I, III and elastin is elevated in the PCLS model of IPF and can be restored back to vehicle levels using a phosphodiesterase inhibitor. Respir Res 2016; 17:76. [PMID: 27411390 PMCID: PMC4942917 DOI: 10.1186/s12931-016-0394-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/30/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The aim of this study was to develop and validate a model for pulmonary fibrosis, using ex vivo tissue cultures of lungs from bleomycin treated animals, enabling the investigation of fibrosis remodeling using novel biomarkers for the detection of ECM protein fragments. The combination of in vivo and ex vivo models together with ECM remodeling markers may provide a translational tool for screening of potential treatments for IPF. METHODS Twenty female Sprague-Dawley rats, twelve weeks of age, were administrated either two doses of bleomycin (BLM) (n = 14) or saline (n = 6) I.T., two days apart. Ten rats were euthanized at day seven and the remaining ten rats at day fourteen, after the last dose. Precision-cut lung slices (PCLS) were made and cultured for 48 h. Ten female Sprague-Dawley rats, twelve weeks of age, were administrated either two doses of BLM (n = 7) or saline (n = 3) I.T., two days apart. The rats were euthanized fourteen days after the last dose. PCLS were made and cultured for 48 h in: medium, medium + 100 μM IBMX (PDE inhibitor), or medium + 10 μM GM6001 (MMP inhibitor). Turnover of type I collagen (P1NP, C1M), type III collagen (iP3NP, C3M) and elastin degradation (ELM7) was measured in the supernatant of the cultured PCLS. RESULTS P1NP, C1M, iP3NP, C3M and ELM7 were significantly increased in supernatants from BLM animals (P ≤ 0.05 - P ≤ 0.0001) when compared to controls. P1NP, C1M, iP3NP, C3M and ELM7 were significantly increased in supernatants from day seven BLM animals compared to day fourteen BLM animals (P ≤ 0.05 - P ≤ 0.0001). P1NP, C1M, iP3NP, C3M and ELM7 were significantly decreased when adding IBMX to the culture medium of fibrotic lung tissue (P ≤ 0.05 - P ≤ 0.0001). C1M, C3M and ELM7 were significantly decreased when adding GM6001 to the culture medium (P ≤ 0.05 - P ≤ 0.0001). Sirius Red and Orcein staining confirmed the presence of collagen and elastin deposition in the lungs of the animals receiving BLM. CONCLUSIONS The protein fingerprint technology allows the assessment of ECM remodeling markers in the BLM PCLS model. By combining in vivo, ex vivo models and the protein fingerprint technology in the fibrotic phase of the model, we believe the chance of translation from animal model to human is markedly increased.
Collapse
Affiliation(s)
- Niels Ulrik Brandt Hansen
- />Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
- />University of Southern Denmark, SDU, Odense, Denmark
| | - Morten Asser Karsdal
- />Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
- />University of Southern Denmark, SDU, Odense, Denmark
| | | | | | - Sarah Rønnow
- />Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| | | |
Collapse
|
27
|
Genovese F, Kàrpàti ZS, Nielsen SH, Karsdal MA. Precision-Cut Kidney Slices as a Tool to Understand the Dynamics of Extracellular Matrix Remodeling in Renal Fibrosis. Biomark Insights 2016; 11:77-84. [PMID: 27257368 PMCID: PMC4877083 DOI: 10.4137/bmi.s38439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to set up an ex vivo model for renal interstitial fibrosis in order to investigate the extracellular matrix (ECM) turnover profile in the fibrotic kidney. We induced kidney fibrosis in fourteen 12-week-old male Sprague Dawley rats by unilateral ureteral obstruction (UUO) surgery of the right ureter. The left kidney (contralateral) was used as internal control. Six rats were sham operated and used as the control group. Rats were terminated two weeks after the surgery; the kidneys were excised and precision-cut kidney slices (PCKSs) were cultured for five days in serum-free medium. Markers of collagen type I formation (P1NP), collagen type I and III degradation (C1M and C3M), and α-smooth muscle actin (αSMA) were measured in the PCKS supernatants by enzyme-linked immunosorbent assay. P1NP, C1M, C3M, and α-SMA were increased up to 2- to 13-fold in supernatants of tissue slices from the UUO-ligated kidneys compared with the contralateral kidneys (P < 0.001) and with the kidneys of sham-operated animals (P < 0.0001). The markers could also reflect the level of fibrosis in different animals. The UUO PCKS ex vivo model provides a valuable translational tool for investigating the extracellular matrix remodeling associated with renal interstitial fibrosis.
Collapse
|
28
|
Abstract
The 2nd Cross Company Respiratory Symposium (CCRS), held in Horsham, U.K. in 2012, brought together representatives from across the pharmaceutical industry with expert academics, in the common interest of improving the design and translational predictiveness of in vivo models of respiratory disease. Organized by the respiratory representatives of the European Federation of Pharmaceutical Industries and Federations (EFPIA) group of companies involved in the EU-funded project (U-BIOPRED), the aim of the symposium was to identify state-of-the-art improvements in the utility and design of models of respiratory disease, with a view to improving their translational potential and reducing wasteful animal usage. The respiratory research and development community is responding to the challenge of improving translation in several ways: greater collaboration and open sharing of data, careful selection of the species, complexity and chronicity of the models, improved practices in preclinical research, continued refinement in models of respiratory diseases and their sub-types, greater understanding of the biology underlying human respiratory diseases and their sub-types, and finally greater use of human (and especially disease-relevant) cells, tissues and explants. The present review highlights these initiatives, combining lessons from the symposium and papers published in Clinical Science arising from the symposium, with critiques of the models currently used in the settings of asthma, idiopathic pulmonary fibrosis and COPD. The ultimate hope is that this will contribute to a more rational, efficient and sustainable development of a range of new treatments for respiratory diseases that continue to cause substantial morbidity and mortality across the world.
Collapse
|
29
|
Poosti F, Pham BT, Oosterhuis D, Poelstra K, van Goor H, Olinga P, Hillebrands JL. Precision-cut kidney slices (PCKS) to study development of renal fibrosis and efficacy of drug targeting ex vivo. Dis Model Mech 2015; 8:1227-36. [PMID: 26112172 PMCID: PMC4610232 DOI: 10.1242/dmm.020172] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/24/2015] [Indexed: 01/15/2023] Open
Abstract
Renal fibrosis is a serious clinical problem resulting in the greatest need for renal replacement therapy. No adequate preventive or curative therapy is available that could be clinically used to target renal fibrosis specifically. The search for new efficacious treatment strategies is therefore warranted. Although in vitro models using homogeneous cell populations have contributed to the understanding of the pathogenetic mechanisms involved in renal fibrosis, these models poorly mimic the complex in vivo milieu. Therefore, we here evaluated a precision-cut kidney slice (PCKS) model as a new, multicellular ex vivo model to study the development of fibrosis and its prevention using anti-fibrotic compounds. Precision-cut slices (200-300 μm thickness) were prepared from healthy C57BL/6 mouse kidneys using a Krumdieck tissue slicer. To induce changes mimicking the fibrotic process, slices were incubated with TGFβ1 (5 ng/ml) for 48 h in the presence or absence of the anti-fibrotic cytokine IFNγ (1 µg/ml) or an IFNγ conjugate targeted to PDGFRβ (PPB-PEG-IFNγ). Following culture, tissue viability (ATP-content) and expression of α-SMA, fibronectin, collagen I and collagen III were determined using real-time PCR and immunohistochemistry. Slices remained viable up to 72 h of incubation, and no significant effects of TGFβ1 and IFNγ on viability were observed. TGFβ1 markedly increased α-SMA, fibronectin and collagen I mRNA and protein expression levels. IFNγ and PPB-PEG-IFNγ significantly reduced TGFβ1-induced fibronectin, collagen I and collagen III mRNA expression, which was confirmed by immunohistochemistry. The PKCS model is a novel tool to test the pathophysiology of fibrosis and to screen the efficacy of anti-fibrotic drugs ex vivo in a multicellular and pro-fibrotic milieu. A major advantage of the slice model is that it can be used not only for animal but also for (fibrotic) human kidney tissue. Drug Discovery Collection: TGFβ induces renal fibrosis in ex vivo cultured precision-cut kidney slices, which can be attenuated by IFNγ.
Collapse
Affiliation(s)
- Fariba Poosti
- Departments of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Bao Tung Pham
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Klaas Poelstra
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Harry van Goor
- Departments of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Jan-Luuk Hillebrands
- Departments of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, The Netherlands
| |
Collapse
|
30
|
Pham BT, van Haaften WT, Oosterhuis D, Nieken J, de Graaf IAM, Olinga P. Precision-cut rat, mouse, and human intestinal slices as novel models for the early-onset of intestinal fibrosis. Physiol Rep 2015; 3:3/4/e12323. [PMID: 25907784 PMCID: PMC4425951 DOI: 10.14814/phy2.12323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intestinal fibrosis (IF) is a major complication of inflammatory bowel disease. IF research is limited by the lack of relevant in vitro and in vivo models. We evaluated precision-cut intestinal slices (PCIS) prepared from human, rat, and mouse intestine as ex vivo models mimicking the early-onset of (human) IF. Precision-cut intestinal slices prepared from human (h), rat (r), and mouse (m) jejunum, were incubated up to 72 h, the viability of PCIS was assessed by ATP content and morphology, and the gene expression of several fibrosis markers was determined. The viability of rPCIS decreased after 24 h of incubation, whereas mPCIS and hPCIS were viable up to 72 h of culturing. Furthermore, during this period, gene expression of heat shock protein 47 and plasminogen activator inhibitor 1 increased in all PCIS in addition to augmented expression of synaptophysin in hPCIS, fibronectin (Fn2) and TGF-β1 in rPCIS, and Fn2 and connective tissue growth factor (Ctgf) in mPCIS. Addition of TGF-β1 to rPCIS or mPCIS induced the gene expression of the fibrosis markers Pro-collagen1a1, Fn2, and Ctgf in both species. However, none of the fibrosis markers was further elevated in hPCIS. We successfully developed a novel ex vivo model that can mimic the early-onset of fibrosis in the intestine using human, rat, and mouse PCIS. Furthermore, in rat and mouse PCIS, TGF-β1 was able to even further increase the gene expression of fibrosis markers. This indicates that PCIS can be used as a model for the early-onset of IF.
Collapse
Affiliation(s)
- Bao Tung Pham
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Wouter Tobias van Haaften
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Judith Nieken
- Pathology Friesland Foundation, Leeuwarden, The Netherlands
| | - Inge Anne Maria de Graaf
- Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
The importance of extracellular matrix for cell function and in vivo likeness. Exp Mol Pathol 2015; 98:286-94. [DOI: 10.1016/j.yexmp.2015.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 01/07/2023]
|
32
|
Westra IM, Oosterhuis D, Groothuis GMM, Olinga P. The effect of antifibrotic drugs in rat precision-cut fibrotic liver slices. PLoS One 2014; 9:e95462. [PMID: 24755660 PMCID: PMC3995767 DOI: 10.1371/journal.pone.0095462] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/26/2014] [Indexed: 12/16/2022] Open
Abstract
Two important signaling pathways in liver fibrosis are the PDGF- and TGFβ pathway and compounds inhibiting these pathways are currently developed as antifibrotic drugs. Testing antifibrotic drugs requires large numbers of animal experiments with high discomfort. Therefore, a method to study these drugs ex vivo was developed using precision-cut liver slices from fibrotic rat livers (fPCLS), representing an ex vivo model with a multicellular fibrotic environment. We characterized the fibrotic process in fPCLS from rat livers after 3 weeks of bile duct ligation (BDL) during incubation and tested compounds predominantly inhibiting the TGFβ pathway (perindopril, valproic acid, rosmarinic acid, tetrandrine and pirfenidone) and PDGF pathway (imatinib, sorafenib and sunitinib). Gene expression of heat shock protein 47 (Hsp47), α smooth muscle actin (αSma) and pro-collagen 1A1 (Pcol1A1) and protein expression of collagens were determined. During 48 hours of incubation, the fibrosis process continued in control fPCLS as judged by the increased gene expression of the three fibrosis markers, and the protein expression of collagen 1, mature fibrillar collagen and total collagen. Most PDGF-inhibitors and TGFβ-inhibitors significantly inhibited the increase in gene expression of Hsp47, αSma and Pcol1A1. Protein expression of collagen 1 was significantly reduced by all PDGF-inhibitors and TGFβ-inhibitors, while total collagen was decreased by rosmarinic acid and tetrandrine only. However, fibrillar collagen expression was not changed by any of the drugs. In conclusion, rat fPCLS can be used as a functional ex vivo model of established liver fibrosis to test antifibrotic compounds inhibiting the PDGF- and TGFβ signalling pathway.
Collapse
Affiliation(s)
- Inge M. Westra
- Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Dorenda Oosterhuis
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Geny M. M. Groothuis
- Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
33
|
van Swelm RPL, Hadi M, Laarakkers CMM, Masereeuw R, Groothuis GMM, Russel FGM. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury. J Appl Toxicol 2013; 34:993-1001. [PMID: 24038040 DOI: 10.1002/jat.2917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/21/2013] [Accepted: 07/09/2013] [Indexed: 01/03/2023]
Abstract
Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker identification, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PCLS were incubated with acetaminophen (APAP), 3-acetamidophenol, diclofenac and lipopolysaccharide for 24-48 h. PCLS medium from all species treated with APAP demonstrated similar changes in protein profiles, as previously found in mouse urine after APAP-induced liver injury, including the same key proteins: superoxide dismutase 1, carbonic anhydrase 3 and calmodulin. Further analysis showed that the concentration of hepcidin, a hepatic iron-regulating hormone peptide, was reduced in PCLS medium after APAP treatment, resembling the decreased mouse plasma concentrations of hepcidin observed after APAP treatment. Interestingly, comparable results were obtained after 3-acetamidophenol incubation in rat and human, but not mouse PCLS. Incubation with diclofenac, but not with lipopolysaccharide, resulted in the same toxicity parameters as observed for APAP, albeit to a lesser extent. In conclusion, proteomics can be applied to identify potential translational biomarkers using the PCLS system.
Collapse
Affiliation(s)
- Rachel P L van Swelm
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, the Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Oenema TA, Maarsingh H, Smit M, Groothuis GMM, Meurs H, Gosens R. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices. PLoS One 2013; 8:e65580. [PMID: 23840342 PMCID: PMC3694103 DOI: 10.1371/journal.pone.0065580] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/26/2013] [Indexed: 01/25/2023] Open
Abstract
Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin) after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A) or TGF-β receptor kinase (SB431542) prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl) mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.
Collapse
Affiliation(s)
- Tjitske A. Oenema
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Harm Maarsingh
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Marieke Smit
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Geny M. M. Groothuis
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Precision-cut liver slices: a tool to model the liver ex vivo. J Hepatol 2013; 58:1252-3. [PMID: 23336979 DOI: 10.1016/j.jhep.2013.01.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 12/16/2022]
|